JPS62144023A - Optical measuring apparatus - Google Patents

Optical measuring apparatus

Info

Publication number
JPS62144023A
JPS62144023A JP60283123A JP28312385A JPS62144023A JP S62144023 A JPS62144023 A JP S62144023A JP 60283123 A JP60283123 A JP 60283123A JP 28312385 A JP28312385 A JP 28312385A JP S62144023 A JPS62144023 A JP S62144023A
Authority
JP
Japan
Prior art keywords
polarization
light
maintaining fiber
value
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60283123A
Other languages
Japanese (ja)
Other versions
JPH0346053B2 (en
Inventor
Hiroyuki Ibe
博之 井辺
Taro Shibagaki
太郎 柴垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60283123A priority Critical patent/JPS62144023A/en
Publication of JPS62144023A publication Critical patent/JPS62144023A/en
Publication of JPH0346053B2 publication Critical patent/JPH0346053B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Transform (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To obtain the titled apparatus excellent in measuring accuracy by compensating transmission loss causing a measuring error, by standardizing the amplitude value of an AC component on the basis of the value based on a DC component and obtaining a measured value on the basis of said value. CONSTITUTION:When the temp. of a sensor part 17 is low, because loss difference in both polarizing directions in the sensor part 17 is large, the amplitude value A of an AC component is large. When the temp. of the sensor part 17 becomes high, the loss difference in both polarizing directions in the sensor part 17 becomes small and, therefore, the amplitude value A of the AC component becomes small. The signal of the sensor part 17 is subjected to A/D conversion in a signal processing circuit 21 to detect a max. value and a min. value and, from these values, the level B of the DC component of the signal is calculated and the amplitude value A is standardized by the operation of A/B. As mentioned above, not only the loss variation of a transmission path and a connection part but also the variation of a photoelectric converter 19 can be compensated and the extremely accurate measurement of temp. is enabled.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、光伝送路損失、結合損失、ゆらぎ等によらず
に被計測物理量を正確に1lll+定することができる
ようにした光学的計測装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides an optical measurement device that can accurately determine physical quantities to be measured without depending on optical transmission path loss, coupling loss, fluctuation, etc. Regarding.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来より、温度、圧力、磁界、電界等の物理量が光波の
強度変化や位相変化をもたらす現象を利用して物理量を
光学的に計測するようにした光学的計測装置が種々知ら
机でいる。その一つに、一定の発光出力を光フッ7べで
伝送し、センサ部で彼計測場理場、二;ニー礒−1:?
ヨー゛ミ亡て、その光量変化により物理量を計1則する
元字釣針、111装置がある。このようなIllでは、
センサとして、例えば温度によって2つの主軸の放射損
失が変化する偏波保存ファイバヤ磁気光学素子とポーラ
ライザとを組合わせた磁気センサ等が利用される。
2. Description of the Related Art Conventionally, various optical measuring devices have been known that optically measure physical quantities by utilizing a phenomenon in which physical quantities such as temperature, pressure, magnetic field, electric field, etc. cause changes in the intensity and phase of light waves. One of them is to transmit a constant light output through an optical tube, and use the sensor section to measure the light output.
There is a 111 device called the Motoji Fishhook, which calculates a physical quantity based on the change in the amount of light. In such Ill,
As a sensor, a magnetic sensor or the like is used, which is a combination of a polarization-maintaining fiber magneto-optical element and a polarizer, in which the radiation loss of two principal axes changes depending on the temperature, for example.

しかしながら、光の損失変化を利用する場合には、光伝
送路の損失変動や光学素子の結合損失等が直接計測誤差
となって現れる。
However, when using changes in optical loss, changes in loss in the optical transmission line, coupling loss in optical elements, etc. directly appear as measurement errors.

そこで、例えば半導体素子の基礎吸収特性の温度依存性
を利用した温度センサなとでは、第4図に示すように、
温度測定のための波長λ工の光ととともに基礎吸収波長
よりも長い、つまり温度による損失変動を受けない波長
λ2の参照光を同時に伝送し、両者の受光ψ差をとるこ
とによって伝送路および光学的結合部の損失変動を補@
するようにしたちのも提案されている。
Therefore, for example, in a temperature sensor that utilizes the temperature dependence of the basic absorption characteristics of a semiconductor element, as shown in Figure 4,
By simultaneously transmitting the reference light of wavelength λ2, which is longer than the basic absorption wavelength, that is not subject to loss fluctuation due to temperature, along with the light of wavelength λ for temperature measurement, and taking the difference in received light ψ between the two, the transmission line and optical Compensate for loss fluctuations in the target joint @
It has also been proposed to do so.

しかし、このような装置は適用分野が限定されてしまう
うえ、合波器や分波器等を必要として構成が、?!雑に
なるという欠点があった。
However, such devices have limited application fields and require multiplexers, demultiplexers, etc., making the configuration difficult. ! It had the disadvantage of being sloppy.

〔発明の目的〕[Purpose of the invention]

本発明は、このような問題に基づきなされたもので、そ
の目的とするところは、被測定物理量に応じて損失量が
変動する光学的計測装置にあって、構造の複雑化を招く
ことなしに伝送路および結合部の損失変動補償を可能に
し、しかも適用分野の広い光学的計測装置を提供するこ
とにおる。
The present invention was made based on the above problem, and its purpose is to provide an optical measuring device in which the amount of loss varies depending on the physical quantity to be measured, without complicating the structure. It is an object of the present invention to provide an optical measurement device that enables compensation for loss fluctuations in transmission lines and coupling parts and can be applied to a wide range of fields.

(発明の概要〕 本発明は、次のように構成したことを特徴としている。(Summary of the invention) The present invention is characterized by the following configuration.

すなわち、波長掃引しながら光波を出射する光源からの
光波を、光アイソレータおよび無偏光型ビームスプリッ
タを介して偏波保存ファイバに導くことによって上記偏
波保存ファイバの出射端部1反fAIl!Jを有し、こ
の反tAIIIを介して前記偏波状ンhが周期的に変化
する光波を入射端部まで帰還させるとともに、互いに直
交する偏波方向の前記帰還波の損失差が被測定物理間に
応じて変化するものである。そして、このセンサ部から
の帰還波を前記偏波保存ファイバおよび前記無偏光ビー
ムスプリッタを介して光電変換素子で受光して、この光
電変換素子の出力の交流成分の娠幅値を直流成分に基づ
く値で規格化して前記被測定物理量の計測埴を寿るよう
にしたことを特徴としている。
That is, by guiding a light wave from a light source that emits light waves while sweeping the wavelength to a polarization-maintaining fiber via an optical isolator and a non-polarizing beam splitter, the output end 1 of the polarization-maintaining fiber 1 antifAIl! J, and returns the light wave whose polarization shape h periodically changes to the input end via this antitAIII, and the loss difference of the return waves in mutually orthogonal polarization directions is It changes depending on the situation. Then, the feedback wave from this sensor section is received by a photoelectric conversion element via the polarization maintaining fiber and the non-polarization beam splitter, and the amplitude value of the AC component of the output of this photoelectric conversion element is calculated based on the DC component. It is characterized in that the measurement value of the physical quantity to be measured is standardized by the value.

〔発明の効果〕〔Effect of the invention〕

センサ部で生じる■速波の損失が偏波方向によって異な
る場合、このセンサ部に偏波状態が周期的に変化する光
波が入射されると、その帰還波の強度は入射光波の偏光
状態の周期的変化に基づいて周期的に変化する。このた
め、光電変換素子の出力も交流成分を含む信号となる。
■If the loss of fast waves occurring in the sensor section differs depending on the polarization direction, when a light wave whose polarization state changes periodically is incident on this sensor section, the intensity of the feedback wave will change depending on the period of the polarization state of the incident light wave. changes periodically based on changes in Therefore, the output of the photoelectric conversion element also becomes a signal containing an alternating current component.

この交流成分の部幅、すなわち帰還波の漏波方向の損失
差は、被測定物理量によって変化するので、この損失差
から被測定物理量を得ることができる。′ところで、光
電変換素子の出力は、帰還波の各11波方向の損失のみ
ならず光伝送路損失、結合損失、および光電変換損失等
によって変動する。後卜の損失は測定誤差につながるが
、これらは光電変換素子の出力の直流レベルと交流成分
の@幅とに等しい割合でD3 Wを及ぼしている。
The width of this alternating current component, that is, the loss difference in the leakage direction of the feedback wave changes depending on the physical quantity to be measured, so the physical quantity to be measured can be obtained from this loss difference. 'By the way, the output of the photoelectric conversion element fluctuates not only due to loss in each of the 11 feedback wave directions, but also due to optical transmission line loss, coupling loss, photoelectric conversion loss, etc. Although the losses in the rear end lead to measurement errors, they exert D3W at a rate equal to the DC level and width of the AC component of the output of the photoelectric conversion element.

本発明では、交流成分の振@値を直流成分に基づく値で
規格化し、この値に基づいて測定端を冑るようにしてい
るので、測定誤差につながる伝送路損失等が補償され、
測定精度に浸れた装置を提供できる。しかも、この発明
は、被測定物理めに応じて損失量が変化することを利用
した光学的計測装置全般に適用することができるので、
適用範囲が広く、また、波長の異なる複数の光波を用い
る必製がないので合波器や分波器を必要とせず、構造が
簡串であるという利点も有する。
In the present invention, the amplitude value of the AC component is normalized by the value based on the DC component, and the measurement end is cooled based on this value, so transmission line loss etc. that lead to measurement errors are compensated for.
We can provide equipment with high measurement accuracy. Moreover, this invention can be applied to all optical measurement devices that utilize the fact that the amount of loss changes depending on the physics being measured.
It has a wide range of application, and since it is not necessary to use a plurality of light waves with different wavelengths, it does not require a multiplexer or a demultiplexer, and has the advantage of having a simple structure.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を参照しながら説明する
An embodiment of the present invention will be described below with reference to the drawings.

第1図は、センサ部に偏波保存ファイバを用いた温度セ
ンサの一例を示す図である。
FIG. 1 is a diagram showing an example of a temperature sensor using a polarization maintaining fiber in the sensor section.

図中、波長掃引光源11は、例えば甲−モードで数人の
発振波長変化が可能な分布帰還型半導体レーザ(DFB
レーザ)からなるものである。発振波長の掃引は、例え
ば本発明者等が先に提案したマイクロヒータのサブマウ
ントによる熱的波長掃引法を用いることができる。つま
り、熱的波長、m用法によれば、発振出力をAPC(オ
ートマチqり・パワー・コントロール)により一定にす
る1とができ、安定な波長掃引が可能になる。掃引の波
形は任意に変化可能であるが、本実施例では、時間に比
例して波長を掃引するものとする。このため、のこぎり
波発生部12からは、のこぎり波状の波長掃引信号が波
長掃引光源11に与えられている。また、DCバイアス
用7’Rm 13によって、波長掃引光源11を一定に
発光させるようにしている。
In the figure, the wavelength swept light source 11 is, for example, a distributed feedback semiconductor laser (DFB) that can change the oscillation wavelength of several people in the A-mode.
(laser). For sweeping the oscillation wavelength, for example, a thermal wavelength sweeping method using a microheater submount, which was previously proposed by the present inventors, can be used. That is, according to the thermal wavelength m method, the oscillation output can be kept constant by APC (automatic power control), and stable wavelength sweeping becomes possible. The waveform of the sweep can be changed arbitrarily, but in this embodiment, the wavelength is swept in proportion to time. Therefore, a sawtooth wave-like wavelength sweep signal is provided from the sawtooth wave generator 12 to the wavelength sweep light source 11 . Further, the wavelength swept light source 11 is made to emit light at a constant level by the DC bias 7'Rm 13.

前記波長掃引光源11からの光は、光アイソレータ14
を介し、更に無偏光型ビームスプリッタ15を通過した
後、偏波保存ファイバ16に入射する。この時、前記波
長掃引光源11の偏波方向と前記偏波保存ファイバの主
軸方向のなす角度とが45°となるように光を入射する
と、偏波保存ファイバ16の出射端部の偏光状態は、波
長掃引に従って直線偏光から円偏光、更に前記直線偏光
と直交する直線偏光へと周期的に変化する。この光波は
センサ部17に入射されている。
The light from the wavelength swept light source 11 passes through the optical isolator 14
After passing through a non-polarizing beam splitter 15, the beam enters a polarization maintaining fiber 16. At this time, if light is incident such that the angle between the polarization direction of the wavelength swept light source 11 and the main axis direction of the polarization maintaining fiber 16 is 45 degrees, the polarization state at the output end of the polarization maintaining fiber 16 will be , according to the wavelength sweep, changes periodically from linearly polarized light to circularly polarized light, and further to linearly polarized light orthogonal to the linearly polarized light. This light wave is incident on the sensor section 17.

センサ部17は、カットオフ波長が光源の波長より少な
くとも0.2 譚短い偏波保存ファイバで覆り、その主
軸方向が前記光伝送用の偏波保存フ1?漬失が第1の主
軸と第2の主軸とでは異なっており、両者の間の損失差
はセンサ部17に印加される温度が高くなると小さくな
る性質を有している。
The sensor section 17 is covered with a polarization-maintaining fiber whose cutoff wavelength is at least 0.2 mm shorter than the wavelength of the light source, and whose principal axis is aligned with the polarization-maintaining fiber for optical transmission. The loss due to immersion is different between the first main axis and the second main axis, and the difference in loss between the two becomes smaller as the temperature applied to the sensor section 17 becomes higher.

すなわち、一般に偏波保存ファイバは、製造時の冷加に
伴うコアの残留応力によって主軸方向の屈折率変化を与
えている。したがってファイバの温度を高くすると、2
つの主軸方向の応力差が小さくなるので、両主軸方向の
屈折率差も小さくなり、放射損失の差も小さくなるので
ある。
That is, in general, polarization maintaining fibers have a refractive index change in the principal axis direction due to residual stress in the core due to cooling during manufacturing. Therefore, if the temperature of the fiber is increased, 2
Since the difference in stress in the directions of the two principal axes becomes smaller, the difference in refractive index in the directions of both principal axes also becomes smaller, and the difference in radiation loss also becomes smaller.

このセンサ部17には、前述した偏光状態が周期的に変
化する光波が導入されている。センサ部17の出射端に
は反射幌18が形成されている。
A light wave whose polarization state changes periodically as described above is introduced into the sensor section 17 . A reflective hood 18 is formed at the output end of the sensor section 17 .

肩波保存ファイバ16とセンサ部17とは、その主軸が
45°をなすように配置されているので、センサ部]7
の第1の主軸と第2の主軸には交互に直a偏光が入射さ
れる。両主軸方向の放射損失は異なるので、反削膜18
で反射され光伝送用の偏波保存ファイバ16の入射端部
まで帰還された帰還波は、周期的な強度変化を伴う光信
号となる。
Since the shoulder wave preservation fiber 16 and the sensor section 17 are arranged so that their main axes form an angle of 45 degrees, the sensor section]7
Orthogonal a-polarized light is alternately incident on the first principal axis and second principal axis. Since the radiation loss in both principal axis directions is different, the anti-cutting film 18
The feedback wave reflected by the polarization maintaining fiber 16 and fed back to the input end of the polarization maintaining fiber 16 for optical transmission becomes an optical signal with periodic intensity changes.

そして、その振幅はセンサ部17に加えられる温度が高
くなると小さくなる。
The amplitude becomes smaller as the temperature applied to the sensor section 17 becomes higher.

帰還波は、偏波保存ファイバ16の入射端における偏光
状態が変化しても分岐比の変化が1%以→であるような
無偏光型ビームスプリッタ15に、IJって反射され、
光電変換器19で光電変換され−4゜光電変換器19の
出力は、増幅器20によって増幅され、信号処理回路2
)に導入される。
The feedback wave is reflected by IJ to a non-polarizing beam splitter 15 whose branching ratio changes by 1% or more even if the polarization state at the input end of the polarization-maintaining fiber 16 changes.
The output of the -4° photoelectric converter 19, which is photoelectrically converted by the photoelectric converter 19, is amplified by the amplifier 20 and sent to the signal processing circuit 2.
) will be introduced.

第2図は信号処理回路2)に入力される信号波形を示し
た図である。センサ部17に加えられる温度が低い場合
には、センサ部での両幅波方向の損失差が大きいので、
同図(a)に示すように交流成分の振幅1!Aは大きい
。センサ部17に加えられる温度が高くなると、センサ
部17での両幅波方向の損失差が小さくなるので、交流
成分の振幅値Aは小さくなる。信号処理回路2)ではこ
の信号をA/D変換して最大値と最小値とを検出し、こ
れらの値から信号の直流成分のレベルBを求め、A/B
なる演算によって振幅値Aを規格化する。
FIG. 2 is a diagram showing signal waveforms input to the signal processing circuit 2). When the temperature applied to the sensor section 17 is low, the loss difference in both width wave directions in the sensor section is large, so
As shown in Figure (a), the amplitude of the AC component is 1! A is big. As the temperature applied to the sensor section 17 becomes higher, the loss difference in both width wave directions in the sensor section 17 becomes smaller, so the amplitude value A of the AC component becomes smaller. The signal processing circuit 2) A/D converts this signal, detects the maximum value and minimum value, determines the level B of the DC component of the signal from these values, and converts the signal to A/D.
The amplitude value A is normalized by the following calculation.

このように、本実施例によれば、伝送路および結合部の
損失変動を補償できるのみならず、光電変換器1つの変
動も補償でき、極めて正確な温度測定が可能である。
As described above, according to this embodiment, not only can loss fluctuations in the transmission line and coupling portion be compensated for, but also fluctuations in a single photoelectric converter can be compensated for, making extremely accurate temperature measurement possible.

第3図は、センサ部にファラデー素子を用いた磁気セン
サに本発明を適用した例を示す図である。
FIG. 3 is a diagram showing an example in which the present invention is applied to a magnetic sensor using a Faraday element in the sensor section.

この実施例が、先の実施例と異なる部分は、センサ部3
1である。
This embodiment differs from the previous embodiment in that the sensor section 3
It is 1.

すなわち、センサ部31は、光伝送用の偏波保存ファイ
バ16の出射端部にロッドレンズ32を介して設けられ
ている。図中33は、偏波分離プリズムであり、その透
過軸は偏波保存ファイバ16の主軸に対して45°をな
すように配置されている。鵠波分離プリズム33を透過
した光は、ノア11゛−素子34を介してもう一つの偏
波分離ブ1 、・、ム35に導かれている。この偏波分
離プリズム35の透過軸は先の偏波分離プリズム33の
透過軸と一致するように配置されている。従って、ファ
ラデー素子34に磁界が印加されていなければ、ファラ
デー素子34を透過した光波は偏波分離プリズム35も
透過して、このプリズム35の基端部に設けられた反射
膜36で反射され、再び偏波分離プリスム35〜ファラ
デー素子34〜偏波分離プリズム33〜Oツドレンズ3
2〜偏波保存ファイバ16を介して帰還される。また、
ファラデー索子34に磁界が印加されている場合には、
ファラデー索子34を伝搬する光波の偏波面が回転する
ので、伝搬光は偏波分離プリズム35゜33で反射によ
る損失を受ける。従って、帰還光の損失量によって磁界
を測定することができる。
That is, the sensor section 31 is provided via the rod lens 32 at the output end of the polarization maintaining fiber 16 for optical transmission. In the figure, numeral 33 denotes a polarization separation prism, and its transmission axis is arranged at 45° with respect to the main axis of the polarization maintaining fiber 16. The light transmitted through the polarization separation prism 33 is guided to another polarization separation prism 1, . The transmission axis of this polarization separation prism 35 is arranged so as to coincide with the transmission axis of the polarization separation prism 33. Therefore, if no magnetic field is applied to the Faraday element 34, the light wave that has passed through the Faraday element 34 also passes through the polarization separation prism 35 and is reflected by the reflective film 36 provided at the base end of this prism 35. Again, polarization separation prism 35 ~ Faraday element 34 ~ polarization separation prism 33 ~ Otsudo lens 3
2 to the polarization maintaining fiber 16. Also,
When a magnetic field is applied to the Faraday rope 34,
Since the plane of polarization of the light wave propagating through the Faraday probe 34 is rotated, the propagating light undergoes loss due to reflection at the polarization separation prism 35°33. Therefore, the magnetic field can be measured based on the amount of loss of the feedback light.

一方、偏波分離プリズム33で反則された光波は、光路
調整用の導波路37を通過して、この導波路37の基端
部に設けられた反射II! 39で反則され、再び導波
路37〜@波分離プリズム33〜ロッドレンズ32〜偏
波保存ファイバ16を介して帰還される。この経路で帰
還される帰還光は磁界には全く影響されない。
On the other hand, the light wave reflected by the polarization separation prism 33 passes through a waveguide 37 for optical path adjustment, and is reflected by a reflection II! provided at the base end of this waveguide 37. 39, and is fed back again via the waveguide 37, the wave separating prism 33, the rod lens 32, and the polarization maintaining fiber 16. The feedback light that returns through this path is not affected by the magnetic field at all.

ロッドレンズ32から偏波分離プリズム33に入射され
る光波は、前述した実施例と同様に波長掃引光源11の
波長掃引に伴って偏光状態が周期的に変化する光波であ
るため、偏波分離プリズム33は、光の透過、反射を交
互に繰返すスイッチ作用を呈することになる。したがっ
て、波長掃引に伴い、光路が周期的に変化し、損失の変
化を生じ、光電変換素子1つに入射される帰還光に周期
的な強度変化を持たせることができる。
The light wave that enters the polarization separation prism 33 from the rod lens 32 is a light wave whose polarization state changes periodically in accordance with the wavelength sweep of the wavelength swept light source 11, as in the above-described embodiment. 33 exhibits a switching action that alternately repeats transmission and reflection of light. Therefore, as the wavelength sweeps, the optical path changes periodically, causing a change in loss, and it is possible to cause the feedback light incident on one photoelectric conversion element to have a periodic intensity change.

この実施例では、反射膜38を反射してきた帰還光が最
も明るく、しかも磁界には依存しないので、参照信号と
して利用される。また、反射膜36を反射してきた帰還
光は印加磁界が大きくなるとその光量が減少する。従っ
て、信号処理回路2)は、入力信号の交流成分の振幅値
を最大値(参照信号)で規格化することによって、測定
誤差に起因する損失分を補償することができる。
In this embodiment, the return light reflected from the reflective film 38 is the brightest and does not depend on the magnetic field, so it is used as a reference signal. Furthermore, the amount of feedback light reflected from the reflective film 36 decreases as the applied magnetic field increases. Therefore, the signal processing circuit 2) can compensate for the loss caused by the measurement error by normalizing the amplitude value of the AC component of the input signal by the maximum value (reference signal).

このように、本発明は、光電変換素子の出力信号の交流
成分の振幅値を、物理型に左右されない最大値、最小値
またはそれらの平均値で規格化す1なお、本発明は、上
述した実施例に限定される:月のではない。例えばセン
サ部としては前述したものの他、LiNb0a、Li丁
aOiなどの電界センサ、電圧センサ、半導体のII吸
収を利用した温度センサなど1へめて広範な用途に応用
することができる。
As described above, the present invention normalizes the amplitude value of the alternating current component of the output signal of the photoelectric conversion element by the maximum value, minimum value, or their average value, which is independent of the physical type. Limited to examples: not of the month. For example, the sensor section can be applied to a wide range of applications, such as electric field sensors such as LiNb0a and LiDingaOi, voltage sensors, and temperature sensors that utilize II absorption of semiconductors, in addition to those described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る扁11センサの構成を
示すブロック図、第2図は同センサの主要波形図、第3
図は本発明の池の実施例に係るi電界センサの構成を示
すブロック図、第4図は従来の光学的計測装置を説明す
るための図である。 11・・・波長掃引光源、14・・・光アイソレータ、
15・・・無偏光型ビームスプリッタ、16・・・偏波
保存ファイバ、17.31・・・センサ部、18.36
゜38・・・反射膜、19・・・光電変換器、20・・
・旧幅器、32・・・ロッドレンズ、33.35・・・
鵠彼分浬プリズム、34・・・ファラデー素子、37・
・・4波路。
FIG. 1 is a block diagram showing the configuration of a flat 11 sensor according to an embodiment of the present invention, FIG. 2 is a main waveform diagram of the sensor, and FIG.
FIG. 4 is a block diagram showing the configuration of an i-electric field sensor according to an embodiment of the present invention, and FIG. 4 is a diagram for explaining a conventional optical measuring device. 11... wavelength swept light source, 14... optical isolator,
15... Non-polarizing beam splitter, 16... Polarization maintaining fiber, 17.31... Sensor section, 18.36
゜38... Reflective film, 19... Photoelectric converter, 20...
・Old width gauge, 32...Rod lens, 33.35...
Kuboken Prism, 34...Faraday element, 37.
...4 waves.

Claims (3)

【特許請求の範囲】[Claims] (1)波長掃引しながら光波を出射する光源と、この光
源からの光波を一方向にのみ通過させる光アイソレータ
と、この光アイソレータを通過した光波を偏波状態に拘
りなく分岐する無偏光型ビームスプリッタと、この無偏
光型ビームスプリッタを介して導入された光波を測定点
まで導くとともに前記光源の波長掃引によつて前記光波
の出射端における偏光状態を周期的に変化させる偏波保
存ファイバと、この偏波保存ファイバからの光波を導き
この光波を端部に設けた反射膜を介して入射端部に帰還
させるとともに互いに直交する偏波方向の帰還波の損失
差が被測定物理量に応じて変化するセンサ部と、このセ
ンサ部からの帰還波を前記偏波保存ファイバおよび前記
無偏光ビームスプリッタを介して受光して光電変換する
光電変換素子と、この光電変換素子の出力の交流成分の
振幅値を直流成分に基づく値で規格化して前記被測定物
理量の計測値を得る手段とを具備したことを特徴とする
光学的計測装置。
(1) A light source that emits light waves while sweeping the wavelength, an optical isolator that allows the light waves from this light source to pass in only one direction, and a non-polarized beam that splits the light waves that have passed through the optical isolator regardless of the polarization state. a polarization-maintaining fiber that guides the light wave introduced through the non-polarizing beam splitter to a measurement point and periodically changes the polarization state of the light wave at the output end by wavelength sweeping the light source; The light wave from this polarization-maintaining fiber is guided and returned to the input end via a reflective film provided at the end, and the loss difference of the return waves in mutually orthogonal polarization directions changes depending on the physical quantity to be measured. a photoelectric conversion element that receives a feedback wave from the sensor unit via the polarization-maintaining fiber and the non-polarization beam splitter and photoelectrically converts it, and an amplitude value of an alternating current component of the output of the photoelectric conversion element. an optical measuring device comprising: means for normalizing the physical quantity with a value based on a DC component to obtain a measured value of the physical quantity to be measured.
(2)前記センサ部は、温度によつて2つの主軸方向の
損失差が変化しかつカットオフ周波数が前記光源の波長
より少なくとも0.2μm短い偏波保存ファイバと、こ
の偏波保存ファイバの端部に設けられた反射膜とからな
るものであることを特徴とする特許請求の範囲第1項記
載の光学的計測装置。
(2) The sensor section includes a polarization-maintaining fiber whose loss difference in two principal axes changes depending on temperature and whose cutoff frequency is at least 0.2 μm shorter than the wavelength of the light source, and an end of the polarization-maintaining fiber. 2. The optical measuring device according to claim 1, further comprising a reflective film provided on the portion of the optical measuring device.
(3)前記センサ部は、前記偏波保存ファイバからの光
波を偏光状態の周期的変化に応じて交互に振分ける偏波
分離プリズムと、この偏波分離プリズムによつて振分け
られた一方の偏波方向の光波の偏波面を印加磁界によつ
て回転させる磁気光学素子と、前記偏波分離プリズムに
よつて振分けられた他方の偏波方向の光波を偏波方向を
維持させたままで伝搬させる導波路と、前記磁気光学素
子および前記導波路の端部にそれぞれ設けられた反射膜
とで構成されていることを特徴とする特許請求の範囲第
1項記載の光学的計測装置。
(3) The sensor unit includes a polarization separation prism that alternately distributes the light waves from the polarization maintaining fiber according to periodic changes in the polarization state, and one polarization divided by the polarization separation prism. A magneto-optical element that rotates the plane of polarization of a light wave in one wave direction by an applied magnetic field, and a guide that propagates a light wave in the other polarization direction distributed by the polarization separation prism while maintaining the polarization direction. 2. The optical measuring device according to claim 1, comprising a waveguide and a reflective film provided at each end of the magneto-optical element and the waveguide.
JP60283123A 1985-12-18 1985-12-18 Optical measuring apparatus Granted JPS62144023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283123A JPS62144023A (en) 1985-12-18 1985-12-18 Optical measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283123A JPS62144023A (en) 1985-12-18 1985-12-18 Optical measuring apparatus

Publications (2)

Publication Number Publication Date
JPS62144023A true JPS62144023A (en) 1987-06-27
JPH0346053B2 JPH0346053B2 (en) 1991-07-15

Family

ID=17661521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283123A Granted JPS62144023A (en) 1985-12-18 1985-12-18 Optical measuring apparatus

Country Status (1)

Country Link
JP (1) JPS62144023A (en)

Also Published As

Publication number Publication date
JPH0346053B2 (en) 1991-07-15

Similar Documents

Publication Publication Date Title
US5715058A (en) Method and device for the optical determination of a physical quantity
Wang et al. Optical fiber pressure sensor based on photoelasticity and its application
JP6062104B2 (en) Optical fiber sensor device
JP2016142552A (en) Displacement detection device
KR970007812B1 (en) A birefringent temperature sensor
US6285182B1 (en) Electro-optic voltage sensor
CN109696577A (en) A kind of fibre optic current sensor and its measurement method of integrated temperature monitoring
US5747793A (en) Variable light source compensated optical fiber sensing system
JPS62198768A (en) Optical fiber type voltage sensor
JPH02118416A (en) Optical sensor
US20130121374A1 (en) Fiber optic birefringent thermometer and method for manufacturing the same
JPS62144023A (en) Optical measuring apparatus
JPH068724B2 (en) Optical detector
KR102045831B1 (en) Apparatus for detecting light temperature using polarization maintaining optical fiber
JP2010085148A (en) Minute displacement measuring device, minute displacement measuring method, and minute displacement measuring program
JP2019132859A (en) Displacement detector
JPS59669A (en) Optical fiber magnetic field sensor
JPS59166873A (en) Optical applied voltage and electric field sensor
JPS6235627B2 (en)
CN220982299U (en) Environment state monitoring system
TW387055B (en) Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts
US11512942B2 (en) Displacement detection device
RU2715347C1 (en) Fiber-optic voltage meter
JP3235301B2 (en) Light voltage sensor
JP2002131186A (en) Measuring method of polarization crosstalk of optical component

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term