JPH0346053B2 - - Google Patents

Info

Publication number
JPH0346053B2
JPH0346053B2 JP60283123A JP28312385A JPH0346053B2 JP H0346053 B2 JPH0346053 B2 JP H0346053B2 JP 60283123 A JP60283123 A JP 60283123A JP 28312385 A JP28312385 A JP 28312385A JP H0346053 B2 JPH0346053 B2 JP H0346053B2
Authority
JP
Japan
Prior art keywords
polarization
light
maintaining fiber
optical
sensor section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60283123A
Other languages
Japanese (ja)
Other versions
JPS62144023A (en
Inventor
Hiroyuki Ibe
Taro Shibagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60283123A priority Critical patent/JPS62144023A/en
Publication of JPS62144023A publication Critical patent/JPS62144023A/en
Publication of JPH0346053B2 publication Critical patent/JPH0346053B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Transform (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、光伝送路損失、結合損失、ゆらぎ等
によらずに被計測物理量を正確に測定することが
できるようにした光学的計測装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an optical measurement device that can accurately measure a physical quantity to be measured without depending on optical transmission line loss, coupling loss, fluctuation, etc. .

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来より、温度、圧力、磁界、電界等の物理量
が光波の強度変化や位相変化をもたらす現象を利
用して物理量を光学的に計測するようにした光学
的計測装置が種々知られている。その一つに、一
定の発光出力を光フアイバで伝送し、センサ部で
被計測物理量に応じた損失を生じさせて、その光
量変化により物理量を計測する光学的計測装置が
ある。このような装置では、センサとして、例え
ば温度によつて2つの主軸の放射損失が変化する
偏波保存フアイバや磁気光学素子とポーラライザ
とを組合わせた磁気センサ等が利用される。
Conventionally, various optical measuring devices have been known that optically measure physical quantities by utilizing a phenomenon in which physical quantities such as temperature, pressure, magnetic field, electric field, etc. cause changes in the intensity and phase of light waves. One of them is an optical measurement device that transmits a constant light output through an optical fiber, causes a loss in a sensor section according to the physical quantity to be measured, and measures the physical quantity based on the change in the amount of light. In such a device, as a sensor, for example, a polarization-maintaining fiber whose radiation loss of two principal axes changes depending on temperature, a magnetic sensor combining a magneto-optical element and a polarizer, etc. are used.

しかしながら、光の損失変化を利用する場合に
は、光伝送路の損失変動や光学素子の結合損失等
が直接計測誤差となつて現れる。
However, when using changes in optical loss, changes in loss in the optical transmission path, coupling loss in optical elements, etc. directly appear as measurement errors.

そこで、例えば半導体素子の基礎吸収特性の温
度依存性を利用した温度センサなどでは、第4図
に示すように、温度測定のための波長λ1の光とと
ももに基礎吸収波長よりも長い、つまり温度によ
る損失変動を受けない波長λ2の参照光を同時に伝
送し、両者の受光量差をとることによつて伝送路
および光学的結合部の損失変動を補償するように
したものも提案されている。
Therefore, for example, in a temperature sensor that utilizes the temperature dependence of the fundamental absorption characteristic of a semiconductor element, as shown in FIG . In other words, a method has been proposed in which a reference light of wavelength λ 2 , which is not affected by loss fluctuations due to temperature, is simultaneously transmitted, and loss fluctuations in the transmission line and optical coupling section are compensated for by calculating the difference in the amount of received light between the two. ing.

しかし、このような装置は適用分野が限定され
てしまううえ、合波器や分波器等を必要として構
成が複雑になるという欠点があつた。
However, such a device has disadvantages in that its field of application is limited and its configuration is complicated because it requires a multiplexer, a demultiplexer, and the like.

〔発明の目的〕[Purpose of the invention]

本発明は、このような問題に基づきなされたも
ので、その目的とするところは、被測定物理量に
応じて損失量が変動する光学的計測装置であつ
て、構造の複雑化を招くことなしに伝送路および
結合部の損失変動補償を可能にし、しかも適用分
野の広い光学的計測装置を提供することにある。
The present invention was made based on the above problem, and its purpose is to provide an optical measuring device in which the amount of loss varies depending on the physical quantity to be measured, without complicating the structure. It is an object of the present invention to provide an optical measurement device that enables compensation for loss fluctuations in transmission paths and coupling parts and can be applied to a wide range of fields.

〔発明の概要〕[Summary of the invention]

本発明は、次のように構成したことを特徴とし
ている。
The present invention is characterized by the following configuration.

すなわち、波長掃引しながら光波を出射する光
源からの光波を、光アイソレータおよび無偏光型
ビームスプリツタを介して偏波保存フアイバに導
くことによつて上記偏波保存フアイバの出射端部
に偏光状態が周期的に変化する光波を生成し、こ
の光波のセンサ部に導入する。センサ部は、端部
に反射膜を有し、この反射膜を介して前記偏波状
態が周期的に変化する光波を入射端部まで帰還さ
せるとともに、互いに直交する偏波方向の前記帰
還波の損失差が被測定物理量に応じて変化するも
のである。そして、このセンサ部からの帰還波を
前記偏波保存フアイバおよび前記無偏光ビームス
プリツタを介して光電変換素子で受光して、この
光電変換素子の出力の交流成分の振幅値を直流成
分に基づく値で規格化して前記被測定物理量の計
測値を得るようにしたことを特徴としている。
That is, by guiding light waves from a light source that emits light waves while sweeping the wavelength to a polarization-maintaining fiber via an optical isolator and a non-polarizing beam splitter, the polarization state is changed to the output end of the polarization-maintaining fiber. generates periodically changing light waves, which are introduced into the sensor section. The sensor section has a reflective film at the end, and returns the light wave whose polarization state changes periodically to the incident end via the reflective film, and also returns the light wave whose polarization state is perpendicular to each other to the input end. The loss difference changes depending on the physical quantity to be measured. Then, the feedback wave from this sensor section is received by a photoelectric conversion element via the polarization maintaining fiber and the non-polarization beam splitter, and the amplitude value of the AC component of the output of this photoelectric conversion element is calculated based on the DC component. The method is characterized in that the measured value of the physical quantity to be measured is obtained by normalizing the physical quantity.

〔発明の効果〕〔Effect of the invention〕

センサ部で生じる帰還波の損失が偏波方向によ
つて異なる場合、このセンサ部に偏波状態が周期
的に変化する光波が入射されると、その帰還波の
強度は入射光波の偏光状態の周期的変化に基づい
て周期的に変化する。このため、光電変換素子の
出力も交流成分を含む信号となる。この交流成分
の振幅、すなわち帰還波の偏波方向の損失差は、
被測定物理量によつて変化するので、この損失差
から被測定物理量を得ることができる。
If the loss of the feedback wave generated in the sensor section differs depending on the polarization direction, when a light wave whose polarization state changes periodically is incident on this sensor section, the intensity of the feedback wave will vary depending on the polarization state of the incident light wave. Changes periodically based on periodic changes. Therefore, the output of the photoelectric conversion element also becomes a signal containing an alternating current component. The amplitude of this AC component, that is, the loss difference in the polarization direction of the feedback wave is:
Since it changes depending on the physical quantity to be measured, the physical quantity to be measured can be obtained from this loss difference.

ところで、光電変換素子の出力は、帰還波の各
偏波方向の損失のみならず光伝送路損失、結合損
失、および光電変換損失等によつて変動する。後
者の損失は測定誤差につながるが、これらは光電
変換素子の出力の直流レベルと交流成分の振幅と
に等しい割合で影響を及ぼしている。
Incidentally, the output of the photoelectric conversion element varies not only due to the loss in each polarization direction of the feedback wave, but also due to optical transmission line loss, coupling loss, photoelectric conversion loss, and the like. Although the latter losses lead to measurement errors, they affect the DC level and the amplitude of the AC component of the output of the photoelectric conversion element in equal proportions.

本発明では、交流成分の振幅値を直流成分に基
づく値で規格化し、この値に基づいて測定値を得
るようにしているので、測定誤差につながる伝送
路損失等が補償され、測定精度に優れた装置を提
供できる。しかも、この発明は、被測定物理量に
応じて損失量が変化することを利用した光学的計
測装置全般に適用することができるので、適用範
囲が広く、また、波長の異なる複数の光波を用い
る必要がないので合波器や分波器を必要とせず、
構造が簡単であるという利点も有する。
In the present invention, the amplitude value of the AC component is normalized by a value based on the DC component, and the measured value is obtained based on this value, so transmission line loss, etc. that can lead to measurement errors is compensated for, and the measurement accuracy is excellent. We can provide equipment that Furthermore, the present invention can be applied to all optical measurement devices that utilize the fact that the amount of loss changes depending on the physical quantity to be measured, so it has a wide range of applications, and it is not necessary to use multiple light waves with different wavelengths. Since there is no multiplexer or demultiplexer required,
It also has the advantage of simple structure.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を参照しながら
説明する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は、センサ部に偏波保存フアイバを用い
て温度センサの一例を示す図である。
FIG. 1 is a diagram showing an example of a temperature sensor using a polarization maintaining fiber in the sensor section.

図中、波長掃引光源11は、例えば単一モード
で数Åの発振波長変化が可能な分布帰還型半導体
レーザ(DFBレーザ)からなるものである。発
振波長の掃引は、例えば本発明者等が先に提案し
たマイクロヒータのサブマウントによる熱的波長
掃引法を用いることができる。つまり、熱的波長
掃引法によれば、発振出力をAPC(オートマチツ
ク・パクー・コントロール)により一定にするこ
とができ、安定な波長掃引が可能になる。掃引の
波形は任意に変化可能であるが、本実施例では、
時間に比例して波長を掃引するものとする。この
ため、のこぎり波発生部12からは、のこぎり波
状の波長掃引信号が波長掃引光源11に与えられ
ている。また、DCバイアス用電源13によつて、
波長掃引光源11を一定に発光させるようにして
いる。
In the figure, the wavelength swept light source 11 is composed of, for example, a distributed feedback semiconductor laser (DFB laser) in a single mode and capable of changing the oscillation wavelength by several angstroms. For sweeping the oscillation wavelength, for example, a thermal wavelength sweeping method using a microheater submount, which was previously proposed by the present inventors, can be used. In other words, according to the thermal wavelength sweep method, the oscillation output can be kept constant by APC (automatic park control), and stable wavelength sweep is possible. The sweep waveform can be changed arbitrarily, but in this example,
Assume that the wavelength is swept in proportion to time. Therefore, a sawtooth wave-like wavelength sweep signal is provided from the sawtooth wave generator 12 to the wavelength sweep light source 11 . In addition, by the DC bias power supply 13,
The wavelength swept light source 11 is made to emit light at a constant rate.

前記波長掃引光源11からの光は、光アイソレ
ータ14を介し、更に無偏光型ビームスプリツタ
15を通過した後、偏波保存フアイバ16に入射
する。この時、前記波長掃引光源11からの光の
電界を偏波保存フアイバ16の主軸に対して均等
に分配させるために、波長掃引光源11の偏波方
向と偏波保存フアイバ16の主軸方向のなす角度
が45゜となるように光を入射すると、偏波保存フ
アイバ16の出射端部の偏光状態は、波長掃引に
従つて直線偏光から円偏光、更に前記直線偏光と
直交する直線偏光へと周期的に変化する。この光
波はセンサ部17に入射されている。
The light from the wavelength swept light source 11 passes through an optical isolator 14 and further passes through a non-polarizing beam splitter 15, and then enters a polarization maintaining fiber 16. At this time, in order to evenly distribute the electric field of the light from the wavelength swept light source 11 to the main axis of the polarization maintaining fiber 16, the polarization direction of the wavelength swept light source 11 and the main axis direction of the polarization maintaining fiber 16 are When light is incident at an angle of 45°, the polarization state at the output end of the polarization-maintaining fiber 16 changes periodically from linearly polarized light to circularly polarized light and then to linearly polarized light orthogonal to the linearly polarized light according to the wavelength sweep. change. This light wave is incident on the sensor section 17.

センサ部17は、カツトオフ波長が光源の波長
より少なくとも0.2μm短い偏波保存フアイバであ
り、このセンサ部17の偏波保存フアイバはその
主軸に対して前記光伝送用の偏波保存フアイバ1
6からの光の電界が均等に分配されるように、相
互の偏波保存フアイバの主軸45゜をなして配置さ
れる。センサ部17の偏波保存フアイバは、伝搬
光の放射損失が第1の主軸と第2の主軸とでは異
なつており、両者の間の損失差はセンサ部17に
印加される温度が高くなると小さくなる性質を有
している。すなわち、一般に偏波保存フアイバ
は、製造時の冷却に伴うコアの残留応力によつて
主軸方向の屈折率変化を与えている。したがつて
フアイバの温度を高くすると、2つの主軸方向の
応力差が小さくなるので、両主軸方向の屈折率差
も小さくなり、放射損失の差も小さくなるのであ
る。
The sensor section 17 is a polarization-maintaining fiber whose cutoff wavelength is at least 0.2 μm shorter than the wavelength of the light source, and the polarization-maintaining fiber of the sensor section 17 is aligned with the polarization-maintaining fiber 1 for optical transmission with respect to its main axis.
The main axes of the polarization maintaining fibers are arranged at 45° to each other so that the electric field of the light from the fibers 6 is evenly distributed. In the polarization maintaining fiber of the sensor section 17, the radiation loss of the propagating light is different between the first principal axis and the second principal axis, and the loss difference between the two becomes smaller as the temperature applied to the sensor section 17 increases. It has the following properties. That is, in general, polarization-maintaining fibers have a refractive index change in the principal axis direction due to residual stress in the core during cooling during manufacturing. Therefore, when the temperature of the fiber is raised, the stress difference in the two principal axis directions becomes smaller, so the refractive index difference in both principal axis directions also becomes smaller, and the difference in radiation loss also becomes smaller.

このセンサ部17には、前述した偏光状態が周
期的に変化する光波が導入されている。センサ部
17の出射端には反射膜18が形成されている。
偏波保存フアイバ16とセンサ部17とは、その
主軸が45゜をなすように配置されているので、セ
ンサ部17の第1の主軸と第2の主軸には交互に
直線偏光が入射される。両主軸方向の放射損失は
異なるので、反射膜18で反射され光伝送用の偏
波保存フアイバ16の入射端部まで帰還された帰
還波は、周期的な強度変化を伴う光信号となる。
そして、その振幅はセンサ部17に加えられる温
度が高くなると小さくなる。
A light wave whose polarization state changes periodically as described above is introduced into the sensor section 17 . A reflective film 18 is formed at the output end of the sensor section 17 .
Since the polarization preserving fiber 16 and the sensor section 17 are arranged so that their principal axes form an angle of 45 degrees, linearly polarized light is alternately incident on the first principal axis and the second principal axis of the sensor section 17. . Since the radiation loss in both principal axis directions is different, the feedback wave reflected by the reflective film 18 and returned to the input end of the polarization maintaining fiber 16 for light transmission becomes an optical signal with periodic intensity changes.
The amplitude becomes smaller as the temperature applied to the sensor section 17 becomes higher.

帰還波は、偏波保存フアイバ16の入射端にお
ける偏光状態が変化しても分岐比の変化が1%以
内であるような無偏光型ビームスプリツタ15に
よつて反射され、光電変換器19で光電変換され
る。光電変換器19の出力は、増幅器20によつ
て増幅され、信号処理回路21に導入される。
The feedback wave is reflected by the non-polarizing beam splitter 15 whose splitting ratio changes within 1% even if the polarization state at the input end of the polarization-maintaining fiber 16 changes, and is reflected by the photoelectric converter 19. Photoelectrically converted. The output of the photoelectric converter 19 is amplified by an amplifier 20 and introduced into a signal processing circuit 21 .

第2図は信号処理回路21に入力される信号波
形を示した図である。センサ部17に加えられる
温度が低い場合には、センサ部での両偏波方向の
損失差が大きいので、同図aに示すように交流成
分の振幅値Aは大きい。センサ部17に加えられ
る温度が高くなると、センサ部17での両偏波方
向の損失差が小さくなるので、交流成分の振幅値
Aは小さくなる。信号処理回路21ではこの信号
をA/D変換して最大値と最小値とを検出し、こ
れらの値から信号の直流成分のレベルBを求め、
A/Bなる演算によつて振幅値Aを規格化する。
FIG. 2 is a diagram showing signal waveforms input to the signal processing circuit 21. When the temperature applied to the sensor section 17 is low, the difference in loss in both polarization directions in the sensor section is large, so the amplitude value A of the AC component is large, as shown in FIG. As the temperature applied to the sensor section 17 becomes higher, the difference in loss in both polarization directions in the sensor section 17 becomes smaller, so the amplitude value A of the AC component becomes smaller. The signal processing circuit 21 A/D converts this signal, detects the maximum value and minimum value, and calculates the level B of the DC component of the signal from these values.
The amplitude value A is normalized by the calculation A/B.

このように、本実施例によれば、伝送路および
結合部の損失変動を補償できるのみならず、光電
変換器19の変動も補償でき、極めて正確な温度
測定が可能である。
In this way, according to this embodiment, not only can loss fluctuations in the transmission line and the coupling portion be compensated for, but also fluctuations in the photoelectric converter 19 can be compensated for, and extremely accurate temperature measurement is possible.

第3図は、センサ部にフアラデー素子を用いた
磁気センサに本発明を適用した例を示す図であ
る。
FIG. 3 is a diagram showing an example in which the present invention is applied to a magnetic sensor using a Faraday element in the sensor section.

この実施例が、先の実施例と異なる部分は、セ
ンサ部31である。
The difference between this embodiment and the previous embodiment is the sensor section 31.

すなわち、センサ部31は、光伝送用の偏波保
存フアイバ16の出射端部にロツドレンズ32を
介して設けられている。図中33は、偏波分離プ
リズムであり、その透過軸は偏波保存フアイバ1
6の主軸に対して45゜をなすように配置されてい
る。偏波分離プリズム33を透過した光は、フア
ラデー素子34を介してもう一つの偏波分離プリ
ズム35に導かれている。この偏波分離プリズム
35の透過軸は先の偏波分離プリズム33の透過
軸と一致するように配置されている。従つて、フ
アラデー素子34に磁界が印加されていなけれ
ば、フアラデー素子34を透過した光波は偏波分
離プリズム35も透過して、このプリズム35の
基端部に設けられた反射膜36で反射され、再び
偏波分離プリズム35〜フアラデー素子34〜偏
波分離プリズム33〜ロツドレンズ32〜偏波保
存フアイバ16を介して帰還される。また、フア
ラデー素子34に磁界が印加されている場合に
は、フアラデー素子34を伝搬する光波の偏波面
が回転するので、伝搬光は偏波分離プリズム3
5,33で反射による損失を受ける。従つて、帰
還光の損失量によつて磁界を測定することができ
る。
That is, the sensor section 31 is provided through a rod lens 32 at the output end of the polarization maintaining fiber 16 for optical transmission. 33 in the figure is a polarization separating prism, whose transmission axis is the polarization preserving fiber 1.
It is arranged at an angle of 45° to the main axis of 6. The light transmitted through the polarization separation prism 33 is guided to another polarization separation prism 35 via a Faraday element 34. The transmission axis of this polarization separation prism 35 is arranged so as to coincide with the transmission axis of the polarization separation prism 33. Therefore, if no magnetic field is applied to the Faraday element 34, the light wave that has passed through the Faraday element 34 also passes through the polarization separation prism 35 and is reflected by the reflective film 36 provided at the base end of this prism 35. , and is fed back again via the polarization separation prism 35 - the Faraday element 34 - the polarization separation prism 33 - the rod lens 32 - the polarization preserving fiber 16. Furthermore, when a magnetic field is applied to the Faraday element 34, the plane of polarization of the light wave propagating through the Faraday element 34 rotates, so that the propagating light is transferred to the polarization separation prism 3.
5, 33 suffers loss due to reflection. Therefore, the magnetic field can be measured based on the amount of loss of the feedback light.

一方、偏波分離プリズム33で反射された光波
は、光路調整用の導波路37を通過して、この導
波路37の基端部に設けられた反射膜39で反射
され、再び導波路37〜偏波分離プリズム33〜
ロツドレンズ32〜偏波保存フアイバ16を介し
て帰還される。この経路で帰還される帰還光は磁
界には全く影響されない。
On the other hand, the light wave reflected by the polarization separation prism 33 passes through a waveguide 37 for adjusting the optical path, is reflected by a reflective film 39 provided at the base end of this waveguide 37, and is again passed through the waveguide 37 to Polarization separation prism 33~
It is fed back via the rod lens 32 and the polarization maintaining fiber 16. The feedback light that returns through this path is not affected by the magnetic field at all.

ロツドレンズ32から偏波分離プリズム33に
入射される光波は、前述した実施例と同様に波長
掃引光源11の波長掃引に伴つて偏光状態が周期
的に変化する光波であるため、偏波分離プリズム
33は、光の透過、反射を交互に繰返すスイツチ
作用を呈することになる。したがつて、波長掃引
に伴い、光路が周期的に変化し、損失の変化を生
じ、光電変換素子19に入射される帰還光に周期
的な強度変化を持たせることができる。
The light wave incident on the polarization separation prism 33 from the rod lens 32 is a light wave whose polarization state changes periodically as the wavelength sweep of the wavelength swept light source 11 is performed, as in the above-described embodiment. exhibits a switch effect that alternately repeats transmission and reflection of light. Therefore, as the wavelength is swept, the optical path changes periodically, causing a change in loss, and the feedback light incident on the photoelectric conversion element 19 can have a periodic intensity change.

この実施例では、反射膜38を反射してきた帰
還光が最も明るく、しかも磁界には依存しないの
で、参照信号として利用される。また、反射膜3
6を反射してきた帰還光は印加磁界が大きくなる
とその光量が減少する。従つて、信号処理回路2
1は、入力信号の交流成分の振幅値を最大値(参
照信号)で規格化することによつて、測定誤差に
起因する損失分を補償することができる。
In this embodiment, the return light reflected from the reflective film 38 is the brightest and does not depend on the magnetic field, so it is used as a reference signal. In addition, the reflective film 3
As the applied magnetic field increases, the amount of the feedback light reflected from the magnetic field 6 decreases. Therefore, the signal processing circuit 2
No. 1 can compensate for losses caused by measurement errors by normalizing the amplitude value of the AC component of the input signal by the maximum value (reference signal).

このように、本発明は、光電変換素子の出力信
号の交流成分の振幅値を、物理量に左右されない
最大値、最小値またはそれらの平均値で規格化す
ることによつて伝送路損失、結合損失等の測定誤
差につながる損失を補償することができる。
As described above, the present invention can reduce transmission line loss and coupling loss by normalizing the amplitude value of the AC component of the output signal of a photoelectric conversion element by the maximum value, minimum value, or their average value, which is not influenced by physical quantities. It is possible to compensate for losses that lead to measurement errors such as

なお、本発明は、上述した実施例い限定される
ものではない。例えばセンサ部としては前述した
ものの他、LiNbO3、LiTaO3などの電界センサ、
電圧センサ、半導体の基礎吸収を利用した温度セ
ンサなど極めて広範な用途に応用することができ
る。
Note that the present invention is not limited to the embodiments described above. For example, as a sensor part, in addition to those mentioned above, electric field sensors such as LiNbO 3 and LiTaO 3 ,
It can be applied to an extremely wide range of applications, including voltage sensors and temperature sensors that utilize the basic absorption of semiconductors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る温度センサの
構成を示すブロツク図、第2図は同センサの主要
波形図、第3図は本発明の他の実施例に係る磁界
センサの構成を示すブロツク図、第4図は従来の
光学的計測装置を説明するための図である。 11…波長掃引光源、14…光アイソレータ、
15…無偏光型ビームスプリツタ、16…偏波保
存フアイバ、17,31…センサ部、18,3
6,38…反射膜、19…光電変換器、20…増
幅器、32…ロツドレンズ、33,35…偏波分
離プリズム、34……フアラデー素子、37……
導波路。
FIG. 1 is a block diagram showing the configuration of a temperature sensor according to one embodiment of the present invention, FIG. 2 is a main waveform diagram of the sensor, and FIG. 3 is a diagram showing the configuration of a magnetic field sensor according to another embodiment of the present invention. The block diagram shown in FIG. 4 is a diagram for explaining a conventional optical measuring device. 11... Wavelength swept light source, 14... Optical isolator,
15...Non-polarizing beam splitter, 16...Polarization maintaining fiber, 17,31...Sensor section, 18,3
6, 38... Reflection film, 19... Photoelectric converter, 20... Amplifier, 32... Rod lens, 33, 35... Polarization separation prism, 34... Faraday element, 37...
waveguide.

Claims (1)

【特許請求の範囲】 1 波長掃引しながら光波を出射する光源と、こ
の光源からの光波を一方向にのみ通過させる光ア
イソレータと、この光アイソレータを通過した光
波を偏波状態に拘りなく分岐する無偏光型ビーム
スプリツタと、この無偏光型ビームスプリツタを
介して導入された光波を測定点まで導くとともに
前記光源の波長掃引によつて前記光波の出射端に
おける偏光状態を周期的に変化させる光伝送用の
偏光保存フアイバと、この偏光保存フアイバから
の光波を導きこの光波を端部に設けた反射膜を介
して入射端部に帰還させるとともに互いに直交す
る偏波方向の帰還波の損失差が被測定物理量に応
じて変化するセンサ部と、このセンサ部からの帰
還波を前記偏波保存フアイバおよび前記無偏光ビ
ームスプリツタを介して受光して光電変換する光
電変換素子と、この光電変換素子の出力の交流成
分の振幅値を直流成分に基づく値で規格化して前
記被測定物理量の計測値を得る手段とを具備し、
前記光伝送用の偏光保存フアイバはその主軸と前
記波長掃引光源の偏波方向とのなす角度とが45゜
となるよう配置されたことを特徴とする光学的計
測装置。 2 前記センサ部は、温度によつて2つの主軸方
向の損失差が変化しカツトオフ周波数が前記光源
の波長より少なくとも0.2μm短い偏波保存フアイ
バと、この偏光保存フアイバの端部に設けられた
反射波とからなり、前記センサ部の偏波保存フア
イバはその主軸方向が前記光伝送用の偏波保存フ
アイバの主軸に対して45゜をなして配置されたこ
とを特徴とする特許請求の範囲第1項記載の光学
的計測装置。 3 前記センサ部は、前記偏波保存フアイバから
の光波を偏波状態の周期的変化に応じて交互に振
分ける偏光分離プリズムと、この偏光分離プリズ
ムによつて振分けられた一方の偏波方向の光波の
偏光面を印加磁界によつて回転させる磁気光学素
子と、前記偏波分離プリズムによつて振分けられ
た他方の偏波方向の光波を偏波方向を維持させた
ままで伝搬させる導波路と、前記磁気光学素子お
よび前記導波路の端部にそれぞれ設けられた反射
膜とで構成されていることを特徴とする特許請求
の範囲第1項記載の光学的計測装置。
[Claims] 1. A light source that emits light waves while sweeping the wavelength, an optical isolator that allows the light waves from this light source to pass in only one direction, and branches the light waves that have passed through the optical isolator regardless of the polarization state. A non-polarizing beam splitter, and guiding the light waves introduced through the non-polarizing beam splitter to a measurement point, and periodically changing the polarization state of the light waves at the output end by wavelength sweeping the light source. A polarization-preserving fiber for optical transmission, a light wave from this polarization-maintaining fiber, which is guided back to the input end via a reflective film provided at the end, and the loss difference between the returned waves in mutually orthogonal polarization directions. a sensor section whose value changes according to a physical quantity to be measured; a photoelectric conversion element which receives a feedback wave from the sensor section via the polarization preserving fiber and the non-polarizing beam splitter and converts it into electricity; and the photoelectric conversion element. means for normalizing the amplitude value of the AC component of the output of the element by a value based on the DC component to obtain a measured value of the physical quantity to be measured,
2. An optical measuring device, wherein the polarization maintaining fiber for optical transmission is arranged such that the angle between its main axis and the polarization direction of the wavelength swept light source is 45 degrees. 2. The sensor section includes a polarization-maintaining fiber whose loss difference in two principal axes changes depending on temperature and whose cutoff frequency is at least 0.2 μm shorter than the wavelength of the light source, and a reflective fiber provided at the end of the polarization-maintaining fiber. The polarization-maintaining fiber of the sensor section is arranged such that its main axis direction forms an angle of 45° with respect to the main axis of the polarization-maintaining fiber for optical transmission. The optical measuring device according to item 1. 3. The sensor unit includes a polarization splitting prism that alternately distributes the light waves from the polarization maintaining fiber according to periodic changes in the polarization state, and a polarization splitting prism that distributes the light waves from the polarization maintaining fiber in one polarization direction. a magneto-optical element that rotates the polarization plane of a light wave by an applied magnetic field; a waveguide that propagates the light wave in the other polarization direction distributed by the polarization separation prism while maintaining the polarization direction; 2. The optical measuring device according to claim 1, comprising the magneto-optical element and a reflective film provided at each end of the waveguide.
JP60283123A 1985-12-18 1985-12-18 Optical measuring apparatus Granted JPS62144023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283123A JPS62144023A (en) 1985-12-18 1985-12-18 Optical measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283123A JPS62144023A (en) 1985-12-18 1985-12-18 Optical measuring apparatus

Publications (2)

Publication Number Publication Date
JPS62144023A JPS62144023A (en) 1987-06-27
JPH0346053B2 true JPH0346053B2 (en) 1991-07-15

Family

ID=17661521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283123A Granted JPS62144023A (en) 1985-12-18 1985-12-18 Optical measuring apparatus

Country Status (1)

Country Link
JP (1) JPS62144023A (en)

Also Published As

Publication number Publication date
JPS62144023A (en) 1987-06-27

Similar Documents

Publication Publication Date Title
US5715058A (en) Method and device for the optical determination of a physical quantity
CN215984384U (en) Ranging system with polarization maintaining optical fiber
JP2818300B2 (en) Optical AC measurement method with temperature compensation and apparatus for implementing the method
CN106030318B (en) Fiber optic sensor and method
EP0321252B1 (en) Optical fiber sensor
JP6062104B2 (en) Optical fiber sensor device
US6285182B1 (en) Electro-optic voltage sensor
CN108287262B (en) All-fiber current transformer temperature and vibration feedback compensation system and measurement method
CN109696577A (en) A kind of fibre optic current sensor and its measurement method of integrated temperature monitoring
KR101923705B1 (en) a optic-fiber current sensor system
US4644153A (en) Optical sensing equipment
JPS62198768A (en) Optical fiber type voltage sensor
JPH0346053B2 (en)
JP3357734B2 (en) Optical sensor
JPS59166873A (en) Optical applied voltage and electric field sensor
CN113295905B (en) Optical fiber current mutual inductance device based on chiral optical fiber coupler, optical fiber current mutual inductance system and working method of optical fiber current mutual inductance system
JP3235301B2 (en) Light voltage sensor
JPS60263866A (en) Optical electric field sensor
JP2580442B2 (en) Optical voltage sensor
JP2002131186A (en) Measuring method of polarization crosstalk of optical component
JPH01292263A (en) Optical fiber current measuring apparatus
CN118311336A (en) Optical electric field sensor based on Fabry-Perot structure
JPH07191060A (en) Optical current sensor
TW387055B (en) Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts
JPS6314305B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term