WO2009107801A1 - Vacuum defoaming apparatus for molten glass - Google Patents
Vacuum defoaming apparatus for molten glass Download PDFInfo
- Publication number
- WO2009107801A1 WO2009107801A1 PCT/JP2009/053736 JP2009053736W WO2009107801A1 WO 2009107801 A1 WO2009107801 A1 WO 2009107801A1 JP 2009053736 W JP2009053736 W JP 2009053736W WO 2009107801 A1 WO2009107801 A1 WO 2009107801A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molten glass
- vacuum degassing
- gas
- gas supply
- supply pipe
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/225—Refining
- C03B5/2252—Refining under reduced pressure, e.g. with vacuum refiners
Definitions
- the present invention relates to a vacuum degassing apparatus for molten glass for removing bubbles from continuously supplied molten glass.
- a clarification process for removing bubbles generated in the molten glass is used before the molten glass in which the raw material is melted in the melting furnace is molded by the molding apparatus. Yes.
- molten glass is introduced into the reduced-pressure atmosphere, and bubbles in the molten glass flow that flows continuously under this reduced-pressure atmosphere are greatly grown to float up the bubbles contained in the molten glass.
- a vacuum defoaming method is known in which bubbles are removed by breaking bubbles, and then discharged from a reduced-pressure atmosphere.
- Patent Document 1 proposes to include various fining accelerators in vitrifiable substances, that is, glass raw materials, in order to improve the performance characteristics of the fining operation.
- Patent Document 1 lists the property of the gas on the melt material, that is, the property of the gas on the molten glass, as an element that affects the growth of bubbles during clarification under reduced pressure.
- Patent Document 2 discloses a foam breaking means for breaking foam generated when molten glass encounters a reduced pressure in a clarification chamber. As the foam breaking means, it is disclosed to use a mechanical rotating body for expanding and rupturing bubbles, or to make a jet flow collide with the foam.
- Patent Document 1 as a method of changing the property of the gas on the molten glass, selection of the partial pressure of air, selection of an atmosphere enriched with a nitrogen type inert gas, and partial pressure of the nitrogen type inert gas are described. Although there is a selection, it does not show at all what kind of property the gas on the molten glass promotes the bubble growth. In addition, during clarification under reduced pressure conditions, volatile gas components from the molten glass and gas components in the bubbles contained in the molten glass are released, so the partial pressure of the selected air and the selected nitrogen type There is a problem that the partial pressure of the active gas is easily reduced. Further, there is a problem that the gas composition of the atmosphere easily changes from the atmosphere enriched with the selected nitrogen type inert gas.
- Patent Document 2 is not always sufficient in terms of breaking the foam generated in the clarification chamber.
- the use of a mechanical rotating body or a jet flow can destroy the foam already existing on the molten glass, but the turbulence in the molten glass flow results in the generation of new bubbles.
- the foam can be locally destroyed, but the newly generated foam cannot be destroyed downstream of the mechanical rotating body or the jet flow.
- the use of a mechanical rotating body may be a source of contamination of molten glass, and the use of a jet stream may reduce the temperature of the molten glass and reduce the quality of the glass.
- the present invention relates to a vacuum degassing apparatus excellent in the effect of vacuum degassing of molten glass, more specifically, vacuum degassing by enlargement of a foam layer due to excessive vacuuming.
- An object of the present invention is to provide a vacuum degassing apparatus for molten glass in which the effect of the above is prevented from being lowered.
- gas components generated by bubbles breaking on the surface of the molten glass stay above the molten glass flowing in the vacuum degassing tank. It has been found that the effect of vacuum degassing is reduced.
- a gas component generated by bubbles breaking on the surface of the molten glass is referred to as “gas component from molten glass”, and the gas component from the molten glass circulates in the vacuum degassing tank. Retaining above the molten glass is referred to as “retaining gas components from the molten glass”.
- the partial pressure of the gas component from the molten glass increases in the atmosphere above the molten glass (the upper space of the molten glass inside the vacuum degassing tank), so bubbles that float on the surface of the molten glass Is considered to be difficult to break, and the effect of vacuum degassing is reduced. Further, the present inventors have found that by eliminating the retention of gas components from the molten glass, the bubble breaking speed on the surface of the molten glass is increased, and the enlargement of the foam layer due to excessive decompression can be suppressed.
- the present invention has been made on the basis of the above-mentioned findings of the present inventors, and the internal pressure is set to be lower than the atmospheric pressure, and a vacuum degassing tank that floats and breaks bubbles in the supplied molten glass. And a riser pipe that is connected to the vacuum degassing tank and sucks and raises the molten glass before the defoaming process and introduces it into the vacuum degassing tank, and is connected to the vacuum degassing tank and melted after the defoaming process.
- a vacuum degassing apparatus for molten glass comprising a downcomer pipe that descends the glass from the vacuum degassing tank and leads it out, It has a hollow atmosphere control unit connected to the vacuum deaeration tank by at least two connecting pipes, and the atmosphere control unit is provided with an exhaust port for exhausting and depressurizing the atmosphere control unit.
- the atmosphere control unit is provided with a first gas supply pipe satisfying the following (1) and (2) in relation to at least one of the connecting pipes, and the vacuum degassing of molten glass is provided:
- An apparatus hereinafter referred to as “the vacuum degassing apparatus of the present invention”) is provided.
- a virtual region in which an opening formed by the atmosphere control unit and the connection pipe extends into the atmosphere control unit along the tube axis direction of the connection pipe is supplied from the first gas supply pipe Gas flow crosses.
- An imaginary line extending from the tip of the first gas supply pipe along the tube axis of the gas supply pipe does not pass through the opening formed by the atmosphere control unit and the connection pipe.
- the number of the connecting pipes is X
- the number of the first gas supply pipes is X-1 or less (however, the number of the first gas supply pipes is 1 or more). It is preferable that
- the gas flow supplied from the first gas supply pipe is preferably a low moisture gas flow having a water vapor concentration of 60 mol% or less.
- a second gas supply pipe for supplying a low moisture gas having a water vapor concentration of 60 mol% or less is further provided in the upper space of the molten glass in the vacuum degassing tank.
- a pressure difference is generated between the atmosphere control unit and the vacuum degassing tank due to the venturi effect generated by supplying the gas flow across the virtual region from the first gas supply pipe,
- This pressure difference causes a gas flow that circulates between the atmosphere controller and the vacuum degassing tank.
- This gas flow can eliminate stagnation of gas components from the molten glass. By eliminating the stagnation of gas components from the molten glass, a reduction in the effect of vacuum degassing is prevented.
- the foam layer is less likely to be enlarged due to excessive decompression. As a result, the degree of vacuum in the vacuum degassing tank can be increased, and the effect of vacuum degassing can be improved.
- the molten glass in the vacuum degassing tank When a low moisture gas having a water vapor concentration of 60 mol% or less is used as the gas supplied from the first gas supply pipe, in addition to the effect of eliminating the retention of gas components from the molten glass, the molten glass in the vacuum degassing tank The effect of reducing the water vapor concentration is expected in the upper atmosphere. By reducing the water vapor concentration of the atmosphere, it is possible to prevent the bubble layer on the surface of the molten glass in the vacuum degassing tank from being enlarged and to cause bumping, and the effect of vacuum degassing can be further improved.
- FIG. 1 Sectional drawing which shows one structural example of the vacuum deaeration apparatus of this invention.
- the partial enlarged view which showed the vicinity of the virtual area
- FIG. The elements on larger scale similar to FIG. The elements on larger scale similar to FIG.
- the elements on larger scale similar to FIG. The elements on larger scale similar to FIG.
- the elements on larger scale similar to FIG. Sectional drawing which shows another one structural example of the vacuum deaeration apparatus of this invention.
- FIG. 1 is a cross-sectional view showing an example of the configuration of the vacuum degassing apparatus of the present invention.
- a vacuum degassing apparatus 10 shown in FIG. 1 includes a vacuum degassing tank 11 having a cylindrical shape. The internal pressure of the vacuum degassing tank 11 is set to be lower than atmospheric pressure, and the bubbles in the supplied molten glass G are floated and broken.
- An ascending pipe 12 and a descending pipe 13 are connected to the vacuum degassing tank 11.
- the ascending pipe 12 is a means for introducing the molten glass G that sucks and raises the molten glass G before the defoaming treatment and introduces it into the vacuum degassing tank 11.
- the lower end portion of the rising pipe 12 is immersed in the molten glass G in the upstream pit 220.
- the molten glass G is supplied from the melting tank 200 to the upstream pit 220.
- the downcomer 13 is a derivation means for the molten glass G that descends the defoamed molten glass G from the vacuum degassing tank 11 and derives it. For this reason, the lower end of the downcomer 13 is immersed in the molten glass G in the downstream pit 240.
- the molten glass G in the downstream pit 240 is led to a processing tank (not shown) in a subsequent process.
- the terms “upstream” and “downstream” mean upstream and downstream in the flow direction of the molten glass G flowing through the vacuum degassing apparatus 10.
- the vacuum degassing tank 11 is usually housed in a vacuum housing, and the pressure inside the vacuum degassing tank 11 is reduced to a pressure lower than atmospheric pressure by sucking the vacuum housing under reduced pressure. Hold on.
- the vacuum degassing tank 11 is not accommodated in the vacuum housing, the upper space of the molten glass G in the vacuum degassing tank 11 is sucked under reduced pressure using a vacuum pump or the like, so that the interior of the vacuum degassing tank 11 is reduced. Is maintained at a reduced pressure below atmospheric pressure.
- the vacuum degassing apparatus 10 of the present invention has an atmosphere control unit 14 connected to the vacuum degassing tank 11 by at least two connecting pipes 15 and 16.
- the atmosphere control unit 14 has a hollow structure, and is provided with an exhaust port 17 for exhausting and depressurizing the atmosphere control unit 14.
- the atmosphere control unit 14 forms a path of the gas flow 120 that circulates between the atmosphere control unit 14 and the upper space of the molten glass G in the vacuum degassing tank 11. Therefore, in the vacuum degassing apparatus 10 of the present invention, the atmosphere control unit 14 is exhausted from the exhaust port 17 to reduce the pressure, thereby maintaining the pressure inside the vacuum degassing tank 11 in a reduced pressure state less than atmospheric pressure.
- the atmospheric pressure inside the vacuum degassing tank 11 is changed to atmospheric pressure by sucking the vacuum housing under reduced pressure and exhausting the atmosphere control unit 14 from the exhaust port 17 to reduce the pressure. Is maintained at a reduced pressure of less than
- the vacuum degassing tank 11 does not have a vacuum housing, the atmospheric pressure inside the vacuum degassing tank 11 is increased by evacuating the atmosphere control unit 14 from the exhaust port 17 using a vacuum pump or the like. Maintain a reduced pressure below atmospheric pressure.
- the atmosphere control unit 14 forms a path of the gas flow 120 that circulates between the atmosphere control unit 14 and the upper space of the molten glass G in the vacuum defoaming tank 11. It is necessary to connect to the vacuum degassing tank 11 above the liquid surface of the molten glass G in the vacuum degassing tank 11. For this reason, as shown in FIG. 1, it is a preferable aspect to arrange the atmosphere control unit 14 above the vacuum degassing tank 11. However, if the connection pipes 15 and 16 are connected to the vacuum degassing tank 11 above the liquid level of the molten glass G in the vacuum degassing tank 11, the atmosphere control unit 14 is connected to the vacuum degassing tank 11 side. You may arrange in the direction.
- connection pipes 15 and 16 are required.
- the vacuum degassing tank 11 and the atmosphere control unit 14 are connected by two connecting pipes 15 and 16, but the vacuum degassing is performed by three or more connecting pipes.
- the tank 11 and the atmosphere control unit 14 may be connected.
- the atmosphere control unit 14 and the connection pipes 15 and 16 are It is preferable to have a heating mechanism. However, it is not always necessary to provide a heating mechanism in the atmosphere control unit 14 and all the connection pipes 15 and 16, and at least the connection pipe (see FIG. 1) on the side where the gas flow 120 flows into the vacuum degassing tank 11. In this case, if the connecting pipe 15) is provided with a heating mechanism, the gas flow 120 having a low temperature flows into the vacuum degassing tank 11 to eliminate the possibility of adversely affecting the molten glass G in the vacuum degassing tank 11. Can do.
- the vacuum degassing apparatus 10 of the present invention is provided with a first gas supply pipe 20 that supplies gas into the atmosphere control unit 14.
- the first gas supply pipe 20 satisfies the following (1) and (2) in relation to at least one connection pipe (in the case of FIG. 1, the connection pipe 16).
- An imaginary line 21 (see FIG.
- p pressure around the outlet of the first gas supply pipe 20 (Pa)
- ⁇ density of the gas flow 100 (kg / m 3 )
- g acceleration of gravity (m / s)
- v flow velocity of the gas flow 100 ( m / s)
- z height of the outlet of the first gas supply pipe 20 in the atmosphere control unit 14 (height from the bottom of the atmosphere control unit) (m)
- the flow velocity v of the gas flow 100 necessary to generate a pressure difference sufficient to generate the gas flow 120 that circulates between the atmosphere controller and the vacuum degassing tank is the density ⁇ of the gas flow 100, the atmosphere
- the atmosphere control is performed if the flow velocity v of the gas flow 100 satisfies the following equation (2).
- the flow velocity v of the gas flow 100 preferably satisfies the following formula (3), and more preferably satisfies the following formula (4).
- the gas flow 120 that circulates through the atmosphere control unit 14 and the vacuum degassing tank 11 the retention of gas components from the molten glass G is eliminated. That is, the gas component from the molten glass G is carried to the atmosphere control unit 14 by the gas flow 120 without staying.
- the gas component from the molten glass G carried to the atmosphere control unit 14 is discharged from the exhaust port 17 to the outside. In some cases, a part of the gas component from the molten glass G carried to the atmosphere control unit 14 is carried by the gas flow 120 and returns to the space above the molten glass G in the vacuum degassing tank 11.
- the partial pressure of the gas component from the molten glass G increases in the atmosphere above the molten glass G in the vacuum degassing tank 11, so that bubbles floating on the surface of the molten glass G are generated. It is considered that foaming becomes difficult and the effect of vacuum degassing is reduced.
- the vacuum degassing apparatus 10 of the present invention the retention of gas components from the molten glass G is eliminated, so that the effect of vacuum degassing does not decrease, and the vacuum degassing effect is excellent.
- the vacuum degassing apparatus 10 of the present invention the molten glass Since the stagnation of the gas component from G is eliminated, the enlargement of the foam layer due to excessive decompression can be suppressed even when the degree of decompression of the decompression defoaming tank 11 is made higher than before. Therefore, the pressure reduction degree of the vacuum degassing tank 11 can be made higher than before (the absolute pressure of the vacuum degassing tank 11 can be made lower than before), and the effect of the vacuum degassing can be further enhanced. .
- the connecting pipe 16 connects the gas flow 120 to the gas degassing tank 11.
- the connecting pipe 15 forms a gas flow introduction pipe for introducing the gas flow 120 into the vacuum degassing tank 11. Therefore, like the vacuum degassing apparatus 10 shown in FIG. 1, when the two connecting pipes 15 and 16 are provided, the first satisfying the above (1) and (2) in relation to either one of the connecting pipes.
- a gas supply pipe must be provided, and the first gas supply pipe satisfying the above (1) and (2) must not be provided in relation to the other connection pipe.
- a first gas supply pipe satisfying the above (1) and (2) may be provided in relation to two or more connecting pipes.
- the first gas supply pipe satisfying the above (1) and (2) should not be provided. That is, in the vacuum degassing apparatus of the present invention, when the number of connection pipes is X, the number of first gas supply pipes is X-1 or less (however, the number of first gas supply pipes is 1 or more). There is a need to.
- FIG. 1 is a partially enlarged view showing the vicinity of the virtual region 19 of the vacuum degassing apparatus 10, and the position of the tip of the first gas supply pipe 20 is different from that in FIG. 1.
- the tip of the first gas supply pipe 20 is located on the downstream side of the virtual region 19 and supplies the gas flow 100 in the upstream direction.
- a gas flow 100 is supplied in the upstream direction so as to cross the virtual region 19. Such an arrangement may be used as long as the flow rate of the gas flow 100 is sufficiently large and the gas flow 100 can be supplied across the virtual region 19. Further, in the vacuum degassing apparatus 10 of FIG. 1, the front end of the first gas supply pipe 20 inserted from above the atmosphere control unit 14 is curved in the upstream direction so as to cross the virtual region 19 in the upstream direction. The gas flow 100 is being supplied toward the upstream side, but the first gas supply pipe is inserted in the horizontal direction from the downstream end face of the atmosphere control unit 14, and is directed upstream so as to cross the virtual region 19. A gas stream 100 may be supplied. On the other hand, FIG. 3 is a partially enlarged view similar to FIG.
- FIG. 4 is a partially enlarged view similar to FIG.
- the direction of the tip of the first gas supply pipe 20 is different from that in FIG.
- the gas flow 100 supplied from the first gas supply pipe 20 is supplied toward the bottom of the atmosphere control unit 14 on the front side (downstream side) of the virtual region 19.
- it does not cross the virtual region 19, does not satisfy the above (1), and cannot produce a pressure difference in which the pressure in the vicinity of the opening 18 becomes lower than that in the vacuum degassing tank 11.
- FIG. 5 is a partially enlarged view of the vicinity of the virtual region 19 of the vacuum degassing apparatus 10 shown in FIG. In FIG. 5, the virtual line 21 extends in the horizontal direction toward the upstream direction, does not pass through the opening 18, and satisfies the above (2).
- FIG. 5 is a partially enlarged view of the vicinity of the virtual region 19 of the vacuum degassing apparatus 10 shown in FIG. In FIG. 5, the virtual line 21 extends in the horizontal direction toward the upstream direction, does not pass through the opening 18, and satisfies the above (2).
- FIG. 6 is a partially enlarged view similar to FIG. 5, but the direction of the tip of the first gas supply pipe 20 is different from FIG. 5, and the imaginary line 21 faces obliquely downward and passes through the opening 18. Therefore, the above (2) is not satisfied.
- FIG. 7 is a partially enlarged view similar to FIG. 6, where the imaginary line 21 faces obliquely downward, but the height of the first gas supply pipe 20 in the atmosphere control unit 14 is the gas supply pipe of FIG. 6. Therefore, the virtual line 21 does not pass through the opening 18 and satisfies the above (2). Similarly, even when the virtual line 21 faces obliquely downward, the angle at which the virtual line 21 faces obliquely downward is smaller than that of the gas supply pipe 20 of FIG. Satisfy (2).
- the vacuum degassing apparatus of the present invention may be provided with the first gas supply pipe so as to satisfy the above (1) and (2), and is not limited to the illustrated embodiment and the embodiment described above.
- the supply direction of the gas flow 100 is the upstream direction or the downstream direction.
- the supply direction of the gas flow 100 may be other directions, for example, the front side of the drawing or It may be in the back direction.
- the first gas supply pipe 20 is arranged on the back side or the near side of the drawing with respect to the opening 18, and the gas flow 100 is supplied in the front or back direction of the drawing so as to cross the virtual region 19. .
- the gas flow 100 is supplied in the horizontal direction or obliquely downward, but the gas flow may be supplied in an obliquely upward direction.
- the supply direction of the gas flow 100 is orthogonal to the tube axis of the connection pipe 16. It is preferable that the direction is the horizontal direction.
- the direction substantially orthogonal to the tube axis of the connecting tube 16 is preferably within a range of ⁇ 45 °, and is within a range of ⁇ 25 °, where the direction orthogonal to the tube axis is 0 °. More preferably, the range is ⁇ 15 degrees.
- the downstream connection pipe 16 is a gas flow outlet pipe and the upstream connection pipe 15 is a gas flow inlet pipe.
- the upstream connection pipe 15 is a gas flow outlet pipe
- the connection pipe 16 may be a gas flow introduction pipe.
- a first gas supply pipe that satisfies the above (1) and (2) in relation to the connection pipe 15 is provided.
- the arrangement of the connection pipes forming the gas flow outlet pipes and the connection pipes forming the gas flow introduction pipes can be selected as appropriate. For example, in the vacuum degassing apparatus shown in FIG. 1, when a third connection pipe is provided between the upstream connection pipe 15 and the downstream connection pipe 16, the relationship with the connection pipes 15 and 16 is satisfied.
- a first gas supply pipe satisfying the above (1) and (2) may be provided, the connection pipes 15 and 16 may be gas flow outlet pipes, and the third connection pipe may be a gas flow introduction pipe.
- a first gas supply pipe satisfying the above (1) and (2) is provided in relation to the third connection pipe, the third connection pipe is used as a gas flow outlet pipe, and the connection pipes 15 and 16 are gas. It may be a flow introduction pipe.
- the direction of the gas flow 120 circulating through the atmosphere control unit 14 and the vacuum degassing tank 11 is not limited to the illustrated mode, and may be the opposite direction to the illustrated mode.
- the upstream connection pipe 15 is a gas flow outlet pipe and the downstream connection pipe 16 is a gas flow introduction pipe
- the direction of the gas flow circulating through the atmosphere control unit 14 and the vacuum degassing tank 11 is The direction is opposite to the illustrated embodiment.
- the positional relationship between the two connecting pipes is the upstream side and the downstream side, but the positional relationship between the connecting pipes is not limited to this.
- the positional relationship between the two connecting pipes may be the front side and the back side of the drawing.
- the direction of the gas flow circulating through the atmosphere control unit 14 and the vacuum degassing tank 11 is a direction perpendicular to the direction of the gas flow 120 in the illustrated mode (the direction of the gas flow in the atmosphere control unit 14).
- the direction of the gas flow above the molten glass G in the vacuum degassing tank 11 is the front side and back side of the drawing, or the back side and front side of the drawing, respectively.
- the direction of the gas flow 120 in the vacuum degassing tank 11 is a direction orthogonal to the moving direction of the molten glass G.
- the direction of the gas flow 120 above the molten glass G in the vacuum degassing tank 11 is the same as that of the molten glass G.
- the vacuum degassing tank has a shape with no significant difference in length in the vertical and horizontal directions (for example, When the planar shape of the vacuum degassing tank is a square, hexagon, octagon, or the like), even if the direction of the gas flow 120 in the vacuum degassing tank 11 is perpendicular to the moving direction of the molten glass G The retention of gas components from the molten glass G can be eliminated.
- the component of the gas flow 100 supplied from the first gas supply pipe 20 is not particularly limited when the pressure in the vicinity of the opening 18 causes a pressure difference in which the pressure is lower than that in the vacuum degassing tank 11.
- the components of the gas stream 100 do not adversely affect the molten glass G, the manufactured glass product, and the glass manufacturing equipment, particularly the vacuum degassing apparatus. Therefore, it is preferable that the components of the gas stream 100 do not include corrosive and explosive gases.
- a vacuum degassing tank 11 is preferable because the effect of reducing the water vapor concentration in the atmosphere above the molten glass G in 11 is expected.
- the low moisture gas used as the gas flow 100 is not particularly limited as long as the water vapor concentration is 60 mol% or less. Specific examples of such low moisture gas include air, dry air, inert gas such as N 2 and Ar, and the like.
- the gas flow 100 one of these low moisture gases may be used, or a mixed gas of a plurality of types of low moisture gases may be used.
- the water vapor concentration is preferably 50 mol% or less, more preferably 40 mol% or less, further preferably 30 mol% or less, and further preferably 25 mol% or less. Preferably, it is more preferably 20 mol% or less, further preferably 15 mol% or less, further preferably 10 mol% or less, and particularly preferably 5 mol% or less.
- the water vapor concentration in the atmosphere above the molten glass G in the vacuum degassing tank 11 is reduced to 60 mol% or less.
- the water vapor concentration of the atmosphere is preferably 50 mol% or less. More preferably, it is 40 mol% or less.
- the water vapor concentration it is preferable for the water vapor concentration to be 30 mol% or less because the foam layer tends to be further thinned.
- each bubble may shrink
- the molten glass is borosilicate glass
- the water vapor concentration is 30 mol% or less, the bubbles tend to contract significantly.
- the borosilicate glass here has, for example, the following composition.
- Composition range SiO 2 : 55 to 74, Al 2 O 3 : 10 to 20, B 2 O 3 : 5 to 12, Al 2 O 3 / B 2 O 3 : 1.5 to 3, MgO: 0 to 5 , CaO: 0 to 5, SrO: 0 to 12, BaO: 0 to 12, SrO + BaO: 6 to 12 (unit: mass%). Furthermore, when the water vapor concentration in the atmosphere above the molten glass G in the vacuum degassing tank 11 is low, it is preferable because bubbles having a size that is regarded as a defect hardly remain in a glass product produced through vacuum degassing. .
- the probability that a glass product produced through vacuum degassing will be defective is further reduced. Therefore, it is more preferably 25 mol% or less, and more preferably 20 mol% or less. More preferably, it is 15 mol% or less, More preferably, it is 10 mol% or less, More preferably, it is 5 mol% or less.
- volatilization of the specific components (boron etc.) in the molten glass G can be suppressed by making the water vapor
- volatilization of components such as boron it is possible to prevent variation in the composition of boron and the like, and to suppress deterioration in flatness due to composition variation.
- volatilization of other easily volatile components such as Cl, F, and S can be suppressed, so that composition fluctuations of these components can be prevented and deterioration of flatness due to composition fluctuations can be suppressed. can do.
- Volatilization of components such as Cl, F, and S is considered to be greatly influenced by moisture in the atmosphere.
- F is volatilized as HF
- S is vaporized as H 2 SO 4 . Therefore, it is considered that volatilization of the above components and accompanying composition fluctuations of the above components can be suppressed by setting the water vapor concentration in the atmosphere above the molten glass G in the vacuum degassing tank 11 to a certain value or less. It is done.
- the characteristics of glass have very fine specifications depending on the application, and the composition of the glass is determined in great detail so as to meet the specifications.
- the vacuum degassing apparatus of the present invention is useful because it can eliminate these problems by suppressing the volatilization of boron. Also from this point, it can be said that the vacuum degassing apparatus of the present invention can be preferably used particularly when borosilicate glass is vacuum degassed, not to mention ordinary glass.
- the low moisture gas used as the gas flow 100 is preferably a gas whose oxygen concentration is lower than the oxygen concentration in the air.
- the oxygen concentration is more preferably 15% by volume or less, more preferably 10% by volume or less, and more preferably 5% by volume or less.
- the low moisture gas used as the gas stream 100 is preferably a gas not containing oxygen, such as N 2 gas, Ar gas, CO 2 or the like. Since the vacuum degassing tank 11 is a conduit for molten glass G, it is necessary to use a material excellent in heat resistance and corrosion resistance against molten glass, and platinum or platinum alloys are widely used.
- the platinum is oxidized when platinum and a platinum alloy are used as the material of the vacuum degassing tank. This is preferable because it suppresses the life of the vacuum degassing tank and further suppresses the generation of defects derived from platinum in glass products.
- platinum alloy examples include a platinum-gold alloy and a platinum-rhodium alloy.
- materials having excellent heat resistance and corrosion resistance to molten glass used in a vacuum degassing tank include ceramic non-metallic inorganic materials and dense refractories.
- dense refractories include, for example, electrocast refractories such as alumina electrocast refractories, zirconia electrocast refractories, alumina-zirconia-silica electrocast refractories, and dense alumina refractories.
- dense fired refractories such as dense zirconia-silica refractories and dense alumina-zirconia-silica refractories.
- the atmosphere control unit 14, the connecting pipes 15 and 16, and the first gas supply pipe 20 are not particularly limited because they are not conduits for molten glass G.
- metals such as stainless steel, platinum, and platinum alloys are used.
- Fire-resistant and corrosion-resistant materials such as materials, ceramics, and alumina can be used.
- the purpose of generating the gas flow 120 that circulates through the atmosphere control unit 14 and the vacuum degassing tank 11 is only required to eliminate the retention of gas components from the molten glass G. Therefore, it is not always necessary to generate the gas flow 120 during the vacuum degassing. Therefore, as long as the retention of gas components from the molten glass G can be eliminated, the gas flow 120 may be periodically generated during the vacuum degassing, for example, at a rate of about 1 to 30 seconds every hour. A gas stream 120 may be generated. In order to generate the gas flow 120 periodically, the gas flow 100 may be supplied periodically from the first gas supply pipe 20.
- FIG. 8 is a sectional view showing another configuration example of the vacuum degassing apparatus of the present invention.
- a second gas supply pipe 24 is inserted from a connection pipe 15 forming a gas flow introduction pipe, and the tip of the second gas supply pipe 24 is a vacuum degassing tank.
- the second gas supply pipe is not limited to the embodiment shown in FIG. 8 as long as it can supply a low moisture gas having a water vapor concentration of 60 mol% or less to the upper space of the molten glass G in the vacuum degassing tank 11.
- the second gas supply pipe may be inserted into the upper space of the molten glass G in the vacuum degassing tank 11 from the connection pipe 16 that forms a gas flow outlet pipe.
- the second gas supply pipe is inserted into the upper space of the molten glass G in the vacuum degassing tank 11 from a portion other than the connection pipes 15, 16, for example, from the upstream or downstream end face of the vacuum degassing tank 11. May be.
- the supply direction of the low moisture gas 140 is set so as not to obstruct the gas flow 120 (see FIG. 1) so that the gas flow is not disturbed in the vacuum degassing tank 11. Therefore, it is preferable.
- the position on the outlet side of the second gas supply pipe 24 is not limited as long as a low moisture gas having a water vapor concentration of 60 mol% or less can be supplied to the upper space of the molten glass G in the vacuum degassing tank 11. It is not limited.
- the tip of the second gas supply pipe 24 is located in the upper space of the molten glass G in the vacuum degassing tank 11, but the tip of the second gas supply pipe 24 is It may be in the connecting pipe 15 or in the atmosphere control unit 14 above the connecting pipe 15.
- the vacuum degassing apparatus of the present invention may have a structure other than the above.
- a baffle plate for guiding the gas flow 120 downward may be provided inside the ceiling portion of the vacuum degassing tank 11.
- the dimension of each component of the vacuum degassing apparatus 10 of the present invention can be appropriately selected as necessary.
- the size of the vacuum degassing tank 11 is the same as that of the vacuum degassing apparatus or the vacuum degassing tank 11 used, regardless of whether the vacuum degassing tank 11 is made of platinum, platinum alloy, or dense refractory. It can select suitably according to a shape.
- an example of the dimensions is as follows. Horizontal length: 1-20m Inner diameter: 0.2-3m (circular cross section)
- the wall thickness is preferably 4 mm or less, more preferably 0.5 to 1.2 mm.
- the vacuum degassing tank is not limited to a cylindrical shape having a circular cross section, and may be a substantially cylindrical shape having an elliptical shape or a semicircular cross sectional shape, or a cylindrical shape having a rectangular cross section.
- the riser 12 and the downfall 13 are made of platinum, a platinum alloy, or a dense refractory, they can be appropriately selected according to the vacuum degassing apparatus to be used.
- examples of the dimensions of the ascending pipe 12 and the descending pipe 13 are as follows. Inner diameter: 0.05 to 0.8 m, more preferably 0.1 to 0.6 m
- the wall thickness is preferably 0.4 to 5 mm, more preferably 0.8 to 4 mm.
- an air flow analysis in the upper space of the molten glass G in the vacuum degassing tank is performed using Fluent, a venturi effect by supplying a gas flow from the first gas supply pipe to the virtual region, and a venturi
- Fluent Fluent
- a venturi effect by supplying a gas flow from the first gas supply pipe to the virtual region
- a venturi The elimination of the retention of gas components from the molten glass due to the gas flow circulating through the atmosphere control part caused by the effect and the upper space of the molten glass in the vacuum degassing tank was evaluated.
- the gas flow 100 from the first gas supply pipe 20 to the virtual region 19 above the opening 18 with the downstream connection pipe 16 is provided as in the vacuum degassing apparatus 10 shown in FIG.
- Vacuum defoaming tank 11 total length 10m, inner diameter 1m (cross-sectional semicircular shape)
- Atmosphere control unit 14 total length 10 m, inner diameter 2 m (cylindrical shape)
- Connection pipes 15 and 16 Overall length 0.8 m, inner diameter 0.3 m (cylindrical shape)
- Each of the connecting pipes 15 and 16 has a ceiling portion of the vacuum degassing tank 11, more specifically, a position 0.1 m from the upstream end of the vacuum degassing tank 11, and 0. 0 from the downstream end. It was provided at a position of 1 m.
- Exhaust port 17 Provided in the ceiling portion at an inner diameter of 0.05 m (cylindrical shape) and at the center of the atmosphere control unit 14 in the longitudinal direction.
- First gas supply pipe 20 Unlike FIG. 8, a circular stainless steel nozzle having an inner diameter of 5 mm was inserted in the horizontal direction from the center of the downstream end of the atmosphere control unit 14. Regardless of whether the first gas supply pipe 20 is installed on the downstream side or the upstream side, the position of the tip of the first gas supply pipe is 5 mm downstream from the opening 18 and the height from the bottom of the atmosphere control unit 14. The position was 10 mm.
- Second gas supply pipe 24 A circular stainless steel nozzle having an inner diameter of 15 mm is inserted into the upper space of the molten glass G in the vacuum degassing tank 11 from the ceiling of the atmosphere control section 14 via the connection pipe 15. The position of the tip of the second gas supply pipe was 10 mm below the upper wall surface of the vacuum degassing tank 11.
- the movement of the molten glass G in the vacuum degassing tank 11 was not taken into consideration, and N 2 supplied from the volatilized gas and the second gas supply pipe was defined by the speed boundary condition.
- N 2 supplied from the volatilized gas and the second gas supply pipe was defined by the speed boundary condition.
- concentration of the volatile gas from the molten glass G in the vacuum degassing tank 11 the average concentration of the volatile gas in the atmosphere above the molten glass G (hereinafter referred to as “average concentration of the volatile gas above the molten glass G”). In some cases).
- the volatilized gas concentration in the vicinity of the liquid surface of the molten glass G (5 mm above the liquid surface of the molten glass) was used as an evaluation index.
- the pressure in the vicinity of the opening of the atmosphere control unit 14 and the connection pipe 15 and the pressure in the vicinity of the opening 18 of the atmosphere control unit 14 and the connection pipe 16 (hereinafter, the former is referred to as “upstream side opening part”). Pressure ”and the latter as“ downstream opening pressure ”in some cases.
- the gas flow rate (hereinafter, the former is sometimes referred to as “upstream discharge flow rate” and the latter is sometimes referred to as “downstream discharge flow rate”) was evaluated.
- Example 1 the first gas supply pipe 20 is installed in the upper part of the downstream connection pipe 16 and N 2 is supplied as a gas flow 100 at a volume flow rate of 2 NL / min. The average of the volatilized gas above the molten glass G Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated.
- Example 2 the first gas supply pipe 20 is installed on the upper part of the downstream connection pipe 16, and N 2 is supplied as a gas flow 100 at a volume flow rate of 10 NL / min. Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated.
- Example 3 the first gas supply pipe 20 is installed in the upper part of the downstream connection pipe 16 and N 2 is supplied as a gas flow 100 at a volume flow rate of 15 NL / min. Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated. In Example 4, the first gas supply pipe 20 is installed in the upper part of the downstream connection pipe 16 and N 2 is supplied as a gas flow 100 at a volume flow rate of 50 NL / min. The average of the volatilized gas above the molten glass G Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated.
- Example 5 the first gas supply pipe 20 is installed in the upper part of the upstream connection pipe 15 and N 2 is supplied as a gas flow 100 at a volume flow rate of 15 NL / min. Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated.
- Example 6 the first gas supply pipe 20 having an inner diameter of ⁇ 20 mm is installed at the upper part of the downstream connection pipe 15 and N 2 is supplied as a gas flow 100 at a volume flow rate of 50 NL / min. The average concentration of the volatilized gas, the upstream opening pressure, the downstream opening pressure, the upstream discharge flow rate, and the downstream discharge flow rate were evaluated.
- Example 7 the first gas supply pipe 20 having an inner diameter of ⁇ 5 mm is installed on the upper side of the connecting pipe 15 on the upstream side of the inner diameter of ⁇ 0.2 m, and N 2 is supplied as a gas flow 100 at a volume flow rate of 2 NL / min.
- the average concentration of the volatile gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, the upstream discharge flow rate, and the downstream discharge flow rate were evaluated.
- Comparative Example 1 without supplying the gas flow 100 from the first gas supply pipe 20, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, the upstream discharge flow rate, and The downstream discharge flow rate was evaluated.
- the average concentration of the volatile gas above the molten glass G in Examples 1 to 7 is shown as a relative value when the average concentration of the volatile gas in Comparative Example 1 is 100.
- the value of the upstream opening part pressure (Pa) and the downstream opening part pressure (Pa) was shown by the difference with the reference
- standard pressure (46,662Pa 350mmHg) in the vacuum degassing tank 11.
- FIG. Further, the pressure difference between the upstream opening pressure (Pa) and the downstream opening (opening pressure (Pa) on the side not having the first gas supply pipe 20) minus the first gas supply pipe 20 The opening pressure (Pa) on the side having the same is also shown.
- the results are shown in Table 1 below.
- the results of Examples 1 to 7 are values when the steady state is reached after the supply of the gas flow 100 is started.
- the first gas supply pipe 20 is installed at the upper part of the downstream connection pipe 16 to supply N 2 as a gas flow 100 at a volume flow rate of 5 NL / min, and the second gas supply pipe 24 is connected to the upstream side.
- N 2 is supplied as a low moisture gas 140 at a volume flow rate of 10 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, The upstream discharge flow rate and the downstream discharge flow rate were evaluated.
- the first gas supply pipe 20 is installed in the upper part of the downstream connection pipe 16, and N 2 is supplied as a gas flow 100 at a volume flow rate of 10 NL / min, and the second gas supply pipe 24 is connected to the upstream side.
- N 2 is supplied as a low moisture gas 140 at a volume flow rate of 10 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, The upstream discharge flow rate and the downstream discharge flow rate were evaluated.
- the first gas supply pipe 20 is installed above the connection pipe 16 on the downstream side, N 2 is supplied as a gas flow 100 at a volume flow rate of 50 NL / min, and the second gas supply pipe 24 is connected to the upstream side.
- N 2 is supplied as a low moisture gas 140 at a volume flow rate of 10 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, The upstream discharge flow rate and the downstream discharge flow rate were evaluated.
- the first gas supply pipe 20 is installed on the upper side of the connection pipe 15 on the upstream side, N 2 is supplied as the gas flow 100 at a volume flow rate of 10 NL / min, and the second gas supply pipe 24 is connected to the downstream side.
- N 2 is supplied as a low moisture gas 140 at a volumetric flow rate of 10 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, The upstream discharge flow rate and the downstream discharge flow rate were evaluated.
- a first gas supply pipe 20 having an inner diameter ⁇ of 20 mm is installed on the upstream side of the connection pipe 15 to supply N 2 as a gas flow 100 at a volume flow rate of 50 NL / min, and a second gas supply pipe 24 is installed in the upper part of the connecting pipe 16 on the downstream side, N 2 is supplied as a low moisture gas 140 at a volume flow rate of 15 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream side The opening pressure, upstream discharge flow rate, and downstream discharge flow rate were evaluated.
- Example 13 the first gas supply pipe 20 having an inner diameter of ⁇ 5 mm is installed at the upper part of the upstream connection pipe 15 having an inner diameter of ⁇ 0.2 m, and N 2 is supplied as a gas flow 100 at a volume flow rate of 15 NL / min.
- the second gas supply pipe 24 is installed at the upper part of the downstream connection pipe 16 and N 2 is supplied as a low moisture gas 140 at a volume flow rate of 10 NL / min.
- the opening pressure, the downstream opening pressure, the upstream discharge flow rate, and the downstream discharge flow rate were evaluated.
- the first gas supply pipe 20 is not installed, the second gas supply pipe 24 is installed at the upper part of the upstream connection pipe 15, and N 2 is used as the low moisture gas 140 at a volume flow rate of 15 NL / min.
- the average concentration of the volatile gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, the upstream discharge flow rate, and the downstream discharge flow rate were evaluated.
- the average concentration of the volatile gas above the molten glass G in Examples 8 to 13 is shown as a relative value when the average concentration of the volatile gas in Comparative Example 1 is 100.
- the value of the upstream opening part pressure (Pa) and the downstream opening part pressure (Pa) was shown by the difference with the reference
- standard pressure (46,662Pa 350mmHg) in the vacuum degassing tank 11.
- FIG. The pressure difference between the upstream opening pressure (Pa) and the downstream opening (upstream opening pressure (Pa) ⁇ downstream opening pressure (Pa)) is also shown.
- the results are shown in Table 2 below.
- the results of Examples 8 to 13 are values when the steady state is reached after the supply of the gas flow 100 is started.
- the present invention can be used for the production of various high-quality glass products that do not contain bubbles, and is particularly suitable for vacuum degassing of borosilicate glass.
- the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-50110 filed on Feb. 29, 2008 are cited here as disclosure of the specification of the present invention. Incorporated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Glass Melting And Manufacturing (AREA)
- Joining Of Glass To Other Materials (AREA)
- Glass Compositions (AREA)
Abstract
Description
この清澄工程では、減圧雰囲気内に溶融ガラスを導入し、この減圧雰囲気下、連続的に流れる溶融ガラス流内の気泡を大きく成長させて溶融ガラス内に含まれる気泡を浮上させ、溶融ガラス表面で気泡を破泡させて除去し、その後減圧雰囲気から排出する減圧脱泡方法が知られている。 Conventionally, in order to improve the quality of the molded glass product, a clarification process for removing bubbles generated in the molten glass is used before the molten glass in which the raw material is melted in the melting furnace is molded by the molding apparatus. Yes.
In this clarification step, molten glass is introduced into the reduced-pressure atmosphere, and bubbles in the molten glass flow that flows continuously under this reduced-pressure atmosphere are greatly grown to float up the bubbles contained in the molten glass. A vacuum defoaming method is known in which bubbles are removed by breaking bubbles, and then discharged from a reduced-pressure atmosphere.
特許文献1には、清澄操作の性能特性を改良するため、さまざまな清澄促進剤をガラス化可能物質、すなわち、ガラス原料、に含めることが提案されている。また、特許文献1には、減圧条件下での清澄の間に気泡の成長に影響する要素として、溶融体物質上のガスの性質、すなわち、溶融ガラス上のガスの性質を挙げている。
また、特許文献2には、溶融ガラスが清澄チャンバ中の減圧に遭遇することで発生した泡沫を破壊する泡沫破壊手段が開示されている。泡沫破壊手段としては、気泡を広げ、破裂させるための機械的回転体の使用や、泡沫へジェット流を衝突させることが開示されている。 In such a clarification process, various techniques have been proposed in order to promote the growth of bubbles in the molten glass flow or to break the bubbles.
Further, Patent Document 2 discloses a foam breaking means for breaking foam generated when molten glass encounters a reduced pressure in a clarification chamber. As the foam breaking means, it is disclosed to use a mechanical rotating body for expanding and rupturing bubbles, or to make a jet flow collide with the foam.
溶融ガラスからのガス成分が滞留すると、溶融ガラス上方の雰囲気
(減圧脱泡槽内部の溶融ガラスの上部空間)で溶融ガラスからのガス成分の分圧が高くなるので、溶融ガラス表面に浮上した気泡が破泡しにくくなり、減圧脱泡の効果が低下すると考えられる。
また、本発明者らは、溶融ガラスからのガス成分の滞留を解消することにより、溶融ガラス表面の破泡速度が高まり、過減圧による泡層の肥大化を抑制することができることを見出した。 As a result of intensive studies to achieve the above object, the present inventors have found that gas components generated by bubbles breaking on the surface of the molten glass stay above the molten glass flowing in the vacuum degassing tank. It has been found that the effect of vacuum degassing is reduced. Hereinafter, in this specification, a gas component generated by bubbles breaking on the surface of the molten glass is referred to as “gas component from molten glass”, and the gas component from the molten glass circulates in the vacuum degassing tank. Retaining above the molten glass is referred to as “retaining gas components from the molten glass”.
If the gas component from the molten glass stays, the partial pressure of the gas component from the molten glass increases in the atmosphere above the molten glass (the upper space of the molten glass inside the vacuum degassing tank), so bubbles that float on the surface of the molten glass Is considered to be difficult to break, and the effect of vacuum degassing is reduced.
Further, the present inventors have found that by eliminating the retention of gas components from the molten glass, the bubble breaking speed on the surface of the molten glass is increased, and the enlargement of the foam layer due to excessive decompression can be suppressed.
少なくとも2つの接続管により前記減圧脱泡槽と接続される中空構造の雰囲気制御部を有し、前記雰囲気制御部には該雰囲気制御部内を排気して減圧するための排気口が設けられており、前記雰囲気制御部には、少なくとも1つの前記接続管との関係で下記(1)及び(2)を満たす第1のガス供給管が設けられていることを特徴とする溶融ガラスの減圧脱泡装置(以下、「本発明の減圧脱泡装置」とする。)を提供する。
(1)前記雰囲気制御部と前記接続管とがなす開口部を、前記接続管の管軸方向に沿って前記雰囲気制御部内部へと延ばした仮想領域を、前記第1のガス供給管から供給されるガス流が横切る。
(2)前記第1のガス供給管の先端から該ガス供給管の管軸に沿って延ばした仮想線が、前記雰囲気制御部と前記接続管とがなす開口部を通過しない。 The present invention has been made on the basis of the above-mentioned findings of the present inventors, and the internal pressure is set to be lower than the atmospheric pressure, and a vacuum degassing tank that floats and breaks bubbles in the supplied molten glass. And a riser pipe that is connected to the vacuum degassing tank and sucks and raises the molten glass before the defoaming process and introduces it into the vacuum degassing tank, and is connected to the vacuum degassing tank and melted after the defoaming process. In a vacuum degassing apparatus for molten glass, comprising a downcomer pipe that descends the glass from the vacuum degassing tank and leads it out,
It has a hollow atmosphere control unit connected to the vacuum deaeration tank by at least two connecting pipes, and the atmosphere control unit is provided with an exhaust port for exhausting and depressurizing the atmosphere control unit. The atmosphere control unit is provided with a first gas supply pipe satisfying the following (1) and (2) in relation to at least one of the connecting pipes, and the vacuum degassing of molten glass is provided: An apparatus (hereinafter referred to as “the vacuum degassing apparatus of the present invention”) is provided.
(1) A virtual region in which an opening formed by the atmosphere control unit and the connection pipe extends into the atmosphere control unit along the tube axis direction of the connection pipe is supplied from the first gas supply pipe Gas flow crosses.
(2) An imaginary line extending from the tip of the first gas supply pipe along the tube axis of the gas supply pipe does not pass through the opening formed by the atmosphere control unit and the connection pipe.
また、溶融ガラスからのガス成分の滞留が解消されることによって、過減圧による泡層の肥大化が発生しにくくなる。この結果、減圧脱泡槽内の減圧度をより高くすることができ、減圧脱泡の効果を向上させることができる。 In the vacuum degassing apparatus of the present invention, a pressure difference is generated between the atmosphere control unit and the vacuum degassing tank due to the venturi effect generated by supplying the gas flow across the virtual region from the first gas supply pipe, This pressure difference causes a gas flow that circulates between the atmosphere controller and the vacuum degassing tank. This gas flow can eliminate stagnation of gas components from the molten glass. By eliminating the stagnation of gas components from the molten glass, a reduction in the effect of vacuum degassing is prevented.
In addition, by eliminating the retention of gas components from the molten glass, the foam layer is less likely to be enlarged due to excessive decompression. As a result, the degree of vacuum in the vacuum degassing tank can be increased, and the effect of vacuum degassing can be improved.
また、該雰囲気の水蒸気濃度が低減されることによって、溶融ガラス中の揮散しやすい特定成分、例えば、B、Cl、F、S等の揮散を抑制することができ、これらの成分の揮散によるガラス組成の変化を抑制することができる。 When a low moisture gas having a water vapor concentration of 60 mol% or less is used as the gas supplied from the first gas supply pipe, in addition to the effect of eliminating the retention of gas components from the molten glass, the molten glass in the vacuum degassing tank The effect of reducing the water vapor concentration is expected in the upper atmosphere. By reducing the water vapor concentration of the atmosphere, it is possible to prevent the bubble layer on the surface of the molten glass in the vacuum degassing tank from being enlarged and to cause bumping, and the effect of vacuum degassing can be further improved.
Moreover, by reducing the water vapor concentration in the atmosphere, it is possible to suppress the volatilization of specific components such as B, Cl, F, and S that are easily volatilized in the molten glass, and the glass by volatilization of these components A change in composition can be suppressed.
11:減圧脱泡槽
12:上昇管
13:下降管
14:雰囲気制御部
15,16:接続管
17:排気口
18:開口部
19:仮想領域
20:第1のガス供給管
21:仮想線
24:第2のガス供給管
100,120:ガス流
140:低水分ガス
200:溶解槽
220:上流ピット
240:下流ピット
G:溶融ガラス DESCRIPTION OF
図1は、本発明の減圧脱泡装置の一構成例を示す断面図である。図1に示す減圧脱泡装置10は、円筒形状をした減圧脱泡槽11を有する。減圧脱泡槽11は、内部の気圧が大気圧未満に設定されており、供給された溶融ガラスG中の泡を浮上及び破泡させる。減圧脱泡槽11には、上昇管12および下降管13が接続されている。上昇管12は、脱泡処理前の溶融ガラスGを吸引上昇させて該減圧脱泡槽11に導入する溶融ガラスGの導入手段である。このため、上昇管12の下端部は、上流ピット220内の溶融ガラスGに浸漬されている。上流ピット220には、溶解槽200から溶融ガラスGが供給される。一方、下降管13は、脱泡処理後の溶融ガラスGを該減圧脱泡槽11から下降させて導出する溶融ガラスGの導出手段である。このため、下降管13の下端部は、下流ピット240内の溶融ガラスGに浸漬されている。下流ピット240内の溶融ガラスGは、後工程の処理槽(図示していない)へと導出される。
以下、本明細書において、「上流」および「下流」と言った場合、減圧脱泡装置10を流通する溶融ガラスGの流動方向における上流および下流を意味する。
なお、図示していないが、減圧脱泡槽11は、通常、減圧ハウジング内に収容されており、減圧ハウジングを減圧吸引することにより、減圧脱泡槽11内部の気圧を大気圧未満の減圧状態に保持する。一方、減圧脱泡槽11が減圧ハウジング内に収容されていない場合、減圧脱泡槽11の溶融ガラスGの上部空間を、減圧ポンプ等を用いて減圧吸引することで、減圧脱泡槽11内部の気圧を大気圧未満の減圧状態に保持する。 The present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of the configuration of the vacuum degassing apparatus of the present invention. A
Hereinafter, in the present specification, the terms “upstream” and “downstream” mean upstream and downstream in the flow direction of the molten glass G flowing through the
Although not shown, the
また、該雰囲気制御部14と、減圧脱泡槽11内の溶融ガラスGの上部空間と、を循環するガス流120の経路を形成するため、接続管15,16は、少なくとも2本必要である。なお、図1に示す減圧脱泡装置10では、2本の接続管15,16で減圧脱泡槽11と雰囲気制御部14とを接続しているが、3本以上の接続管で減圧脱泡槽11と雰囲気制御部14とを接続してもよい。
また、減圧脱泡槽11に流入するガス流120の温度が低いと、減圧脱泡槽11内の溶融ガラスGに悪影響をおよぼすおそれがあるため、雰囲気制御部14、および接続管15,16は、加熱機構を有することが好ましい。但し、雰囲気制御部14、および、全ての接続管15,16に加熱機構を設けることは必ずしも必要ではなく、少なくとも、減圧脱泡槽11にガス流120が流入する側の接続管(図1の場合、接続管15)に加熱機構を設ければ、減圧脱泡槽11に温度が低いガス流120が流入して、減圧脱泡槽11内の溶融ガラスGに悪影響をおよぼすおそれを解消することができる。 Here, the
Moreover, in order to form the path | route of the
In addition, if the temperature of the
(1)雰囲気制御部14と接続管16とがなす開口部18を、接続管16の管軸方向に沿って雰囲気制御部14内部へと延ばした仮想領域19(図1の場合、雰囲気制御部14内において開口部18の上方の領域)を、第1のガス供給管20から供給されるガス100が横切る。
(2)第1のガス供給管20の先端から該ガス供給管20の管軸に沿って延ばした仮想線21(図5参照)が、雰囲気制御部14と接続管16とがなす開口部18を通過しない。
以下、(1)、(2)を満たすことが必要な理由について説明する。 The
(1) A
(2) An imaginary line 21 (see FIG. 5) extending from the tip of the first
Hereinafter, the reason why it is necessary to satisfy (1) and (2) will be described.
p/ρ+v2/2g+z=const (1)
p:第1のガス供給管20の出口周辺の圧力(Pa)、ρ:ガス流100の密度(kg/m3)、g:重力加速度(m/s)、v:ガス流100の流速(m/s)、z:雰囲気制御部14内における第1のガス供給管20の出口部の高さ(雰囲気制御部底面からの高さ)(m)
この結果、減圧脱泡槽11との間に圧力勾配が生じ、開口部18付近の圧力が減圧脱泡槽11に比べて圧力が低くなる圧力差が生じる。この圧力差によって、開口部18付近の圧力(すなわち、接続管16側の圧力)が低くなり、雰囲気制御部14と接続管15とがなす開口部から減圧脱泡槽11を通って開口部18に至る領域に圧力勾配が生じる。この結果、雰囲気制御部14と、減圧脱泡槽11内の溶融ガラスGの上方空間と、を循環するガス流(以下、「雰囲気制御部と減圧脱泡槽とを循環するガス流」という。)120が生じる。 When the
p / ρ + v 2 / 2g + z = const (1)
p: pressure around the outlet of the first gas supply pipe 20 (Pa), ρ: density of the gas flow 100 (kg / m 3 ), g: acceleration of gravity (m / s), v: flow velocity of the gas flow 100 ( m / s), z: height of the outlet of the first
As a result, a pressure gradient is generated between the
v > A/0.031× [5.487×10-6×(1/56.353-1/ρ)+19.6×(0.163-z)+7.52 ] 1/2 (2)
ガス流100の流速vは、下記式(3)を満たすことがより好ましく、下記式(4)を満たすことがさらに好ましい。
v > A/0.031× [5.487×10-6×(1/56.353-1/ρ)+19.6×(0.163-z)+8.42 ]1/2 (3)
v > A/0.031× [5.487×10-6×(1/56.353-1/ρ)+19.6×(0.163-z)+9.82 ]1/2 (4) Here, the flow velocity v of the
v> A / 0.031 × [5.487 × 10 −6 × (1 / 56.3533-1 / ρ) + 19.6 × (0.163−z) +7.5 2 ] 1/2 (2)
The flow velocity v of the
v> A / 0.031 × [5.487 × 10 −6 × (1 / 56.3533-1 / ρ) + 19.6 × (0.163−z) +8.4 2 ] 1/2 (3)
v> A / 0.031 × [5.487 × 10 −6 × (1 / 56.3533-1 / ρ) + 19.6 × (0.163−z) +9.8 2 ] 1/2 (4)
溶融ガラスGからのガス成分が滞留すると、減圧脱泡槽11内の溶融ガラスG上方の雰囲気において、溶融ガラスGからのガス成分の分圧が高くなるので、溶融ガラスG表面に浮上した気泡が破泡しにくくなり減圧脱泡の効果が低下すると考えられる。
本発明の減圧脱泡装置10では、溶融ガラスGからのガス成分の滞留が解消されることにより、減圧脱泡の効果の低下が起こらず、減圧脱泡の効果に優れている。 As a result of the
When the gas component from the molten glass G stays, the partial pressure of the gas component from the molten glass G increases in the atmosphere above the molten glass G in the
In the
すなわち、本発明の減圧脱泡装置において、接続管の数をXとするとき、第1のガス供給管の数がX-1以下(但し、第1のガス供給管の数は1以上)とする必要がある。 As shown in FIG. 1, when a
That is, in the vacuum degassing apparatus of the present invention, when the number of connection pipes is X, the number of first gas supply pipes is X-1 or less (however, the number of first gas supply pipes is 1 or more). There is a need to.
また、図1の減圧脱泡装置10では、雰囲気制御部14の上方から挿入した第1のガス供給管20の先端を上流方向に湾曲させることで、該仮想領域19を横切るように、上流方向に向けてガス流100を供給しているが、雰囲気制御部14の下流側端面から水平方向に第1のガス供給管を挿入して、該仮想領域19を横切るように、上流方向に向けてガス流100を供給してもよい。
一方、図3は、図2と同様の部分拡大図であるが、先端が仮想領域19よりも下流側に位置する第1のガス供給管20から下流方向に向けてガス流100を供給する。この場合、ガス流100が仮想領域19を横切らないので、上記(1)を満たさず、開口部18付近の圧力が減圧脱泡槽11に比べて圧力が低くなる圧力差を生じさせることができない。図3と同様の配置であっても、第1のガス供給管20の先端が仮想領域19よりも上流側に位置し、下流方向に向けてガス流100を供給した場合、ガス流100が仮想領域19を横切るので、上記(1)を満たし、開口部18付近の圧力が減圧脱泡槽11に比べて圧力が低くなる圧力差を生じさせることができる。
また、図4は、図2と同様の部分拡大図であるが、第1のガス供給管20の先端の向きが図2とは異なり、斜め下方を向いている。この場合、第1のガス供給管20から供給されるガス流100が仮想領域19よりも手前側(下流側)の雰囲気制御部14の底部に向けて供給されることになるので、ガス流100が仮想領域19を横切らず、上記(1)を満たさず、開口部18付近の圧力が減圧脱泡槽11に比べて圧力が低くなる圧力差を生じさせることができない。 In order to generate a pressure difference in which the pressure in the vicinity of the
Further, in the
On the other hand, FIG. 3 is a partially enlarged view similar to FIG. 2, but the
FIG. 4 is a partially enlarged view similar to FIG. 2, but the direction of the tip of the first
図6は、図5と同様の部分拡大図であるが、第1のガス供給管20の先端の向きが図5とは異なり、仮想線21が斜め下方を向いており、開口部18を通過するため、上記(2)を満たさない。
図7は、図6と同様の部分拡大図であり、仮想線21が斜め下方を向いているが、雰囲気制御部14内における第1のガス供給管20の高さが図6のガス供給管20とは異なるため、仮想線21が開口部18を通過せず、上記(2)を満たす。これと同様に、仮想線21が斜め下方を向く場合であっても、仮想線21が斜め下方を向く角度が図6のガス供給管20に比べて小さく、開口部18を通過しない場合も上記(2)を満たす。 In order to generate a pressure difference in which the pressure in the vicinity of the
FIG. 6 is a partially enlarged view similar to FIG. 5, but the direction of the tip of the first
FIG. 7 is a partially enlarged view similar to FIG. 6, where the
また、接続管の数が3本以上の場合、ガス流導出管をなす接続管およびガス流導入管をなす接続管の配置は適宜選択することができる。例えば、図1に示す減圧脱泡装置において、上流側の接続管15と、下流側の接続管16と、の間に第3の接続管を設けた場合、接続管15,16との関係で上記(1),(2)を満たす第1のガス供給管を設けて、接続管15,16をガス流導出管とし、第3の接続管をガス流導入管としてもよい。または、第3の接続管との関係で上記(1),(2)を満たす第1のガス供給管を設けて、第3の接続管をガス流導出管とし、接続管15,16をガス流導入管としてもよい。 Further, in the illustrated embodiment, the
When the number of connection pipes is three or more, the arrangement of the connection pipes forming the gas flow outlet pipes and the connection pipes forming the gas flow introduction pipes can be selected as appropriate. For example, in the vacuum degassing apparatus shown in FIG. 1, when a third connection pipe is provided between the
また、図示した態様では、2本の接続管の位置関係が上流側および下流側であるが、接続管の位置関係はこれに限定されない。例えば、2本の接続管の位置関係を図面手前側および奥側にしてもよい。この場合、雰囲気制御部14と、減圧脱泡槽11と、を循環するガス流の方向は、図示した態様でのガス流120の方向と直交する方向(雰囲気制御部14内におけるガス流の方向、および、減圧脱泡槽11内の溶融ガラスGの上方におけるガス流の方向が、それぞれ、図面手前側および奥側、または、図面奥側および手前側)となる。この場合、減圧脱泡槽11内におけるガス流120の方向が、溶融ガラスGの移動方向と直交する方向になる。図示した態様のように、減圧脱泡槽11が溶融ガラスGの流動方向に長い形状である場合、減圧脱泡槽11内の溶融ガラスGの上方におけるガス流120の方向は、溶融ガラスGの移動方向と同一方向または反対方向であることが、溶融ガラスGからのガス成分の滞留を解消させるうえで好ましいが、減圧脱泡槽が縦横方向における長さに有意な差が無い形状(例えば、減圧脱泡槽の平面形状が正方形、六角形、八角形等の形状)の場合、減圧脱泡槽11内におけるガス流120の方向が、溶融ガラスGの移動方向と直交する方向であっても、溶融ガラスGからのガス成分の滞留を解消することができる。 Further, the direction of the
In the illustrated embodiment, the positional relationship between the two connecting pipes is the upstream side and the downstream side, but the positional relationship between the connecting pipes is not limited to this. For example, the positional relationship between the two connecting pipes may be the front side and the back side of the drawing. In this case, the direction of the gas flow circulating through the
ガス流100として用いる低水分ガスは、水蒸気濃度が60mol%以下である限り特に限定されない。このような低水分ガスの具体例としては、大気、乾燥空気、N2やArのような不活性ガス等が挙げられる。ガス流100として、これら低水分ガスのうち1種類を用いてもよく、複数種類の低水分ガスの混合ガスを用いてもよい。
ガス流100として低水分ガスを用いる場合、水蒸気濃度50mol%以下であることが好ましく、40mol%以下であることがより好ましく、30mol%以下であることがさらに好ましく、25mol%以下であることがさらに好ましく、20mol%以下であることがさらに好ましく、15mol%以下であることがさらに好ましく、10mol%以下であることがさらに好ましく、5mol%以下であることが特に好ましい。 When a low moisture gas having a water vapor concentration of 60 mol% or less is used as the
The low moisture gas used as the
When a low moisture gas is used as the
また、該雰囲気の水蒸気濃度が低いほど溶融ガラス表面の泡層が薄くなる傾向があるので、減圧脱泡槽11内の溶融ガラスG上方の雰囲気の水蒸気濃度は50mol%以下であることが好ましく、40mol%以下であることがより好ましい。そして、水蒸気濃度が30mol%以下であると、泡層が更に薄くなる傾向があるので好ましい。
また、該雰囲気の水蒸気濃度が低いと、ガラス組成によっては、1つ1つの気泡が収縮又は破泡する場合があり、これにより泡層は更に薄くなるので好ましい。具体的には、溶融ガラスがボロシリケートガラスの場合、水蒸気濃度が30mol%以下であると、気泡が顕著に収縮する傾向がある。なお、ここでいうボロシリケートガラスは例えば次のような組成である。
組成の範囲:SiO2:55~74、Al2O3:10~20、B2O3:5~12、Al2O3/B2O3:1.5~3、MgO:0~5、CaO:0~5、SrO:0~12、BaO:0~12、SrO+BaO:6~12(単位は質量%)。
更に、減圧脱泡槽11内の溶融ガラスG上方の雰囲気の水蒸気濃度が低いと、減圧脱泡を経て製造されるガラス製品に欠陥とみなされる程度の大きさの気泡が残存し難くなるので好ましい。該雰囲気の水蒸気濃度が更に低くなると、減圧脱泡を経て製造されるガラス製品に欠陥が生じる確率が更に低くなるので、25mol%以下であることがより好ましく、20mol%以下であることがより好ましく、15mol%以下であることがより好ましく、10mol%以下であることがより好ましく、5mol%以下であることが更に好ましい。 It is preferable that the water vapor concentration in the atmosphere above the molten glass G in the
In addition, since the bubble layer on the surface of the molten glass tends to be thinner as the water vapor concentration in the atmosphere is lower, the water vapor concentration in the atmosphere above the molten glass G in the
Moreover, when the water vapor | steam density | concentration of this atmosphere is low, each bubble may shrink | contract or bubble-break depending on glass composition, and since a foam layer becomes still thinner by this, it is preferable. Specifically, when the molten glass is borosilicate glass, when the water vapor concentration is 30 mol% or less, the bubbles tend to contract significantly. The borosilicate glass here has, for example, the following composition.
Composition range: SiO 2 : 55 to 74, Al 2 O 3 : 10 to 20, B 2 O 3 : 5 to 12, Al 2 O 3 / B 2 O 3 : 1.5 to 3, MgO: 0 to 5 , CaO: 0 to 5, SrO: 0 to 12, BaO: 0 to 12, SrO + BaO: 6 to 12 (unit: mass%).
Furthermore, when the water vapor concentration in the atmosphere above the molten glass G in the
また、揮発のしやすい他の成分、例えば、Cl、F、Sなどの揮散を抑制することもできるため、これらの成分の組成変動を防止できるとともに、組成変動に起因する平坦度の悪化を抑制することができる。
これらCl、F、Sなどの成分の揮散は、雰囲気中の水分に大きく影響を受けていると考えられる。例えば、FはHFとして、SはH2SO4として揮散すると考えられる。よって、減圧脱泡槽11内の溶融ガラスG上方の雰囲気の水蒸気濃度をある一定の値以下とすることで、上記成分の揮発、および、それに伴う上記成分の組成変動を抑えることができると考えられる。 Moreover, volatilization of the specific components (boron etc.) in the molten glass G can be suppressed by making the water vapor | steam density | concentration of the atmosphere above the molten glass G in the
In addition, volatilization of other easily volatile components such as Cl, F, and S can be suppressed, so that composition fluctuations of these components can be prevented and deterioration of flatness due to composition fluctuations can be suppressed. can do.
Volatilization of components such as Cl, F, and S is considered to be greatly influenced by moisture in the atmosphere. For example, it is considered that F is volatilized as HF and S is vaporized as H 2 SO 4 . Therefore, it is considered that volatilization of the above components and accompanying composition fluctuations of the above components can be suppressed by setting the water vapor concentration in the atmosphere above the molten glass G in the
この点からも、本発明の減圧脱泡装置は、通常のガラスは言うに及ばず、特にボロシリケートガラスを減圧脱泡する場合に好ましく用いることができるといえる。 In addition, the characteristics of glass have very fine specifications depending on the application, and the composition of the glass is determined in great detail so as to meet the specifications. For example, there is naturally a standard for the content of boron, but in the conventional method, since boron is volatilized, it is necessary to use more boron as a raw material. Conventionally, the amount of volatilization of boron varies depending on the conditions, and in some cases, there is a possibility that the standard of the content of boron may be deviated. The vacuum degassing apparatus of the present invention is useful because it can eliminate these problems by suppressing the volatilization of boron.
Also from this point, it can be said that the vacuum degassing apparatus of the present invention can be preferably used particularly when borosilicate glass is vacuum degassed, not to mention ordinary glass.
減圧脱泡槽11は、溶融ガラスGの導管であるため、耐熱性及び溶融ガラスに対する耐食性に優れた材料を用いる必要があり、白金又は白金合金が広く用いられている。ガス流100として用いる低水分ガスとして、空気中の酸素濃度よりも酸素濃度が低いガスを用いることにより、減圧脱泡槽の材質として白金及び白金合金を用いている場合に、その白金の酸化を抑制し、減圧脱泡槽の寿命を延ばし、更に、ガラス製品において、この白金由来の欠陥の生成を抑制することができるので好ましい。 The low moisture gas used as the
Since the
なお、図1に示す減圧脱泡装置10において、減圧脱泡槽11と同様に、溶融ガラスGの導管をなす上昇管12及び下降管13の材料としても、白金若しくは白金合金、または緻密質耐火物が用いられる。 Specific examples of the platinum alloy include a platinum-gold alloy and a platinum-rhodium alloy. Other examples of materials having excellent heat resistance and corrosion resistance to molten glass used in a vacuum degassing tank include ceramic non-metallic inorganic materials and dense refractories. Specific examples of dense refractories include, for example, electrocast refractories such as alumina electrocast refractories, zirconia electrocast refractories, alumina-zirconia-silica electrocast refractories, and dense alumina refractories. And dense fired refractories such as dense zirconia-silica refractories and dense alumina-zirconia-silica refractories.
In the
図8は、本発明の減圧脱泡装置の別の一構成例を示す断面図である。図8に示す減圧脱泡装置10'では、ガス流導入管をなす接続管15から第2のガス供給管24が挿入されており、該第2のガス供給管24の先端が減圧脱泡槽11内の溶融ガラスGの上部空間に位置している。なお、第2のガス供給管24から供給する水蒸気濃度60mol%以下の低水分ガスの具体例については、ガス流100として供給する低水分ガスについて記載したのと同様である。
なお、第2のガス供給管は、減圧脱泡槽11内の溶融ガラスGの上部空間に水蒸気濃度60mol%以下の低水分ガスを供給できればよく、図8に示す態様に限定されない。例えば、ガス流導出管をなす接続管16から減圧脱泡槽11内の溶融ガラスGの上部空間に第2のガス供給管を挿入してもよい。また、接続管15,16以外の部分、例えば、減圧脱泡槽11の上流側または下流側の端面から、減圧脱泡槽11内の溶融ガラスGの上部空間に第2のガス供給管を挿入してもよい。但し、図8に示す態様のように、低水分ガス140の供給方向は、ガス流120(図1参照)を阻害しない方向にすることが減圧脱泡槽11内でガス流に乱れを生じさせないことから好ましい。 In the
FIG. 8 is a sectional view showing another configuration example of the vacuum degassing apparatus of the present invention. In the
The second gas supply pipe is not limited to the embodiment shown in FIG. 8 as long as it can supply a low moisture gas having a water vapor concentration of 60 mol% or less to the upper space of the molten glass G in the
水平方向における長さ:1~20m
内径:0.2~3m(断面円形)
減圧脱泡槽11が白金製若しくは白金合金製である場合、肉厚は4mm以下であることが好ましく、より好ましくは0.5~1.2mmである。
減圧脱泡槽は、断面円形の円筒形状のものに限定されず、断面形状が楕円形や半円形状の略円筒形状のものや、断面が矩形の筒形状のものであってもよい。 The dimension of each component of the
Horizontal length: 1-20m
Inner diameter: 0.2-3m (circular cross section)
When the
The vacuum degassing tank is not limited to a cylindrical shape having a circular cross section, and may be a substantially cylindrical shape having an elliptical shape or a semicircular cross sectional shape, or a cylindrical shape having a rectangular cross section.
内径:0.05~0.8m、より好ましくは0.1~0.6m
長さ:0.2~6m、より好ましくは0.4~4m
上昇管12及び下降管13が白金製若しくは白金合金製である場合、肉厚は0.4~5mmであることが好ましく、より好ましくは0.8~4mmである。 Regardless of whether the
Inner diameter: 0.05 to 0.8 m, more preferably 0.1 to 0.6 m
Length: 0.2-6m, more preferably 0.4-4m
When the ascending
雰囲気制御部
内径:0.1~3m、より好ましくは0.1~2m
長さ:0.8~22m、より好ましくは1~20m
接続管
内径:0.05~0.5m、より好ましくは0.05~0.3m
長さ:0.1~1m、より好ましくは0.1~0.8m
第1のガス供給管内径
内径:3 ~50mm、より好ましくは5 ~ 20 mm
雰囲気制御部14、接続管15,16の肉厚は、構成材料によっても異なるが、ステンレス鋼製である場合、それぞれ以下であることが好ましい。
雰囲気制御部
0.5~2mm、より好ましくは0.5~1.5mm
接続管
0.5~2mm、より好ましくは0.5~1.5mm
第2のガス供給管内径
内径:3 ~50mm、より好ましくは5 ~ 20 mm Although the dimension of the
Atmosphere controller <br/> Inner diameter: 0.1 to 3 m, more preferably 0.1 to 2 m
Length: 0.8-22m, more preferably 1-20m
Connecting tube <br/> Inner diameter: 0.05 to 0.5 m, more preferably 0.05 to 0.3 m
Length: 0.1-1m, more preferably 0.1-0.8m
Inner diameter of first gas supply pipe Inner diameter: 3 to 50 mm, more preferably 5 to 20 mm
Although the thickness of the
Atmosphere controller 0.5-2mm, more preferably 0.5-1.5mm
Connecting pipe 0.5-2mm, more preferably 0.5-1.5mm
Inner diameter of second gas supply pipe Inner diameter: 3 to 50 mm, more preferably 5 to 20 mm
実施例では、Fluentを用いて減圧脱泡槽内の溶融ガラスGの上部空間での気流解析を行い、第1のガス供給管から仮想領域にガス流を供給することによるベンチュリ効果、および、ベンチュリ効果によって生じる雰囲気制御部と、減圧脱泡槽内の溶融ガラスの上部空間と、を循環するガス流による溶融ガラスからのガス成分の滞留の解消を評価した。なお、減圧脱泡装置としては、図8に示す減圧脱泡装置10のように、下流側の接続管16との開口部18上方の仮想領域19に第1のガス供給管20からガス流100を供給し、上流側の接続管15から減圧脱泡槽11内の溶融ガラスGの上部空間に挿入された第2のガス供給管24から低水分ガス140を供給するものをモデルとして使用した。または図8とは異なり、上流側の接続管15の上方に第1のガス供給管20を設置してガス流100を供給し、下流側の接続管16から減圧脱泡槽11内の溶融ガラスGの上部空間に挿入された第2のガス供給管24から低水分ガス140を供給するものをモデルとして使用した。なお、ガス流100および低水分ガス140は、いずれもN2を供給するものとしてモデル化した。 Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to this.
In the embodiment, an air flow analysis in the upper space of the molten glass G in the vacuum degassing tank is performed using Fluent, a venturi effect by supplying a gas flow from the first gas supply pipe to the virtual region, and a venturi The elimination of the retention of gas components from the molten glass due to the gas flow circulating through the atmosphere control part caused by the effect and the upper space of the molten glass in the vacuum degassing tank was evaluated. As the vacuum degassing apparatus, the
減圧脱泡槽11:全長10m、内径1m(断面半円形状)
雰囲気制御部14:全長10m、内径2m(円筒形状)
接続管15,16:全長0.8m、内径0.3m(円筒形状)
接続管15,16は、それぞれ、減圧脱泡槽11の天井部、より具体的には、減圧脱泡槽11の上流側端部から0.1mの位置、および、下流側端部から0.1mの位置に設けた。
排気口17:内径0.05m(円筒形状)、雰囲気制御部14の長手方向における中央となる位置の天井部に設けた。
第1のガス供給管20:図8とは異なり、雰囲気制御部14の下流端中央から内径φ5mmの円形のステンレス製ノズルを水平方向に挿入した。第1のガス供給管20を下流側または上流側のいずれに設置する場合とも、第1のガス供給管の先端の位置は開口部18よりも下流側5mm、雰囲気制御部14の底面から高さ10mmの位置とした。
第2のガス供給管24:内径φ15mmの円形のステンレス製ノズルを雰囲気制御部14の天井部から接続管15を経由して減圧脱泡槽11の溶融ガラスGの上部空間に挿入。第2のガス供給管の先端の位置は減圧脱泡槽11の上部壁面から10mm下の位置とした。 The dimensions of each part of the
Vacuum defoaming tank 11: total length 10m, inner diameter 1m (cross-sectional semicircular shape)
Atmosphere control unit 14: total length 10 m, inner diameter 2 m (cylindrical shape)
Each of the connecting
Exhaust port 17: Provided in the ceiling portion at an inner diameter of 0.05 m (cylindrical shape) and at the center of the
First gas supply pipe 20: Unlike FIG. 8, a circular stainless steel nozzle having an inner diameter of 5 mm was inserted in the horizontal direction from the center of the downstream end of the
Second gas supply pipe 24: A circular stainless steel nozzle having an inner diameter of 15 mm is inserted into the upper space of the molten glass G in the
気流解析には、非反応化学種の輸送モデル、標準k-εモデル、標準壁関数を採用した。入口拡散、拡散エネルギについては考慮せず、その他の設定パラメータはデフォルト値を使用した。気流解析の流体物性は、Fluentデータベース内のN2および揮散H2Oからなる混合物の値(下記)を用いた。
粘度:1.72×10-5[kg/m・s]
熱伝導率:0.0454[W/m・K]
質量拡散係数:2.88×10-5[m2/s]
密度:ρ=pMw/RT(非圧縮性理想気体方程式)
比熱:cp=ΣiYicp,i(化学種による比熱の質量分率平均式)[J/kg・K]
減圧脱泡槽11内の溶融ガラスGからは、SO3、O2、B2O3、H2O等、複数のガスが揮散すると考えられるが、本解析では便宜上H2Oのみ2.00NL/minで揮散すると仮定した。
以下、本明細書において、減圧脱泡槽11内の溶融ガラスGから揮散するガスを単に「揮散ガス」とする。 Analysis was performed for the case where the pressure in the upper space of the molten glass G in the
For the air flow analysis, a transport model of non-reactive chemical species, a standard k-ε model, and a standard wall function were adopted. The entrance diffusion and diffusion energy were not taken into consideration, and default values were used for other setting parameters. For the fluid physical properties of the airflow analysis, the value of the mixture consisting of N 2 and volatilized H 2 O in the Fluent database (below) was used.
Viscosity: 1.72 × 10 −5 [kg / m · s]
Thermal conductivity: 0.0454 [W / m · K]
Mass diffusion coefficient: 2.88 × 10 −5 [m 2 / s]
Density: ρ = pM w / RT (incompressible ideal gas equation)
Specific heat: c p = Σ i Y i c p, i (mass fraction average formula of specific heat by chemical species) [J / kg · K]
It is considered that a plurality of gases such as SO 3 , O 2 , B 2 O 3 , H 2 O and the like are volatilized from the molten glass G in the
Hereinafter, in this specification, the gas volatilized from the molten glass G in the
気流解析では、減圧脱泡槽11内の溶融ガラスGからの揮散ガスの濃度として、溶融ガラスG上方の雰囲気の揮散ガスの平均濃度(以下、「溶融ガラスG上方の揮散ガスの平均濃度」という場合もある。)を評価した。なお、溶融ガラスGの液面近傍(溶融ガラスの液面から5mm上方)での揮散ガス濃度を評価指標とした。
また、雰囲気制御部14と、接続管15と、の開口部付近の圧力、および、雰囲気制御部14と、接続管16と、の開口部18付近の圧力(以下、前者を「上流側開口部圧力」、後者を「下流側開口部圧力」という場合もある。)を評価した。
また、減圧脱泡槽11から接続管15を介して雰囲気制御部14へと排出されるガスの量、および、減圧脱泡槽11から接続管16を介して雰囲気制御部14へと排出されるガスの流量(以下、前者を「上流側排出流量」、後者を「下流側排出流量」という場合もある。)を評価した。 The movement of the molten glass G in the
In the airflow analysis, as the concentration of the volatile gas from the molten glass G in the
Further, the pressure in the vicinity of the opening of the
Further, the amount of gas discharged from the
実施例1では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量2NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
実施例2では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量10NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
実施例3では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量15NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
実施例4では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量50NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
実施例5では、第1のガス供給管20を上流側の接続管15の上部に設置しガス流100としてN2を体積流量15NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
実施例6では、内径φ20 mmの第1のガス供給管20を、下流側の接続管15の上部に設置しガス流100としてN2を体積流量50NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
実施例7では、内径φ5 mmの第1のガス供給管20を、内径φ0.2mの上流側の接続管15の上部に設置しガス流100としてN2を体積流量2NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
比較例1では、第1のガス供給管20からガス流100を供給せずに、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
なお、実施例1~7における溶融ガラスG上方の揮散ガスの平均濃度は、比較例1における揮散ガスの平均濃度を100とした場合の相対値として示した。また、上流側開口部圧力(Pa)及び下流側開口部圧力(Pa)の値は、減圧脱泡槽11内の基準圧力(46,662Pa=350mmHg)との差で示した。また、上流側開口部圧力(Pa)と下流側開口部との圧力差(第1のガス供給管20を有してない側の開口部圧力(Pa))-第1のガス供給管20を有する側の開口部圧力(Pa))も示した。
結果を下記表1に示す。なお、実施例1~7の結果は、ガス流100の供給開始後、定常状態に至った時点での値である。 (Examples 1, 2, 3, 4, 5 and Comparative Example 1)
In Example 1, the first
In Example 2, the first
In Example 3, the first
In Example 4, the first
In Example 5, the first
In Example 6, the first
In Example 7, the first
In Comparative Example 1, without supplying the
The average concentration of the volatile gas above the molten glass G in Examples 1 to 7 is shown as a relative value when the average concentration of the volatile gas in Comparative Example 1 is 100. Moreover, the value of the upstream opening part pressure (Pa) and the downstream opening part pressure (Pa) was shown by the difference with the reference | standard pressure (46,662Pa = 350mmHg) in the
The results are shown in Table 1 below. The results of Examples 1 to 7 are values when the steady state is reached after the supply of the
実施例8では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量5NL/minで供給し、第2のガス供給管24を上流側の接続管15の上部に設置し低水分ガス140としてN2を体積流量10NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
実施例9では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量10NL/minで供給し、第2のガス供給管24を上流側の接続管15の上部に設置し低水分ガス140としてN2を体積流量10NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
実施例10では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量50NL/minで供給し、第2のガス供給管24を上流側の接続管15の上部に設置し低水分ガス140としてN2を体積流量10NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
実施例11では、第1のガス供給管20を上流側の接続管15の上部に設置しガス流100としてN2を体積流量10NL/minで供給し、第2のガス供給管24を下流側の接続管16の上部に設置し低水分ガス140としてN2を体積流量10NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
実施例12では、内径φ20mmの第1のガス供給管20を、上流側の接続管15の上部に設置しガス流100としてN2を体積流量50NL/minで供給し、第2のガス供給管24を下流側の接続管16の上部に設置し低水分ガス140としてN2を体積流量15NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
実施例13では、内径φ5 mmの第1のガス供給管20を、内径φ0.2mの上流側の接続管15の上部に設置しガス流100としてN2を体積流量15NL/minで供給し、第2のガス供給管24を下流側の接続管16の上部に設置し低水分ガス140としてN2を体積流量10NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
比較例2では、第1のガス供給管20は設置せず、第2のガス供給管24を上流側の接続管15の上部に設置し低水分ガス140としてN2を体積流量15NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
なお、実施例8~13における溶融ガラスG上方の揮散ガスの平均濃度は、比較例1における揮散ガスの平均濃度を100とした場合の相対値として示した。また、上流側開口部圧力(Pa)及び下流側開口部圧力(Pa)の値は、減圧脱泡槽11内の基準圧力(46,662Pa=350mmHg)との差で示した。また、上流側開口部圧力(Pa)と下流側開口部との圧力差(上流側開口部圧力(Pa)-下流側開口部圧力(Pa))も示した。
結果を下記表2に示す。なお、実施例8~13の結果は、ガス流100の供給開始後、定常状態に至った時点での値である。 (Examples 8 to 13, Comparative Example 2)
In the eighth embodiment, the first
In the ninth embodiment, the first
In the tenth embodiment, the first
In the eleventh embodiment, the first
In the twelfth embodiment, a first
In Example 13, the first
In Comparative Example 2, the first
The average concentration of the volatile gas above the molten glass G in Examples 8 to 13 is shown as a relative value when the average concentration of the volatile gas in Comparative Example 1 is 100. Moreover, the value of the upstream opening part pressure (Pa) and the downstream opening part pressure (Pa) was shown by the difference with the reference | standard pressure (46,662Pa = 350mmHg) in the
The results are shown in Table 2 below. The results of Examples 8 to 13 are values when the steady state is reached after the supply of the
なお、2008年2月29日に出願された日本特許出願2008-50110号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 INDUSTRIAL APPLICABILITY The present invention can be used for the production of various high-quality glass products that do not contain bubbles, and is particularly suitable for vacuum degassing of borosilicate glass.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-50110 filed on Feb. 29, 2008 are cited here as disclosure of the specification of the present invention. Incorporated.
Claims (5)
- 内部の気圧が大気圧未満に設定され、供給された溶融ガラス中の泡を浮上及び破泡させる減圧脱泡槽と、前記減圧脱泡槽に接続され、脱泡処理前の溶融ガラスを吸引上昇させて該減圧脱泡槽に導入する上昇管と、前記減圧脱泡槽に接続され、脱泡処理後の溶融ガラスを該減圧脱泡槽から下降させて導出する下降管と、を具備する溶融ガラスの減圧脱泡装置において、
少なくとも2つの接続管により前記減圧脱泡槽と接続される中空構造の雰囲気制御部を有し、前記雰囲気制御部には該雰囲気制御部内を排気して減圧するための排気口が設けられており、前記雰囲気制御部には、少なくとも1つの前記接続管との関係で下記(1)及び(2)を満たす第1のガス供給管が設けられていることを特徴とする溶融ガラスの減圧脱泡装置。
(1)前記雰囲気制御部と前記接続管とがなす開口部を、前記接続管の管軸方向に沿って前記雰囲気制御部内部へと延ばした仮想領域を、前記第1のガス供給管から供給されるガス流が横切る。
(2)前記第1のガス供給管の先端から該ガス供給管の管軸に沿って延ばした仮想線が、前記雰囲気制御部と前記接続管とがなす開口部を通過しない。 The internal pressure is set to less than atmospheric pressure, a vacuum defoaming tank that floats and breaks bubbles in the supplied molten glass, and a vacuum riser that is connected to the vacuum defoaming tank and sucks up the molten glass before defoaming treatment. A riser pipe that is introduced into the vacuum degassing tank and a downcomer pipe connected to the vacuum degassing tank and that descends the molten glass after the defoaming treatment from the vacuum degassing tank. In a vacuum degassing apparatus for glass,
It has a hollow atmosphere control unit connected to the vacuum deaeration tank by at least two connecting pipes, and the atmosphere control unit is provided with an exhaust port for exhausting and depressurizing the atmosphere control unit. The atmosphere control unit is provided with a first gas supply pipe satisfying the following (1) and (2) in relation to at least one of the connecting pipes, and the vacuum degassing of molten glass is provided: apparatus.
(1) A virtual region in which an opening formed by the atmosphere control unit and the connection pipe extends into the atmosphere control unit along the tube axis direction of the connection pipe is supplied from the first gas supply pipe Gas flow crosses.
(2) An imaginary line extending from the tip of the first gas supply pipe along the tube axis of the gas supply pipe does not pass through the opening formed by the atmosphere control unit and the connection pipe. - 前記接続管の数をXとするとき、前記第1のガス供給管の数がX-1以下(但し、前記第1のガス供給管の数は1以上)であることを特徴とする請求項1に記載の溶融ガラスの減圧脱泡装置。 The number of the first gas supply pipes is X-1 or less (provided that the number of the first gas supply pipes is 1 or more), where X is the number of the connection pipes. 2. A vacuum degassing apparatus for molten glass according to 1.
- 前記第1のガス供給管から供給されるガス流が、水蒸気濃度60mol%以下の低水分ガス流であることを特徴とする請求項1または2に記載の溶融ガラスの減圧脱泡装置。 The molten glass vacuum degassing apparatus according to claim 1 or 2, wherein the gas flow supplied from the first gas supply pipe is a low moisture gas flow having a water vapor concentration of 60 mol% or less.
- 前記減圧脱泡槽内の溶融ガラスの上部空間に水蒸気濃度60mol%以下の低水分ガスを供給する第2のガス供給管がさらに設けられていることを特徴とする請求項1ないし3のいずれかに記載溶融ガラスの減圧脱泡装置。 The second gas supply pipe for supplying a low moisture gas having a water vapor concentration of 60 mol% or less to the upper space of the molten glass in the vacuum degassing tank is further provided. A vacuum degassing apparatus for molten glass as described in 1.
- 請求項1~4に記載の減圧脱泡装置を用いた溶融ガラスの減圧脱泡方法であって、下記式を満たすように前記第1のガス供給管からガス流を供給する溶融ガラスの減圧脱泡方法。
v > A/0.031× [5.487×10-6×(1/56.353-1/ρ)+19.6×(0.163-z)+7.52 ] 1/2
v:第1のガス供給管のガス流の流速(m/s)
ρ:第1のガス供給管のガス流の密度(kg/m3)
z:雰囲気制御部内における第1のガス供給管の出口部の高さ(m)
A:開口部の面積(m2) A vacuum degassing method for molten glass using the vacuum degassing apparatus according to claims 1 to 4, wherein the molten glass is supplied with a gas flow from the first gas supply pipe so as to satisfy the following formula: Bubble method.
v> A / 0.031 × [5.487 × 10 −6 × (1 / 56.3533-1 / ρ) + 19.6 × (0.163−z) +7.5 2 ] 1/2
v: Flow velocity (m / s) of the gas flow in the first gas supply pipe
ρ: density of the gas flow in the first gas supply pipe (kg / m 3 )
z: Height (m) of the outlet of the first gas supply pipe in the atmosphere control unit
A: Area of opening (m 2 )
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980106977.9A CN101959807B (en) | 2008-02-29 | 2009-02-27 | Vacuum defoaming apparatus for molten glass |
JP2010500782A JP5423666B2 (en) | 2008-02-29 | 2009-02-27 | Vacuum degassing equipment for molten glass |
KR1020107009601A KR101221249B1 (en) | 2008-02-29 | 2009-02-27 | Vacuum defoaming apparatus for molten glass |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008050110 | 2008-02-29 | ||
JP2008-050110 | 2008-02-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009107801A1 true WO2009107801A1 (en) | 2009-09-03 |
Family
ID=41016186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/053736 WO2009107801A1 (en) | 2008-02-29 | 2009-02-27 | Vacuum defoaming apparatus for molten glass |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5423666B2 (en) |
KR (1) | KR101221249B1 (en) |
CN (1) | CN101959807B (en) |
TW (1) | TWI392657B (en) |
WO (1) | WO2009107801A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012014906A1 (en) * | 2010-07-30 | 2012-02-02 | 旭硝子株式会社 | Device for depressurizing and defoaming molten glass, method for depressurizing and defoaming molten glass, device for manufacturing glass product, and method for manufacturing glass product |
JP2015083531A (en) * | 2013-09-17 | 2015-04-30 | AvanStrate株式会社 | Method of manufacturing glass substrate, molten glass processing device, and device of manufacturing glass substrate |
JP2015199639A (en) * | 2014-03-31 | 2015-11-12 | AvanStrate株式会社 | Manufacturing method for glass substrate and manufacturing apparatus for glass substrate |
JP2018052792A (en) * | 2016-09-30 | 2018-04-05 | AvanStrate株式会社 | Production method of glass substrate, and production apparatus of glass substrate |
JP2020011852A (en) * | 2018-07-13 | 2020-01-23 | AvanStrate株式会社 | Method and apparatus for manufacturing glass substrate |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102491621B (en) * | 2011-11-11 | 2013-12-04 | 彩虹(合肥)液晶玻璃有限公司 | Vacuum device for platinum passage |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091307A (en) * | 2002-07-10 | 2004-03-25 | Nippon Electric Glass Co Ltd | Method for producing glass |
WO2006059576A1 (en) * | 2004-12-01 | 2006-06-08 | Nippon Sheet Glass Company, Limited | Process for producing glass and glass production apparatus |
JP2007169082A (en) * | 2005-12-19 | 2007-07-05 | Nippon Sheet Glass Co Ltd | Apparatus for melting glass |
WO2008029649A1 (en) * | 2006-08-30 | 2008-03-13 | Asahi Glass Company, Limited | Glass-making processes |
WO2008093580A1 (en) * | 2007-01-31 | 2008-08-07 | Asahi Glass Company, Limited | Process for producing glass and vacuum degassing apparatus |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2664039B2 (en) * | 1992-01-20 | 1997-10-15 | 旭硝子株式会社 | Vacuum degassing method and apparatus |
CN1184153C (en) * | 1998-02-26 | 2005-01-12 | 旭硝子株式会社 | Vacuum degassing apparatus for molten glass |
JP3861460B2 (en) * | 1998-06-26 | 2006-12-20 | 旭硝子株式会社 | Vacuum degassing method for molten glass |
JP4110663B2 (en) * | 1999-04-13 | 2008-07-02 | 旭硝子株式会社 | Vacuum degassing method for molten glass flow |
DE10116960C1 (en) * | 2001-04-05 | 2002-08-08 | Schott Glas | Vacuum Läuteranlage |
-
2009
- 2009-02-27 CN CN200980106977.9A patent/CN101959807B/en active Active
- 2009-02-27 WO PCT/JP2009/053736 patent/WO2009107801A1/en active Application Filing
- 2009-02-27 KR KR1020107009601A patent/KR101221249B1/en not_active IP Right Cessation
- 2009-02-27 TW TW98106395A patent/TWI392657B/en not_active IP Right Cessation
- 2009-02-27 JP JP2010500782A patent/JP5423666B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091307A (en) * | 2002-07-10 | 2004-03-25 | Nippon Electric Glass Co Ltd | Method for producing glass |
WO2006059576A1 (en) * | 2004-12-01 | 2006-06-08 | Nippon Sheet Glass Company, Limited | Process for producing glass and glass production apparatus |
JP2007169082A (en) * | 2005-12-19 | 2007-07-05 | Nippon Sheet Glass Co Ltd | Apparatus for melting glass |
WO2008029649A1 (en) * | 2006-08-30 | 2008-03-13 | Asahi Glass Company, Limited | Glass-making processes |
WO2008093580A1 (en) * | 2007-01-31 | 2008-08-07 | Asahi Glass Company, Limited | Process for producing glass and vacuum degassing apparatus |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012014906A1 (en) * | 2010-07-30 | 2012-02-02 | 旭硝子株式会社 | Device for depressurizing and defoaming molten glass, method for depressurizing and defoaming molten glass, device for manufacturing glass product, and method for manufacturing glass product |
CN103025669A (en) * | 2010-07-30 | 2013-04-03 | 旭硝子株式会社 | Device for depressurizing and defoaming molten glass, method for depressurizing and defoaming molten glass, device for manufacturing glass product, and method for manufacturing glass product |
JP5700046B2 (en) * | 2010-07-30 | 2015-04-15 | 旭硝子株式会社 | Vacuum degassing apparatus for molten glass, vacuum degassing method for molten glass, glass product manufacturing apparatus, and glass product manufacturing method |
CN103025669B (en) * | 2010-07-30 | 2015-04-22 | 旭硝子株式会社 | Device for depressurizing and defoaming molten glass, method for depressurizing and defoaming molten glass, device for manufacturing glass product, and method for manufacturing glass product |
JP2015083531A (en) * | 2013-09-17 | 2015-04-30 | AvanStrate株式会社 | Method of manufacturing glass substrate, molten glass processing device, and device of manufacturing glass substrate |
JP2015199639A (en) * | 2014-03-31 | 2015-11-12 | AvanStrate株式会社 | Manufacturing method for glass substrate and manufacturing apparatus for glass substrate |
JP2018052792A (en) * | 2016-09-30 | 2018-04-05 | AvanStrate株式会社 | Production method of glass substrate, and production apparatus of glass substrate |
JP2020011852A (en) * | 2018-07-13 | 2020-01-23 | AvanStrate株式会社 | Method and apparatus for manufacturing glass substrate |
JP7140579B2 (en) | 2018-07-13 | 2022-09-21 | AvanStrate株式会社 | Glass substrate manufacturing method and glass substrate manufacturing apparatus |
Also Published As
Publication number | Publication date |
---|---|
TWI392657B (en) | 2013-04-11 |
JPWO2009107801A1 (en) | 2011-07-07 |
CN101959807B (en) | 2013-06-19 |
KR20100085955A (en) | 2010-07-29 |
JP5423666B2 (en) | 2014-02-19 |
TW200948732A (en) | 2009-12-01 |
KR101221249B1 (en) | 2013-01-11 |
CN101959807A (en) | 2011-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5700046B2 (en) | Vacuum degassing apparatus for molten glass, vacuum degassing method for molten glass, glass product manufacturing apparatus, and glass product manufacturing method | |
JP5423666B2 (en) | Vacuum degassing equipment for molten glass | |
JP5470853B2 (en) | Glass manufacturing method and vacuum degassing apparatus | |
US7650764B2 (en) | Vacuum degassing apparatus for molten glass | |
JP5434077B2 (en) | Glass manufacturing method | |
JP2000302456A (en) | Vacuum deaeration for molten glass flow | |
JP5387678B2 (en) | Molten glass manufacturing method, vacuum degassing apparatus, and glass product manufacturing method | |
JP3785792B2 (en) | Vacuum degassing equipment for molten glass | |
JP3005210B2 (en) | Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment | |
JP4058935B2 (en) | Vacuum deaerator | |
JP2000178029A (en) | Vacuum defoaming equipment for molten glass | |
JP4513248B2 (en) | Vacuum degassing apparatus and vacuum degassing method | |
JP2006298657A (en) | Vacuum defoaming apparatus of molten glass and method for making molten glass clear by using the same | |
WO2000061506A1 (en) | Method for defoaming molten glass under reduced pressure and apparatus for producing glass using defoaming under reduced pressure | |
JPH11240725A (en) | Vacuum deaerator for molten glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980106977.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09714100 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010500782 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20107009601 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09714100 Country of ref document: EP Kind code of ref document: A1 |