WO2009107801A1 - Vacuum defoaming apparatus for molten glass - Google Patents

Vacuum defoaming apparatus for molten glass Download PDF

Info

Publication number
WO2009107801A1
WO2009107801A1 PCT/JP2009/053736 JP2009053736W WO2009107801A1 WO 2009107801 A1 WO2009107801 A1 WO 2009107801A1 JP 2009053736 W JP2009053736 W JP 2009053736W WO 2009107801 A1 WO2009107801 A1 WO 2009107801A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten glass
vacuum degassing
gas
gas supply
supply pipe
Prior art date
Application number
PCT/JP2009/053736
Other languages
French (fr)
Japanese (ja)
Inventor
元之 広瀬
達也 山下
勝彦 佐野
裕 野尻
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN200980106977.9A priority Critical patent/CN101959807B/en
Priority to JP2010500782A priority patent/JP5423666B2/en
Priority to KR1020107009601A priority patent/KR101221249B1/en
Publication of WO2009107801A1 publication Critical patent/WO2009107801A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners

Definitions

  • the present invention relates to a vacuum degassing apparatus for molten glass for removing bubbles from continuously supplied molten glass.
  • a clarification process for removing bubbles generated in the molten glass is used before the molten glass in which the raw material is melted in the melting furnace is molded by the molding apparatus. Yes.
  • molten glass is introduced into the reduced-pressure atmosphere, and bubbles in the molten glass flow that flows continuously under this reduced-pressure atmosphere are greatly grown to float up the bubbles contained in the molten glass.
  • a vacuum defoaming method is known in which bubbles are removed by breaking bubbles, and then discharged from a reduced-pressure atmosphere.
  • Patent Document 1 proposes to include various fining accelerators in vitrifiable substances, that is, glass raw materials, in order to improve the performance characteristics of the fining operation.
  • Patent Document 1 lists the property of the gas on the melt material, that is, the property of the gas on the molten glass, as an element that affects the growth of bubbles during clarification under reduced pressure.
  • Patent Document 2 discloses a foam breaking means for breaking foam generated when molten glass encounters a reduced pressure in a clarification chamber. As the foam breaking means, it is disclosed to use a mechanical rotating body for expanding and rupturing bubbles, or to make a jet flow collide with the foam.
  • Patent Document 1 as a method of changing the property of the gas on the molten glass, selection of the partial pressure of air, selection of an atmosphere enriched with a nitrogen type inert gas, and partial pressure of the nitrogen type inert gas are described. Although there is a selection, it does not show at all what kind of property the gas on the molten glass promotes the bubble growth. In addition, during clarification under reduced pressure conditions, volatile gas components from the molten glass and gas components in the bubbles contained in the molten glass are released, so the partial pressure of the selected air and the selected nitrogen type There is a problem that the partial pressure of the active gas is easily reduced. Further, there is a problem that the gas composition of the atmosphere easily changes from the atmosphere enriched with the selected nitrogen type inert gas.
  • Patent Document 2 is not always sufficient in terms of breaking the foam generated in the clarification chamber.
  • the use of a mechanical rotating body or a jet flow can destroy the foam already existing on the molten glass, but the turbulence in the molten glass flow results in the generation of new bubbles.
  • the foam can be locally destroyed, but the newly generated foam cannot be destroyed downstream of the mechanical rotating body or the jet flow.
  • the use of a mechanical rotating body may be a source of contamination of molten glass, and the use of a jet stream may reduce the temperature of the molten glass and reduce the quality of the glass.
  • the present invention relates to a vacuum degassing apparatus excellent in the effect of vacuum degassing of molten glass, more specifically, vacuum degassing by enlargement of a foam layer due to excessive vacuuming.
  • An object of the present invention is to provide a vacuum degassing apparatus for molten glass in which the effect of the above is prevented from being lowered.
  • gas components generated by bubbles breaking on the surface of the molten glass stay above the molten glass flowing in the vacuum degassing tank. It has been found that the effect of vacuum degassing is reduced.
  • a gas component generated by bubbles breaking on the surface of the molten glass is referred to as “gas component from molten glass”, and the gas component from the molten glass circulates in the vacuum degassing tank. Retaining above the molten glass is referred to as “retaining gas components from the molten glass”.
  • the partial pressure of the gas component from the molten glass increases in the atmosphere above the molten glass (the upper space of the molten glass inside the vacuum degassing tank), so bubbles that float on the surface of the molten glass Is considered to be difficult to break, and the effect of vacuum degassing is reduced. Further, the present inventors have found that by eliminating the retention of gas components from the molten glass, the bubble breaking speed on the surface of the molten glass is increased, and the enlargement of the foam layer due to excessive decompression can be suppressed.
  • the present invention has been made on the basis of the above-mentioned findings of the present inventors, and the internal pressure is set to be lower than the atmospheric pressure, and a vacuum degassing tank that floats and breaks bubbles in the supplied molten glass. And a riser pipe that is connected to the vacuum degassing tank and sucks and raises the molten glass before the defoaming process and introduces it into the vacuum degassing tank, and is connected to the vacuum degassing tank and melted after the defoaming process.
  • a vacuum degassing apparatus for molten glass comprising a downcomer pipe that descends the glass from the vacuum degassing tank and leads it out, It has a hollow atmosphere control unit connected to the vacuum deaeration tank by at least two connecting pipes, and the atmosphere control unit is provided with an exhaust port for exhausting and depressurizing the atmosphere control unit.
  • the atmosphere control unit is provided with a first gas supply pipe satisfying the following (1) and (2) in relation to at least one of the connecting pipes, and the vacuum degassing of molten glass is provided:
  • An apparatus hereinafter referred to as “the vacuum degassing apparatus of the present invention”) is provided.
  • a virtual region in which an opening formed by the atmosphere control unit and the connection pipe extends into the atmosphere control unit along the tube axis direction of the connection pipe is supplied from the first gas supply pipe Gas flow crosses.
  • An imaginary line extending from the tip of the first gas supply pipe along the tube axis of the gas supply pipe does not pass through the opening formed by the atmosphere control unit and the connection pipe.
  • the number of the connecting pipes is X
  • the number of the first gas supply pipes is X-1 or less (however, the number of the first gas supply pipes is 1 or more). It is preferable that
  • the gas flow supplied from the first gas supply pipe is preferably a low moisture gas flow having a water vapor concentration of 60 mol% or less.
  • a second gas supply pipe for supplying a low moisture gas having a water vapor concentration of 60 mol% or less is further provided in the upper space of the molten glass in the vacuum degassing tank.
  • a pressure difference is generated between the atmosphere control unit and the vacuum degassing tank due to the venturi effect generated by supplying the gas flow across the virtual region from the first gas supply pipe,
  • This pressure difference causes a gas flow that circulates between the atmosphere controller and the vacuum degassing tank.
  • This gas flow can eliminate stagnation of gas components from the molten glass. By eliminating the stagnation of gas components from the molten glass, a reduction in the effect of vacuum degassing is prevented.
  • the foam layer is less likely to be enlarged due to excessive decompression. As a result, the degree of vacuum in the vacuum degassing tank can be increased, and the effect of vacuum degassing can be improved.
  • the molten glass in the vacuum degassing tank When a low moisture gas having a water vapor concentration of 60 mol% or less is used as the gas supplied from the first gas supply pipe, in addition to the effect of eliminating the retention of gas components from the molten glass, the molten glass in the vacuum degassing tank The effect of reducing the water vapor concentration is expected in the upper atmosphere. By reducing the water vapor concentration of the atmosphere, it is possible to prevent the bubble layer on the surface of the molten glass in the vacuum degassing tank from being enlarged and to cause bumping, and the effect of vacuum degassing can be further improved.
  • FIG. 1 Sectional drawing which shows one structural example of the vacuum deaeration apparatus of this invention.
  • the partial enlarged view which showed the vicinity of the virtual area
  • FIG. The elements on larger scale similar to FIG. The elements on larger scale similar to FIG.
  • the elements on larger scale similar to FIG. The elements on larger scale similar to FIG.
  • the elements on larger scale similar to FIG. Sectional drawing which shows another one structural example of the vacuum deaeration apparatus of this invention.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the vacuum degassing apparatus of the present invention.
  • a vacuum degassing apparatus 10 shown in FIG. 1 includes a vacuum degassing tank 11 having a cylindrical shape. The internal pressure of the vacuum degassing tank 11 is set to be lower than atmospheric pressure, and the bubbles in the supplied molten glass G are floated and broken.
  • An ascending pipe 12 and a descending pipe 13 are connected to the vacuum degassing tank 11.
  • the ascending pipe 12 is a means for introducing the molten glass G that sucks and raises the molten glass G before the defoaming treatment and introduces it into the vacuum degassing tank 11.
  • the lower end portion of the rising pipe 12 is immersed in the molten glass G in the upstream pit 220.
  • the molten glass G is supplied from the melting tank 200 to the upstream pit 220.
  • the downcomer 13 is a derivation means for the molten glass G that descends the defoamed molten glass G from the vacuum degassing tank 11 and derives it. For this reason, the lower end of the downcomer 13 is immersed in the molten glass G in the downstream pit 240.
  • the molten glass G in the downstream pit 240 is led to a processing tank (not shown) in a subsequent process.
  • the terms “upstream” and “downstream” mean upstream and downstream in the flow direction of the molten glass G flowing through the vacuum degassing apparatus 10.
  • the vacuum degassing tank 11 is usually housed in a vacuum housing, and the pressure inside the vacuum degassing tank 11 is reduced to a pressure lower than atmospheric pressure by sucking the vacuum housing under reduced pressure. Hold on.
  • the vacuum degassing tank 11 is not accommodated in the vacuum housing, the upper space of the molten glass G in the vacuum degassing tank 11 is sucked under reduced pressure using a vacuum pump or the like, so that the interior of the vacuum degassing tank 11 is reduced. Is maintained at a reduced pressure below atmospheric pressure.
  • the vacuum degassing apparatus 10 of the present invention has an atmosphere control unit 14 connected to the vacuum degassing tank 11 by at least two connecting pipes 15 and 16.
  • the atmosphere control unit 14 has a hollow structure, and is provided with an exhaust port 17 for exhausting and depressurizing the atmosphere control unit 14.
  • the atmosphere control unit 14 forms a path of the gas flow 120 that circulates between the atmosphere control unit 14 and the upper space of the molten glass G in the vacuum degassing tank 11. Therefore, in the vacuum degassing apparatus 10 of the present invention, the atmosphere control unit 14 is exhausted from the exhaust port 17 to reduce the pressure, thereby maintaining the pressure inside the vacuum degassing tank 11 in a reduced pressure state less than atmospheric pressure.
  • the atmospheric pressure inside the vacuum degassing tank 11 is changed to atmospheric pressure by sucking the vacuum housing under reduced pressure and exhausting the atmosphere control unit 14 from the exhaust port 17 to reduce the pressure. Is maintained at a reduced pressure of less than
  • the vacuum degassing tank 11 does not have a vacuum housing, the atmospheric pressure inside the vacuum degassing tank 11 is increased by evacuating the atmosphere control unit 14 from the exhaust port 17 using a vacuum pump or the like. Maintain a reduced pressure below atmospheric pressure.
  • the atmosphere control unit 14 forms a path of the gas flow 120 that circulates between the atmosphere control unit 14 and the upper space of the molten glass G in the vacuum defoaming tank 11. It is necessary to connect to the vacuum degassing tank 11 above the liquid surface of the molten glass G in the vacuum degassing tank 11. For this reason, as shown in FIG. 1, it is a preferable aspect to arrange the atmosphere control unit 14 above the vacuum degassing tank 11. However, if the connection pipes 15 and 16 are connected to the vacuum degassing tank 11 above the liquid level of the molten glass G in the vacuum degassing tank 11, the atmosphere control unit 14 is connected to the vacuum degassing tank 11 side. You may arrange in the direction.
  • connection pipes 15 and 16 are required.
  • the vacuum degassing tank 11 and the atmosphere control unit 14 are connected by two connecting pipes 15 and 16, but the vacuum degassing is performed by three or more connecting pipes.
  • the tank 11 and the atmosphere control unit 14 may be connected.
  • the atmosphere control unit 14 and the connection pipes 15 and 16 are It is preferable to have a heating mechanism. However, it is not always necessary to provide a heating mechanism in the atmosphere control unit 14 and all the connection pipes 15 and 16, and at least the connection pipe (see FIG. 1) on the side where the gas flow 120 flows into the vacuum degassing tank 11. In this case, if the connecting pipe 15) is provided with a heating mechanism, the gas flow 120 having a low temperature flows into the vacuum degassing tank 11 to eliminate the possibility of adversely affecting the molten glass G in the vacuum degassing tank 11. Can do.
  • the vacuum degassing apparatus 10 of the present invention is provided with a first gas supply pipe 20 that supplies gas into the atmosphere control unit 14.
  • the first gas supply pipe 20 satisfies the following (1) and (2) in relation to at least one connection pipe (in the case of FIG. 1, the connection pipe 16).
  • An imaginary line 21 (see FIG.
  • p pressure around the outlet of the first gas supply pipe 20 (Pa)
  • density of the gas flow 100 (kg / m 3 )
  • g acceleration of gravity (m / s)
  • v flow velocity of the gas flow 100 ( m / s)
  • z height of the outlet of the first gas supply pipe 20 in the atmosphere control unit 14 (height from the bottom of the atmosphere control unit) (m)
  • the flow velocity v of the gas flow 100 necessary to generate a pressure difference sufficient to generate the gas flow 120 that circulates between the atmosphere controller and the vacuum degassing tank is the density ⁇ of the gas flow 100, the atmosphere
  • the atmosphere control is performed if the flow velocity v of the gas flow 100 satisfies the following equation (2).
  • the flow velocity v of the gas flow 100 preferably satisfies the following formula (3), and more preferably satisfies the following formula (4).
  • the gas flow 120 that circulates through the atmosphere control unit 14 and the vacuum degassing tank 11 the retention of gas components from the molten glass G is eliminated. That is, the gas component from the molten glass G is carried to the atmosphere control unit 14 by the gas flow 120 without staying.
  • the gas component from the molten glass G carried to the atmosphere control unit 14 is discharged from the exhaust port 17 to the outside. In some cases, a part of the gas component from the molten glass G carried to the atmosphere control unit 14 is carried by the gas flow 120 and returns to the space above the molten glass G in the vacuum degassing tank 11.
  • the partial pressure of the gas component from the molten glass G increases in the atmosphere above the molten glass G in the vacuum degassing tank 11, so that bubbles floating on the surface of the molten glass G are generated. It is considered that foaming becomes difficult and the effect of vacuum degassing is reduced.
  • the vacuum degassing apparatus 10 of the present invention the retention of gas components from the molten glass G is eliminated, so that the effect of vacuum degassing does not decrease, and the vacuum degassing effect is excellent.
  • the vacuum degassing apparatus 10 of the present invention the molten glass Since the stagnation of the gas component from G is eliminated, the enlargement of the foam layer due to excessive decompression can be suppressed even when the degree of decompression of the decompression defoaming tank 11 is made higher than before. Therefore, the pressure reduction degree of the vacuum degassing tank 11 can be made higher than before (the absolute pressure of the vacuum degassing tank 11 can be made lower than before), and the effect of the vacuum degassing can be further enhanced. .
  • the connecting pipe 16 connects the gas flow 120 to the gas degassing tank 11.
  • the connecting pipe 15 forms a gas flow introduction pipe for introducing the gas flow 120 into the vacuum degassing tank 11. Therefore, like the vacuum degassing apparatus 10 shown in FIG. 1, when the two connecting pipes 15 and 16 are provided, the first satisfying the above (1) and (2) in relation to either one of the connecting pipes.
  • a gas supply pipe must be provided, and the first gas supply pipe satisfying the above (1) and (2) must not be provided in relation to the other connection pipe.
  • a first gas supply pipe satisfying the above (1) and (2) may be provided in relation to two or more connecting pipes.
  • the first gas supply pipe satisfying the above (1) and (2) should not be provided. That is, in the vacuum degassing apparatus of the present invention, when the number of connection pipes is X, the number of first gas supply pipes is X-1 or less (however, the number of first gas supply pipes is 1 or more). There is a need to.
  • FIG. 1 is a partially enlarged view showing the vicinity of the virtual region 19 of the vacuum degassing apparatus 10, and the position of the tip of the first gas supply pipe 20 is different from that in FIG. 1.
  • the tip of the first gas supply pipe 20 is located on the downstream side of the virtual region 19 and supplies the gas flow 100 in the upstream direction.
  • a gas flow 100 is supplied in the upstream direction so as to cross the virtual region 19. Such an arrangement may be used as long as the flow rate of the gas flow 100 is sufficiently large and the gas flow 100 can be supplied across the virtual region 19. Further, in the vacuum degassing apparatus 10 of FIG. 1, the front end of the first gas supply pipe 20 inserted from above the atmosphere control unit 14 is curved in the upstream direction so as to cross the virtual region 19 in the upstream direction. The gas flow 100 is being supplied toward the upstream side, but the first gas supply pipe is inserted in the horizontal direction from the downstream end face of the atmosphere control unit 14, and is directed upstream so as to cross the virtual region 19. A gas stream 100 may be supplied. On the other hand, FIG. 3 is a partially enlarged view similar to FIG.
  • FIG. 4 is a partially enlarged view similar to FIG.
  • the direction of the tip of the first gas supply pipe 20 is different from that in FIG.
  • the gas flow 100 supplied from the first gas supply pipe 20 is supplied toward the bottom of the atmosphere control unit 14 on the front side (downstream side) of the virtual region 19.
  • it does not cross the virtual region 19, does not satisfy the above (1), and cannot produce a pressure difference in which the pressure in the vicinity of the opening 18 becomes lower than that in the vacuum degassing tank 11.
  • FIG. 5 is a partially enlarged view of the vicinity of the virtual region 19 of the vacuum degassing apparatus 10 shown in FIG. In FIG. 5, the virtual line 21 extends in the horizontal direction toward the upstream direction, does not pass through the opening 18, and satisfies the above (2).
  • FIG. 5 is a partially enlarged view of the vicinity of the virtual region 19 of the vacuum degassing apparatus 10 shown in FIG. In FIG. 5, the virtual line 21 extends in the horizontal direction toward the upstream direction, does not pass through the opening 18, and satisfies the above (2).
  • FIG. 6 is a partially enlarged view similar to FIG. 5, but the direction of the tip of the first gas supply pipe 20 is different from FIG. 5, and the imaginary line 21 faces obliquely downward and passes through the opening 18. Therefore, the above (2) is not satisfied.
  • FIG. 7 is a partially enlarged view similar to FIG. 6, where the imaginary line 21 faces obliquely downward, but the height of the first gas supply pipe 20 in the atmosphere control unit 14 is the gas supply pipe of FIG. 6. Therefore, the virtual line 21 does not pass through the opening 18 and satisfies the above (2). Similarly, even when the virtual line 21 faces obliquely downward, the angle at which the virtual line 21 faces obliquely downward is smaller than that of the gas supply pipe 20 of FIG. Satisfy (2).
  • the vacuum degassing apparatus of the present invention may be provided with the first gas supply pipe so as to satisfy the above (1) and (2), and is not limited to the illustrated embodiment and the embodiment described above.
  • the supply direction of the gas flow 100 is the upstream direction or the downstream direction.
  • the supply direction of the gas flow 100 may be other directions, for example, the front side of the drawing or It may be in the back direction.
  • the first gas supply pipe 20 is arranged on the back side or the near side of the drawing with respect to the opening 18, and the gas flow 100 is supplied in the front or back direction of the drawing so as to cross the virtual region 19. .
  • the gas flow 100 is supplied in the horizontal direction or obliquely downward, but the gas flow may be supplied in an obliquely upward direction.
  • the supply direction of the gas flow 100 is orthogonal to the tube axis of the connection pipe 16. It is preferable that the direction is the horizontal direction.
  • the direction substantially orthogonal to the tube axis of the connecting tube 16 is preferably within a range of ⁇ 45 °, and is within a range of ⁇ 25 °, where the direction orthogonal to the tube axis is 0 °. More preferably, the range is ⁇ 15 degrees.
  • the downstream connection pipe 16 is a gas flow outlet pipe and the upstream connection pipe 15 is a gas flow inlet pipe.
  • the upstream connection pipe 15 is a gas flow outlet pipe
  • the connection pipe 16 may be a gas flow introduction pipe.
  • a first gas supply pipe that satisfies the above (1) and (2) in relation to the connection pipe 15 is provided.
  • the arrangement of the connection pipes forming the gas flow outlet pipes and the connection pipes forming the gas flow introduction pipes can be selected as appropriate. For example, in the vacuum degassing apparatus shown in FIG. 1, when a third connection pipe is provided between the upstream connection pipe 15 and the downstream connection pipe 16, the relationship with the connection pipes 15 and 16 is satisfied.
  • a first gas supply pipe satisfying the above (1) and (2) may be provided, the connection pipes 15 and 16 may be gas flow outlet pipes, and the third connection pipe may be a gas flow introduction pipe.
  • a first gas supply pipe satisfying the above (1) and (2) is provided in relation to the third connection pipe, the third connection pipe is used as a gas flow outlet pipe, and the connection pipes 15 and 16 are gas. It may be a flow introduction pipe.
  • the direction of the gas flow 120 circulating through the atmosphere control unit 14 and the vacuum degassing tank 11 is not limited to the illustrated mode, and may be the opposite direction to the illustrated mode.
  • the upstream connection pipe 15 is a gas flow outlet pipe and the downstream connection pipe 16 is a gas flow introduction pipe
  • the direction of the gas flow circulating through the atmosphere control unit 14 and the vacuum degassing tank 11 is The direction is opposite to the illustrated embodiment.
  • the positional relationship between the two connecting pipes is the upstream side and the downstream side, but the positional relationship between the connecting pipes is not limited to this.
  • the positional relationship between the two connecting pipes may be the front side and the back side of the drawing.
  • the direction of the gas flow circulating through the atmosphere control unit 14 and the vacuum degassing tank 11 is a direction perpendicular to the direction of the gas flow 120 in the illustrated mode (the direction of the gas flow in the atmosphere control unit 14).
  • the direction of the gas flow above the molten glass G in the vacuum degassing tank 11 is the front side and back side of the drawing, or the back side and front side of the drawing, respectively.
  • the direction of the gas flow 120 in the vacuum degassing tank 11 is a direction orthogonal to the moving direction of the molten glass G.
  • the direction of the gas flow 120 above the molten glass G in the vacuum degassing tank 11 is the same as that of the molten glass G.
  • the vacuum degassing tank has a shape with no significant difference in length in the vertical and horizontal directions (for example, When the planar shape of the vacuum degassing tank is a square, hexagon, octagon, or the like), even if the direction of the gas flow 120 in the vacuum degassing tank 11 is perpendicular to the moving direction of the molten glass G The retention of gas components from the molten glass G can be eliminated.
  • the component of the gas flow 100 supplied from the first gas supply pipe 20 is not particularly limited when the pressure in the vicinity of the opening 18 causes a pressure difference in which the pressure is lower than that in the vacuum degassing tank 11.
  • the components of the gas stream 100 do not adversely affect the molten glass G, the manufactured glass product, and the glass manufacturing equipment, particularly the vacuum degassing apparatus. Therefore, it is preferable that the components of the gas stream 100 do not include corrosive and explosive gases.
  • a vacuum degassing tank 11 is preferable because the effect of reducing the water vapor concentration in the atmosphere above the molten glass G in 11 is expected.
  • the low moisture gas used as the gas flow 100 is not particularly limited as long as the water vapor concentration is 60 mol% or less. Specific examples of such low moisture gas include air, dry air, inert gas such as N 2 and Ar, and the like.
  • the gas flow 100 one of these low moisture gases may be used, or a mixed gas of a plurality of types of low moisture gases may be used.
  • the water vapor concentration is preferably 50 mol% or less, more preferably 40 mol% or less, further preferably 30 mol% or less, and further preferably 25 mol% or less. Preferably, it is more preferably 20 mol% or less, further preferably 15 mol% or less, further preferably 10 mol% or less, and particularly preferably 5 mol% or less.
  • the water vapor concentration in the atmosphere above the molten glass G in the vacuum degassing tank 11 is reduced to 60 mol% or less.
  • the water vapor concentration of the atmosphere is preferably 50 mol% or less. More preferably, it is 40 mol% or less.
  • the water vapor concentration it is preferable for the water vapor concentration to be 30 mol% or less because the foam layer tends to be further thinned.
  • each bubble may shrink
  • the molten glass is borosilicate glass
  • the water vapor concentration is 30 mol% or less, the bubbles tend to contract significantly.
  • the borosilicate glass here has, for example, the following composition.
  • Composition range SiO 2 : 55 to 74, Al 2 O 3 : 10 to 20, B 2 O 3 : 5 to 12, Al 2 O 3 / B 2 O 3 : 1.5 to 3, MgO: 0 to 5 , CaO: 0 to 5, SrO: 0 to 12, BaO: 0 to 12, SrO + BaO: 6 to 12 (unit: mass%). Furthermore, when the water vapor concentration in the atmosphere above the molten glass G in the vacuum degassing tank 11 is low, it is preferable because bubbles having a size that is regarded as a defect hardly remain in a glass product produced through vacuum degassing. .
  • the probability that a glass product produced through vacuum degassing will be defective is further reduced. Therefore, it is more preferably 25 mol% or less, and more preferably 20 mol% or less. More preferably, it is 15 mol% or less, More preferably, it is 10 mol% or less, More preferably, it is 5 mol% or less.
  • volatilization of the specific components (boron etc.) in the molten glass G can be suppressed by making the water vapor
  • volatilization of components such as boron it is possible to prevent variation in the composition of boron and the like, and to suppress deterioration in flatness due to composition variation.
  • volatilization of other easily volatile components such as Cl, F, and S can be suppressed, so that composition fluctuations of these components can be prevented and deterioration of flatness due to composition fluctuations can be suppressed. can do.
  • Volatilization of components such as Cl, F, and S is considered to be greatly influenced by moisture in the atmosphere.
  • F is volatilized as HF
  • S is vaporized as H 2 SO 4 . Therefore, it is considered that volatilization of the above components and accompanying composition fluctuations of the above components can be suppressed by setting the water vapor concentration in the atmosphere above the molten glass G in the vacuum degassing tank 11 to a certain value or less. It is done.
  • the characteristics of glass have very fine specifications depending on the application, and the composition of the glass is determined in great detail so as to meet the specifications.
  • the vacuum degassing apparatus of the present invention is useful because it can eliminate these problems by suppressing the volatilization of boron. Also from this point, it can be said that the vacuum degassing apparatus of the present invention can be preferably used particularly when borosilicate glass is vacuum degassed, not to mention ordinary glass.
  • the low moisture gas used as the gas flow 100 is preferably a gas whose oxygen concentration is lower than the oxygen concentration in the air.
  • the oxygen concentration is more preferably 15% by volume or less, more preferably 10% by volume or less, and more preferably 5% by volume or less.
  • the low moisture gas used as the gas stream 100 is preferably a gas not containing oxygen, such as N 2 gas, Ar gas, CO 2 or the like. Since the vacuum degassing tank 11 is a conduit for molten glass G, it is necessary to use a material excellent in heat resistance and corrosion resistance against molten glass, and platinum or platinum alloys are widely used.
  • the platinum is oxidized when platinum and a platinum alloy are used as the material of the vacuum degassing tank. This is preferable because it suppresses the life of the vacuum degassing tank and further suppresses the generation of defects derived from platinum in glass products.
  • platinum alloy examples include a platinum-gold alloy and a platinum-rhodium alloy.
  • materials having excellent heat resistance and corrosion resistance to molten glass used in a vacuum degassing tank include ceramic non-metallic inorganic materials and dense refractories.
  • dense refractories include, for example, electrocast refractories such as alumina electrocast refractories, zirconia electrocast refractories, alumina-zirconia-silica electrocast refractories, and dense alumina refractories.
  • dense fired refractories such as dense zirconia-silica refractories and dense alumina-zirconia-silica refractories.
  • the atmosphere control unit 14, the connecting pipes 15 and 16, and the first gas supply pipe 20 are not particularly limited because they are not conduits for molten glass G.
  • metals such as stainless steel, platinum, and platinum alloys are used.
  • Fire-resistant and corrosion-resistant materials such as materials, ceramics, and alumina can be used.
  • the purpose of generating the gas flow 120 that circulates through the atmosphere control unit 14 and the vacuum degassing tank 11 is only required to eliminate the retention of gas components from the molten glass G. Therefore, it is not always necessary to generate the gas flow 120 during the vacuum degassing. Therefore, as long as the retention of gas components from the molten glass G can be eliminated, the gas flow 120 may be periodically generated during the vacuum degassing, for example, at a rate of about 1 to 30 seconds every hour. A gas stream 120 may be generated. In order to generate the gas flow 120 periodically, the gas flow 100 may be supplied periodically from the first gas supply pipe 20.
  • FIG. 8 is a sectional view showing another configuration example of the vacuum degassing apparatus of the present invention.
  • a second gas supply pipe 24 is inserted from a connection pipe 15 forming a gas flow introduction pipe, and the tip of the second gas supply pipe 24 is a vacuum degassing tank.
  • the second gas supply pipe is not limited to the embodiment shown in FIG. 8 as long as it can supply a low moisture gas having a water vapor concentration of 60 mol% or less to the upper space of the molten glass G in the vacuum degassing tank 11.
  • the second gas supply pipe may be inserted into the upper space of the molten glass G in the vacuum degassing tank 11 from the connection pipe 16 that forms a gas flow outlet pipe.
  • the second gas supply pipe is inserted into the upper space of the molten glass G in the vacuum degassing tank 11 from a portion other than the connection pipes 15, 16, for example, from the upstream or downstream end face of the vacuum degassing tank 11. May be.
  • the supply direction of the low moisture gas 140 is set so as not to obstruct the gas flow 120 (see FIG. 1) so that the gas flow is not disturbed in the vacuum degassing tank 11. Therefore, it is preferable.
  • the position on the outlet side of the second gas supply pipe 24 is not limited as long as a low moisture gas having a water vapor concentration of 60 mol% or less can be supplied to the upper space of the molten glass G in the vacuum degassing tank 11. It is not limited.
  • the tip of the second gas supply pipe 24 is located in the upper space of the molten glass G in the vacuum degassing tank 11, but the tip of the second gas supply pipe 24 is It may be in the connecting pipe 15 or in the atmosphere control unit 14 above the connecting pipe 15.
  • the vacuum degassing apparatus of the present invention may have a structure other than the above.
  • a baffle plate for guiding the gas flow 120 downward may be provided inside the ceiling portion of the vacuum degassing tank 11.
  • the dimension of each component of the vacuum degassing apparatus 10 of the present invention can be appropriately selected as necessary.
  • the size of the vacuum degassing tank 11 is the same as that of the vacuum degassing apparatus or the vacuum degassing tank 11 used, regardless of whether the vacuum degassing tank 11 is made of platinum, platinum alloy, or dense refractory. It can select suitably according to a shape.
  • an example of the dimensions is as follows. Horizontal length: 1-20m Inner diameter: 0.2-3m (circular cross section)
  • the wall thickness is preferably 4 mm or less, more preferably 0.5 to 1.2 mm.
  • the vacuum degassing tank is not limited to a cylindrical shape having a circular cross section, and may be a substantially cylindrical shape having an elliptical shape or a semicircular cross sectional shape, or a cylindrical shape having a rectangular cross section.
  • the riser 12 and the downfall 13 are made of platinum, a platinum alloy, or a dense refractory, they can be appropriately selected according to the vacuum degassing apparatus to be used.
  • examples of the dimensions of the ascending pipe 12 and the descending pipe 13 are as follows. Inner diameter: 0.05 to 0.8 m, more preferably 0.1 to 0.6 m
  • the wall thickness is preferably 0.4 to 5 mm, more preferably 0.8 to 4 mm.
  • an air flow analysis in the upper space of the molten glass G in the vacuum degassing tank is performed using Fluent, a venturi effect by supplying a gas flow from the first gas supply pipe to the virtual region, and a venturi
  • Fluent Fluent
  • a venturi effect by supplying a gas flow from the first gas supply pipe to the virtual region
  • a venturi The elimination of the retention of gas components from the molten glass due to the gas flow circulating through the atmosphere control part caused by the effect and the upper space of the molten glass in the vacuum degassing tank was evaluated.
  • the gas flow 100 from the first gas supply pipe 20 to the virtual region 19 above the opening 18 with the downstream connection pipe 16 is provided as in the vacuum degassing apparatus 10 shown in FIG.
  • Vacuum defoaming tank 11 total length 10m, inner diameter 1m (cross-sectional semicircular shape)
  • Atmosphere control unit 14 total length 10 m, inner diameter 2 m (cylindrical shape)
  • Connection pipes 15 and 16 Overall length 0.8 m, inner diameter 0.3 m (cylindrical shape)
  • Each of the connecting pipes 15 and 16 has a ceiling portion of the vacuum degassing tank 11, more specifically, a position 0.1 m from the upstream end of the vacuum degassing tank 11, and 0. 0 from the downstream end. It was provided at a position of 1 m.
  • Exhaust port 17 Provided in the ceiling portion at an inner diameter of 0.05 m (cylindrical shape) and at the center of the atmosphere control unit 14 in the longitudinal direction.
  • First gas supply pipe 20 Unlike FIG. 8, a circular stainless steel nozzle having an inner diameter of 5 mm was inserted in the horizontal direction from the center of the downstream end of the atmosphere control unit 14. Regardless of whether the first gas supply pipe 20 is installed on the downstream side or the upstream side, the position of the tip of the first gas supply pipe is 5 mm downstream from the opening 18 and the height from the bottom of the atmosphere control unit 14. The position was 10 mm.
  • Second gas supply pipe 24 A circular stainless steel nozzle having an inner diameter of 15 mm is inserted into the upper space of the molten glass G in the vacuum degassing tank 11 from the ceiling of the atmosphere control section 14 via the connection pipe 15. The position of the tip of the second gas supply pipe was 10 mm below the upper wall surface of the vacuum degassing tank 11.
  • the movement of the molten glass G in the vacuum degassing tank 11 was not taken into consideration, and N 2 supplied from the volatilized gas and the second gas supply pipe was defined by the speed boundary condition.
  • N 2 supplied from the volatilized gas and the second gas supply pipe was defined by the speed boundary condition.
  • concentration of the volatile gas from the molten glass G in the vacuum degassing tank 11 the average concentration of the volatile gas in the atmosphere above the molten glass G (hereinafter referred to as “average concentration of the volatile gas above the molten glass G”). In some cases).
  • the volatilized gas concentration in the vicinity of the liquid surface of the molten glass G (5 mm above the liquid surface of the molten glass) was used as an evaluation index.
  • the pressure in the vicinity of the opening of the atmosphere control unit 14 and the connection pipe 15 and the pressure in the vicinity of the opening 18 of the atmosphere control unit 14 and the connection pipe 16 (hereinafter, the former is referred to as “upstream side opening part”). Pressure ”and the latter as“ downstream opening pressure ”in some cases.
  • the gas flow rate (hereinafter, the former is sometimes referred to as “upstream discharge flow rate” and the latter is sometimes referred to as “downstream discharge flow rate”) was evaluated.
  • Example 1 the first gas supply pipe 20 is installed in the upper part of the downstream connection pipe 16 and N 2 is supplied as a gas flow 100 at a volume flow rate of 2 NL / min. The average of the volatilized gas above the molten glass G Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated.
  • Example 2 the first gas supply pipe 20 is installed on the upper part of the downstream connection pipe 16, and N 2 is supplied as a gas flow 100 at a volume flow rate of 10 NL / min. Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated.
  • Example 3 the first gas supply pipe 20 is installed in the upper part of the downstream connection pipe 16 and N 2 is supplied as a gas flow 100 at a volume flow rate of 15 NL / min. Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated. In Example 4, the first gas supply pipe 20 is installed in the upper part of the downstream connection pipe 16 and N 2 is supplied as a gas flow 100 at a volume flow rate of 50 NL / min. The average of the volatilized gas above the molten glass G Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated.
  • Example 5 the first gas supply pipe 20 is installed in the upper part of the upstream connection pipe 15 and N 2 is supplied as a gas flow 100 at a volume flow rate of 15 NL / min. Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated.
  • Example 6 the first gas supply pipe 20 having an inner diameter of ⁇ 20 mm is installed at the upper part of the downstream connection pipe 15 and N 2 is supplied as a gas flow 100 at a volume flow rate of 50 NL / min. The average concentration of the volatilized gas, the upstream opening pressure, the downstream opening pressure, the upstream discharge flow rate, and the downstream discharge flow rate were evaluated.
  • Example 7 the first gas supply pipe 20 having an inner diameter of ⁇ 5 mm is installed on the upper side of the connecting pipe 15 on the upstream side of the inner diameter of ⁇ 0.2 m, and N 2 is supplied as a gas flow 100 at a volume flow rate of 2 NL / min.
  • the average concentration of the volatile gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, the upstream discharge flow rate, and the downstream discharge flow rate were evaluated.
  • Comparative Example 1 without supplying the gas flow 100 from the first gas supply pipe 20, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, the upstream discharge flow rate, and The downstream discharge flow rate was evaluated.
  • the average concentration of the volatile gas above the molten glass G in Examples 1 to 7 is shown as a relative value when the average concentration of the volatile gas in Comparative Example 1 is 100.
  • the value of the upstream opening part pressure (Pa) and the downstream opening part pressure (Pa) was shown by the difference with the reference
  • standard pressure (46,662Pa 350mmHg) in the vacuum degassing tank 11.
  • FIG. Further, the pressure difference between the upstream opening pressure (Pa) and the downstream opening (opening pressure (Pa) on the side not having the first gas supply pipe 20) minus the first gas supply pipe 20 The opening pressure (Pa) on the side having the same is also shown.
  • the results are shown in Table 1 below.
  • the results of Examples 1 to 7 are values when the steady state is reached after the supply of the gas flow 100 is started.
  • the first gas supply pipe 20 is installed at the upper part of the downstream connection pipe 16 to supply N 2 as a gas flow 100 at a volume flow rate of 5 NL / min, and the second gas supply pipe 24 is connected to the upstream side.
  • N 2 is supplied as a low moisture gas 140 at a volume flow rate of 10 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, The upstream discharge flow rate and the downstream discharge flow rate were evaluated.
  • the first gas supply pipe 20 is installed in the upper part of the downstream connection pipe 16, and N 2 is supplied as a gas flow 100 at a volume flow rate of 10 NL / min, and the second gas supply pipe 24 is connected to the upstream side.
  • N 2 is supplied as a low moisture gas 140 at a volume flow rate of 10 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, The upstream discharge flow rate and the downstream discharge flow rate were evaluated.
  • the first gas supply pipe 20 is installed above the connection pipe 16 on the downstream side, N 2 is supplied as a gas flow 100 at a volume flow rate of 50 NL / min, and the second gas supply pipe 24 is connected to the upstream side.
  • N 2 is supplied as a low moisture gas 140 at a volume flow rate of 10 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, The upstream discharge flow rate and the downstream discharge flow rate were evaluated.
  • the first gas supply pipe 20 is installed on the upper side of the connection pipe 15 on the upstream side, N 2 is supplied as the gas flow 100 at a volume flow rate of 10 NL / min, and the second gas supply pipe 24 is connected to the downstream side.
  • N 2 is supplied as a low moisture gas 140 at a volumetric flow rate of 10 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, The upstream discharge flow rate and the downstream discharge flow rate were evaluated.
  • a first gas supply pipe 20 having an inner diameter ⁇ of 20 mm is installed on the upstream side of the connection pipe 15 to supply N 2 as a gas flow 100 at a volume flow rate of 50 NL / min, and a second gas supply pipe 24 is installed in the upper part of the connecting pipe 16 on the downstream side, N 2 is supplied as a low moisture gas 140 at a volume flow rate of 15 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream side The opening pressure, upstream discharge flow rate, and downstream discharge flow rate were evaluated.
  • Example 13 the first gas supply pipe 20 having an inner diameter of ⁇ 5 mm is installed at the upper part of the upstream connection pipe 15 having an inner diameter of ⁇ 0.2 m, and N 2 is supplied as a gas flow 100 at a volume flow rate of 15 NL / min.
  • the second gas supply pipe 24 is installed at the upper part of the downstream connection pipe 16 and N 2 is supplied as a low moisture gas 140 at a volume flow rate of 10 NL / min.
  • the opening pressure, the downstream opening pressure, the upstream discharge flow rate, and the downstream discharge flow rate were evaluated.
  • the first gas supply pipe 20 is not installed, the second gas supply pipe 24 is installed at the upper part of the upstream connection pipe 15, and N 2 is used as the low moisture gas 140 at a volume flow rate of 15 NL / min.
  • the average concentration of the volatile gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, the upstream discharge flow rate, and the downstream discharge flow rate were evaluated.
  • the average concentration of the volatile gas above the molten glass G in Examples 8 to 13 is shown as a relative value when the average concentration of the volatile gas in Comparative Example 1 is 100.
  • the value of the upstream opening part pressure (Pa) and the downstream opening part pressure (Pa) was shown by the difference with the reference
  • standard pressure (46,662Pa 350mmHg) in the vacuum degassing tank 11.
  • FIG. The pressure difference between the upstream opening pressure (Pa) and the downstream opening (upstream opening pressure (Pa) ⁇ downstream opening pressure (Pa)) is also shown.
  • the results are shown in Table 2 below.
  • the results of Examples 8 to 13 are values when the steady state is reached after the supply of the gas flow 100 is started.
  • the present invention can be used for the production of various high-quality glass products that do not contain bubbles, and is particularly suitable for vacuum degassing of borosilicate glass.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-50110 filed on Feb. 29, 2008 are cited here as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Glass Compositions (AREA)

Abstract

Provided is a vacuum defoaming apparatus for molten glass in which the effect of vacuum defoaming is prevented from being reduced by the enlargement of a foam layer due to excessive pressure reduction. The vacuum defoaming apparatus for molten glass provided with a vacuum defoaming tank for raising and braking foam in supplied molten glass, in which the barometric pressure is set to a pressure lower than atmospheric pressure, a riser tube which is connected to the vacuum defoaming tank, for sucking and raising the molten glass before defoaming treatment and introducing the molten glass into the vacuum defoaming tank, and a down comer which is connected to the vacuum defoaming tank, for lowering and guiding the molten glass after the defoaming treatment from the vacuum defoaming tank is characterized by being provided with a hollow-structured atmosphere control unit connected to the vacuum defoaming tank by at least two connecting pipes, the atmosphere control unit being provided with an exhaust port for evacuating the interior of the atmospheric control unit to reduce the pressure and provided with a first gas supply pipe which satisfies the following requirements (1) and (2) in a relationship with at least one of the connecting pipes. (1) A gas stream supplied from the first gas supply pipe crosses a virtual region formed by extending an opening constituted by the atmosphere control unit and the connecting pipe into the atmosphere control unit along the direction of the axis of the connecting pipe. (2) A virtual line extended along the axis of the first gas supply pipe from the tip of the gas supply pipe does not pass through the opening constituted by the atmosphere control unit and the connecting pipe.

Description

溶融ガラスの減圧脱泡装置Vacuum degassing equipment for molten glass
 本発明は、連続的に供給される溶融ガラスから気泡を除去するための溶融ガラスの減圧脱泡装置に関する。 The present invention relates to a vacuum degassing apparatus for molten glass for removing bubbles from continuously supplied molten glass.
 従来より、成形されたガラス製品の品質を向上させるために、溶解炉で原料を溶解した溶融ガラスを成形装置で成形する前に、溶融ガラス内に発生した気泡を除去する清澄工程が利用されている。
 この清澄工程では、減圧雰囲気内に溶融ガラスを導入し、この減圧雰囲気下、連続的に流れる溶融ガラス流内の気泡を大きく成長させて溶融ガラス内に含まれる気泡を浮上させ、溶融ガラス表面で気泡を破泡させて除去し、その後減圧雰囲気から排出する減圧脱泡方法が知られている。
Conventionally, in order to improve the quality of the molded glass product, a clarification process for removing bubbles generated in the molten glass is used before the molten glass in which the raw material is melted in the melting furnace is molded by the molding apparatus. Yes.
In this clarification step, molten glass is introduced into the reduced-pressure atmosphere, and bubbles in the molten glass flow that flows continuously under this reduced-pressure atmosphere are greatly grown to float up the bubbles contained in the molten glass. A vacuum defoaming method is known in which bubbles are removed by breaking bubbles, and then discharged from a reduced-pressure atmosphere.
 このような清澄工程において、溶融ガラス流内での気泡の成長を促進するため、または気泡を破泡させるため、様々な手法が提案されている。
 特許文献1には、清澄操作の性能特性を改良するため、さまざまな清澄促進剤をガラス化可能物質、すなわち、ガラス原料、に含めることが提案されている。また、特許文献1には、減圧条件下での清澄の間に気泡の成長に影響する要素として、溶融体物質上のガスの性質、すなわち、溶融ガラス上のガスの性質を挙げている。
 また、特許文献2には、溶融ガラスが清澄チャンバ中の減圧に遭遇することで発生した泡沫を破壊する泡沫破壊手段が開示されている。泡沫破壊手段としては、気泡を広げ、破裂させるための機械的回転体の使用や、泡沫へジェット流を衝突させることが開示されている。
In such a clarification process, various techniques have been proposed in order to promote the growth of bubbles in the molten glass flow or to break the bubbles.
Patent Document 1 proposes to include various fining accelerators in vitrifiable substances, that is, glass raw materials, in order to improve the performance characteristics of the fining operation. Patent Document 1 lists the property of the gas on the melt material, that is, the property of the gas on the molten glass, as an element that affects the growth of bubbles during clarification under reduced pressure.
Further, Patent Document 2 discloses a foam breaking means for breaking foam generated when molten glass encounters a reduced pressure in a clarification chamber. As the foam breaking means, it is disclosed to use a mechanical rotating body for expanding and rupturing bubbles, or to make a jet flow collide with the foam.
特表2001-515453号公報JP 2001-515453 A 特開2003-89529号公報JP 2003-89529 A
 特許文献1には、溶融ガラス上のガスの性質を変える方法として、空気の分圧の選択、窒素タイプの不活性ガスを富化した雰囲気の選択、および窒素タイプの不活性ガスの分圧の選択を挙げているが、溶融ガラス上のガスがどのような性質であれば、気泡の成長が促進させるかという点は全く示していない。また、減圧条件で清澄を行っている際、溶融ガラスからの揮発ガス成分および溶融ガラスに含まれる気泡のガス成分がさかんに放出されるため、選択した空気の分圧および選択した窒素タイプの不活性ガスの分圧は容易に低下してしまうという問題がある。また、選択した窒素タイプの不活性ガスを富化した雰囲気から、雰囲気のガス組成が容易に変化してしまうという問題がある。 In Patent Document 1, as a method of changing the property of the gas on the molten glass, selection of the partial pressure of air, selection of an atmosphere enriched with a nitrogen type inert gas, and partial pressure of the nitrogen type inert gas are described. Although there is a selection, it does not show at all what kind of property the gas on the molten glass promotes the bubble growth. In addition, during clarification under reduced pressure conditions, volatile gas components from the molten glass and gas components in the bubbles contained in the molten glass are released, so the partial pressure of the selected air and the selected nitrogen type There is a problem that the partial pressure of the active gas is easily reduced. Further, there is a problem that the gas composition of the atmosphere easily changes from the atmosphere enriched with the selected nitrogen type inert gas.
 また特許文献2に記載の方法は、清澄チャンバ内で発生する泡沫の破壊という点では必ずしも十分ではなかった。すなわち、機械的回転体やジェット流の使用は、溶融ガラス上に既に存在している泡沫を破壊することはできるが、溶融ガラス流に乱れを生じる結果、新たな気泡の発生原因となる。また、清澄チャンバ内において、泡沫を局所的に破壊することはできるが、機械的回転体やジェット流よりも下流側で新たに発生した泡沫を破壊することはできない。また、機械的回転体の使用は溶融ガラスの汚染源となるおそれがあるし、ジェット流の使用は溶融ガラスの温度を低下させてガラスの品質を低下させるおそれがある。 Further, the method described in Patent Document 2 is not always sufficient in terms of breaking the foam generated in the clarification chamber. In other words, the use of a mechanical rotating body or a jet flow can destroy the foam already existing on the molten glass, but the turbulence in the molten glass flow results in the generation of new bubbles. In the clarification chamber, the foam can be locally destroyed, but the newly generated foam cannot be destroyed downstream of the mechanical rotating body or the jet flow. Also, the use of a mechanical rotating body may be a source of contamination of molten glass, and the use of a jet stream may reduce the temperature of the molten glass and reduce the quality of the glass.
 また、理論上は、溶融ガラス上方の雰囲気の減圧度を高めるほど(雰囲気の絶対圧を低くするほど)、減圧脱泡の効果が向上し、溶融ガラス流内の気泡が減少するはずである。しかし、実際には、雰囲気の減圧度(雰囲気の絶対圧)がある段階に達すると、気泡の生成速度が破泡による気泡消滅速度を上回り、溶融ガラス表面で泡層が肥大化することにより、減圧脱泡能力が低下してしまう。このような現象を過減圧による泡層の肥大化という。結果として、溶融ガラス流内の気泡がかえって増加する。したがって、減圧脱泡の効果を十分発揮できる雰囲気の減圧度(雰囲気の絶対圧)の範囲はかなり狭く、大気圧の変動等の外的要因によっても減圧脱泡の効果が影響されることが問題となっていた。 Theoretically, the higher the degree of decompression of the atmosphere above the molten glass (the lower the absolute pressure of the atmosphere), the more the effect of decompression defoaming should be improved, and the bubbles in the molten glass flow should decrease. However, in reality, when the degree of decompression of the atmosphere (absolute pressure of the atmosphere) reaches a certain stage, the bubble generation rate exceeds the bubble extinction rate due to bubble breakage, and the foam layer enlarges on the surface of the molten glass, Depressurization defoaming ability will fall. Such a phenomenon is called enlargement of the foam layer due to excessive decompression. As a result, bubbles in the molten glass stream increase on the contrary. Therefore, the range of the degree of pressure reduction (absolute absolute pressure) of the atmosphere that can fully exhibit the effect of vacuum degassing is quite narrow, and the effect of vacuum degassing is affected by external factors such as atmospheric pressure fluctuations. It was.
 上記した従来技術の問題点を解決するため、本発明は、溶融ガラスの減圧脱泡の効果に優れた減圧脱泡装置、より具体的には、過減圧による泡層の肥大化によって減圧脱泡の効果が低下することが防止された溶融ガラスの減圧脱泡装置を提供することを目的とする。 In order to solve the above-described problems of the prior art, the present invention relates to a vacuum degassing apparatus excellent in the effect of vacuum degassing of molten glass, more specifically, vacuum degassing by enlargement of a foam layer due to excessive vacuuming. An object of the present invention is to provide a vacuum degassing apparatus for molten glass in which the effect of the above is prevented from being lowered.
 本発明者らは、上記目的を達成するため鋭意検討した結果、溶融ガラス表面で気泡が破泡することによって発生したガス成分が、減圧脱泡槽内を流通する溶融ガラスの上方に滞留することによって減圧脱泡の効果が低下することを見出した。以下、本明細書において、溶融ガラス表面で気泡が破泡することによって発生したガス成分のことを「溶融ガラスからのガス成分」とし、溶融ガラスからのガス成分が減圧脱泡槽内を流通する溶融ガラスの上方に滞留することを「溶融ガラスからのガス成分の滞留」とする。
 溶融ガラスからのガス成分が滞留すると、溶融ガラス上方の雰囲気
(減圧脱泡槽内部の溶融ガラスの上部空間)で溶融ガラスからのガス成分の分圧が高くなるので、溶融ガラス表面に浮上した気泡が破泡しにくくなり、減圧脱泡の効果が低下すると考えられる。
 また、本発明者らは、溶融ガラスからのガス成分の滞留を解消することにより、溶融ガラス表面の破泡速度が高まり、過減圧による泡層の肥大化を抑制することができることを見出した。
As a result of intensive studies to achieve the above object, the present inventors have found that gas components generated by bubbles breaking on the surface of the molten glass stay above the molten glass flowing in the vacuum degassing tank. It has been found that the effect of vacuum degassing is reduced. Hereinafter, in this specification, a gas component generated by bubbles breaking on the surface of the molten glass is referred to as “gas component from molten glass”, and the gas component from the molten glass circulates in the vacuum degassing tank. Retaining above the molten glass is referred to as “retaining gas components from the molten glass”.
If the gas component from the molten glass stays, the partial pressure of the gas component from the molten glass increases in the atmosphere above the molten glass (the upper space of the molten glass inside the vacuum degassing tank), so bubbles that float on the surface of the molten glass Is considered to be difficult to break, and the effect of vacuum degassing is reduced.
Further, the present inventors have found that by eliminating the retention of gas components from the molten glass, the bubble breaking speed on the surface of the molten glass is increased, and the enlargement of the foam layer due to excessive decompression can be suppressed.
 本発明は、上記した本発明者らの知見に基づいてなされたものであり、内部の気圧が大気圧未満に設定され、供給された溶融ガラス中の泡を浮上及び破泡させる減圧脱泡槽と、前記減圧脱泡槽に接続され、脱泡処理前の溶融ガラスを吸引上昇させて該減圧脱泡槽に導入する上昇管と、前記減圧脱泡槽に接続され、脱泡処理後の溶融ガラスを該減圧脱泡槽から下降させて導出する下降管と、を具備する溶融ガラスの減圧脱泡装置において、
 少なくとも2つの接続管により前記減圧脱泡槽と接続される中空構造の雰囲気制御部を有し、前記雰囲気制御部には該雰囲気制御部内を排気して減圧するための排気口が設けられており、前記雰囲気制御部には、少なくとも1つの前記接続管との関係で下記(1)及び(2)を満たす第1のガス供給管が設けられていることを特徴とする溶融ガラスの減圧脱泡装置(以下、「本発明の減圧脱泡装置」とする。)を提供する。
(1)前記雰囲気制御部と前記接続管とがなす開口部を、前記接続管の管軸方向に沿って前記雰囲気制御部内部へと延ばした仮想領域を、前記第1のガス供給管から供給されるガス流が横切る。
(2)前記第1のガス供給管の先端から該ガス供給管の管軸に沿って延ばした仮想線が、前記雰囲気制御部と前記接続管とがなす開口部を通過しない。
The present invention has been made on the basis of the above-mentioned findings of the present inventors, and the internal pressure is set to be lower than the atmospheric pressure, and a vacuum degassing tank that floats and breaks bubbles in the supplied molten glass. And a riser pipe that is connected to the vacuum degassing tank and sucks and raises the molten glass before the defoaming process and introduces it into the vacuum degassing tank, and is connected to the vacuum degassing tank and melted after the defoaming process. In a vacuum degassing apparatus for molten glass, comprising a downcomer pipe that descends the glass from the vacuum degassing tank and leads it out,
It has a hollow atmosphere control unit connected to the vacuum deaeration tank by at least two connecting pipes, and the atmosphere control unit is provided with an exhaust port for exhausting and depressurizing the atmosphere control unit. The atmosphere control unit is provided with a first gas supply pipe satisfying the following (1) and (2) in relation to at least one of the connecting pipes, and the vacuum degassing of molten glass is provided: An apparatus (hereinafter referred to as “the vacuum degassing apparatus of the present invention”) is provided.
(1) A virtual region in which an opening formed by the atmosphere control unit and the connection pipe extends into the atmosphere control unit along the tube axis direction of the connection pipe is supplied from the first gas supply pipe Gas flow crosses.
(2) An imaginary line extending from the tip of the first gas supply pipe along the tube axis of the gas supply pipe does not pass through the opening formed by the atmosphere control unit and the connection pipe.
 本発明の減圧脱泡装置において、前記接続管の数をXとするとき、前記第1のガス供給管の数がX-1以下(但し、前記第1のガス供給管の数は1以上)であることが好ましい。 In the vacuum degassing apparatus of the present invention, when the number of the connecting pipes is X, the number of the first gas supply pipes is X-1 or less (however, the number of the first gas supply pipes is 1 or more). It is preferable that
 本発明の減圧脱泡装置において、前記第1のガス供給管から供給されるガス流が、水蒸気濃度60mol%以下の低水分ガス流であることが好ましい。 In the vacuum degassing apparatus of the present invention, the gas flow supplied from the first gas supply pipe is preferably a low moisture gas flow having a water vapor concentration of 60 mol% or less.
 本発明の減圧脱泡装置において、前記減圧脱泡槽内の溶融ガラスの上部空間に水蒸気濃度60mol%以下の低水分ガスを供給する第2のガス供給管がさらに設けられていることが好ましい。 In the vacuum degassing apparatus of the present invention, it is preferable that a second gas supply pipe for supplying a low moisture gas having a water vapor concentration of 60 mol% or less is further provided in the upper space of the molten glass in the vacuum degassing tank.
 本発明の減圧脱泡装置では、第1のガス供給管から仮想領域を横切るようにガス流を供給することで生じるベンチュリ効果により雰囲気制御部と減圧脱泡槽との間に圧力差が生じ、この圧力差によって雰囲気制御部と減圧脱泡槽とを循環するガス流が生じる。このガス流によって、溶融ガラスからのガス成分の滞留を解消することができる。溶融ガラスからのガス成分の滞留が解消されることによって、減圧脱泡の効果の低下が防止される。
 また、溶融ガラスからのガス成分の滞留が解消されることによって、過減圧による泡層の肥大化が発生しにくくなる。この結果、減圧脱泡槽内の減圧度をより高くすることができ、減圧脱泡の効果を向上させることができる。
In the vacuum degassing apparatus of the present invention, a pressure difference is generated between the atmosphere control unit and the vacuum degassing tank due to the venturi effect generated by supplying the gas flow across the virtual region from the first gas supply pipe, This pressure difference causes a gas flow that circulates between the atmosphere controller and the vacuum degassing tank. This gas flow can eliminate stagnation of gas components from the molten glass. By eliminating the stagnation of gas components from the molten glass, a reduction in the effect of vacuum degassing is prevented.
In addition, by eliminating the retention of gas components from the molten glass, the foam layer is less likely to be enlarged due to excessive decompression. As a result, the degree of vacuum in the vacuum degassing tank can be increased, and the effect of vacuum degassing can be improved.
 第1のガス供給管から供給するガスとして水蒸気濃度60mol%以下の低水分ガスを用いた場合、溶融ガラスからのガス成分の滞留が解消される効果に加えて、減圧脱泡槽内の溶融ガラス上方の雰囲気で、水蒸気濃度が低減する効果が期待される。該雰囲気の水蒸気濃度が低減されることによって、減圧脱泡槽内の溶融ガラス表面の泡層が肥大化して突沸が生じることを防止でき、減圧脱泡の効果をさらに向上させることができる。
 また、該雰囲気の水蒸気濃度が低減されることによって、溶融ガラス中の揮散しやすい特定成分、例えば、B、Cl、F、S等の揮散を抑制することができ、これらの成分の揮散によるガラス組成の変化を抑制することができる。
When a low moisture gas having a water vapor concentration of 60 mol% or less is used as the gas supplied from the first gas supply pipe, in addition to the effect of eliminating the retention of gas components from the molten glass, the molten glass in the vacuum degassing tank The effect of reducing the water vapor concentration is expected in the upper atmosphere. By reducing the water vapor concentration of the atmosphere, it is possible to prevent the bubble layer on the surface of the molten glass in the vacuum degassing tank from being enlarged and to cause bumping, and the effect of vacuum degassing can be further improved.
Moreover, by reducing the water vapor concentration in the atmosphere, it is possible to suppress the volatilization of specific components such as B, Cl, F, and S that are easily volatilized in the molten glass, and the glass by volatilization of these components A change in composition can be suppressed.
本発明の減圧脱泡装置の一構成例を示す断面図。Sectional drawing which shows one structural example of the vacuum deaeration apparatus of this invention. 減圧脱泡装置10の仮想領域19の付近を示した部分拡大図。The partial enlarged view which showed the vicinity of the virtual area | region 19 of the vacuum degassing apparatus 10. FIG. 図2と同様の部分拡大図。The elements on larger scale similar to FIG. 図2と同様の部分拡大図。The elements on larger scale similar to FIG. 図2と同様の部分拡大図。The elements on larger scale similar to FIG. 図2と同様の部分拡大図。The elements on larger scale similar to FIG. 図2と同様の部分拡大図。The elements on larger scale similar to FIG. 本発明の減圧脱泡装置の別の一構成例を示す断面図。Sectional drawing which shows another one structural example of the vacuum deaeration apparatus of this invention.
符号の説明Explanation of symbols
 10,10´:減圧脱泡装置
 11:減圧脱泡槽
 12:上昇管
 13:下降管
 14:雰囲気制御部
 15,16:接続管
 17:排気口
 18:開口部
 19:仮想領域
 20:第1のガス供給管
 21:仮想線
 24:第2のガス供給管
 100,120:ガス流
 140:低水分ガス
 200:溶解槽
 220:上流ピット
 240:下流ピット
 G:溶融ガラス
DESCRIPTION OF SYMBOLS 10,10 ': Depressurization degassing apparatus 11: Depressurization defoaming tank 12: Rising pipe 13: Downcomer pipe 14: Atmosphere control part 15, 16: Connection pipe 17: Exhaust port 18: Opening part 19: Virtual area 20: 1st Gas supply pipe 21: Virtual line 24: Second gas supply pipe 100, 120: Gas flow 140: Low moisture gas 200: Melting tank 220: Upstream pit 240: Downstream pit G: Molten glass
 以下、図面を参照して本発明を説明する。
 図1は、本発明の減圧脱泡装置の一構成例を示す断面図である。図1に示す減圧脱泡装置10は、円筒形状をした減圧脱泡槽11を有する。減圧脱泡槽11は、内部の気圧が大気圧未満に設定されており、供給された溶融ガラスG中の泡を浮上及び破泡させる。減圧脱泡槽11には、上昇管12および下降管13が接続されている。上昇管12は、脱泡処理前の溶融ガラスGを吸引上昇させて該減圧脱泡槽11に導入する溶融ガラスGの導入手段である。このため、上昇管12の下端部は、上流ピット220内の溶融ガラスGに浸漬されている。上流ピット220には、溶解槽200から溶融ガラスGが供給される。一方、下降管13は、脱泡処理後の溶融ガラスGを該減圧脱泡槽11から下降させて導出する溶融ガラスGの導出手段である。このため、下降管13の下端部は、下流ピット240内の溶融ガラスGに浸漬されている。下流ピット240内の溶融ガラスGは、後工程の処理槽(図示していない)へと導出される。
 以下、本明細書において、「上流」および「下流」と言った場合、減圧脱泡装置10を流通する溶融ガラスGの流動方向における上流および下流を意味する。
 なお、図示していないが、減圧脱泡槽11は、通常、減圧ハウジング内に収容されており、減圧ハウジングを減圧吸引することにより、減圧脱泡槽11内部の気圧を大気圧未満の減圧状態に保持する。一方、減圧脱泡槽11が減圧ハウジング内に収容されていない場合、減圧脱泡槽11の溶融ガラスGの上部空間を、減圧ポンプ等を用いて減圧吸引することで、減圧脱泡槽11内部の気圧を大気圧未満の減圧状態に保持する。
The present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of the configuration of the vacuum degassing apparatus of the present invention. A vacuum degassing apparatus 10 shown in FIG. 1 includes a vacuum degassing tank 11 having a cylindrical shape. The internal pressure of the vacuum degassing tank 11 is set to be lower than atmospheric pressure, and the bubbles in the supplied molten glass G are floated and broken. An ascending pipe 12 and a descending pipe 13 are connected to the vacuum degassing tank 11. The ascending pipe 12 is a means for introducing the molten glass G that sucks and raises the molten glass G before the defoaming treatment and introduces it into the vacuum degassing tank 11. For this reason, the lower end portion of the rising pipe 12 is immersed in the molten glass G in the upstream pit 220. The molten glass G is supplied from the melting tank 200 to the upstream pit 220. On the other hand, the downcomer 13 is a derivation means for the molten glass G that descends the defoamed molten glass G from the vacuum degassing tank 11 and derives it. For this reason, the lower end of the downcomer 13 is immersed in the molten glass G in the downstream pit 240. The molten glass G in the downstream pit 240 is led to a processing tank (not shown) in a subsequent process.
Hereinafter, in the present specification, the terms “upstream” and “downstream” mean upstream and downstream in the flow direction of the molten glass G flowing through the vacuum degassing apparatus 10.
Although not shown, the vacuum degassing tank 11 is usually housed in a vacuum housing, and the pressure inside the vacuum degassing tank 11 is reduced to a pressure lower than atmospheric pressure by sucking the vacuum housing under reduced pressure. Hold on. On the other hand, when the vacuum degassing tank 11 is not accommodated in the vacuum housing, the upper space of the molten glass G in the vacuum degassing tank 11 is sucked under reduced pressure using a vacuum pump or the like, so that the interior of the vacuum degassing tank 11 is reduced. Is maintained at a reduced pressure below atmospheric pressure.
 本発明の減圧脱泡装置10は、少なくとも2つの接続管15,16により減圧脱泡槽11と接続される雰囲気制御部14を有している。雰囲気制御部14は、内部が中空構造であり、該雰囲気制御部14内を排気して減圧するための排気口17が設けられている。雰囲気制御部14は、該雰囲気制御部14と、減圧脱泡槽11内の溶融ガラスGの上部空間と、を循環するガス流120の経路をなす。したがって、本発明の減圧脱泡装置10では、排気口17から雰囲気制御部14内を排気して減圧することによって、減圧脱泡槽11内部の気圧を大気圧未満の減圧状態に保持する。減圧脱泡装置10が減圧ハウジングを有する場合、減圧ハウジングを減圧吸引することにより、排気口17から雰囲気制御部14内が排気され減圧されることによって、減圧脱泡槽11内部の気圧が大気圧未満の減圧状態に保持される。一方、減圧脱泡槽11が減圧ハウジングを有しない場合、排気口17から雰囲気制御部14内を、減圧ポンプ等を用いて排気して減圧することによって、減圧脱泡槽11内部の気圧を大気圧未満の減圧状態に保持する。 The vacuum degassing apparatus 10 of the present invention has an atmosphere control unit 14 connected to the vacuum degassing tank 11 by at least two connecting pipes 15 and 16. The atmosphere control unit 14 has a hollow structure, and is provided with an exhaust port 17 for exhausting and depressurizing the atmosphere control unit 14. The atmosphere control unit 14 forms a path of the gas flow 120 that circulates between the atmosphere control unit 14 and the upper space of the molten glass G in the vacuum degassing tank 11. Therefore, in the vacuum degassing apparatus 10 of the present invention, the atmosphere control unit 14 is exhausted from the exhaust port 17 to reduce the pressure, thereby maintaining the pressure inside the vacuum degassing tank 11 in a reduced pressure state less than atmospheric pressure. When the vacuum degassing apparatus 10 has a vacuum housing, the atmospheric pressure inside the vacuum degassing tank 11 is changed to atmospheric pressure by sucking the vacuum housing under reduced pressure and exhausting the atmosphere control unit 14 from the exhaust port 17 to reduce the pressure. Is maintained at a reduced pressure of less than On the other hand, when the vacuum degassing tank 11 does not have a vacuum housing, the atmospheric pressure inside the vacuum degassing tank 11 is increased by evacuating the atmosphere control unit 14 from the exhaust port 17 using a vacuum pump or the like. Maintain a reduced pressure below atmospheric pressure.
 ここで、雰囲気制御部14は、該雰囲気制御部14と、減圧脱泡槽11内の溶融ガラスGの上部空間と、を循環するガス流120の経路をなすため、接続管15,16は、減圧脱泡槽11内の溶融ガラスGの液面よりも上方で減圧脱泡槽11と接続する必要がある。このため、図1に示すように、雰囲気制御部14を減圧脱泡槽11の上方に配置することは好ましい態様である。但し、接続管15,16が減圧脱泡槽11内の溶融ガラスGの液面よりも上方で減圧脱泡槽11と接続されるのであれば、雰囲気制御部14を減圧脱泡槽11の側方に配置してもよい。
 また、該雰囲気制御部14と、減圧脱泡槽11内の溶融ガラスGの上部空間と、を循環するガス流120の経路を形成するため、接続管15,16は、少なくとも2本必要である。なお、図1に示す減圧脱泡装置10では、2本の接続管15,16で減圧脱泡槽11と雰囲気制御部14とを接続しているが、3本以上の接続管で減圧脱泡槽11と雰囲気制御部14とを接続してもよい。
 また、減圧脱泡槽11に流入するガス流120の温度が低いと、減圧脱泡槽11内の溶融ガラスGに悪影響をおよぼすおそれがあるため、雰囲気制御部14、および接続管15,16は、加熱機構を有することが好ましい。但し、雰囲気制御部14、および、全ての接続管15,16に加熱機構を設けることは必ずしも必要ではなく、少なくとも、減圧脱泡槽11にガス流120が流入する側の接続管(図1の場合、接続管15)に加熱機構を設ければ、減圧脱泡槽11に温度が低いガス流120が流入して、減圧脱泡槽11内の溶融ガラスGに悪影響をおよぼすおそれを解消することができる。
Here, the atmosphere control unit 14 forms a path of the gas flow 120 that circulates between the atmosphere control unit 14 and the upper space of the molten glass G in the vacuum defoaming tank 11. It is necessary to connect to the vacuum degassing tank 11 above the liquid surface of the molten glass G in the vacuum degassing tank 11. For this reason, as shown in FIG. 1, it is a preferable aspect to arrange the atmosphere control unit 14 above the vacuum degassing tank 11. However, if the connection pipes 15 and 16 are connected to the vacuum degassing tank 11 above the liquid level of the molten glass G in the vacuum degassing tank 11, the atmosphere control unit 14 is connected to the vacuum degassing tank 11 side. You may arrange in the direction.
Moreover, in order to form the path | route of the gas flow 120 which circulates through this atmosphere control part 14 and the upper space of the molten glass G in the vacuum degassing tank 11, at least two connection pipes 15 and 16 are required. . In the vacuum degassing apparatus 10 shown in FIG. 1, the vacuum degassing tank 11 and the atmosphere control unit 14 are connected by two connecting pipes 15 and 16, but the vacuum degassing is performed by three or more connecting pipes. The tank 11 and the atmosphere control unit 14 may be connected.
In addition, if the temperature of the gas flow 120 flowing into the vacuum degassing tank 11 is low, the molten glass G in the vacuum degassing tank 11 may be adversely affected, so the atmosphere control unit 14 and the connection pipes 15 and 16 are It is preferable to have a heating mechanism. However, it is not always necessary to provide a heating mechanism in the atmosphere control unit 14 and all the connection pipes 15 and 16, and at least the connection pipe (see FIG. 1) on the side where the gas flow 120 flows into the vacuum degassing tank 11. In this case, if the connecting pipe 15) is provided with a heating mechanism, the gas flow 120 having a low temperature flows into the vacuum degassing tank 11 to eliminate the possibility of adversely affecting the molten glass G in the vacuum degassing tank 11. Can do.
 本発明の減圧脱泡装置10には、雰囲気制御部14内にガスを供給する第1のガス供給管20が設けられている。ここで、第1のガス供給管20は、少なくとも1つの接続管(図1の場合、接続管16)との関係で下記(1)、(2)を満たす。
(1)雰囲気制御部14と接続管16とがなす開口部18を、接続管16の管軸方向に沿って雰囲気制御部14内部へと延ばした仮想領域19(図1の場合、雰囲気制御部14内において開口部18の上方の領域)を、第1のガス供給管20から供給されるガス100が横切る。
(2)第1のガス供給管20の先端から該ガス供給管20の管軸に沿って延ばした仮想線21(図5参照)が、雰囲気制御部14と接続管16とがなす開口部18を通過しない。
 以下、(1)、(2)を満たすことが必要な理由について説明する。
The vacuum degassing apparatus 10 of the present invention is provided with a first gas supply pipe 20 that supplies gas into the atmosphere control unit 14. Here, the first gas supply pipe 20 satisfies the following (1) and (2) in relation to at least one connection pipe (in the case of FIG. 1, the connection pipe 16).
(1) A virtual region 19 in which the opening 18 formed by the atmosphere control unit 14 and the connection pipe 16 extends into the atmosphere control unit 14 along the tube axis direction of the connection pipe 16 (in the case of FIG. 1, the atmosphere control unit 14, the gas 100 supplied from the first gas supply pipe 20 crosses the region above the opening 18.
(2) An imaginary line 21 (see FIG. 5) extending from the tip of the first gas supply pipe 20 along the tube axis of the gas supply pipe 20 is an opening 18 formed by the atmosphere control unit 14 and the connection pipe 16. Do not pass through.
Hereinafter, the reason why it is necessary to satisfy (1) and (2) will be described.
 第1のガス供給管20から、開口部18上方の仮想領域19を横切るようにガス流100を供給すると、ベルヌーイ則(式(1))にしたがって第1のガス供給管20の出口付近の圧力が低下し、ベンチュリ効果が生じる。
p/ρ+v2/2g+z=const (1)
p:第1のガス供給管20の出口周辺の圧力(Pa)、ρ:ガス流100の密度(kg/m)、g:重力加速度(m/s)、v:ガス流100の流速(m/s)、z:雰囲気制御部14内における第1のガス供給管20の出口部の高さ(雰囲気制御部底面からの高さ)(m)
 この結果、減圧脱泡槽11との間に圧力勾配が生じ、開口部18付近の圧力が減圧脱泡槽11に比べて圧力が低くなる圧力差が生じる。この圧力差によって、開口部18付近の圧力(すなわち、接続管16側の圧力)が低くなり、雰囲気制御部14と接続管15とがなす開口部から減圧脱泡槽11を通って開口部18に至る領域に圧力勾配が生じる。この結果、雰囲気制御部14と、減圧脱泡槽11内の溶融ガラスGの上方空間と、を循環するガス流(以下、「雰囲気制御部と減圧脱泡槽とを循環するガス流」という。)120が生じる。
When the gas flow 100 is supplied from the first gas supply pipe 20 so as to cross the virtual region 19 above the opening 18, the pressure near the outlet of the first gas supply pipe 20 according to Bernoulli's law (equation (1)). Decreases and a venturi effect occurs.
p / ρ + v 2 / 2g + z = const (1)
p: pressure around the outlet of the first gas supply pipe 20 (Pa), ρ: density of the gas flow 100 (kg / m 3 ), g: acceleration of gravity (m / s), v: flow velocity of the gas flow 100 ( m / s), z: height of the outlet of the first gas supply pipe 20 in the atmosphere control unit 14 (height from the bottom of the atmosphere control unit) (m)
As a result, a pressure gradient is generated between the vacuum degassing tank 11 and a pressure difference is generated in which the pressure near the opening 18 is lower than that of the vacuum degassing tank 11. Due to this pressure difference, the pressure in the vicinity of the opening 18 (that is, the pressure on the connecting pipe 16 side) decreases, and the opening 18 passes through the vacuum degassing tank 11 from the opening formed by the atmosphere control unit 14 and the connecting pipe 15. A pressure gradient is generated in the region leading to. As a result, a gas flow that circulates between the atmosphere control unit 14 and the space above the molten glass G in the vacuum degassing tank 11 (hereinafter referred to as “gas flow that circulates between the atmosphere control unit and the vacuum degassing tank”). ) 120 is generated.
 ここで、雰囲気制御部と減圧脱泡槽とを循環するガス流120を生じさせるのに十分な圧力差を生じさせるのに必要なガス流100の流速vは、ガス流100の密度ρ、雰囲気制御部14内における第1のガス供給管20の出口部の高さz、および開口部18の面積Aによっても異なるが、ガス流100の流速vが下記式(2)を満たせば、雰囲気制御部と減圧脱泡槽とを循環するガス流120を生じさせるのに十分な圧力差が生じることとなる。
v > A/0.031× [5.487×10-6×(1/56.353-1/ρ)+19.6×(0.163-z)+7.52 ] 1/2  (2)
 ガス流100の流速vは、下記式(3)を満たすことがより好ましく、下記式(4)を満たすことがさらに好ましい。
v > A/0.031× [5.487×10-6×(1/56.353-1/ρ)+19.6×(0.163-z)+8.42 ]1/2   (3)
v > A/0.031× [5.487×10-6×(1/56.353-1/ρ)+19.6×(0.163-z)+9.82 ]1/2 (4)
Here, the flow velocity v of the gas flow 100 necessary to generate a pressure difference sufficient to generate the gas flow 120 that circulates between the atmosphere controller and the vacuum degassing tank is the density ρ of the gas flow 100, the atmosphere Depending on the height z of the outlet of the first gas supply pipe 20 in the control unit 14 and the area A of the opening 18, the atmosphere control is performed if the flow velocity v of the gas flow 100 satisfies the following equation (2). A pressure difference sufficient to produce a gas stream 120 that circulates between the chamber and the vacuum degassing vessel.
v> A / 0.031 × [5.487 × 10 −6 × (1 / 56.3533-1 / ρ) + 19.6 × (0.163−z) +7.5 2 ] 1/2 (2)
The flow velocity v of the gas flow 100 preferably satisfies the following formula (3), and more preferably satisfies the following formula (4).
v> A / 0.031 × [5.487 × 10 −6 × (1 / 56.3533-1 / ρ) + 19.6 × (0.163−z) +8.4 2 ] 1/2 (3)
v> A / 0.031 × [5.487 × 10 −6 × (1 / 56.3533-1 / ρ) + 19.6 × (0.163−z) +9.8 2 ] 1/2 (4)
 雰囲気制御部14と、減圧脱泡槽11と、を循環するガス流120が生じる結果、溶融ガラスGからのガス成分の滞留を解消する。すなわち、溶融ガラスGからのガス成分は滞留することなく、ガス流120によって雰囲気制御部14へと運ばれる。雰囲気制御部14に運ばれた溶融ガラスGからのガス成分は、排気口17から外部に放出される。雰囲気制御部14に運ばれた溶融ガラスGからのガス成分の一部が、ガス流120によって運ばれて減圧脱泡槽11内の溶融ガラスGの上方空間に戻る場合もあるが、減圧脱泡槽11内の溶融ガラスGの雰囲気制御部14と、減圧脱泡槽11と、を循環するガス流120が存在すること、および、溶融ガラスGからのガス成分はガス流120によって希釈されていることから、溶融ガラスGからのガス成分の滞留のリスクは最小限に抑えられている。なお、溶融ガラスGからのガス成分がガス流120によって希釈されることにより、溶融ガラスGからのガス成分が冷却される過程で減圧脱泡装置10内に付着したり、排気口17から放出された後、系内に付着することが防止される。
 溶融ガラスGからのガス成分が滞留すると、減圧脱泡槽11内の溶融ガラスG上方の雰囲気において、溶融ガラスGからのガス成分の分圧が高くなるので、溶融ガラスG表面に浮上した気泡が破泡しにくくなり減圧脱泡の効果が低下すると考えられる。
 本発明の減圧脱泡装置10では、溶融ガラスGからのガス成分の滞留が解消されることにより、減圧脱泡の効果の低下が起こらず、減圧脱泡の効果に優れている。
As a result of the gas flow 120 that circulates through the atmosphere control unit 14 and the vacuum degassing tank 11, the retention of gas components from the molten glass G is eliminated. That is, the gas component from the molten glass G is carried to the atmosphere control unit 14 by the gas flow 120 without staying. The gas component from the molten glass G carried to the atmosphere control unit 14 is discharged from the exhaust port 17 to the outside. In some cases, a part of the gas component from the molten glass G carried to the atmosphere control unit 14 is carried by the gas flow 120 and returns to the space above the molten glass G in the vacuum degassing tank 11. The presence of a gas flow 120 that circulates through the atmosphere control unit 14 of the molten glass G in the tank 11 and the vacuum degassing tank 11, and the gas component from the molten glass G is diluted by the gas flow 120. For this reason, the risk of stagnation of gas components from the molten glass G is minimized. In addition, when the gas component from the molten glass G is diluted by the gas flow 120, the gas component from the molten glass G adheres to the vacuum degassing apparatus 10 in the process of being cooled or is discharged from the exhaust port 17. After that, adhesion to the system is prevented.
When the gas component from the molten glass G stays, the partial pressure of the gas component from the molten glass G increases in the atmosphere above the molten glass G in the vacuum degassing tank 11, so that bubbles floating on the surface of the molten glass G are generated. It is considered that foaming becomes difficult and the effect of vacuum degassing is reduced.
In the vacuum degassing apparatus 10 of the present invention, the retention of gas components from the molten glass G is eliminated, so that the effect of vacuum degassing does not decrease, and the vacuum degassing effect is excellent.
 また、溶融ガラスGからのガス成分が滞留すると、過減圧による泡層の肥大化が起こり、減圧脱泡の効果が大幅に低下してしまうが、本発明の減圧脱泡装置10では、溶融ガラスGからのガス成分の滞留が解消されるため、減圧脱泡槽11の減圧度を従来よりも高くしても過減圧による泡層の肥大化が抑制できるようになる。したがって、減圧脱泡槽11の減圧度を従来よりも高くすることができ(減圧脱泡槽11の絶対圧を従来よりも低くすることができ)、減圧脱泡の効果をより高めることができる。 Further, if the gas component from the molten glass G stays, the foam layer is enlarged due to excessive decompression, and the effect of vacuum degassing is greatly reduced. In the vacuum degassing apparatus 10 of the present invention, the molten glass Since the stagnation of the gas component from G is eliminated, the enlargement of the foam layer due to excessive decompression can be suppressed even when the degree of decompression of the decompression defoaming tank 11 is made higher than before. Therefore, the pressure reduction degree of the vacuum degassing tank 11 can be made higher than before (the absolute pressure of the vacuum degassing tank 11 can be made lower than before), and the effect of the vacuum degassing can be further enhanced. .
 図1に示すように、雰囲気制御部14と、減圧脱泡槽11と、を循環するガス流120が生じた際、接続管16は、ガス流120を減圧脱泡槽11から導出するガス流導出管をなし、接続管15は、ガス流120を減圧脱泡槽11に導入するガス流導入管をなす。したがって、図1に示す減圧脱泡装置10のように、2本の接続管15,16を有する場合、いずれか一方の接続管との関係で上記(1),(2)を満たす第1のガス供給管を設ける必要があり、他方の接続管との関係では上記(1),(2)を満たす第1のガス供給管を設けてはならない。一方、減圧脱泡装置が3本以上の接続管を有する場合、2本以上の接続管との関係で上記(1),(2)を満たす第1のガス供給管を設けてもよいが、少なくとも1本の接続管との関係では上記(1),(2)を満たす第1のガス供給管を設けてはならない。
 すなわち、本発明の減圧脱泡装置において、接続管の数をXとするとき、第1のガス供給管の数がX-1以下(但し、第1のガス供給管の数は1以上)とする必要がある。
As shown in FIG. 1, when a gas flow 120 that circulates through the atmosphere control unit 14 and the vacuum degassing tank 11 is generated, the connecting pipe 16 connects the gas flow 120 to the gas degassing tank 11. The connecting pipe 15 forms a gas flow introduction pipe for introducing the gas flow 120 into the vacuum degassing tank 11. Therefore, like the vacuum degassing apparatus 10 shown in FIG. 1, when the two connecting pipes 15 and 16 are provided, the first satisfying the above (1) and (2) in relation to either one of the connecting pipes. A gas supply pipe must be provided, and the first gas supply pipe satisfying the above (1) and (2) must not be provided in relation to the other connection pipe. On the other hand, when the vacuum degassing apparatus has three or more connecting pipes, a first gas supply pipe satisfying the above (1) and (2) may be provided in relation to two or more connecting pipes. In relation to at least one connecting pipe, the first gas supply pipe satisfying the above (1) and (2) should not be provided.
That is, in the vacuum degassing apparatus of the present invention, when the number of connection pipes is X, the number of first gas supply pipes is X-1 or less (however, the number of first gas supply pipes is 1 or more). There is a need to.
 開口部18付近の圧力が減圧脱泡槽11に比べて圧力が低くなる圧力差を生じさせるためには、第1のガス供給管20から供給されるガス流100が仮想領域19を横切る必要である。図1では、第1のガス供給管20の先端が仮想領域19内に位置しており、該仮想領域19を横切るように、上流方向に向けてガス流100を供給する。図2は、減圧脱泡装置10の仮想領域19の付近を示した部分拡大図であり、第1のガス供給管20の先端の位置が図1とは異なる。図2では、第1のガス供給管20の先端が仮想領域19よりも下流側に位置しており、上流方向に向けてガス流100を供給する。仮想領域19を横切るように、上流方向に向けてガス流100を供給する。ガス流100の流速が十分大きく、仮想領域19を横切るようにガス流100を供給できるのであれば、このような配置であってもよい。
 また、図1の減圧脱泡装置10では、雰囲気制御部14の上方から挿入した第1のガス供給管20の先端を上流方向に湾曲させることで、該仮想領域19を横切るように、上流方向に向けてガス流100を供給しているが、雰囲気制御部14の下流側端面から水平方向に第1のガス供給管を挿入して、該仮想領域19を横切るように、上流方向に向けてガス流100を供給してもよい。
 一方、図3は、図2と同様の部分拡大図であるが、先端が仮想領域19よりも下流側に位置する第1のガス供給管20から下流方向に向けてガス流100を供給する。この場合、ガス流100が仮想領域19を横切らないので、上記(1)を満たさず、開口部18付近の圧力が減圧脱泡槽11に比べて圧力が低くなる圧力差を生じさせることができない。図3と同様の配置であっても、第1のガス供給管20の先端が仮想領域19よりも上流側に位置し、下流方向に向けてガス流100を供給した場合、ガス流100が仮想領域19を横切るので、上記(1)を満たし、開口部18付近の圧力が減圧脱泡槽11に比べて圧力が低くなる圧力差を生じさせることができる。
 また、図4は、図2と同様の部分拡大図であるが、第1のガス供給管20の先端の向きが図2とは異なり、斜め下方を向いている。この場合、第1のガス供給管20から供給されるガス流100が仮想領域19よりも手前側(下流側)の雰囲気制御部14の底部に向けて供給されることになるので、ガス流100が仮想領域19を横切らず、上記(1)を満たさず、開口部18付近の圧力が減圧脱泡槽11に比べて圧力が低くなる圧力差を生じさせることができない。
In order to generate a pressure difference in which the pressure in the vicinity of the opening 18 is lower than that in the vacuum degassing tank 11, the gas flow 100 supplied from the first gas supply pipe 20 needs to cross the virtual region 19. is there. In FIG. 1, the tip of the first gas supply pipe 20 is located in the virtual region 19, and the gas flow 100 is supplied in the upstream direction so as to cross the virtual region 19. FIG. 2 is a partially enlarged view showing the vicinity of the virtual region 19 of the vacuum degassing apparatus 10, and the position of the tip of the first gas supply pipe 20 is different from that in FIG. 1. In FIG. 2, the tip of the first gas supply pipe 20 is located on the downstream side of the virtual region 19 and supplies the gas flow 100 in the upstream direction. A gas flow 100 is supplied in the upstream direction so as to cross the virtual region 19. Such an arrangement may be used as long as the flow rate of the gas flow 100 is sufficiently large and the gas flow 100 can be supplied across the virtual region 19.
Further, in the vacuum degassing apparatus 10 of FIG. 1, the front end of the first gas supply pipe 20 inserted from above the atmosphere control unit 14 is curved in the upstream direction so as to cross the virtual region 19 in the upstream direction. The gas flow 100 is being supplied toward the upstream side, but the first gas supply pipe is inserted in the horizontal direction from the downstream end face of the atmosphere control unit 14, and is directed upstream so as to cross the virtual region 19. A gas stream 100 may be supplied.
On the other hand, FIG. 3 is a partially enlarged view similar to FIG. 2, but the gas flow 100 is supplied in the downstream direction from the first gas supply pipe 20 whose tip is located downstream of the virtual region 19. In this case, since the gas flow 100 does not cross the virtual region 19, the above (1) is not satisfied, and the pressure difference in the vicinity of the opening 18 cannot be caused to be lower than that in the vacuum degassing tank 11. . Even when the arrangement is the same as in FIG. 3, when the tip of the first gas supply pipe 20 is positioned upstream of the virtual region 19 and the gas flow 100 is supplied in the downstream direction, the gas flow 100 is virtually Since the region 19 is traversed, the above (1) is satisfied, and a pressure difference in which the pressure near the opening 18 becomes lower than that in the vacuum degassing tank 11 can be generated.
FIG. 4 is a partially enlarged view similar to FIG. 2, but the direction of the tip of the first gas supply pipe 20 is different from that in FIG. In this case, the gas flow 100 supplied from the first gas supply pipe 20 is supplied toward the bottom of the atmosphere control unit 14 on the front side (downstream side) of the virtual region 19. However, it does not cross the virtual region 19, does not satisfy the above (1), and cannot produce a pressure difference in which the pressure in the vicinity of the opening 18 becomes lower than that in the vacuum degassing tank 11.
 開口部18付近の圧力が減圧脱泡槽11に比べて圧力が低くなる圧力差を生じさせるためには、第1のガス供給管20から供給されるガス流120が仮想領域19を横切る必要があり、ガス流100が接続管16へと吹き込んではならない。このため、ガス供給管20の先端から該ガス供給管20の管軸に沿って延ばした仮想線21が、開口部18を通過しないように、第1のガス供給管20を配置する必要がある。図5は、図2と同様、図1に示す減圧脱泡装置10の仮想領域19付近の部分拡大図である。図5では、仮想線21が、上流方向に向けて水平方向に延びており、開口部18を通過せず、上記(2)を満たす。
 図6は、図5と同様の部分拡大図であるが、第1のガス供給管20の先端の向きが図5とは異なり、仮想線21が斜め下方を向いており、開口部18を通過するため、上記(2)を満たさない。
 図7は、図6と同様の部分拡大図であり、仮想線21が斜め下方を向いているが、雰囲気制御部14内における第1のガス供給管20の高さが図6のガス供給管20とは異なるため、仮想線21が開口部18を通過せず、上記(2)を満たす。これと同様に、仮想線21が斜め下方を向く場合であっても、仮想線21が斜め下方を向く角度が図6のガス供給管20に比べて小さく、開口部18を通過しない場合も上記(2)を満たす。
In order to generate a pressure difference in which the pressure in the vicinity of the opening 18 is lower than that in the vacuum degassing tank 11, the gas flow 120 supplied from the first gas supply pipe 20 needs to cross the virtual region 19. Yes, the gas flow 100 should not blow into the connecting pipe 16. For this reason, it is necessary to arrange the first gas supply pipe 20 so that the imaginary line 21 extending from the tip of the gas supply pipe 20 along the tube axis of the gas supply pipe 20 does not pass through the opening 18. . FIG. 5 is a partially enlarged view of the vicinity of the virtual region 19 of the vacuum degassing apparatus 10 shown in FIG. In FIG. 5, the virtual line 21 extends in the horizontal direction toward the upstream direction, does not pass through the opening 18, and satisfies the above (2).
FIG. 6 is a partially enlarged view similar to FIG. 5, but the direction of the tip of the first gas supply pipe 20 is different from FIG. 5, and the imaginary line 21 faces obliquely downward and passes through the opening 18. Therefore, the above (2) is not satisfied.
FIG. 7 is a partially enlarged view similar to FIG. 6, where the imaginary line 21 faces obliquely downward, but the height of the first gas supply pipe 20 in the atmosphere control unit 14 is the gas supply pipe of FIG. 6. Therefore, the virtual line 21 does not pass through the opening 18 and satisfies the above (2). Similarly, even when the virtual line 21 faces obliquely downward, the angle at which the virtual line 21 faces obliquely downward is smaller than that of the gas supply pipe 20 of FIG. Satisfy (2).
 本発明の減圧脱泡装置は、上記(1)、(2)を満たすように第1のガス供給管を配置すればよく、図示した態様、および、上記で説明した態様に限定されない。図示した態様、および、上記で説明した態様では、ガス流100の供給方向が上流方向または下流方向であったが、ガス流100の供給方向は、これら以外の方向、例えば、図面の手前方向または奥方向であってもよい。この場合、開口部18に対して図面の奥側または手前側に第1のガス供給管20を配置して、仮想領域19を横切るように、図面手前方向または奥方向にガス流100を供給する。 The vacuum degassing apparatus of the present invention may be provided with the first gas supply pipe so as to satisfy the above (1) and (2), and is not limited to the illustrated embodiment and the embodiment described above. In the illustrated embodiment and the embodiment described above, the supply direction of the gas flow 100 is the upstream direction or the downstream direction. However, the supply direction of the gas flow 100 may be other directions, for example, the front side of the drawing or It may be in the back direction. In this case, the first gas supply pipe 20 is arranged on the back side or the near side of the drawing with respect to the opening 18, and the gas flow 100 is supplied in the front or back direction of the drawing so as to cross the virtual region 19. .
 また、図示した態様では、水平方向または斜め下方に向けてガス流100を供給しているが、斜め上方に向けてガス流を供給してもよい。但し、開口部18付近の圧力が減圧脱泡槽11に比べて圧力が低くなる圧力差を効果的に生じさせるためには、ガス流100の供給方向は、接続管16の管軸に直交する方向、すなわち、水平方向であることが好ましい。但し、この場合、厳密な意味で接続管16の管軸に直交する方向にガス流100を供給することは必ずしも必要ではなく、接続管16の管軸に略直交する方向にガス流100を供給すればよい。ここで接続管16の管軸に略直交する方向とは、該管軸に直交する方向を0度とした場合、±45度の範囲であることが好ましく、±25度の範囲であることがより好ましく、±15度の範囲であることがさらに好ましい。 In the illustrated embodiment, the gas flow 100 is supplied in the horizontal direction or obliquely downward, but the gas flow may be supplied in an obliquely upward direction. However, in order to effectively generate a pressure difference in which the pressure in the vicinity of the opening 18 is lower than that in the vacuum degassing tank 11, the supply direction of the gas flow 100 is orthogonal to the tube axis of the connection pipe 16. It is preferable that the direction is the horizontal direction. However, in this case, it is not always necessary to supply the gas flow 100 in a direction perpendicular to the tube axis of the connection pipe 16 in a strict sense, and the gas flow 100 is supplied in a direction substantially orthogonal to the tube axis of the connection pipe 16. do it. Here, the direction substantially orthogonal to the tube axis of the connecting tube 16 is preferably within a range of ± 45 °, and is within a range of ± 25 °, where the direction orthogonal to the tube axis is 0 °. More preferably, the range is ± 15 degrees.
 また、図示した態様では、下流側の接続管16をガス流導出管とし、上流側の接続管15をガス流導入管としているが、上流側の接続管15をガス流導出管とし、下流側の接続管16をガス流導入管としてもよい。この場合、接続管15との関係で上記(1),(2)を満たす第1のガス供給管を設ける。
 また、接続管の数が3本以上の場合、ガス流導出管をなす接続管およびガス流導入管をなす接続管の配置は適宜選択することができる。例えば、図1に示す減圧脱泡装置において、上流側の接続管15と、下流側の接続管16と、の間に第3の接続管を設けた場合、接続管15,16との関係で上記(1),(2)を満たす第1のガス供給管を設けて、接続管15,16をガス流導出管とし、第3の接続管をガス流導入管としてもよい。または、第3の接続管との関係で上記(1),(2)を満たす第1のガス供給管を設けて、第3の接続管をガス流導出管とし、接続管15,16をガス流導入管としてもよい。
Further, in the illustrated embodiment, the downstream connection pipe 16 is a gas flow outlet pipe and the upstream connection pipe 15 is a gas flow inlet pipe. However, the upstream connection pipe 15 is a gas flow outlet pipe, and the downstream side The connection pipe 16 may be a gas flow introduction pipe. In this case, a first gas supply pipe that satisfies the above (1) and (2) in relation to the connection pipe 15 is provided.
When the number of connection pipes is three or more, the arrangement of the connection pipes forming the gas flow outlet pipes and the connection pipes forming the gas flow introduction pipes can be selected as appropriate. For example, in the vacuum degassing apparatus shown in FIG. 1, when a third connection pipe is provided between the upstream connection pipe 15 and the downstream connection pipe 16, the relationship with the connection pipes 15 and 16 is satisfied. A first gas supply pipe satisfying the above (1) and (2) may be provided, the connection pipes 15 and 16 may be gas flow outlet pipes, and the third connection pipe may be a gas flow introduction pipe. Alternatively, a first gas supply pipe satisfying the above (1) and (2) is provided in relation to the third connection pipe, the third connection pipe is used as a gas flow outlet pipe, and the connection pipes 15 and 16 are gas. It may be a flow introduction pipe.
 また、雰囲気制御部14と、減圧脱泡槽11と、を循環するガス流120の方向は、図示した態様に限定されず、図示した態様とは反対方向であってもよい。例えば、上流側の接続管15をガス流導出管、下流側の接続管16をガス流導入管とした場合、雰囲気制御部14と、減圧脱泡槽11と、を循環するガス流の方向は図示した態様とは反対方向となる。
 また、図示した態様では、2本の接続管の位置関係が上流側および下流側であるが、接続管の位置関係はこれに限定されない。例えば、2本の接続管の位置関係を図面手前側および奥側にしてもよい。この場合、雰囲気制御部14と、減圧脱泡槽11と、を循環するガス流の方向は、図示した態様でのガス流120の方向と直交する方向(雰囲気制御部14内におけるガス流の方向、および、減圧脱泡槽11内の溶融ガラスGの上方におけるガス流の方向が、それぞれ、図面手前側および奥側、または、図面奥側および手前側)となる。この場合、減圧脱泡槽11内におけるガス流120の方向が、溶融ガラスGの移動方向と直交する方向になる。図示した態様のように、減圧脱泡槽11が溶融ガラスGの流動方向に長い形状である場合、減圧脱泡槽11内の溶融ガラスGの上方におけるガス流120の方向は、溶融ガラスGの移動方向と同一方向または反対方向であることが、溶融ガラスGからのガス成分の滞留を解消させるうえで好ましいが、減圧脱泡槽が縦横方向における長さに有意な差が無い形状(例えば、減圧脱泡槽の平面形状が正方形、六角形、八角形等の形状)の場合、減圧脱泡槽11内におけるガス流120の方向が、溶融ガラスGの移動方向と直交する方向であっても、溶融ガラスGからのガス成分の滞留を解消することができる。
Further, the direction of the gas flow 120 circulating through the atmosphere control unit 14 and the vacuum degassing tank 11 is not limited to the illustrated mode, and may be the opposite direction to the illustrated mode. For example, when the upstream connection pipe 15 is a gas flow outlet pipe and the downstream connection pipe 16 is a gas flow introduction pipe, the direction of the gas flow circulating through the atmosphere control unit 14 and the vacuum degassing tank 11 is The direction is opposite to the illustrated embodiment.
In the illustrated embodiment, the positional relationship between the two connecting pipes is the upstream side and the downstream side, but the positional relationship between the connecting pipes is not limited to this. For example, the positional relationship between the two connecting pipes may be the front side and the back side of the drawing. In this case, the direction of the gas flow circulating through the atmosphere control unit 14 and the vacuum degassing tank 11 is a direction perpendicular to the direction of the gas flow 120 in the illustrated mode (the direction of the gas flow in the atmosphere control unit 14). And the direction of the gas flow above the molten glass G in the vacuum degassing tank 11 is the front side and back side of the drawing, or the back side and front side of the drawing, respectively. In this case, the direction of the gas flow 120 in the vacuum degassing tank 11 is a direction orthogonal to the moving direction of the molten glass G. When the vacuum degassing tank 11 has a shape that is long in the flow direction of the molten glass G as in the illustrated embodiment, the direction of the gas flow 120 above the molten glass G in the vacuum degassing tank 11 is the same as that of the molten glass G. The same direction as the moving direction or the opposite direction is preferable for eliminating the retention of gas components from the molten glass G, but the vacuum degassing tank has a shape with no significant difference in length in the vertical and horizontal directions (for example, When the planar shape of the vacuum degassing tank is a square, hexagon, octagon, or the like), even if the direction of the gas flow 120 in the vacuum degassing tank 11 is perpendicular to the moving direction of the molten glass G The retention of gas components from the molten glass G can be eliminated.
 開口部18付近の圧力が減圧脱泡槽11に比べて圧力が低くなる圧力差を生じさせるうえで、第1のガス供給管20から供給するガス流100の成分は特に限定されない。但し、ガス流100の成分は、溶融ガラスGや製造されるガラス製品、およびガラス製造設備、特に減圧脱泡装置に悪影響を及ぼすものではないことが好ましい。したがって、ガス流100の成分には、腐食性、爆発性のガスを含まないことが好ましい。 The component of the gas flow 100 supplied from the first gas supply pipe 20 is not particularly limited when the pressure in the vicinity of the opening 18 causes a pressure difference in which the pressure is lower than that in the vacuum degassing tank 11. However, it is preferable that the components of the gas stream 100 do not adversely affect the molten glass G, the manufactured glass product, and the glass manufacturing equipment, particularly the vacuum degassing apparatus. Therefore, it is preferable that the components of the gas stream 100 do not include corrosive and explosive gases.
 第1のガス供給管20から供給するガス流100として、水蒸気濃度60mol%以下の低水分ガスを用いた場合、溶融ガラスGからのガス成分の滞留を解消する効果に加えて、減圧脱泡槽11内の溶融ガラスG上方の雰囲気の水蒸気濃度を低減する効果が期待されることから好ましい。
 ガス流100として用いる低水分ガスは、水蒸気濃度が60mol%以下である限り特に限定されない。このような低水分ガスの具体例としては、大気、乾燥空気、N2やArのような不活性ガス等が挙げられる。ガス流100として、これら低水分ガスのうち1種類を用いてもよく、複数種類の低水分ガスの混合ガスを用いてもよい。
 ガス流100として低水分ガスを用いる場合、水蒸気濃度50mol%以下であることが好ましく、40mol%以下であることがより好ましく、30mol%以下であることがさらに好ましく、25mol%以下であることがさらに好ましく、20mol%以下であることがさらに好ましく、15mol%以下であることがさらに好ましく、10mol%以下であることがさらに好ましく、5mol%以下であることが特に好ましい。
When a low moisture gas having a water vapor concentration of 60 mol% or less is used as the gas flow 100 supplied from the first gas supply pipe 20, in addition to the effect of eliminating the retention of gas components from the molten glass G, a vacuum degassing tank 11 is preferable because the effect of reducing the water vapor concentration in the atmosphere above the molten glass G in 11 is expected.
The low moisture gas used as the gas flow 100 is not particularly limited as long as the water vapor concentration is 60 mol% or less. Specific examples of such low moisture gas include air, dry air, inert gas such as N 2 and Ar, and the like. As the gas flow 100, one of these low moisture gases may be used, or a mixed gas of a plurality of types of low moisture gases may be used.
When a low moisture gas is used as the gas flow 100, the water vapor concentration is preferably 50 mol% or less, more preferably 40 mol% or less, further preferably 30 mol% or less, and further preferably 25 mol% or less. Preferably, it is more preferably 20 mol% or less, further preferably 15 mol% or less, further preferably 10 mol% or less, and particularly preferably 5 mol% or less.
 減圧脱泡槽11内の溶融ガラスG上方の雰囲気の水蒸気濃度は、60mol%以下に低減されることが好ましい。該雰囲気の水蒸気濃度を60mol%以下とすることにより、減圧脱泡槽内の溶融ガラス表面の泡層が肥大化して突沸が生じることを防止でき、減圧脱泡の効果をさらに向上させることができる。
 また、該雰囲気の水蒸気濃度が低いほど溶融ガラス表面の泡層が薄くなる傾向があるので、減圧脱泡槽11内の溶融ガラスG上方の雰囲気の水蒸気濃度は50mol%以下であることが好ましく、40mol%以下であることがより好ましい。そして、水蒸気濃度が30mol%以下であると、泡層が更に薄くなる傾向があるので好ましい。
 また、該雰囲気の水蒸気濃度が低いと、ガラス組成によっては、1つ1つの気泡が収縮又は破泡する場合があり、これにより泡層は更に薄くなるので好ましい。具体的には、溶融ガラスがボロシリケートガラスの場合、水蒸気濃度が30mol%以下であると、気泡が顕著に収縮する傾向がある。なお、ここでいうボロシリケートガラスは例えば次のような組成である。
 組成の範囲:SiO2:55~74、Al23:10~20、B23:5~12、Al23/B23:1.5~3、MgO:0~5、CaO:0~5、SrO:0~12、BaO:0~12、SrO+BaO:6~12(単位は質量%)。
 更に、減圧脱泡槽11内の溶融ガラスG上方の雰囲気の水蒸気濃度が低いと、減圧脱泡を経て製造されるガラス製品に欠陥とみなされる程度の大きさの気泡が残存し難くなるので好ましい。該雰囲気の水蒸気濃度が更に低くなると、減圧脱泡を経て製造されるガラス製品に欠陥が生じる確率が更に低くなるので、25mol%以下であることがより好ましく、20mol%以下であることがより好ましく、15mol%以下であることがより好ましく、10mol%以下であることがより好ましく、5mol%以下であることが更に好ましい。
It is preferable that the water vapor concentration in the atmosphere above the molten glass G in the vacuum degassing tank 11 is reduced to 60 mol% or less. By setting the water vapor concentration of the atmosphere to 60 mol% or less, it is possible to prevent the bubble layer on the surface of the molten glass in the vacuum degassing tank from being enlarged and to cause bumping, and the effect of vacuum degassing can be further improved. .
In addition, since the bubble layer on the surface of the molten glass tends to be thinner as the water vapor concentration in the atmosphere is lower, the water vapor concentration in the atmosphere above the molten glass G in the vacuum degassing tank 11 is preferably 50 mol% or less. More preferably, it is 40 mol% or less. And it is preferable for the water vapor concentration to be 30 mol% or less because the foam layer tends to be further thinned.
Moreover, when the water vapor | steam density | concentration of this atmosphere is low, each bubble may shrink | contract or bubble-break depending on glass composition, and since a foam layer becomes still thinner by this, it is preferable. Specifically, when the molten glass is borosilicate glass, when the water vapor concentration is 30 mol% or less, the bubbles tend to contract significantly. The borosilicate glass here has, for example, the following composition.
Composition range: SiO 2 : 55 to 74, Al 2 O 3 : 10 to 20, B 2 O 3 : 5 to 12, Al 2 O 3 / B 2 O 3 : 1.5 to 3, MgO: 0 to 5 , CaO: 0 to 5, SrO: 0 to 12, BaO: 0 to 12, SrO + BaO: 6 to 12 (unit: mass%).
Furthermore, when the water vapor concentration in the atmosphere above the molten glass G in the vacuum degassing tank 11 is low, it is preferable because bubbles having a size that is regarded as a defect hardly remain in a glass product produced through vacuum degassing. . If the water vapor concentration in the atmosphere is further reduced, the probability that a glass product produced through vacuum degassing will be defective is further reduced. Therefore, it is more preferably 25 mol% or less, and more preferably 20 mol% or less. More preferably, it is 15 mol% or less, More preferably, it is 10 mol% or less, More preferably, it is 5 mol% or less.
 また、減圧脱泡槽11内の溶融ガラスG上方の雰囲気の水蒸気濃度を60mol%以下とすることで、溶融ガラスG中の特定の成分(ホウ素等)の揮散を抑制することができる。ホウ素等の成分の揮発を抑制することにより、ホウ素等の組成変動を防止できるとともに、組成変動に起因する平坦度の悪化を抑制することができる。
 また、揮発のしやすい他の成分、例えば、Cl、F、Sなどの揮散を抑制することもできるため、これらの成分の組成変動を防止できるとともに、組成変動に起因する平坦度の悪化を抑制することができる。
 これらCl、F、Sなどの成分の揮散は、雰囲気中の水分に大きく影響を受けていると考えられる。例えば、FはHFとして、SはH2SO4として揮散すると考えられる。よって、減圧脱泡槽11内の溶融ガラスG上方の雰囲気の水蒸気濃度をある一定の値以下とすることで、上記成分の揮発、および、それに伴う上記成分の組成変動を抑えることができると考えられる。
Moreover, volatilization of the specific components (boron etc.) in the molten glass G can be suppressed by making the water vapor | steam density | concentration of the atmosphere above the molten glass G in the vacuum degassing tank 11 into 60 mol% or less. By suppressing volatilization of components such as boron, it is possible to prevent variation in the composition of boron and the like, and to suppress deterioration in flatness due to composition variation.
In addition, volatilization of other easily volatile components such as Cl, F, and S can be suppressed, so that composition fluctuations of these components can be prevented and deterioration of flatness due to composition fluctuations can be suppressed. can do.
Volatilization of components such as Cl, F, and S is considered to be greatly influenced by moisture in the atmosphere. For example, it is considered that F is volatilized as HF and S is vaporized as H 2 SO 4 . Therefore, it is considered that volatilization of the above components and accompanying composition fluctuations of the above components can be suppressed by setting the water vapor concentration in the atmosphere above the molten glass G in the vacuum degassing tank 11 to a certain value or less. It is done.
 また、ガラスの特性は、その用途によって非常に細かい規格が存在し、その規格に適合するように非常に詳細にわたりガラスの組成が決められている。例えば、ホウ素の含有量についても当然規格が存在するが、従来の方法では、ホウ素が揮散するためより多くのホウ素を原料として用いる必要があった。また、従来では、ホウ素の揮散する量は条件によってまちまちであり、場合によっては、ホウ素の含有量の規格を外れる可能性があった。本発明の減圧脱泡装置では、ホウ素の揮散を抑制することにより、これらの問題点を解消することができ、有用である。
 この点からも、本発明の減圧脱泡装置は、通常のガラスは言うに及ばず、特にボロシリケートガラスを減圧脱泡する場合に好ましく用いることができるといえる。
In addition, the characteristics of glass have very fine specifications depending on the application, and the composition of the glass is determined in great detail so as to meet the specifications. For example, there is naturally a standard for the content of boron, but in the conventional method, since boron is volatilized, it is necessary to use more boron as a raw material. Conventionally, the amount of volatilization of boron varies depending on the conditions, and in some cases, there is a possibility that the standard of the content of boron may be deviated. The vacuum degassing apparatus of the present invention is useful because it can eliminate these problems by suppressing the volatilization of boron.
Also from this point, it can be said that the vacuum degassing apparatus of the present invention can be preferably used particularly when borosilicate glass is vacuum degassed, not to mention ordinary glass.
 ガス流100として用いる低水分ガスは、酸素濃度が空気中の酸素濃度よりも低いガスであることが好ましい。この酸素濃度は、15体積%以下であることがより好ましく、10体積%以下であることがより好ましく、5体積%以下であることがより好ましい。また、ガス流100として用いる低水分ガスは、酸素を含まない気体、例えばN2ガス、Arガス、CO2等であることが好ましい。
 減圧脱泡槽11は、溶融ガラスGの導管であるため、耐熱性及び溶融ガラスに対する耐食性に優れた材料を用いる必要があり、白金又は白金合金が広く用いられている。ガス流100として用いる低水分ガスとして、空気中の酸素濃度よりも酸素濃度が低いガスを用いることにより、減圧脱泡槽の材質として白金及び白金合金を用いている場合に、その白金の酸化を抑制し、減圧脱泡槽の寿命を延ばし、更に、ガラス製品において、この白金由来の欠陥の生成を抑制することができるので好ましい。
The low moisture gas used as the gas flow 100 is preferably a gas whose oxygen concentration is lower than the oxygen concentration in the air. The oxygen concentration is more preferably 15% by volume or less, more preferably 10% by volume or less, and more preferably 5% by volume or less. The low moisture gas used as the gas stream 100 is preferably a gas not containing oxygen, such as N 2 gas, Ar gas, CO 2 or the like.
Since the vacuum degassing tank 11 is a conduit for molten glass G, it is necessary to use a material excellent in heat resistance and corrosion resistance against molten glass, and platinum or platinum alloys are widely used. By using a gas having an oxygen concentration lower than the oxygen concentration in the air as the low moisture gas used as the gas flow 100, the platinum is oxidized when platinum and a platinum alloy are used as the material of the vacuum degassing tank. This is preferable because it suppresses the life of the vacuum degassing tank and further suppresses the generation of defects derived from platinum in glass products.
 白金合金の具体例としては、白金-金合金、白金-ロジウム合金が挙げられる。また、減圧脱泡槽に用いられる耐熱性及び溶融ガラスに対する耐食性に優れた材料の他の例としては、セラミックス系の非金属無機材料、緻密質耐火物が挙げられる。緻密質耐火物の具体例としては、例えば、アルミナ系電鋳耐火物、ジルコニア系電鋳耐火物、アルミナ-ジルコニア-シリカ系電鋳耐火物等の電鋳耐火物、並びに緻密質アルミナ系耐火物、緻密質ジルコニア-シリカ系耐火物及び緻密質アルミナ-ジルコニア-シリカ系耐火物等の緻密質焼成耐火物が挙げられる。
 なお、図1に示す減圧脱泡装置10において、減圧脱泡槽11と同様に、溶融ガラスGの導管をなす上昇管12及び下降管13の材料としても、白金若しくは白金合金、または緻密質耐火物が用いられる。
Specific examples of the platinum alloy include a platinum-gold alloy and a platinum-rhodium alloy. Other examples of materials having excellent heat resistance and corrosion resistance to molten glass used in a vacuum degassing tank include ceramic non-metallic inorganic materials and dense refractories. Specific examples of dense refractories include, for example, electrocast refractories such as alumina electrocast refractories, zirconia electrocast refractories, alumina-zirconia-silica electrocast refractories, and dense alumina refractories. And dense fired refractories such as dense zirconia-silica refractories and dense alumina-zirconia-silica refractories.
In the vacuum degassing apparatus 10 shown in FIG. 1, similarly to the vacuum degassing tank 11, platinum, a platinum alloy, or a dense refractory material is used as the material of the rising pipe 12 and the down pipe 13 that form a conduit for the molten glass G. Things are used.
 雰囲気制御部14、接続管15,16、および第1のガス供給管20は、溶融ガラスGの導管ではないので、その材料は特に限定されず、例えば、ステンレス鋼、白金、白金合金等の金属材料、セラミックス、アルミナ等の耐火性・耐腐食性材料を用いることができる。 The atmosphere control unit 14, the connecting pipes 15 and 16, and the first gas supply pipe 20 are not particularly limited because they are not conduits for molten glass G. For example, metals such as stainless steel, platinum, and platinum alloys are used. Fire-resistant and corrosion-resistant materials such as materials, ceramics, and alumina can be used.
 なお、本発明の減圧脱泡装置10において、雰囲気制御部14と、減圧脱泡槽11と、を循環するガス流120を生じさせる目的は、溶融ガラスGからのガス成分の滞留を解消できればよいので、減圧脱泡の実施中、常時ガス流120を生じさせておく必要は必ずしもない。したがって、溶融ガラスGからのガス成分の滞留を解消できる限り、減圧脱泡の実施中、定期的にガス流120を生じさせるのでもよく、例えば、1時間毎に1~30秒程度の割合でガス流120を生じさせるのでもよい。なお、定期的にガス流120を生じさせるためには、第1のガス供給管20から定期的にガス流100を供給すればよい。 In the vacuum degassing apparatus 10 of the present invention, the purpose of generating the gas flow 120 that circulates through the atmosphere control unit 14 and the vacuum degassing tank 11 is only required to eliminate the retention of gas components from the molten glass G. Therefore, it is not always necessary to generate the gas flow 120 during the vacuum degassing. Therefore, as long as the retention of gas components from the molten glass G can be eliminated, the gas flow 120 may be periodically generated during the vacuum degassing, for example, at a rate of about 1 to 30 seconds every hour. A gas stream 120 may be generated. In order to generate the gas flow 120 periodically, the gas flow 100 may be supplied periodically from the first gas supply pipe 20.
 本発明の減圧脱泡装置10では、減圧脱泡槽11内の溶融ガラスG上方の雰囲気の水蒸気濃度を低減するため、減圧脱泡槽11内の溶融ガラスGの上部空間に水蒸気濃度60mol%以下の低水分ガス140を供給する第2のガス供給管を設けてもよい。
 図8は、本発明の減圧脱泡装置の別の一構成例を示す断面図である。図8に示す減圧脱泡装置10'では、ガス流導入管をなす接続管15から第2のガス供給管24が挿入されており、該第2のガス供給管24の先端が減圧脱泡槽11内の溶融ガラスGの上部空間に位置している。なお、第2のガス供給管24から供給する水蒸気濃度60mol%以下の低水分ガスの具体例については、ガス流100として供給する低水分ガスについて記載したのと同様である。
 なお、第2のガス供給管は、減圧脱泡槽11内の溶融ガラスGの上部空間に水蒸気濃度60mol%以下の低水分ガスを供給できればよく、図8に示す態様に限定されない。例えば、ガス流導出管をなす接続管16から減圧脱泡槽11内の溶融ガラスGの上部空間に第2のガス供給管を挿入してもよい。また、接続管15,16以外の部分、例えば、減圧脱泡槽11の上流側または下流側の端面から、減圧脱泡槽11内の溶融ガラスGの上部空間に第2のガス供給管を挿入してもよい。但し、図8に示す態様のように、低水分ガス140の供給方向は、ガス流120(図1参照)を阻害しない方向にすることが減圧脱泡槽11内でガス流に乱れを生じさせないことから好ましい。
In the vacuum degassing apparatus 10 of the present invention, in order to reduce the water vapor concentration in the atmosphere above the molten glass G in the vacuum degassing tank 11, the water vapor concentration is 60 mol% or less in the upper space of the molten glass G in the vacuum degassing tank 11. A second gas supply pipe for supplying the low moisture gas 140 may be provided.
FIG. 8 is a sectional view showing another configuration example of the vacuum degassing apparatus of the present invention. In the vacuum degassing apparatus 10 ′ shown in FIG. 8, a second gas supply pipe 24 is inserted from a connection pipe 15 forming a gas flow introduction pipe, and the tip of the second gas supply pipe 24 is a vacuum degassing tank. 11 is located in the upper space of the molten glass G in the interior 11. A specific example of the low moisture gas having a water vapor concentration of 60 mol% or less supplied from the second gas supply pipe 24 is the same as that described for the low moisture gas supplied as the gas flow 100.
The second gas supply pipe is not limited to the embodiment shown in FIG. 8 as long as it can supply a low moisture gas having a water vapor concentration of 60 mol% or less to the upper space of the molten glass G in the vacuum degassing tank 11. For example, the second gas supply pipe may be inserted into the upper space of the molten glass G in the vacuum degassing tank 11 from the connection pipe 16 that forms a gas flow outlet pipe. Further, the second gas supply pipe is inserted into the upper space of the molten glass G in the vacuum degassing tank 11 from a portion other than the connection pipes 15, 16, for example, from the upstream or downstream end face of the vacuum degassing tank 11. May be. However, as in the embodiment shown in FIG. 8, the supply direction of the low moisture gas 140 is set so as not to obstruct the gas flow 120 (see FIG. 1) so that the gas flow is not disturbed in the vacuum degassing tank 11. Therefore, it is preferable.
 また、第2のガス供給管24の出口側の位置は、減圧脱泡槽11内の溶融ガラスGの上部空間に水蒸気濃度60mol%以下の低水分ガスを供給できればよく、図8に示す態様に限定されない。例えば、図8に示す態様では、第2のガス供給管24の先端が、減圧脱泡槽11内の溶融ガラスGの上部空間に位置しているが、第2のガス供給管24の先端が接続管15内にあってもよく、接続管15上方の雰囲気制御部14内にあってもよい。 Further, the position on the outlet side of the second gas supply pipe 24 is not limited as long as a low moisture gas having a water vapor concentration of 60 mol% or less can be supplied to the upper space of the molten glass G in the vacuum degassing tank 11. It is not limited. For example, in the aspect shown in FIG. 8, the tip of the second gas supply pipe 24 is located in the upper space of the molten glass G in the vacuum degassing tank 11, but the tip of the second gas supply pipe 24 is It may be in the connecting pipe 15 or in the atmosphere control unit 14 above the connecting pipe 15.
 本発明の減圧脱泡装置は、上記以外の構造を有していてもよい。例えば、溶融ガラスGの表面(液面)近くにガス流120を形成するため、減圧脱泡槽11の天井部の内側にガス流120を下方に誘導するための邪魔板を設けてもよい。 The vacuum degassing apparatus of the present invention may have a structure other than the above. For example, in order to form the gas flow 120 near the surface (liquid surface) of the molten glass G, a baffle plate for guiding the gas flow 120 downward may be provided inside the ceiling portion of the vacuum degassing tank 11.
 本発明の減圧脱泡装置10の各構成要素の寸法は、必要に応じて適宜選択することができる。減圧脱泡槽11の寸法は、減圧脱泡槽11が白金製若しく白金合金製、又は緻密質耐火物製であるかによらず、使用する減圧脱泡装置や、減圧脱泡槽11の形状に応じて適宜選択することができる。図1に示すような円筒形状の減圧脱泡槽11の場合、その寸法の一例は以下の通りである。
水平方向における長さ:1~20m
内径:0.2~3m(断面円形)
 減圧脱泡槽11が白金製若しくは白金合金製である場合、肉厚は4mm以下であることが好ましく、より好ましくは0.5~1.2mmである。
 減圧脱泡槽は、断面円形の円筒形状のものに限定されず、断面形状が楕円形や半円形状の略円筒形状のものや、断面が矩形の筒形状のものであってもよい。
The dimension of each component of the vacuum degassing apparatus 10 of the present invention can be appropriately selected as necessary. The size of the vacuum degassing tank 11 is the same as that of the vacuum degassing apparatus or the vacuum degassing tank 11 used, regardless of whether the vacuum degassing tank 11 is made of platinum, platinum alloy, or dense refractory. It can select suitably according to a shape. In the case of a cylindrical vacuum degassing tank 11 as shown in FIG. 1, an example of the dimensions is as follows.
Horizontal length: 1-20m
Inner diameter: 0.2-3m (circular cross section)
When the vacuum degassing tank 11 is made of platinum or a platinum alloy, the wall thickness is preferably 4 mm or less, more preferably 0.5 to 1.2 mm.
The vacuum degassing tank is not limited to a cylindrical shape having a circular cross section, and may be a substantially cylindrical shape having an elliptical shape or a semicircular cross sectional shape, or a cylindrical shape having a rectangular cross section.
 上昇管12及び下降管13は、白金製若しくは白金合金製、又は緻密質耐火物製であるかによらず、使用する減圧脱泡装置に応じて適宜選択することができる。例えば、図1に示す減圧脱泡装置10の場合、上昇管12及び下降管13の寸法の一例は以下の通り。
内径:0.05~0.8m、より好ましくは0.1~0.6m
長さ:0.2~6m、より好ましくは0.4~4m
 上昇管12及び下降管13が白金製若しくは白金合金製である場合、肉厚は0.4~5mmであることが好ましく、より好ましくは0.8~4mmである。
Regardless of whether the riser 12 and the downfall 13 are made of platinum, a platinum alloy, or a dense refractory, they can be appropriately selected according to the vacuum degassing apparatus to be used. For example, in the case of the vacuum degassing apparatus 10 shown in FIG. 1, examples of the dimensions of the ascending pipe 12 and the descending pipe 13 are as follows.
Inner diameter: 0.05 to 0.8 m, more preferably 0.1 to 0.6 m
Length: 0.2-6m, more preferably 0.4-4m
When the ascending pipe 12 and the descending pipe 13 are made of platinum or a platinum alloy, the wall thickness is preferably 0.4 to 5 mm, more preferably 0.8 to 4 mm.
 雰囲気制御部14、接続管15,16の寸法は、使用する減圧脱泡装置、特に減圧脱泡槽に応じて適宜することができるが、その一例は以下の通りである。
雰囲気制御部
内径:0.1~3m、より好ましくは0.1~2m
長さ:0.8~22m、より好ましくは1~20m
接続管
内径:0.05~0.5m、より好ましくは0.05~0.3m
長さ:0.1~1m、より好ましくは0.1~0.8m
第1のガス供給管内径
内径:3 ~50mm、より好ましくは5 ~ 20 mm
 雰囲気制御部14、接続管15,16の肉厚は、構成材料によっても異なるが、ステンレス鋼製である場合、それぞれ以下であることが好ましい。
雰囲気制御部
0.5~2mm、より好ましくは0.5~1.5mm
接続管
0.5~2mm、より好ましくは0.5~1.5mm
第2のガス供給管内径
内径:3 ~50mm、より好ましくは5 ~ 20 mm
Although the dimension of the atmosphere control part 14 and the connection pipes 15 and 16 can be suitably set according to the vacuum degassing apparatus to be used, especially a vacuum degassing tank, the example is as follows.
Atmosphere controller <br/> Inner diameter: 0.1 to 3 m, more preferably 0.1 to 2 m
Length: 0.8-22m, more preferably 1-20m
Connecting tube <br/> Inner diameter: 0.05 to 0.5 m, more preferably 0.05 to 0.3 m
Length: 0.1-1m, more preferably 0.1-0.8m
Inner diameter of first gas supply pipe Inner diameter: 3 to 50 mm, more preferably 5 to 20 mm
Although the thickness of the atmosphere control part 14 and the connection pipes 15 and 16 changes also with structural materials, when it is made from stainless steel, it is preferable that it is as follows, respectively.
Atmosphere controller 0.5-2mm, more preferably 0.5-1.5mm
Connecting pipe 0.5-2mm, more preferably 0.5-1.5mm
Inner diameter of second gas supply pipe Inner diameter: 3 to 50 mm, more preferably 5 to 20 mm
 以下、実施例に基づいて本発明を具体的に説明する。但し、本発明はこれに限定されるものではない。
 実施例では、Fluentを用いて減圧脱泡槽内の溶融ガラスGの上部空間での気流解析を行い、第1のガス供給管から仮想領域にガス流を供給することによるベンチュリ効果、および、ベンチュリ効果によって生じる雰囲気制御部と、減圧脱泡槽内の溶融ガラスの上部空間と、を循環するガス流による溶融ガラスからのガス成分の滞留の解消を評価した。なお、減圧脱泡装置としては、図8に示す減圧脱泡装置10のように、下流側の接続管16との開口部18上方の仮想領域19に第1のガス供給管20からガス流100を供給し、上流側の接続管15から減圧脱泡槽11内の溶融ガラスGの上部空間に挿入された第2のガス供給管24から低水分ガス140を供給するものをモデルとして使用した。または図8とは異なり、上流側の接続管15の上方に第1のガス供給管20を設置してガス流100を供給し、下流側の接続管16から減圧脱泡槽11内の溶融ガラスGの上部空間に挿入された第2のガス供給管24から低水分ガス140を供給するものをモデルとして使用した。なお、ガス流100および低水分ガス140は、いずれもN2を供給するものとしてモデル化した。
Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to this.
In the embodiment, an air flow analysis in the upper space of the molten glass G in the vacuum degassing tank is performed using Fluent, a venturi effect by supplying a gas flow from the first gas supply pipe to the virtual region, and a venturi The elimination of the retention of gas components from the molten glass due to the gas flow circulating through the atmosphere control part caused by the effect and the upper space of the molten glass in the vacuum degassing tank was evaluated. As the vacuum degassing apparatus, the gas flow 100 from the first gas supply pipe 20 to the virtual region 19 above the opening 18 with the downstream connection pipe 16 is provided as in the vacuum degassing apparatus 10 shown in FIG. Was used as a model to supply the low moisture gas 140 from the second gas supply pipe 24 inserted into the upper space of the molten glass G in the vacuum degassing tank 11 from the connection pipe 15 on the upstream side. Or unlike FIG. 8, the 1st gas supply pipe | tube 20 is installed above the upstream connection pipe 15, the gas flow 100 is supplied, and the molten glass in the pressure reduction degassing tank 11 from the downstream connection pipe 16 is supplied. What supplied the low moisture gas 140 from the 2nd gas supply pipe | tube 24 inserted in the upper space of G was used as a model. The gas flow 100 and the low moisture gas 140 were both modeled as supplying N 2 .
 モデルとして使用した減圧脱泡装置10の各部の寸法は以下の通りである。
減圧脱泡槽11:全長10m、内径1m(断面半円形状)
雰囲気制御部14:全長10m、内径2m(円筒形状)
接続管15,16:全長0.8m、内径0.3m(円筒形状)
接続管15,16は、それぞれ、減圧脱泡槽11の天井部、より具体的には、減圧脱泡槽11の上流側端部から0.1mの位置、および、下流側端部から0.1mの位置に設けた。
排気口17:内径0.05m(円筒形状)、雰囲気制御部14の長手方向における中央となる位置の天井部に設けた。
第1のガス供給管20:図8とは異なり、雰囲気制御部14の下流端中央から内径φ5mmの円形のステンレス製ノズルを水平方向に挿入した。第1のガス供給管20を下流側または上流側のいずれに設置する場合とも、第1のガス供給管の先端の位置は開口部18よりも下流側5mm、雰囲気制御部14の底面から高さ10mmの位置とした。
第2のガス供給管24:内径φ15mmの円形のステンレス製ノズルを雰囲気制御部14の天井部から接続管15を経由して減圧脱泡槽11の溶融ガラスGの上部空間に挿入。第2のガス供給管の先端の位置は減圧脱泡槽11の上部壁面から10mm下の位置とした。
The dimensions of each part of the vacuum degassing apparatus 10 used as a model are as follows.
Vacuum defoaming tank 11: total length 10m, inner diameter 1m (cross-sectional semicircular shape)
Atmosphere control unit 14: total length 10 m, inner diameter 2 m (cylindrical shape)
Connection pipes 15 and 16: Overall length 0.8 m, inner diameter 0.3 m (cylindrical shape)
Each of the connecting pipes 15 and 16 has a ceiling portion of the vacuum degassing tank 11, more specifically, a position 0.1 m from the upstream end of the vacuum degassing tank 11, and 0. 0 from the downstream end. It was provided at a position of 1 m.
Exhaust port 17: Provided in the ceiling portion at an inner diameter of 0.05 m (cylindrical shape) and at the center of the atmosphere control unit 14 in the longitudinal direction.
First gas supply pipe 20: Unlike FIG. 8, a circular stainless steel nozzle having an inner diameter of 5 mm was inserted in the horizontal direction from the center of the downstream end of the atmosphere control unit 14. Regardless of whether the first gas supply pipe 20 is installed on the downstream side or the upstream side, the position of the tip of the first gas supply pipe is 5 mm downstream from the opening 18 and the height from the bottom of the atmosphere control unit 14. The position was 10 mm.
Second gas supply pipe 24: A circular stainless steel nozzle having an inner diameter of 15 mm is inserted into the upper space of the molten glass G in the vacuum degassing tank 11 from the ceiling of the atmosphere control section 14 via the connection pipe 15. The position of the tip of the second gas supply pipe was 10 mm below the upper wall surface of the vacuum degassing tank 11.
 減圧脱泡槽11内の溶融ガラスGの上部空間内の圧力、および、雰囲気制御部14内が、圧力350mmHg、温度1400℃で一定の場合について解析を行った。
 気流解析には、非反応化学種の輸送モデル、標準k-εモデル、標準壁関数を採用した。入口拡散、拡散エネルギについては考慮せず、その他の設定パラメータはデフォルト値を使用した。気流解析の流体物性は、Fluentデータベース内のN2および揮散H2Oからなる混合物の値(下記)を用いた。
粘度:1.72×10-5[kg/m・s]
熱伝導率:0.0454[W/m・K]
質量拡散係数:2.88×10-5[m2/s]
密度:ρ=pMw/RT(非圧縮性理想気体方程式)
比熱:cp=Σiip,i(化学種による比熱の質量分率平均式)[J/kg・K]
 減圧脱泡槽11内の溶融ガラスGからは、SO3、O2、B23、H2O等、複数のガスが揮散すると考えられるが、本解析では便宜上H2Oのみ2.00NL/minで揮散すると仮定した。
 以下、本明細書において、減圧脱泡槽11内の溶融ガラスGから揮散するガスを単に「揮散ガス」とする。
Analysis was performed for the case where the pressure in the upper space of the molten glass G in the vacuum degassing tank 11 and the atmosphere control unit 14 were constant at a pressure of 350 mmHg and a temperature of 1400 ° C.
For the air flow analysis, a transport model of non-reactive chemical species, a standard k-ε model, and a standard wall function were adopted. The entrance diffusion and diffusion energy were not taken into consideration, and default values were used for other setting parameters. For the fluid physical properties of the airflow analysis, the value of the mixture consisting of N 2 and volatilized H 2 O in the Fluent database (below) was used.
Viscosity: 1.72 × 10 −5 [kg / m · s]
Thermal conductivity: 0.0454 [W / m · K]
Mass diffusion coefficient: 2.88 × 10 −5 [m 2 / s]
Density: ρ = pM w / RT (incompressible ideal gas equation)
Specific heat: c p = Σ i Y i c p, i (mass fraction average formula of specific heat by chemical species) [J / kg · K]
It is considered that a plurality of gases such as SO 3 , O 2 , B 2 O 3 , H 2 O and the like are volatilized from the molten glass G in the vacuum degassing tank 11, but in this analysis, only H 2 O is 2.00 NL for convenience. It was assumed that it volatilized at / min.
Hereinafter, in this specification, the gas volatilized from the molten glass G in the vacuum degassing tank 11 is simply referred to as “volatile gas”.
 減圧脱泡槽11内での溶融ガラスGの動きは考慮せず、揮散ガスおよび第2のガス供給管から供給するN2は速度境界条件により定義した。
 気流解析では、減圧脱泡槽11内の溶融ガラスGからの揮散ガスの濃度として、溶融ガラスG上方の雰囲気の揮散ガスの平均濃度(以下、「溶融ガラスG上方の揮散ガスの平均濃度」という場合もある。)を評価した。なお、溶融ガラスGの液面近傍(溶融ガラスの液面から5mm上方)での揮散ガス濃度を評価指標とした。
 また、雰囲気制御部14と、接続管15と、の開口部付近の圧力、および、雰囲気制御部14と、接続管16と、の開口部18付近の圧力(以下、前者を「上流側開口部圧力」、後者を「下流側開口部圧力」という場合もある。)を評価した。
 また、減圧脱泡槽11から接続管15を介して雰囲気制御部14へと排出されるガスの量、および、減圧脱泡槽11から接続管16を介して雰囲気制御部14へと排出されるガスの流量(以下、前者を「上流側排出流量」、後者を「下流側排出流量」という場合もある。)を評価した。
The movement of the molten glass G in the vacuum degassing tank 11 was not taken into consideration, and N 2 supplied from the volatilized gas and the second gas supply pipe was defined by the speed boundary condition.
In the airflow analysis, as the concentration of the volatile gas from the molten glass G in the vacuum degassing tank 11, the average concentration of the volatile gas in the atmosphere above the molten glass G (hereinafter referred to as “average concentration of the volatile gas above the molten glass G”). In some cases). The volatilized gas concentration in the vicinity of the liquid surface of the molten glass G (5 mm above the liquid surface of the molten glass) was used as an evaluation index.
Further, the pressure in the vicinity of the opening of the atmosphere control unit 14 and the connection pipe 15 and the pressure in the vicinity of the opening 18 of the atmosphere control unit 14 and the connection pipe 16 (hereinafter, the former is referred to as “upstream side opening part”). Pressure ”and the latter as“ downstream opening pressure ”in some cases.
Further, the amount of gas discharged from the vacuum degassing tank 11 to the atmosphere control unit 14 through the connection pipe 15 and the gas discharged from the vacuum degassing tank 11 to the atmosphere control unit 14 through the connection pipe 16. The gas flow rate (hereinafter, the former is sometimes referred to as “upstream discharge flow rate” and the latter is sometimes referred to as “downstream discharge flow rate”) was evaluated.
(実施例1,2,3,4,5、比較例1)
 実施例1では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量2NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 実施例2では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量10NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 実施例3では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量15NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 実施例4では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量50NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 実施例5では、第1のガス供給管20を上流側の接続管15の上部に設置しガス流100としてN2を体積流量15NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 実施例6では、内径φ20 mmの第1のガス供給管20を、下流側の接続管15の上部に設置しガス流100としてN2を体積流量50NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
実施例7では、内径φ5 mmの第1のガス供給管20を、内径φ0.2mの上流側の接続管15の上部に設置しガス流100としてN2を体積流量2NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 比較例1では、第1のガス供給管20からガス流100を供給せずに、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 なお、実施例1~7における溶融ガラスG上方の揮散ガスの平均濃度は、比較例1における揮散ガスの平均濃度を100とした場合の相対値として示した。また、上流側開口部圧力(Pa)及び下流側開口部圧力(Pa)の値は、減圧脱泡槽11内の基準圧力(46,662Pa=350mmHg)との差で示した。また、上流側開口部圧力(Pa)と下流側開口部との圧力差(第1のガス供給管20を有してない側の開口部圧力(Pa))-第1のガス供給管20を有する側の開口部圧力(Pa))も示した。
 結果を下記表1に示す。なお、実施例1~7の結果は、ガス流100の供給開始後、定常状態に至った時点での値である。
(Examples 1, 2, 3, 4, 5 and Comparative Example 1)
In Example 1, the first gas supply pipe 20 is installed in the upper part of the downstream connection pipe 16 and N 2 is supplied as a gas flow 100 at a volume flow rate of 2 NL / min. The average of the volatilized gas above the molten glass G Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated.
In Example 2, the first gas supply pipe 20 is installed on the upper part of the downstream connection pipe 16, and N 2 is supplied as a gas flow 100 at a volume flow rate of 10 NL / min. Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated.
In Example 3, the first gas supply pipe 20 is installed in the upper part of the downstream connection pipe 16 and N 2 is supplied as a gas flow 100 at a volume flow rate of 15 NL / min. Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated.
In Example 4, the first gas supply pipe 20 is installed in the upper part of the downstream connection pipe 16 and N 2 is supplied as a gas flow 100 at a volume flow rate of 50 NL / min. The average of the volatilized gas above the molten glass G Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated.
In Example 5, the first gas supply pipe 20 is installed in the upper part of the upstream connection pipe 15 and N 2 is supplied as a gas flow 100 at a volume flow rate of 15 NL / min. Concentration, upstream opening pressure, downstream opening pressure, upstream discharge flow rate and downstream discharge flow rate were evaluated.
In Example 6, the first gas supply pipe 20 having an inner diameter of φ20 mm is installed at the upper part of the downstream connection pipe 15 and N 2 is supplied as a gas flow 100 at a volume flow rate of 50 NL / min. The average concentration of the volatilized gas, the upstream opening pressure, the downstream opening pressure, the upstream discharge flow rate, and the downstream discharge flow rate were evaluated.
In Example 7, the first gas supply pipe 20 having an inner diameter of φ5 mm is installed on the upper side of the connecting pipe 15 on the upstream side of the inner diameter of φ0.2 m, and N 2 is supplied as a gas flow 100 at a volume flow rate of 2 NL / min. The average concentration of the volatile gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, the upstream discharge flow rate, and the downstream discharge flow rate were evaluated.
In Comparative Example 1, without supplying the gas flow 100 from the first gas supply pipe 20, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, the upstream discharge flow rate, and The downstream discharge flow rate was evaluated.
The average concentration of the volatile gas above the molten glass G in Examples 1 to 7 is shown as a relative value when the average concentration of the volatile gas in Comparative Example 1 is 100. Moreover, the value of the upstream opening part pressure (Pa) and the downstream opening part pressure (Pa) was shown by the difference with the reference | standard pressure (46,662Pa = 350mmHg) in the vacuum degassing tank 11. FIG. Further, the pressure difference between the upstream opening pressure (Pa) and the downstream opening (opening pressure (Pa) on the side not having the first gas supply pipe 20) minus the first gas supply pipe 20 The opening pressure (Pa) on the side having the same is also shown.
The results are shown in Table 1 below. The results of Examples 1 to 7 are values when the steady state is reached after the supply of the gas flow 100 is started.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例8~13、比較例2)
 実施例8では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量5NL/minで供給し、第2のガス供給管24を上流側の接続管15の上部に設置し低水分ガス140としてN2を体積流量10NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 実施例9では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量10NL/minで供給し、第2のガス供給管24を上流側の接続管15の上部に設置し低水分ガス140としてN2を体積流量10NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 実施例10では、第1のガス供給管20を下流側の接続管16の上部に設置しガス流100としてN2を体積流量50NL/minで供給し、第2のガス供給管24を上流側の接続管15の上部に設置し低水分ガス140としてN2を体積流量10NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 実施例11では、第1のガス供給管20を上流側の接続管15の上部に設置しガス流100としてN2を体積流量10NL/minで供給し、第2のガス供給管24を下流側の接続管16の上部に設置し低水分ガス140としてN2を体積流量10NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 実施例12では、内径φ20mmの第1のガス供給管20を、上流側の接続管15の上部に設置しガス流100としてN2を体積流量50NL/minで供給し、第2のガス供給管24を下流側の接続管16の上部に設置し低水分ガス140としてN2を体積流量15NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 実施例13では、内径φ5 mmの第1のガス供給管20を、内径φ0.2mの上流側の接続管15の上部に設置しガス流100としてN2を体積流量15NL/minで供給し、第2のガス供給管24を下流側の接続管16の上部に設置し低水分ガス140としてN2を体積流量10NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 比較例2では、第1のガス供給管20は設置せず、第2のガス供給管24を上流側の接続管15の上部に設置し低水分ガス140としてN2を体積流量15NL/minで供給して、溶融ガラスG上方の揮散ガスの平均濃度、上流側開口部圧力、下流側開口部圧力、上流側排出流量および下流側排出流量を評価した。
 なお、実施例8~13における溶融ガラスG上方の揮散ガスの平均濃度は、比較例1における揮散ガスの平均濃度を100とした場合の相対値として示した。また、上流側開口部圧力(Pa)及び下流側開口部圧力(Pa)の値は、減圧脱泡槽11内の基準圧力(46,662Pa=350mmHg)との差で示した。また、上流側開口部圧力(Pa)と下流側開口部との圧力差(上流側開口部圧力(Pa)-下流側開口部圧力(Pa))も示した。
 結果を下記表2に示す。なお、実施例8~13の結果は、ガス流100の供給開始後、定常状態に至った時点での値である。
(Examples 8 to 13, Comparative Example 2)
In the eighth embodiment, the first gas supply pipe 20 is installed at the upper part of the downstream connection pipe 16 to supply N 2 as a gas flow 100 at a volume flow rate of 5 NL / min, and the second gas supply pipe 24 is connected to the upstream side. N 2 is supplied as a low moisture gas 140 at a volume flow rate of 10 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, The upstream discharge flow rate and the downstream discharge flow rate were evaluated.
In the ninth embodiment, the first gas supply pipe 20 is installed in the upper part of the downstream connection pipe 16, and N 2 is supplied as a gas flow 100 at a volume flow rate of 10 NL / min, and the second gas supply pipe 24 is connected to the upstream side. N 2 is supplied as a low moisture gas 140 at a volume flow rate of 10 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, The upstream discharge flow rate and the downstream discharge flow rate were evaluated.
In the tenth embodiment, the first gas supply pipe 20 is installed above the connection pipe 16 on the downstream side, N 2 is supplied as a gas flow 100 at a volume flow rate of 50 NL / min, and the second gas supply pipe 24 is connected to the upstream side. N 2 is supplied as a low moisture gas 140 at a volume flow rate of 10 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, The upstream discharge flow rate and the downstream discharge flow rate were evaluated.
In the eleventh embodiment, the first gas supply pipe 20 is installed on the upper side of the connection pipe 15 on the upstream side, N 2 is supplied as the gas flow 100 at a volume flow rate of 10 NL / min, and the second gas supply pipe 24 is connected to the downstream side. N 2 is supplied as a low moisture gas 140 at a volumetric flow rate of 10 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, The upstream discharge flow rate and the downstream discharge flow rate were evaluated.
In the twelfth embodiment, a first gas supply pipe 20 having an inner diameter φ of 20 mm is installed on the upstream side of the connection pipe 15 to supply N 2 as a gas flow 100 at a volume flow rate of 50 NL / min, and a second gas supply pipe 24 is installed in the upper part of the connecting pipe 16 on the downstream side, N 2 is supplied as a low moisture gas 140 at a volume flow rate of 15 NL / min, the average concentration of the volatilized gas above the molten glass G, the upstream opening pressure, the downstream side The opening pressure, upstream discharge flow rate, and downstream discharge flow rate were evaluated.
In Example 13, the first gas supply pipe 20 having an inner diameter of φ5 mm is installed at the upper part of the upstream connection pipe 15 having an inner diameter of φ0.2 m, and N 2 is supplied as a gas flow 100 at a volume flow rate of 15 NL / min. The second gas supply pipe 24 is installed at the upper part of the downstream connection pipe 16 and N 2 is supplied as a low moisture gas 140 at a volume flow rate of 10 NL / min. The opening pressure, the downstream opening pressure, the upstream discharge flow rate, and the downstream discharge flow rate were evaluated.
In Comparative Example 2, the first gas supply pipe 20 is not installed, the second gas supply pipe 24 is installed at the upper part of the upstream connection pipe 15, and N 2 is used as the low moisture gas 140 at a volume flow rate of 15 NL / min. The average concentration of the volatile gas above the molten glass G, the upstream opening pressure, the downstream opening pressure, the upstream discharge flow rate, and the downstream discharge flow rate were evaluated.
The average concentration of the volatile gas above the molten glass G in Examples 8 to 13 is shown as a relative value when the average concentration of the volatile gas in Comparative Example 1 is 100. Moreover, the value of the upstream opening part pressure (Pa) and the downstream opening part pressure (Pa) was shown by the difference with the reference | standard pressure (46,662Pa = 350mmHg) in the vacuum degassing tank 11. FIG. The pressure difference between the upstream opening pressure (Pa) and the downstream opening (upstream opening pressure (Pa) −downstream opening pressure (Pa)) is also shown.
The results are shown in Table 2 below. The results of Examples 8 to 13 are values when the steady state is reached after the supply of the gas flow 100 is started.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明は、気泡を含まない高品質の各種ガラス製品の製造に利用でき、特にボロシリケートガラスの減圧脱泡に好適である。
 なお、2008年2月29日に出願された日本特許出願2008-50110号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
INDUSTRIAL APPLICABILITY The present invention can be used for the production of various high-quality glass products that do not contain bubbles, and is particularly suitable for vacuum degassing of borosilicate glass.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-50110 filed on Feb. 29, 2008 are cited here as disclosure of the specification of the present invention. Incorporated.

Claims (5)

  1.  内部の気圧が大気圧未満に設定され、供給された溶融ガラス中の泡を浮上及び破泡させる減圧脱泡槽と、前記減圧脱泡槽に接続され、脱泡処理前の溶融ガラスを吸引上昇させて該減圧脱泡槽に導入する上昇管と、前記減圧脱泡槽に接続され、脱泡処理後の溶融ガラスを該減圧脱泡槽から下降させて導出する下降管と、を具備する溶融ガラスの減圧脱泡装置において、
     少なくとも2つの接続管により前記減圧脱泡槽と接続される中空構造の雰囲気制御部を有し、前記雰囲気制御部には該雰囲気制御部内を排気して減圧するための排気口が設けられており、前記雰囲気制御部には、少なくとも1つの前記接続管との関係で下記(1)及び(2)を満たす第1のガス供給管が設けられていることを特徴とする溶融ガラスの減圧脱泡装置。
    (1)前記雰囲気制御部と前記接続管とがなす開口部を、前記接続管の管軸方向に沿って前記雰囲気制御部内部へと延ばした仮想領域を、前記第1のガス供給管から供給されるガス流が横切る。
    (2)前記第1のガス供給管の先端から該ガス供給管の管軸に沿って延ばした仮想線が、前記雰囲気制御部と前記接続管とがなす開口部を通過しない。
    The internal pressure is set to less than atmospheric pressure, a vacuum defoaming tank that floats and breaks bubbles in the supplied molten glass, and a vacuum riser that is connected to the vacuum defoaming tank and sucks up the molten glass before defoaming treatment. A riser pipe that is introduced into the vacuum degassing tank and a downcomer pipe connected to the vacuum degassing tank and that descends the molten glass after the defoaming treatment from the vacuum degassing tank. In a vacuum degassing apparatus for glass,
    It has a hollow atmosphere control unit connected to the vacuum deaeration tank by at least two connecting pipes, and the atmosphere control unit is provided with an exhaust port for exhausting and depressurizing the atmosphere control unit. The atmosphere control unit is provided with a first gas supply pipe satisfying the following (1) and (2) in relation to at least one of the connecting pipes, and the vacuum degassing of molten glass is provided: apparatus.
    (1) A virtual region in which an opening formed by the atmosphere control unit and the connection pipe extends into the atmosphere control unit along the tube axis direction of the connection pipe is supplied from the first gas supply pipe Gas flow crosses.
    (2) An imaginary line extending from the tip of the first gas supply pipe along the tube axis of the gas supply pipe does not pass through the opening formed by the atmosphere control unit and the connection pipe.
  2.  前記接続管の数をXとするとき、前記第1のガス供給管の数がX-1以下(但し、前記第1のガス供給管の数は1以上)であることを特徴とする請求項1に記載の溶融ガラスの減圧脱泡装置。 The number of the first gas supply pipes is X-1 or less (provided that the number of the first gas supply pipes is 1 or more), where X is the number of the connection pipes. 2. A vacuum degassing apparatus for molten glass according to 1.
  3.  前記第1のガス供給管から供給されるガス流が、水蒸気濃度60mol%以下の低水分ガス流であることを特徴とする請求項1または2に記載の溶融ガラスの減圧脱泡装置。 The molten glass vacuum degassing apparatus according to claim 1 or 2, wherein the gas flow supplied from the first gas supply pipe is a low moisture gas flow having a water vapor concentration of 60 mol% or less.
  4.  前記減圧脱泡槽内の溶融ガラスの上部空間に水蒸気濃度60mol%以下の低水分ガスを供給する第2のガス供給管がさらに設けられていることを特徴とする請求項1ないし3のいずれかに記載溶融ガラスの減圧脱泡装置。 The second gas supply pipe for supplying a low moisture gas having a water vapor concentration of 60 mol% or less to the upper space of the molten glass in the vacuum degassing tank is further provided. A vacuum degassing apparatus for molten glass as described in 1.
  5.  請求項1~4に記載の減圧脱泡装置を用いた溶融ガラスの減圧脱泡方法であって、下記式を満たすように前記第1のガス供給管からガス流を供給する溶融ガラスの減圧脱泡方法。
    v > A/0.031× [5.487×10-6×(1/56.353-1/ρ)+19.6×(0.163-z)+7.52 ] 1/2
    v:第1のガス供給管のガス流の流速(m/s)
    ρ:第1のガス供給管のガス流の密度(kg/m
    z:雰囲気制御部内における第1のガス供給管の出口部の高さ(m)
    A:開口部の面積(m
    A vacuum degassing method for molten glass using the vacuum degassing apparatus according to claims 1 to 4, wherein the molten glass is supplied with a gas flow from the first gas supply pipe so as to satisfy the following formula: Bubble method.
    v> A / 0.031 × [5.487 × 10 −6 × (1 / 56.3533-1 / ρ) + 19.6 × (0.163−z) +7.5 2 ] 1/2
    v: Flow velocity (m / s) of the gas flow in the first gas supply pipe
    ρ: density of the gas flow in the first gas supply pipe (kg / m 3 )
    z: Height (m) of the outlet of the first gas supply pipe in the atmosphere control unit
    A: Area of opening (m 2 )
PCT/JP2009/053736 2008-02-29 2009-02-27 Vacuum defoaming apparatus for molten glass WO2009107801A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980106977.9A CN101959807B (en) 2008-02-29 2009-02-27 Vacuum defoaming apparatus for molten glass
JP2010500782A JP5423666B2 (en) 2008-02-29 2009-02-27 Vacuum degassing equipment for molten glass
KR1020107009601A KR101221249B1 (en) 2008-02-29 2009-02-27 Vacuum defoaming apparatus for molten glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008050110 2008-02-29
JP2008-050110 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009107801A1 true WO2009107801A1 (en) 2009-09-03

Family

ID=41016186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053736 WO2009107801A1 (en) 2008-02-29 2009-02-27 Vacuum defoaming apparatus for molten glass

Country Status (5)

Country Link
JP (1) JP5423666B2 (en)
KR (1) KR101221249B1 (en)
CN (1) CN101959807B (en)
TW (1) TWI392657B (en)
WO (1) WO2009107801A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014906A1 (en) * 2010-07-30 2012-02-02 旭硝子株式会社 Device for depressurizing and defoaming molten glass, method for depressurizing and defoaming molten glass, device for manufacturing glass product, and method for manufacturing glass product
JP2015083531A (en) * 2013-09-17 2015-04-30 AvanStrate株式会社 Method of manufacturing glass substrate, molten glass processing device, and device of manufacturing glass substrate
JP2015199639A (en) * 2014-03-31 2015-11-12 AvanStrate株式会社 Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
JP2018052792A (en) * 2016-09-30 2018-04-05 AvanStrate株式会社 Production method of glass substrate, and production apparatus of glass substrate
JP2020011852A (en) * 2018-07-13 2020-01-23 AvanStrate株式会社 Method and apparatus for manufacturing glass substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491621B (en) * 2011-11-11 2013-12-04 彩虹(合肥)液晶玻璃有限公司 Vacuum device for platinum passage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091307A (en) * 2002-07-10 2004-03-25 Nippon Electric Glass Co Ltd Method for producing glass
WO2006059576A1 (en) * 2004-12-01 2006-06-08 Nippon Sheet Glass Company, Limited Process for producing glass and glass production apparatus
JP2007169082A (en) * 2005-12-19 2007-07-05 Nippon Sheet Glass Co Ltd Apparatus for melting glass
WO2008029649A1 (en) * 2006-08-30 2008-03-13 Asahi Glass Company, Limited Glass-making processes
WO2008093580A1 (en) * 2007-01-31 2008-08-07 Asahi Glass Company, Limited Process for producing glass and vacuum degassing apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664039B2 (en) * 1992-01-20 1997-10-15 旭硝子株式会社 Vacuum degassing method and apparatus
CN1184153C (en) * 1998-02-26 2005-01-12 旭硝子株式会社 Vacuum degassing apparatus for molten glass
JP3861460B2 (en) * 1998-06-26 2006-12-20 旭硝子株式会社 Vacuum degassing method for molten glass
JP4110663B2 (en) * 1999-04-13 2008-07-02 旭硝子株式会社 Vacuum degassing method for molten glass flow
DE10116960C1 (en) * 2001-04-05 2002-08-08 Schott Glas Vacuum Läuteranlage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091307A (en) * 2002-07-10 2004-03-25 Nippon Electric Glass Co Ltd Method for producing glass
WO2006059576A1 (en) * 2004-12-01 2006-06-08 Nippon Sheet Glass Company, Limited Process for producing glass and glass production apparatus
JP2007169082A (en) * 2005-12-19 2007-07-05 Nippon Sheet Glass Co Ltd Apparatus for melting glass
WO2008029649A1 (en) * 2006-08-30 2008-03-13 Asahi Glass Company, Limited Glass-making processes
WO2008093580A1 (en) * 2007-01-31 2008-08-07 Asahi Glass Company, Limited Process for producing glass and vacuum degassing apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014906A1 (en) * 2010-07-30 2012-02-02 旭硝子株式会社 Device for depressurizing and defoaming molten glass, method for depressurizing and defoaming molten glass, device for manufacturing glass product, and method for manufacturing glass product
CN103025669A (en) * 2010-07-30 2013-04-03 旭硝子株式会社 Device for depressurizing and defoaming molten glass, method for depressurizing and defoaming molten glass, device for manufacturing glass product, and method for manufacturing glass product
JP5700046B2 (en) * 2010-07-30 2015-04-15 旭硝子株式会社 Vacuum degassing apparatus for molten glass, vacuum degassing method for molten glass, glass product manufacturing apparatus, and glass product manufacturing method
CN103025669B (en) * 2010-07-30 2015-04-22 旭硝子株式会社 Device for depressurizing and defoaming molten glass, method for depressurizing and defoaming molten glass, device for manufacturing glass product, and method for manufacturing glass product
JP2015083531A (en) * 2013-09-17 2015-04-30 AvanStrate株式会社 Method of manufacturing glass substrate, molten glass processing device, and device of manufacturing glass substrate
JP2015199639A (en) * 2014-03-31 2015-11-12 AvanStrate株式会社 Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
JP2018052792A (en) * 2016-09-30 2018-04-05 AvanStrate株式会社 Production method of glass substrate, and production apparatus of glass substrate
JP2020011852A (en) * 2018-07-13 2020-01-23 AvanStrate株式会社 Method and apparatus for manufacturing glass substrate
JP7140579B2 (en) 2018-07-13 2022-09-21 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus

Also Published As

Publication number Publication date
TWI392657B (en) 2013-04-11
JPWO2009107801A1 (en) 2011-07-07
CN101959807B (en) 2013-06-19
KR20100085955A (en) 2010-07-29
JP5423666B2 (en) 2014-02-19
TW200948732A (en) 2009-12-01
KR101221249B1 (en) 2013-01-11
CN101959807A (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP5700046B2 (en) Vacuum degassing apparatus for molten glass, vacuum degassing method for molten glass, glass product manufacturing apparatus, and glass product manufacturing method
JP5423666B2 (en) Vacuum degassing equipment for molten glass
JP5470853B2 (en) Glass manufacturing method and vacuum degassing apparatus
US7650764B2 (en) Vacuum degassing apparatus for molten glass
JP5434077B2 (en) Glass manufacturing method
JP2000302456A (en) Vacuum deaeration for molten glass flow
JP5387678B2 (en) Molten glass manufacturing method, vacuum degassing apparatus, and glass product manufacturing method
JP3785792B2 (en) Vacuum degassing equipment for molten glass
JP3005210B2 (en) Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment
JP4058935B2 (en) Vacuum deaerator
JP2000178029A (en) Vacuum defoaming equipment for molten glass
JP4513248B2 (en) Vacuum degassing apparatus and vacuum degassing method
JP2006298657A (en) Vacuum defoaming apparatus of molten glass and method for making molten glass clear by using the same
WO2000061506A1 (en) Method for defoaming molten glass under reduced pressure and apparatus for producing glass using defoaming under reduced pressure
JPH11240725A (en) Vacuum deaerator for molten glass

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106977.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714100

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500782

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107009601

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09714100

Country of ref document: EP

Kind code of ref document: A1