TW387055B - Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts - Google Patents

Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts Download PDF

Info

Publication number
TW387055B
TW387055B TW88110916A TW88110916A TW387055B TW 387055 B TW387055 B TW 387055B TW 88110916 A TW88110916 A TW 88110916A TW 88110916 A TW88110916 A TW 88110916A TW 387055 B TW387055 B TW 387055B
Authority
TW
Taiwan
Prior art keywords
fiber
fiber grating
interferometer
light
birefringent
Prior art date
Application number
TW88110916A
Other languages
Chinese (zh)
Inventor
Ying-Jie Lai
Yu-Wen Chen
Ching-Lung Weng
Tz-Bin Hung
Jian-Hua Li
Original Assignee
Defence Dept Chung Shan Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Defence Dept Chung Shan Inst filed Critical Defence Dept Chung Shan Inst
Priority to TW88110916A priority Critical patent/TW387055B/en
Application granted granted Critical
Publication of TW387055B publication Critical patent/TW387055B/en

Links

Abstract

A distributed fiber-grating-based sensing system, the system comprising one or more scanned birefringence fiber interferometers to detect the small wavelength shift of the light reflicted from the fiber grating, a wavelength demultiplexer to separate the lights from each fiber grating, a reference fiber grating for determining the absolute optical wavelengths, compared to the prior art, the system has advantages of easier fabrication, better stabilizatin, and can be customized for different applications.

Description

五、發明說明u) '一· 發明之領域 本發明是關於分佈式光纖光柵感測系統之架構,特別 是這類系統中有關準確偵測光波長的方法。 相關之專利 2 3 4 5 6 7V. Description of the Invention u) 'I. Field of the Invention The present invention relates to the architecture of a distributed fiber grating sensing system, and particularly to a method for accurately detecting the wavelength of light in such a system. Related Patents 2 3 4 5 6 7

美國專利 53 6 1 1 30. Nov. 1,1994 美國專利 58 1 8 1 85. Oct.、6, 1998 美國專利574831 2. May 5, 1998 美國專利 54 1 0 40 4. Apr. 2 5, 1 9 9 5 美國專利 5397891.Mar. 14, 1995 美國專利5401956.Mar. 28, 1995 美國專利 5838437. Nov. 17, 1998 發明之背景 光纖布拉格光柵可以用來偵測該光纖光柵所在地,點之 溫度或應變等物理變量化改變’這是因為環境物理量之改 變會造成光纖布拉格光柵反射中心波長之改變,藉著偵測 這種反射中心波長的改變大小就可反推環境物理量之改變 大小。要偵測光纖光柵反射中心波長的改變,目前最常用 的方法是利用一個寬頻光源或是可調頻雷射來照射光纖光 栅,然後偵測由光纖光柵反射回來之窄頻反射光的中心皮 長、強度、或時間延遲等光學特性’如前述專利第丄I ' 6 。如果同時使用多個不同反射波長的井繃土 ^ " ^ + 疋纖先柵,還可籍 著分別偵測不同光纖光柵的反射先來達到八〜上々 〜分佈式多點偵測US Patent 53 6 1 1 30. Nov. 1, 1994 US Patent 58 1 8 1 85. Oct., 6, 1998 US Patent 574831 2. May 5, 1998 US Patent 54 1 0 40 4. Apr. 2 5, 1 9 9 5 US Patent 5798891. Mar. 14, 1995 US Patent 5401956. Mar. 28, 1995 US Patent 5838437. Nov. 17, 1998 Background of the Invention Fiber Bragg Gratings can be used to detect the temperature, temperature, or location of the fiber grating. The change of physical variables such as strain is because the change of the environmental physical quantity will cause the change of the reflection center wavelength of the fiber Bragg grating. By detecting the change of the reflection center wavelength, the change of the environmental physical quantity can be deduced. To detect the change in the center wavelength of the fiber grating reflection, the most commonly used method is to irradiate the fiber grating with a broadband light source or adjustable frequency laser, and then detect the center skin length of the narrow-frequency reflected light reflected by the fiber grating, Optical properties such as intensity and time delay are as described in the aforementioned Patent No. 丄 I'6. If multiple wells with different reflection wavelengths are used at the same time ^ " ^ + 疋 fiber first grid, you can also detect the reflection of different fiber gratings first to reach eight ~ 々 ~ distributed multi-point detection

第7頁 五、發明說明(2) 的目的巷。其中若是要偵測由光纖光挪 射光的中心光波長,目前最常用的方法射回來之窄頻反 非平衡式Mach-Zehnder干涉儀,如岙要為(1 )使用 )使用可調頻F a b r y - P e r 〇 t滤波器,如^、 第1件’ (2 3件;(3 )使用光纖光柵元件,如前引述專利第2及第 月|J述專利第4及篦巳 件。在前兩種方法中,由於可調頻濟叻。。 j用也、波裔或Mach-Zehnder 干涉儀都會文ί哀境影響而使偵測值有些漂移,所以都需要 藉助一個參考光源來確定光波長的絕對值。這種參考光源 可以是有溫度補償的光纖光栅或是固定式Fabry— per〇t^ 波器’如前述專利第7件。將這些技術結合在一起就可得 出如圖一或圖二之典型光纖光柵感測系統。 這些目前的糸統具有底下的一些.缺點:(1 )可調頻 F a b r y - P e r 〇 t濾波器價錢太貴,掃,速度不是很快;(2 干涉儀價錢太貴,光學 由兩個路徑之光程差不 差之隨機漂移很大; )積體光學非平衡式Mach-Zehnder 非平衡式M a c h - Z e h n d e r干涉儀則是 易控制準確,製作不易,而且相位 (3 )使用Mach-Zehnder干涉儀來偵測多個光纖光栅有波 長曖昧之問題。本發明之目的即是要來提出分佈式光纖光 柵感測系統之新架構來解決或減輕以上的問題。 發明之簡述 本發明之目的是要來提出一個容易製作、穩定、及高 靈敏度之分佈式光纖光柵感測系統。此系統包括一個寬頻 光源、多個光纖光拇感測器、一個或多個掃瞒式雙折射光Page 7 V. Purpose of Invention (2). Among them, if it is to detect the central wavelength of light transmitted by optical fiber light, the narrowest anti-unbalanced Mach-Zehnder interferometer emitted by the most commonly used method at present, if you want to use (1)) use adjustable frequency F abry- Per Ot filters, such as ^, the first piece (2 3 pieces; (3) the use of fiber grating elements, as mentioned in the patent 2 and the month | J mentioned in the patent 4 and the first two. In the first two In this method, due to the adjustable frequency, the detection value will be drifted due to the influence of the sadness, wave, or Mach-Zehnder interferometer. Therefore, a reference light source is needed to determine the absolute wavelength of the light. This reference light source can be a temperature-compensated fiber grating or a fixed Fabry-per〇t ^ wave device 'as in the aforementioned patent 7. The combination of these technologies can be obtained as shown in Figure 1 or Figure 2. Typical fiber grating sensing system. These current systems have some of the following. Disadvantages: (1) adjustable frequency Fabry-Pert filter is too expensive, sweep, speed is not fast; (2 interferometer price Too expensive, the optical path length of the two paths is not different The random drift of the difference is very large;) Integrated optical unbalanced Mach-Zehnder unbalanced Mach-Z ehnder interferometer is easy to control and accurate, and it is not easy to make, and the phase (3) is detected by Mach-Zehnder interferometer Multiple fiber gratings have the problem of ambiguous wavelength. The purpose of the present invention is to propose a new architecture of a distributed fiber grating sensing system to solve or alleviate the above problems. BRIEF SUMMARY OF THE INVENTION The object of the present invention is to propose a Easy-to-manufacture, stable, and high-sensitivity distributed fiber grating sensing system. This system includes a broadband light source, multiple fiber optic thumb sensors, and one or more concealed birefringent light

五、發明說明(3) 纖干涉器、一個波長解多工器、一個參考用光纖光柵、以 及系統操作所需之信號處理器。掃瞄式雙折射光纖干涉器 係用來偵測光纖光柵反射光之中心波.長、波長解多工器是 用來分辨不同光纖光柵之反射信號’參考用光纖光棚則是 用來確定光波長的絕對值。 附圖之簡單說明 圖一:使用可調頻F a b r y - P e r 〇 t濾、波器之已有光纖光柵感 測系統架構。 圖二:使用非平衡式Mach-Z ehnd er干涉儀之已有光纖光柵 感測系統架構。 圖三:本發明所提出,使用一個掃瞄式雙折射光纖干涉器 之分佈式光纖光柵感測系統架構。 圖四:本發明所提出,使用兩個掃瞄式雙折射光纖干涉器 之分佈式光纖光柵感測系統架構。, 圖五··干涉儀之穿透頻譜。 圖號說明 1 · •見 頻 光 源 2 · .光 纖 麵 合器 3 . .參 考 用 光纖光 柵 4 · •光 纖 光 柵感測 器 5 · •參 考 光 源 6 · .可 調 頻 Fabry- P e r 〇 t濾、波器5. Description of the invention (3) Fiber interferometer, a wavelength demultiplexer, a reference fiber grating, and a signal processor required for system operation. Scanning birefringent fiber interferometer is used to detect the center wave of the reflected light from the fiber grating. Long and wavelength demultiplexers are used to distinguish the reflected signals of different fiber gratings. The reference fiber optic shed is used to determine the light. The absolute value of the wavelength. Brief description of the drawings Figure 1: Architecture of an existing fiber Bragg grating sensing system using an adjustable frequency F a b r y-P er ot filter. Figure 2: Architecture of an existing fiber Bragg grating sensing system using an unbalanced Mach-Zehnder interferometer. Figure 3: The architecture of a distributed fiber grating sensing system using a scanning birefringent fiber interferometer according to the present invention. Figure 4: Architecture of a distributed fiber grating sensing system using two scanning birefringent fiber interferometers according to the present invention. Figure 5. The transmission spectrum of the interferometer. Description of the drawing number 1 • • See frequency light source 2 ·. Fiber optic facet combiner 3.. Reference fiber grating 4 · • Fiber grating sensor 5 · • Reference light source 6 ·. Adjustable frequency Fabry-Per Filter Device

第9頁 五、發明說明(4) 7 …光 偵 測 器 8 …掃 描 信 號 產 生 電 路 9 …信 號 擷 取 及 處 理 電 路 10 …系 統 / 使 用 者 界 面 11 …非 平 衡 式Ma ch -Zeh nder 干涉儀 12 …光 偵 測 器 13 …掃 描 信 號 產 生 電 路 14 …信 號 擷 取 及 處 理 電 路 15 …系 統 / 使 用 者 界 面 16 …光 纖 輛 合 哭 σσ 17 •_.PZT相位調變器 18 …光 纖 耦 合 器 19 …光 偵 測 哭 σ 口 及 放 大 電 路 21 …掃 描 式 雙 折 射 光 纖 干涉 儀 22 …波 長 解 多 工 器 23 …光 偵 測 器 陣 列 24 …掃 描 信 號 產 生 電 路 25 …信 號 掘 取 及 處 理 電 路 26 …系 統 / 使 用 者 界 面 27 …光 偏 振 器 28 …雙 折 射 光 纖 29 …雙 折 射 調 低 變 器 30 …光 偏 振 器 31 …掃 描 式 雙 折 射 光 纖 干涉 儀Page 9 V. Description of the invention (4) 7… light detector 8… scanning signal generating circuit 9… signal acquisition and processing circuit 10… system / user interface 11… unbalanced Mac-Zeh nder interferometer 12 … Light detector 13… scanning signal generation circuit 14… signal acquisition and processing circuit 15… system / user interface 16… fiber optics σσ 17 • _.PZT phase modulator 18… fiber coupler 19… light Detecting signal and amplifier circuit 21… scanning birefringent fiber interferometer 22… wavelength demultiplexer 23… light detector array 24… scanning signal generation circuit 25… signal extraction and processing circuit 26… system / use User interface 27… optical polarizer 28… birefringent fiber 29… birefringent down-converter 30… optical polarizer 31… scanning birefringent fiber interferometer

第10頁 五、發明說明 ⑸ 32 .. •掃描式雙折射光纖干涉儀 33 ·. •波長解多工器 34 ·· •光偵測器陣列 35 .· •掃描信號產生電路 36 ·· •信號擷取及處理電路 37 ·· •系統/使用者界面 38 ·· •光偏振器 39 •雙折射光纖 40 ·· •PZT雙折射調變器 41 ·· •光偏振器 42 ·· •雙折射光纖 43 ·· •PZT雙折射調變器 44 ·· •光偏振器 發明之詳細解說 現在請參考圖三中本發明所提出之系統架構。圖三中 是一個分佈式光纖光柵感測系統,寬頻光源1產生一道寬 頻光注入光纖光柵感測陣列,這個寬頻光源可以是半導體 發光二極體或是摻铒光纖寬頻光源。這道寬頻光經過光纖 耦合器2入射參考用光纖光柵3及光纖光柵感測器4後產 生一系列不同頻率的窄頻反射光,這些反射光的一部份經 過同一光纖耦合器2後入射於掃瞄式雙折射光纖干涉儀 2 1。掃瞄式雙折射光纖干涉儀2 1是由光偏振器2 7、雙折射 光纖28、由PZT所構成之雙折射調低變器29、及光偏振器Page 10 V. Description of the invention ⑸ 32 .. • Scanning birefringent fiber interferometer 33 ·. · Wavelength demultiplexer 34 · · · Photodetector array 35 · · • Scanning signal generating circuit 36 · · • Signal Acquisition and Processing Circuit 37 ·· • System / User Interface 38 ·· • Optical Polarizer 39 • Birefringent Fiber 40 ·· • PZT Birefringent Modulator 41 ·· • Optical Polarizer 42 ·· • Birefringent Fiber 43 ·· • PZT birefringent modulator 44 ·· • Detailed explanation of the invention of the optical polarizer Now please refer to the system architecture proposed by the present invention in FIG. 3. Figure 3 shows a distributed fiber grating sensing system. Broadband light source 1 generates a wideband light injected into the fiber grating sensing array. This wideband light source can be a semiconductor light emitting diode or an erbium-doped fiber broadband light source. This wide-band light passes through the fiber coupler 2 and enters the reference fiber grating 3 and the fiber grating sensor 4 to generate a series of narrow-frequency reflected light of different frequencies. Part of these reflected light passes through the same fiber coupler 2 and is incident on Scanning Birefringent Fiber Interferometer 2 1. Scanning birefringent fiber interferometer 21 is composed of a light polarizer 27, a birefringent fiber 28, a birefringence down-converter 29 composed of PZT, and a light polarizer

第11頁 五、發明說明(6) 3 0所構成。兩個 光纖的光軸必須 度為L1 ,其中乙2 雙折射調變器2 9 震盪時,此部份 變。掃瞄式雙折 多工器22,不同 益陣列2 3所分別 應到不同光纖光 涉儀2 1所調變。 光纖光柵的反射 頻的反射光分量 係數是由如下的 器27與3。的輸出偏振方向與雙折射 人u没的角度,雙折射光纖28的總長 〜X之雙折射光纖緊密纏繞在ρ ζτ上構成 二=此當此ΡΖΤ被外加之電信號所驅動而 ^折射光纖的雙折射特性也會隨著被調 丄光纖干涉儀的光輸出繼續入射於波長解 t纖光柵的反射光被分開出來並被光偵測 4、測光偵測盗陣列2 3的每個輸出分別對 $的反射光,並都被掃瞄式雙折射光纖干 措者分別偵測這些輸出信號的相位,不同 光f心波長也可隨之決定。對任一足夠窄 而。,掃瞄式雙折射光纖干涉儀2丨的穿透 式子所決定: +抑)] T 二 cos 2πΑηβ^Page 11 V. Description of Invention (6) 30. The optical axis of the two fibers must be L1, of which the B 2 birefringent modulator 2 9 will oscillate when this part changes. The scanning type double-folding multiplexer 22 is adjusted by different fiber arrays 2 3 and 2 1 respectively. The reflection light component coefficient of the reflection frequency of the fiber grating is determined by the following devices 27 and 3. The polarization direction of the output and the angle of the birefringence, the total length of the birefringent fiber 28 ~ X, the birefringent fiber is tightly wound on ρ ζτ to form two = this is when the PTZ is driven by an external electrical signal, and The birefringence characteristic will also be separated with the light output of the tuned fiber interferometer, and the reflected light incident on the wavelength-resolved fiber grating will be separated and detected by the light detection 4, photometric detection theft array 2 and 3 respectively. The reflected light of $ is scanned by the birefringent optical fiber operator to detect the phase of these output signals respectively, and the wavelengths of different optical f-centers can be determined accordingly. Narrow enough for either. The scanning formula of the scanning type birefringent fiber interferometer 2 丨 is determined by + +)) T 2 cos 2πΑηβ ^

C 其射的 中疋光速,f疋光波頻率,△ η是未加調變作號睹摊折 ::兩個偏振方向的折射係數差,Li是雙折。身:光“C The speed at which it strikes is 疋, the frequency of light waves, Δ η is the unadjusted mark, which is the amortization :: The refractive index difference between the two polarization directions, and Li is a double fold. Body: Light "

上匕),雙折射調變器加上調變信號時所產生的不同偏 刀里間之相位差。如果外加於Ρζτ的掃瞄信號 鋸齒波,則在掃瞄時φ (t )將是t的線性函數 °(Upper dagger), the birefringence modulator and the phase difference between different offsets generated by the modulation signal. If the scan signal applied to Pζτ is a sawtooth wave, φ (t) will be a linear function of t during the scan °

五、發明說明(7) Φ(ι) = Κ^ 2 其中的比例係數Κ,將乓比於光纖長度L Μ:及外加調變信 號之大小。在這種情形下,原則上只需藉著偵測2 Κ,頻 率分量之相位即可推知光波頻率f的大小。 由程式(1 )可知在未加調變信號時雙折射干涉儀的 干涉頻率間隔為: Δ/' iSnL· 所以藉著調整L t的大小即可設定干涉儀的干涉頻率間 隔。一般之高雙折射光纖的A η值約可.達0 . 0 0 0 5,所以如 果光纖長度為6公尺,則此時之頻率間隔為1 0 0 G Ιί ζ (約等 於0 . 8 n m峙波長間隔)。對圖二中之非平衡式 Mach-Zehnder干涉儀1 1而言,干涉頻率間隔的計算公式 為: △/. 4 βV. Description of the invention (7) Φ (ι) = κ ^ 2 The proportionality coefficient κ, which compares the pong to the fiber length L M: and the size of the modulation signal. In this case, in principle, the magnitude of the light wave frequency f can be inferred only by detecting the phase of the 2K, frequency component. From the formula (1), it can be known that the interference frequency interval of the birefringent interferometer when no modulation signal is added is: Δ / 'iSnL · So the interference frequency interval of the interferometer can be set by adjusting the size of L t. Generally, the A η value of a high birefringence fiber can reach about 0.05, so if the fiber length is 6 meters, the frequency interval at this time is 1 0 0 G Ιί ζ (about equal to 0.8 nm (Wavelength interval). For the unbalanced Mach-Zehnder interferometer 11 in Figure 2, the formula for calculating the interference frequency interval is: △ /. 4 β

第13頁 五、發明說明(8) 其中η是光纖之等效折射係數(η = 1 · 5 )。由公式(4 )可 知,如果要用非平衡式Mach-Zehnder干涉儀1 1來得到相同 之2 0 0GHz頻率間隔,則其兩路徑之光纖長度差| L2 — L | |需僅為2 m m才行,這使得就製作上而言本發明中之掃 描式雙折射光纖干涉儀2 1要較非對稱光纖式Mach-Zehnder 干涉儀容易控制得多了 ,這是本發明的一大優點。另外由 於掃描式雙折射光纖干涉儀2 1中之兩道光所行徑的是相同 的光纖,這使得掃描式雙折射光纖干涉儀2 1的穩定性要較 非平衡式Mach-Zehnder干涉儀11好了很多,這是另一優 由於干涉儀的穿透頻譜是像圖五般的週期函數,這使 得在決定光波長的大小時有所謂的曖昧性問題。為了去掉 這種波長上的曖昧性,我們使用一個波長解多工器2 2來作 波長大小的粗略決定,然後再利用干涉儀的調變信號來準 確決定各反射光分量的波長精確值。一般說來,只要波長 解多工器2 2的頻率間隔小於干涉儀的頻率間隔即不會有曖 眛性問題,目前光纖通訊應用上的波長解工多器2 2其頻率 間隔已經可小到1 0 0GHz,因此足以配合上述之干涉儀來使 用。 由於干涉儀的穿透頻譜是像圖五般的弦波函數,這使 得當頻率間隔越大時,量測靈敏度將越小。所以當需要高 靈敏度時,頻率間隔就不能太大,這使無曖昧性之操作範Page 13 V. Description of the invention (8) where η is the equivalent refractive index of the optical fiber (η = 1 · 5). It can be known from formula (4) that if the unbalanced Mach-Zehnder interferometer 11 is used to obtain the same 200 GHz frequency interval, the difference in fiber length between the two paths | L2 — L | | This makes the scanning birefringent fiber interferometer 21 of the present invention much easier to control than the asymmetric fiber Mach-Zehnder interferometer in terms of manufacturing, which is a great advantage of the present invention. In addition, because the two optical beams in the scanning birefringent fiber interferometer 21 have the same fiber path, this makes the scanning birefringent fiber interferometer 21 more stable than the unbalanced Mach-Zehnder interferometer 11 Many, this is another advantage because the penetration spectrum of the interferometer is a periodic function like Figure 5, which makes the so-called ambiguous problem in determining the size of the light wavelength. In order to get rid of this ambiguous wavelength, we use a wavelength demultiplexer 22 to make a rough determination of the wavelength, and then use the modulation signal of the interferometer to accurately determine the exact wavelength of each reflected light component. Generally speaking, as long as the frequency interval of the wavelength demultiplexer 2 2 is smaller than the frequency interval of the interferometer, there will be no problem with frequency. At present, the frequency separation of the wavelength demultiplexer 22 in optical fiber communication applications can be as small as 100 GHz, so it is sufficient to use with the above interferometer. Because the penetration spectrum of the interferometer is a sine wave function like Figure 5, this makes the measurement sensitivity smaller when the frequency interval is larger. Therefore, when high sensitivity is required, the frequency interval cannot be too large, which makes the ambiguous operation range

第14頁 五、發明說明(9)Page 14 V. Description of Invention (9)

圍變小。雖然曖昧性問題可藉著使用波長解多工器來克 服,但是頻率間隔較小之波長解多工器價錢較貴,而且對 光纖光柵應變感測系統的應用而言會希望無曖昧性之操作 範圍為5ηηι,但是又必須能維持量測的高靈敏度。為了滿 足這種需求,我們提出了如圖四之分佈式光纖光柵感測系 統架構,藉著串接兩個不同光纖長度掃猫式雙折式光纖干 涉儀3 1及3 2,我們可以擴大無曖昧性之操作範圍並維持量 測之高靈敏度。這種設計是基於以下之工作原理:假設輸 入之掃瞄信號是鋸齒波,則在掃瞄過程中第一個雙折射光 纖干涉儀3 1的穿透係數如下: Γ丨= cos— 第二個雙折射光纖干涉儀3 2的穿透頻譜則如下The circumference becomes smaller. Although the problem of ambiguousness can be overcome by using a wavelength demultiplexer, a wavelength demultiplexer with a small frequency interval is more expensive, and for the application of a fiber grating strain sensing system, an ambiguous operation is expected. The range is 5ηηι, but it must be able to maintain the high sensitivity of the measurement. In order to meet this demand, we propose a distributed fiber grating sensing system architecture as shown in Figure 4. By concatenating two cat-type bi-fold fiber interferometers 3 1 and 3 2 with different fiber lengths, we can expand Ambiguous operating range and maintain high sensitivity of measurement. This design is based on the following working principle: assuming that the input scanning signal is a sawtooth wave, the penetration coefficient of the first birefringent fiber interferometer 31 during the scanning process is as follows: Γ 丨 = cos— the second The transmission spectrum of the birefringent fiber interferometer 3 2 is as follows

T2 = cos 總穿透係數是上二式的乘積T2 = cos total penetration coefficient is the product of the above two formulas

第15頁Page 15

五、發明說明(10) 7' = Γ,Γ: 1 + cosV. Description of the invention (10) 7 '= Γ, Γ: 1 + cos

+ COS+ COS

J + IJ + I

COS + . 丨-[>+2(COS +. 丨-[> +2 (

+ COS 其中 二2能nf L」c 所以藉著偵測(K, - K2 )頻率分量的相位,我們可以擴大 K 1 + K 2 )頻率分 無曖昧性之操作範圍:藉著同時偵測 量的相位,我們有更好之量測靈敏度 在實際的系統中,我們對L i,L 2,△ η等參數之值都無法非 常準確的知道,所以必須使用參考光源來作校準才能得出 絕對之光波長值。在圖三及圖四中我們是利用一個具溫度 補償的光纖光柵來產生參考光源,目前這種具溫度補償的 光纖光柵其中心波長溫度係數已可接近1 p m / d e g r e e,已 可滿足一般用途上的需求。在實施上也可以使用多個參考 用光纖光栅或固定式Fabry-Perot共振器來作校準,並利+ COS where 2 and 2 can be nf L ″ c, so by detecting the phase of (K,-K2) frequency components, we can expand K 1 + K 2) frequency range without ambiguous operation range: by simultaneously detecting the amount Phase, we have better measurement sensitivity. In an actual system, we can not know the values of parameters such as Li, L2, △ η very accurately, so we must use a reference light source for calibration to get the absolute The wavelength of light. In Figure 3 and Figure 4, we use a temperature-compensated fiber grating to generate the reference light source. At present, the temperature-compensated fiber grating has a center wavelength temperature coefficient close to 1 pm / degree, which can meet the general purpose. Demand. In practice, multiple references can also be used for calibration using fiber gratings or fixed Fabry-Perot resonators.

第16頁Page 16

第17頁Page 17

Claims (1)

TW88110916A 1999-06-24 1999-06-24 Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts TW387055B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88110916A TW387055B (en) 1999-06-24 1999-06-24 Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88110916A TW387055B (en) 1999-06-24 1999-06-24 Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts

Publications (1)

Publication Number Publication Date
TW387055B true TW387055B (en) 2000-04-11

Family

ID=21641309

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88110916A TW387055B (en) 1999-06-24 1999-06-24 Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts

Country Status (1)

Country Link
TW (1) TW387055B (en)

Similar Documents

Publication Publication Date Title
CA2509187C (en) Optical wavelength determination using multiple measurable features
US7538860B2 (en) System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber
US6888125B2 (en) Fiber optic sensing systems and method of use thereof
US10895477B2 (en) Sine-cosine optical frequency encoder devices based on optical polarization properties
US7060967B2 (en) Optical wavelength interrogator
US6285446B1 (en) Distributed sensing system
US8477296B2 (en) Opto-electronic signal processing methods, systems, and apparatus for optical sensor interrogation
US9164027B2 (en) Frequency tunable laser system
US6859284B2 (en) Apparatus and method for determining wavelength from coarse and fine measurements
US6738140B2 (en) Wavelength detector and method of detecting wavelength of an optical signal
CN104508445B (en) There is the optical measuring system of polarization compensation function and corresponding method
RU102256U1 (en) DEVICE FOR MEASURING PHYSICAL FIELD PARAMETERS
CN104634370B (en) Laser-based sensor
US6822218B2 (en) Method of and apparatus for wavelength detection
WO2021247912A1 (en) Temperature measurement system and method using optical signal transmission through an optical interferometer
KR100922577B1 (en) Portable biophotonic sensor measurement system
TW387055B (en) Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts
US6298185B1 (en) Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts
CN116865854B (en) Wavelength detection device capable of being integrated on photon integrated chip
Johnson " White light" interferometry
CN113624267A (en) Fiber grating center wavelength demodulation system and demodulation instrument based on edge filtering
JPS5930032A (en) Optical fiber thermometer
CN112485221A (en) Online crude oil volatile gas sensor based on tunable semiconductor laser
JPH0758397A (en) Laser light wavelength stabilizer
JPS62144023A (en) Optical measuring apparatus

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees
MK4A Expiration of patent term of an invention patent