JPH11240725A - Vacuum deaerator for molten glass - Google Patents

Vacuum deaerator for molten glass

Info

Publication number
JPH11240725A
JPH11240725A JP4492698A JP4492698A JPH11240725A JP H11240725 A JPH11240725 A JP H11240725A JP 4492698 A JP4492698 A JP 4492698A JP 4492698 A JP4492698 A JP 4492698A JP H11240725 A JPH11240725 A JP H11240725A
Authority
JP
Japan
Prior art keywords
molten glass
pipe
tank
vacuum degassing
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4492698A
Other languages
Japanese (ja)
Inventor
Yusuke Takei
祐輔 竹居
Masataka Matsuwaki
正隆 松脇
Michito Sasaki
道人 佐々木
Shun Kijima
駿 木島
Junji Tanigaki
淳史 谷垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4492698A priority Critical patent/JPH11240725A/en
Priority to US09/164,356 priority patent/US6119484A/en
Priority to KR1019980041667A priority patent/KR100682778B1/en
Priority to TW087116447A priority patent/TW498058B/en
Priority to IDP981327A priority patent/ID20649A/en
Priority to EP00122258A priority patent/EP1078891B1/en
Priority to DE69807812T priority patent/DE69807812T3/en
Priority to EP98118842A priority patent/EP0908417B2/en
Priority to DE69823560T priority patent/DE69823560T2/en
Priority to EP04007832A priority patent/EP1439148A3/en
Priority to CNB991025741A priority patent/CN1184153C/en
Publication of JPH11240725A publication Critical patent/JPH11240725A/en
Priority to US09/473,680 priority patent/US6405564B1/en
Priority to KR1020060029382A priority patent/KR100682779B1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the manufacturing cost of an apparatus, to improve the degree of freedom of apparatus design, to construct a vacuum deaerator with a great flow rate and to carry out vacuum deaeration treatment at a high temperature, by making a vacuum deaerating tank, a riser, a downcomer, etc., into a series of a closed line and constructing a flow channel composed of refractory brick. SOLUTION: This vacuum deaerator is equipped with a vacuum deaerating tank 14 installed in a vacuum housing 12, a riser 16 which communicates with the vacuum deaerating tank 14, sucks and raises molten glass and introduces it into the deaerating tank 14, a downcomer 18 for dropping and discharging the molten glass, an upstream side connecting line 22 which communicates with a melting tank 20 or an upstream side open channel having the free surface of molten glass and with the riser 16 and a downstream side connecting line 24 which communicates with a downstream side open channel or a treating tank 26 having the free surface of molten glass and with the downcomer 18. These apparatuses are composed of a series of a closed line. A flow channel directly brought into contact with molten glass in the closed lines is made of refractory brick.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続的に供給され
る溶融ガラスから気泡を除去するための溶融ガラスの減
圧脱泡装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum degassing apparatus for molten glass for removing air bubbles from a continuously supplied molten glass.

【0002】[0002]

【従来の技術】従来より、成形されたガラス製品の品質
を向上させるために、図3に示すように、溶融炉で溶融
した溶融ガラスを成形装置で成形する前に溶融ガラス内
に発生した気泡を除去する減圧脱泡装置が用いられてい
る。図3に示す減圧脱泡装置110は、溶解槽120内
の溶融ガラスGを減圧脱泡処理して、次の処理槽に連続
的に供給するプロセスに用いられるものであって、減圧
脱泡する際には、真空吸引されて内部が減圧される減圧
ハウジング112内に設けられ、減圧ハウジング112
と共に減圧される減圧脱泡槽114と、その両端部に、
下方に向かって垂直に取り付けられた上昇管116およ
び下降管118が配置されており、上昇管116の下端
は、溶解槽120に連通する上流側ピット122の溶融
ガラスG内に浸漬されており、下降管118の下端は、
同様に、次の処理槽(図示せず)に連通する下流側ピッ
ト124の溶融ガラスG内に浸漬されている。
2. Description of the Related Art Conventionally, in order to improve the quality of a molded glass product, as shown in FIG. 3, air bubbles generated in the molten glass before the molten glass is melted in a melting furnace by a forming apparatus. Is used. The vacuum degassing apparatus 110 shown in FIG. 3 is used for a process of degassing the molten glass G in the melting tank 120 and continuously supplying the molten glass G to the next processing tank. In this case, the pressure reducing housing 112 is provided in the decompression housing 112 in which the inside is decompressed by vacuum suction.
A decompression degassing tank 114, which is decompressed together, and at both ends thereof,
An ascending pipe 116 and a descending pipe 118 vertically attached downward are arranged, and the lower end of the ascending pipe 116 is immersed in the molten glass G of the upstream pit 122 communicating with the melting tank 120, The lower end of the downcomer 118 is
Similarly, it is immersed in the molten glass G of the downstream pit 124 communicating with the next processing tank (not shown).

【0003】そして、減圧脱泡槽114は、図示しない
真空ポンプによって真空吸引されて内部が減圧される減
圧ハウジング112内におおむね水平に設けられ、減圧
ハウジング112と共に減圧脱泡槽114の内部が1/
3〜1/20気圧に減圧されているので、上流側ピット
122内の脱泡処理前の溶融ガラスGは、上昇管116
によって吸引上昇されて減圧脱泡槽114に導入され、
減圧脱泡槽114内で減圧脱泡処理が行われた後、下降
管118によって下降させて下流側ピット124に導出
される。
The vacuum degassing tank 114 is provided substantially horizontally in a vacuum housing 112 in which the inside is decompressed by vacuum suction by a vacuum pump (not shown). /
Since the pressure has been reduced to 3 to 1/20 atm, the molten glass G in the upstream side pit 122 before the defoaming process is carried out by the rising pipe 116.
And is introduced into the vacuum degassing tank 114,
After the vacuum degassing process is performed in the vacuum degassing tank 114, it is lowered by the downcomer pipe 118 and led out to the downstream pit 124.

【0004】減圧ハウジング112は、金属製、例えば
ステンレス製または耐熱鋼製のケーシングであり、外部
から真空ポンプ(図示せず)等によって真空吸引されて
内部が減圧され、内部に設けられた減圧脱泡槽114内
を所定の圧力、例えば1/20〜1/3気圧に減圧して
維持する。この減圧ハウジング112内の減圧脱泡槽1
14、上昇管116および下降管118の周囲には、こ
れらを断熱被覆する耐火物製レンガなどの断熱材130
が配設されている。
The decompression housing 112 is a casing made of metal, for example, stainless steel or heat-resistant steel. The interior of the decompression housing 112 is evacuated by a vacuum pump (not shown) or the like to reduce the pressure therein. The inside of the foam tank 114 is maintained at a predetermined pressure, for example, reduced to 1/20 to 1/3 atmosphere. The vacuum degassing tank 1 in the vacuum housing 112
14, around the riser pipe 116 and the downcomer pipe 118, a heat insulating material 130 such as a refractory brick for thermally insulating these.
Are arranged.

【0005】従来技術の減圧脱泡装置110において
は、高温、例えば1200〜1400℃の温度の溶融ガ
ラスGを処理するように構成されているので、本出願人
の出願に係る特開平2−221129号公報に開示され
ているように、減圧脱泡槽114、上昇管116および
下降管118などのように溶融ガラスGと直接接触する
溶融ガラスの流路は、白金または白金ロジウムのような
白金合金などの貴金属製円管で構成されている。
The vacuum degassing apparatus 110 of the prior art is configured to process molten glass G at a high temperature, for example, at a temperature of 1200 to 1400 ° C., so that Japanese Patent Application Laid-Open No. 2-221129 filed by the present applicant is required. As disclosed in Japanese Patent Application Laid-Open Publication No. H10-86, the flow path of the molten glass that directly contacts the molten glass G, such as the vacuum degassing tank 114, the riser pipe 116, and the downcomer pipe 118, is made of platinum or a platinum alloy such as platinum rhodium. It is composed of a circular pipe made of precious metal such as.

【0006】ここで、これら減圧脱泡槽114、上昇管
116および下降管118などの溶融ガラスの流路を白
金または白金合金などの貴金属製円管で構成するのは、
これら貴金属は溶融ガラスとの高温反応性が低く、高温
の溶融ガラスGと接触する際に高温の溶融ガラスGと反
応して溶出する可能性が極めて低いので、溶融ガラスG
に不純物を混入させる心配がなく、かつ、高温での強度
がある程度確保できるからである。
Here, the flow path of the molten glass, such as the vacuum degassing tank 114, the riser pipe 116, and the descender pipe 118, is constituted by a circular pipe made of a noble metal such as platinum or a platinum alloy.
Since these noble metals have low reactivity at high temperatures with the molten glass and are very unlikely to react with and elute with the high-temperature molten glass G when they come into contact with the high-temperature molten glass G, the molten glass G
This is because there is no concern that impurities may be mixed into the steel and the strength at high temperatures can be secured to some extent.

【0007】ところで、減圧脱泡槽114を貴金属製円
管で構成する場合には、白金などの貴金属は非常に高価
なので、円管の肉厚を厚くすることは直ちにコストを大
幅に上昇させることになり、コストおよび強度の両方の
点から円管の直径には限界があり、円管の直径をあまり
大きくすることはできず、そのために、減圧脱泡槽11
4で脱泡処理できる溶融ガラスGの流量にも限界が生
じ、大流量の減圧脱泡装置を構築できないという問題が
あった。
In the case where the vacuum degassing tank 114 is formed of a circular pipe made of a noble metal, a noble metal such as platinum is very expensive. Therefore, increasing the wall thickness of the circular pipe immediately increases the cost. The diameter of the circular pipe is limited in terms of both cost and strength, and the diameter of the circular pipe cannot be increased so much.
There is a limit in the flow rate of the molten glass G that can be defoamed in Step 4, and there is a problem in that a reduced-pressure degassing apparatus with a large flow rate cannot be constructed.

【0008】また、溶融ガラスGは、粉体の原料を溶解
反応させることによって得られるので、溶解する際に
は、溶解槽120の温度は高い方が好ましく、また、減
圧脱泡する際にも、高温では溶融ガラスGの粘度が低く
なるので、温度は高い方が好ましい。しかしながら、高
温強度の点などから減圧脱泡槽114などに貴金属合金
を用いる必要がある一方で、貴金属は高価なものであ
り、コストの点から円管の肉厚をあまり厚くすることは
できず、白金などの貴金属を用いたとしても高温になる
にしたがって強度が低下することは避けられないので、
減圧脱泡装置110の入口での溶融ガラスGの温度は、
前述した所定温度(1200〜1400℃)に制限され
ていた。
Since the molten glass G is obtained by melting and reacting the raw materials of the powder, it is preferable that the temperature of the melting tank 120 be high when melting, and also when defoaming under reduced pressure. Since the viscosity of the molten glass G decreases at high temperatures, it is preferable that the temperature be high. However, while it is necessary to use a noble metal alloy for the vacuum degassing tank 114 or the like from the viewpoint of high-temperature strength, the noble metal is expensive, and the wall thickness of the circular pipe cannot be made too large from the viewpoint of cost. Even if a noble metal such as platinum is used, it is inevitable that the strength decreases as the temperature increases,
The temperature of the molten glass G at the inlet of the vacuum degassing apparatus 110 is:
It was limited to the above-mentioned predetermined temperature (1200-1400 ° C.).

【0009】従って高温溶融ガラスの流路を白金で構成
すると、厚みが薄い白金が損耗していずれは穴があくこ
とを設計段階から考慮しておかねばならず、ガラス製品
の生産を一時中止して、白金の修理・更新を短時間で行
える設備としておかねばならない。公知の減圧脱泡装置
の白金製流路(減圧槽・上昇管・下降管)は一体化され
たものであるから、流路を修理更新する場合には、減圧
条件を解除して減圧槽・上昇管・下降管の内部のガラス
をすべて払い出し、その後に減圧装置全体を常温まで下
げ、しかる後白金を修理・更新する必要があった。この
際に溶融ガラスと縁を切る位置としては、上昇管・下降
管の下端が妥当であり、特に、上昇管・下降管を修復す
る際には下方の高温ガラス溜りから管を引き離すために
減圧脱泡装置全体を少なくとも1メートル程度は吊り上
げる構造となしておく必要があった。しかし大型で重量
が非常に重く、かつ運転中は高温減圧条件下に置かれる
頑丈な構造の減圧脱泡装置110全体を上下動すること
は、非常に困難で危険を伴う作業であった。
Therefore, if the flow path of the high-temperature molten glass is made of platinum, it must be considered from the design stage that the thin platinum is worn out and eventually has holes, and the production of glass products is temporarily stopped. Therefore, it must be a facility that can repair and renew platinum in a short time. Since the flow path made of platinum (decompression tank, riser pipe, and downcomer pipe) of the known vacuum degassing apparatus is integrated, when repairing and updating the flow path, the pressure reduction condition is released and the pressure reduction tank It was necessary to discharge all the glass inside the riser / downcomer, then lower the entire decompressor to room temperature, and then repair or renew the platinum. At this time, the lower end of the riser / downcomer is appropriate as a position to cut off the edge of the molten glass.Especially, when repairing the riser / downcomer, the pressure should be reduced in order to separate the tube from the high temperature glass reservoir below. It was necessary to suspend the entire defoaming device by at least one meter. However, moving up and down the entire vacuum degassing apparatus 110, which is large, very heavy, and has a sturdy structure that is subjected to high-temperature decompression conditions during operation, has been a very difficult and dangerous operation.

【0010】[0010]

【発明が解決しようとする課題】以上に述べたように、
従来技術の減圧脱泡装置110は、減圧脱泡槽114、
上昇管116および下降管118などの溶融ガラスGと
直接接触する溶融ガラスの流路を白金または白金ロジウ
ムのような白金合金などで構成していた。ところで、こ
のような白金や白金合金などの貴金属またはその合金
は、他の金属に比べ、高温反応性や高温強度の点で優れ
てはいるものの、自ずと限度があり、減圧脱泡槽114
や上昇管116および下降管118などのサイズを大き
くしようとすると、槽壁や管壁の肉厚を厚くしなければ
ならない。しかしながら、この白金などの貴金属は非常
に高価であり、したがって、減圧脱泡装置110のコス
トは非常に高いものとなってしまう。このコストは、装
置が大型化するにしたがって槽壁や管壁の肉厚を厚くし
なければならないので、飛躍的に増加するものであり、
貴金属合金を使用する場合には、コストの面で装置の大
型化に限界があった。そのため、減圧脱泡槽114で脱
泡処理できる溶融ガラスGの流量にも限界があり、大流
量の減圧脱泡装置を構築できないという問題があった。
As described above, as described above,
The conventional vacuum degassing apparatus 110 includes a vacuum degassing tank 114,
The flow path of the molten glass, such as the riser pipe 116 and the downcomer pipe 118, which directly contacts the molten glass G is made of platinum or a platinum alloy such as platinum rhodium. By the way, such a noble metal such as platinum or a platinum alloy or an alloy thereof is excellent in high-temperature reactivity and high-temperature strength as compared with other metals, but is naturally limited, and has a reduced pressure degassing tank 114.
In order to increase the size of the riser 116, the downcomer 118, etc., it is necessary to increase the thickness of the tank wall or the tube wall. However, this noble metal such as platinum is very expensive, and therefore, the cost of the vacuum degassing apparatus 110 is very high. This cost is dramatically increased because the thickness of the tank wall and tube wall must be increased as the size of the apparatus increases.
When a noble metal alloy is used, there is a limit in increasing the size of the apparatus in terms of cost. Therefore, there is a limit in the flow rate of the molten glass G that can be defoamed in the vacuum degassing tank 114, and there is a problem that a large-volume vacuum degassing apparatus cannot be constructed.

【0011】このように、従来の減圧脱泡装置は、溶融
ガラスの脱泡効率は極めて高いものの、コストが高く、
かつ大流量の減圧脱泡装置を構築できないために、光学
用や電子用などの微細な気泡の存在も認められない特別
の用途の高価なガラスで、かつ、比較的小量の生産で足
りるガラスを主な対象として用いられていた。
As described above, the conventional vacuum degassing apparatus has a very high defoaming efficiency for molten glass, but has a high cost.
Expensive glass for special applications where fine bubbles for optical or electronic use are not recognized because a large-volume vacuum degassing device cannot be constructed, and glass that can be produced in a relatively small amount. Was used as the main object.

【0012】また、前述したように、溶融ガラスを溶解
する際には、溶解槽の温度は高い方が好ましく、減圧脱
泡処理をする際にも、温度は高い方が好ましい。しか
し、白金などの貴金属を用いたとしても高温になるにし
たがって強度が低下することは避けられず、減圧脱泡槽
の肉厚を増加することはコストの上昇に直接つながるの
で、減圧脱泡装置の入口での溶融ガラスの温度は、12
00〜1400℃に制限されて、必要とする任意の温度
まで上昇させることができなかった。
Further, as described above, the temperature of the melting tank is preferably higher when melting the molten glass, and the temperature is preferably higher when performing the degassing treatment under reduced pressure. However, even if a noble metal such as platinum is used, it is inevitable that the strength will decrease as the temperature rises, and increasing the thickness of the vacuum degassing tank directly leads to an increase in cost. The temperature of the molten glass at the inlet of
It was limited to 00-1400 ° C. and could not be raised to any required temperature.

【0013】一方、最近では、建築用や自動車用の廉価
なガラスのように大量生産するものにおいても、脱泡効
率の高い減圧脱泡装置で脱泡処理を行うことが求められ
るようになってきたが、白金などの貴金属合金で減圧脱
泡槽や上昇管、下降管などを構成する限り、白金等の貴
金属が余りにも高価であるため、大量生産するガラスを
従来の貴金属合金製減圧脱泡装置で減圧脱泡処理するこ
とは、コスト上到底不可能であるという問題があった。
このため、図3に示す従来の減圧脱泡装置110におい
て、減圧脱泡槽114、上昇管116および下降管11
8を炉材で構成することによって、装置の大型化、脱泡
処理量の大流量化を図ることが考えられるが、炉材表面
からは溶融ガラス中に炉材泡が発生するという問題があ
る。
On the other hand, recently, even in the case of mass-produced glass such as inexpensive glass for architectural use and automobiles, it has been required to perform a defoaming treatment by a vacuum degassing apparatus having a high defoaming efficiency. However, as long as precious metal alloys such as platinum constitute a vacuum degassing tank, ascending pipe, downcomer pipe, etc., precious metals such as platinum are too expensive, so glass produced in large quantities can be manufactured using conventional precious metal alloy vacuum degassing. There was a problem that it was impossible at all to perform vacuum degassing treatment with an apparatus in terms of cost.
Therefore, in the conventional vacuum degassing apparatus 110 shown in FIG.
Although it is conceivable to increase the size of the apparatus and increase the flow rate of the defoaming treatment by configuring the furnace material 8 with furnace material, there is a problem that furnace material bubbles are generated in the molten glass from the furnace material surface. .

【0014】また、減圧脱泡装置110の減圧脱泡槽1
14、上昇管116および下降管118を炉材で構成す
ると、炉材間を接合する目地部が存在するため、高温溶
融ガラスGによる目地部の劣化、特に上昇管116およ
び下降管118の両下端部はそれぞれ上下流ピット12
2および124に浸漬されるので、溶融ガラスGの自由
表面となる空気との界面の劣化が問題となるし、さら
に、炉材で構成する減圧脱泡装置は、主に白金で構成さ
れる減圧脱泡装置より炉材の構成を稠密とし、かつ使用
する炉材も電鋳レンガを主体としており、全体として重
くなるため、図3に示す従来の減圧脱泡装置110のよ
うに、減圧ケーシング112内の減圧脱泡槽114、上
昇管116および下降管118ならびに断熱材130を
一体として上下動させるのは、非常に困難であり、かつ
危険を伴う作業となる問題もある。
The vacuum degassing tank 1 of the vacuum degassing apparatus 110
14. If the riser pipe 116 and the downcomer pipe 118 are made of furnace material, there is a joint that joins the furnace materials. Therefore, the joint is deteriorated by the high-temperature molten glass G, and particularly, both lower ends of the riser pipe 116 and the lower pipe 118. The upper and lower pits are 12
2 and 124, the interface between the molten glass G and the air that becomes the free surface of the molten glass G deteriorates. Further, the vacuum degassing apparatus made of a furnace material is a vacuum degassing apparatus mainly made of platinum. The furnace material is made denser than the defoaming device, and the furnace material to be used is also mainly made of electroformed bricks and becomes heavier as a whole. Therefore, as in the conventional vacuum degassing device 110 shown in FIG. It is very difficult to move the vacuum degassing tank 114, the riser pipe 116, the descender pipe 118, and the heat insulating material 130 up and down as one unit, and there is a problem that it is a dangerous operation.

【0015】本発明の目的は、前記従来技術の問題点を
解決することにあり、減圧脱泡槽、上昇管および下降管
などを白金などの貴金属合金よりも安価な耐火物製の電
鋳レンガで構成することによって、装置の製造コストを
下げ、装置設計の自由度を向上させ、大流量の減圧脱泡
装置の構築を可能にするとともに、より高温での減圧脱
泡処理も可能にし、かつ、減圧脱泡装置全体を固定し、
困難で危険を伴う減圧脱泡装置を上下動させる作業を廃
止することのできる溶融ガラスの減圧脱泡装置を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, in which a vacuum degassing tank, an ascending pipe and a descending pipe are made of a refractory electroformed brick which is less expensive than a noble metal alloy such as platinum. By reducing the manufacturing cost of the apparatus, improving the degree of freedom of the apparatus design, enabling the construction of a large-volume vacuum degassing apparatus, and enabling the vacuum degassing processing at a higher temperature, and , Fix the entire vacuum degassing device,
An object of the present invention is to provide a vacuum degassing apparatus for molten glass which can eliminate the operation of vertically moving a vacuum degassing apparatus which is difficult and dangerous.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、溶融ガラスの減圧脱泡装置の大型化
および大流量化について鋭意研究を重ねた結果、建築用
や自動車用のガラスのように大量生産するものにおいて
は、一定寸法以下の微細な気泡の存在の許容度は光学用
や電子用ガラスほど厳しくないので、例えば、建築用や
自動車用のガラスの場合には、長径が0.3mm以下の
微細な気泡の存在は許容されるので、発生する泡のほと
んどの直径が0.2mm以下であって、しかも、直径が
0.2mmを超す泡は時間が経てば発生しなくなる耐火
物製の電鋳レンガを、貴金属合金に代えて溶融ガラスの
流路として使用することが可能になることを知見した。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies on the enlargement and large flow rate of a vacuum degassing apparatus for molten glass. In the case of mass production such as glass, the tolerance of the presence of fine bubbles of a certain dimension or less is not as strict as glass for optical or electronic, so for example, in the case of glass for architectural and automotive, Since the presence of fine bubbles with a major axis of 0.3 mm or less is allowed, most of the generated bubbles have a diameter of 0.2 mm or less, and bubbles having a diameter of more than 0.2 mm are generated over time. It has been found that it becomes possible to use a refractory-made electroformed brick which is no longer used as a flow path for molten glass instead of a noble metal alloy.

【0017】また、減圧脱泡槽、上昇管および下降管を
貴金属合金よりも安価な耐火物製の電鋳レンガで構成
し、貴金属合金の場合と同様に溶融ガラスを連続的に減
圧脱泡処理することができれば、白金などの貴金属合金
を用いる場合に比べて、コストの点から使用量を制限し
たり、それに伴う強度低下の点から大きさを制限したり
する必要性はなくなり、装置設計の自由度が飛躍的に向
上し、大流量の減圧脱泡装置の構築が可能になるととも
に、より高温での減圧脱泡処理も可能になることを知見
した。
Further, the vacuum degassing tank, the riser pipe and the downcomer pipe are made of electroformed brick made of refractory which is less expensive than the noble metal alloy, and the molten glass is continuously depressurized and degassed similarly to the case of the noble metal alloy. If it is possible, there is no need to limit the amount of use in terms of cost or limit the size in terms of the accompanying reduction in strength compared to the case of using a precious metal alloy such as platinum. It has been found that the degree of freedom is dramatically improved, a large-volume vacuum degassing apparatus can be constructed, and a vacuum degassing process at a higher temperature becomes possible.

【0018】本発明者らは、以上の知見を得て、本発明
をなすに至ったものである。すなわち、本発明は、真空
吸引されて内部が減圧される減圧ハウジングと、この減
圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行
う減圧脱泡槽と、この減圧脱泡槽に連通して設けられ、
減圧脱泡前の溶融ガラスを吸引上昇させて前記減圧脱泡
槽に導入する上昇管と、前記減圧脱泡槽に連通して設け
られ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から下
降させて導出する下降管と、溶融ガラスの自由表面を有
する溶解槽または上流側開渠と前記上昇管とを連通する
上流側接続管路と、溶融ガラスの自由表面を有する下流
側開渠または処理槽と前記下降管とを連通する下流側接
続管路とを具備し、前記上流側接続管路、前記上昇管、
前記減圧脱泡槽、下降管および下流側接続管路を一連の
閉管路として構成し、これらの一連の閉管路の溶融ガラ
スに直接接触する流路が耐火レンガで構成されているこ
とを特徴とする溶融ガラスの減圧脱泡装置を提供するも
のである。
The present inventors have obtained the above findings and have accomplished the present invention. That is, the present invention provides a decompression housing in which the inside is decompressed by vacuum suction, a decompression tank provided in the decompression housing, and a decompression degassing tank for decompressing the molten glass, and communicating with the decompression degassing tank. Provided,
An ascending pipe that sucks and raises the molten glass before vacuum degassing and introduces the vacuum glass into the vacuum degassing tank is provided in communication with the vacuum degassing tank, and the molten glass after vacuum degassing is removed from the vacuum degassing tank. A downcomer pipe that descends and exits, a melting tank having a free surface of molten glass or an upstream connection pipe communicating the upstream open channel with the riser pipe, and a downstream open channel having a free surface of molten glass or A downstream connection pipe that communicates the processing tank with the downcomer pipe, the upstream connection pipe, the riser pipe,
The vacuum degassing tank, the downcomer pipe and the downstream connection pipe are configured as a series of closed pipes, and the flow path that directly contacts the molten glass of the series of closed pipes is made of firebrick. The present invention provides an apparatus for defoaming molten glass under reduced pressure.

【0019】そして、前記一連の閉回路の溶融ガラスの
流路を構成する耐火レンガが、アルミナ−ジルコニア−
シリカ系電鋳耐火物、ジルコニア系電鋳耐火物およびア
ルミナ系電鋳耐火物よりなる群から選ばれる少なくとも
一つであることが好ましい。また、前記減圧ハウジング
は、前記減圧脱泡槽、前記上昇管および前記下降管なら
びに上流側および下流側接続管路の各一部を一体に囲む
金属製のケーシングであって、前記減圧ハウジングと前
記減圧脱泡槽、前記上昇管および前記下降管ならびに上
流側および下流側接続管路の各一部との間が、耐火物製
レンガからなる断熱材で充填されて多層断面構造となっ
ていることが好ましい。さらに、前記減圧脱泡槽内の圧
力が1/3〜1/20気圧であって、粘度が104.5
アズ以下の溶融ガラスを50mm/sec以下の流速で
流すことが好ましい。
Further, the refractory brick constituting the flow path of the molten glass in the series of closed circuits is made of alumina-zirconia-
It is preferably at least one selected from the group consisting of silica-based electroformed refractories, zirconia-based electroformed refractories, and alumina-based electroformed refractories. The decompression housing is a metal casing integrally surrounding the decompression degassing tank, the riser pipe and the downcomer pipe, and a part of each of the upstream and downstream connection pipes. The vacuum degassing tank, the space between the riser pipe and the downcomer pipe and each part of the upstream and downstream connection pipes are filled with a heat insulating material made of refractory brick to have a multilayer cross-sectional structure. Is preferred. Further, the decompression a pressure 1 / 3-1 / 20 atmospheres degassing vessel, it is preferred that the viscosity of flow less molten glass 10 4.5 poise at a flow rate not less than 50 mm / sec.

【0020】[0020]

【発明の実施の形態】以下、本発明の溶融ガラスの減圧
脱泡装置について、添付の図面に示される好適実施例を
もとに詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a vacuum degassing apparatus for molten glass of the present invention will be described in detail based on a preferred embodiment shown in the accompanying drawings.

【0021】図1は、本発明の溶融ガラスの減圧脱泡装
置の一実施例の概略断面図である。図1に示すように、
本発明の溶融ガラスの減圧脱泡装置10は、溶解槽20
内から溶融ガラスGを減圧脱泡槽14に吸引上昇させ、
減圧された減圧脱泡槽14において減圧脱泡処理を行
い、次の処理槽26、例えばフロートバスなどの板状の
成形処理槽や瓶などの成形作業槽などに連続的に供給す
るプロセスに用いられるもので、基本的に、減圧ハウジ
ング12、減圧脱泡槽14、上昇管16および下降管1
8からなっている。
FIG. 1 is a schematic sectional view of one embodiment of the vacuum degassing apparatus for molten glass of the present invention. As shown in FIG.
The vacuum degassing apparatus 10 for molten glass of the present invention comprises a melting tank 20.
The molten glass G is sucked and raised into the vacuum degassing tank 14 from the inside,
The vacuum degassing process is performed in the depressurized vacuum degassing tank 14, and is used for a process of continuously supplying to the next processing tank 26, for example, a plate-shaped forming processing tank such as a float bath or a forming work tank such as a bottle. Basically, the decompression housing 12, the decompression degassing tank 14, the riser 16 and the downcomer 1
It consists of eight.

【0022】減圧ハウジング12は、減圧脱泡槽14を
減圧する際の気密性を確保するためのケーシング(圧力
容器)として機能するものであり、本実施例では、ほぼ
門型に形成されて、減圧脱泡槽14、上昇管16および
下降管18の全体を包み込むように構成されている。こ
の減圧ハウジング12は、減圧脱泡槽14に必要とされ
る気密性および強度を有するものであれば、その材質、
構造は特に限定されるものではないが、金属製、特にス
テンレス製または耐熱鋼製とすることが好ましい。減圧
ハウジング12には、右上部に真空吸引して内部を減圧
する吸引口12cが設けられており、図示しない真空ポ
ンプによって真空吸引されて減圧ハウジング12の内部
が減圧され、そのほぼ中央部に配置された減圧脱泡槽1
4内を所定の圧力、例えば、1/20〜1/3気圧に減
圧して維持するように構成されている。
The decompression housing 12 functions as a casing (pressure vessel) for ensuring airtightness when depressurizing the decompression and degassing tank 14, and in the present embodiment, is formed in a substantially portal shape. The vacuum degassing tank 14, the rising pipe 16, and the descending pipe 18 are configured so as to surround the entirety. As long as the decompression housing 12 has the airtightness and strength required for the decompression and deaeration tank 14, the material thereof,
The structure is not particularly limited, but is preferably made of metal, particularly stainless steel or heat-resistant steel. The decompression housing 12 is provided with a suction port 12c in the upper right portion for depressurizing the inside by vacuum suction. The inside of the decompression housing 12 is decompressed by vacuum suction by a vacuum pump (not shown), and is disposed substantially at the center thereof. Vacuum degassing tank 1
4 is configured to be maintained at a predetermined pressure, for example, 1/20 to 1/3 atmosphere.

【0023】減圧ハウジング12のほぼ中央部には、減
圧脱泡槽14がおおむね水平に配置されている。この減
圧脱泡槽14の流路の断面は、従来技術と同様に、円形
でもよいが、大流量の溶融ガラスGの減圧脱泡処理を行
うには長方形が好ましい。また、減圧脱泡槽14を構成
する電鋳レンガを製造する面からも長方形の方が好まし
い。この減圧脱泡槽14の左端部には上昇管16の上端
部が、減圧脱泡槽14の右端部には下降管18の上端部
がそれぞれ下方に向かって垂直に連通されている。そし
て、上昇管16および下降管18は門型に形成された減
圧ハウジング12の脚部12a,12bをそれぞれ貫通
するように配設されており、上昇管16および下降管1
8の下端は、開渠として構成された溶解槽20および次
の処理槽26の溶融ガラスGの液面よりも下方の位置で
それぞれ溶解槽20に連通する上流側接続管路22およ
び次の処理槽26に連通する下流側接続管路24に連通
し、一連の閉管路を構成している。
At a substantially central portion of the decompression housing 12, a decompression degassing tank 14 is disposed substantially horizontally. The cross section of the flow path of the vacuum degassing tank 14 may be circular, as in the prior art, but is preferably rectangular for performing vacuum degassing of the molten glass G at a large flow rate. Further, a rectangular shape is preferable from the viewpoint of manufacturing electroformed bricks constituting the vacuum degassing tank 14. The left end of the vacuum degassing tank 14 communicates vertically with the upper end of a rising pipe 16, and the right end of the vacuum degassing vessel 14 communicates with the upper end of a downcomer pipe 18 vertically downward. The ascending pipe 16 and the descending pipe 18 are disposed so as to penetrate through the legs 12a and 12b of the gate-shaped decompression housing 12, respectively.
The lower end of the pipe 8 is connected to the melting tank 20 at a position below the liquid level of the molten glass G in the melting tank 20 and the next processing tank 26 which are configured as open channels, and the next processing line. It communicates with the downstream connection pipe 24 that communicates with the tank 26 to form a series of closed pipes.

【0024】減圧脱泡槽14の上部には、減圧ハウジン
グ12を図示しない真空ポンプ等によって真空吸引する
ことによって、減圧脱泡槽14内を所定の圧力(1/2
0〜1/3気圧)に減圧して維持するために、減圧ハウ
ジング12と連通する吸引孔14a,14bが設けられ
ている。減圧ハウジング12と、減圧脱泡槽14、上昇
管16および下降管18との間は、耐火物製レンガなど
の断熱材30で充填されて断熱被覆され、外側から金属
製の減圧ハウジング12、耐火物製レンガからなる断熱
材30および電鋳レンガ製の減圧脱泡槽14などの多層
断面構造となっている。この断熱材30は、減圧脱泡槽
14の真空吸引の支障とならないように、通気性を有す
る断熱材によって構成される。なお、本発明において
も、減圧脱泡装置10の運転立ち上げの際に、減圧によ
って溶融ガラスGを減圧脱泡槽14に導入するのに、下
降管18の下端部および上流側接続管路24にも溶融ガ
ラスGが必要となるので、減圧ハウジング12の外側に
おいて上および下流側接続管路22と24との間を接続
するバイパス管(図示せず)を設けておくのが好まし
い。
Above the vacuum degassing tank 14, the vacuum housing 12 is evacuated by a vacuum pump or the like (not shown) so that the inside of the vacuum degassing chamber 14 has a predetermined pressure (1/2).
Suction holes 14 a and 14 b communicating with the decompression housing 12 are provided in order to maintain the pressure reduced to 0 to 1/3 atm. A space between the decompression housing 12 and the decompression degassing tank 14, the riser pipe 16, and the downcomer pipe 18 is filled with a heat insulating material 30 such as a refractory brick and is covered with heat. It has a multilayer cross-sectional structure such as a heat insulating material 30 made of a brick made of a material and a vacuum degassing tank 14 made of an electroformed brick. The heat insulating material 30 is made of a heat insulating material having air permeability so as not to hinder the vacuum suction of the vacuum degassing tank 14. In the present invention, the lower end of the downcomer pipe 18 and the upstream connection pipe 24 are also used to introduce the molten glass G into the vacuum degassing tank 14 by depressurization when the operation of the vacuum degassing apparatus 10 is started. Since the molten glass G is also required, it is preferable to provide a bypass pipe (not shown) for connecting the upper and downstream connection pipe lines 22 and 24 outside the decompression housing 12.

【0025】図1に示す本発明の減圧脱泡装置10にお
いては、一連の閉回路を構成する減圧脱泡槽14、上昇
管16および下降管18、上流側接続管路22および下
流側接続管路24、ならびに溶解槽20および次の処理
槽26がいずれも電鋳レンガで形成される。すなわち、
減圧脱泡装置10において、溶融ガラスの自由表面を持
つ溶解槽20から次の処理槽26までの間の一連の閉回
路として構成される溶融ガラスGと直接接触する溶融ガ
ラスGの流路を電鋳レンガで形成することにより、従来
から用いられてきた白金または白金合金製の流路よりも
コストを大幅に低減させることができるので、減圧脱泡
槽14を自由な形状で、かつ自由な肉厚に設計すること
が可能となり、減圧脱泡装置10の大容量化が実現する
とともに、より高温での減圧脱泡処理も行えるようにな
る。また、電鋳レンガであれば、一般の耐火物製レンガ
と比べ高温での耐久性に優れ、発泡や成分の溶出も最小
限にすることができる。特に、溶融ガラスへの成分の溶
出もほとんどなく、建築用や自動車用の窓ガラス、壜ガ
ラス等を製造する場合には無視することができる程度の
ものである。
In the vacuum degassing apparatus 10 of the present invention shown in FIG. 1, a vacuum degassing tank 14, an ascending pipe 16, a descending pipe 18, an upstream connecting pipe 22 and a downstream connecting pipe constituting a series of closed circuits. The path 24, as well as the melting tank 20 and the next processing tank 26, are all formed of electroformed brick. That is,
In the vacuum degassing apparatus 10, the flow path of the molten glass G that is in direct contact with the molten glass G formed as a series of closed circuits from the melting tank 20 having the free surface of the molten glass to the next processing tank 26 is electrically connected. By forming with cast brick, the cost can be greatly reduced compared with the flow path made of platinum or platinum alloy which has been conventionally used. The thickness can be designed to be large, the capacity of the vacuum degassing apparatus 10 can be increased, and the vacuum degassing process can be performed at a higher temperature. In addition, electroformed bricks have higher durability at high temperatures than ordinary refractory bricks, and can minimize foaming and elution of components. In particular, there is almost no elution of components into the molten glass, which is negligible when manufacturing window glasses for architectural or automotive use, bottled glass, and the like.

【0026】建築用や自動車用のガラスのように大量生
産するものにおいては、一定寸法以下の微細な気泡の存
在は許容され、たとえば、建築用のガラスの場合には、
直径が0.3mm以下の微細な気泡の存在は許容される
ので、ほとんどの泡の直径が0.2mm以下であり、
0.2mm超の泡が所定時間経過すると発生が停止して
しまう電鋳レンガからの発泡は、許容されるものであ
る。なお、本発明者らの図1に示す減圧脱泡装置10に
おける実験の結果によれば、上述した減圧脱泡槽14の
減圧条件下で発生する泡径分布は、0.2mm以下が多
数あるが、0.2mmを超す泡はごく少なく、建築用や
自動車用ガラスとして用いられるソーダライム組成で1
285℃においては、テストスタート7日後には、0.
2mm以上の泡の発生がやむこと、およびただし、0.
2mm以下の大きさの泡は発生し続けることが確認され
ている。従って、図1に示す溶融ガラスGと接触するす
べての部分に電鋳レンガを用いる減圧脱泡装置10は、
泡直径0.02mmまでの泡を問題にする電子用ガラス
や光学用ガラスには不適であるが、泡直径0.3mmま
での泡まで許容される建築用ガラスや自動車用ガラスに
は、許容限度以下の小泡が多くても問題はなく、充分適
用できる。
In the case of mass-produced glass such as architectural and automotive glass, the presence of fine air bubbles having a certain size or less is allowed. For example, in the case of architectural glass,
Since the presence of fine bubbles with a diameter of 0.3 mm or less is acceptable, most bubbles have a diameter of 0.2 mm or less,
Foaming from electroformed bricks whose generation stops when a foam of more than 0.2 mm elapses for a predetermined time is acceptable. According to the results of experiments performed by the present inventors on the vacuum degassing apparatus 10 shown in FIG. 1, the diameter distribution of bubbles generated under the reduced pressure conditions in the above-described vacuum degassing tank 14 has a large number of 0.2 mm or less. However, the amount of bubbles exceeding 0.2 mm is very small, and the soda-lime composition used for architectural and automotive glass is 1
At 285 ° C., after 7 days from the start of the test, the sample was placed at 0.
Generation of bubbles of 2 mm or more is stopped, and
It has been confirmed that bubbles having a size of 2 mm or less continue to be generated. Therefore, the vacuum degassing apparatus 10 using electroformed bricks for all the parts that come into contact with the molten glass G shown in FIG.
It is unsuitable for electronic glass and optical glass, which poses a problem of bubbles up to a bubble diameter of 0.02 mm, but it is not acceptable for architectural glass and automotive glass, which allows bubbles up to a bubble diameter of 0.3 mm. There is no problem even if there are many small bubbles described below, and they can be applied sufficiently.

【0027】従って、減圧脱泡槽14、上昇管16およ
び下降管18の形状は少なくとも筒状管であれば特に限
定されず、その断面形状は円形、楕円形または正方形や
長方形などの矩形やその他の多角形とすることができ
る。電鋳レンガを用いて減圧脱泡槽14、上昇管16お
よび下降管18、上下流側接続管22および24、溶解
槽20ならびに次の処理槽26を構築する方法は、特に
制限されるものではなく、たとえば、小さい直方体の電
鋳レンガを積み上げ、その間の目地の部分を目地材で埋
めて所定長の筒状管を形成してもよいし、円筒状もしく
は角筒状に鋳込み成形した筒状の電鋳レンガを一列に積
み重ねて、その間の目地の部分を目地材で埋めて所定長
の筒状管を形成してもよく、あるいは、板状の電鋳レン
ガを組み合わせて断面が長方形の管路を形成し、その間
の目地の部分を目地材で埋めて所定長の角筒状の管を形
成してもよい。
Accordingly, the shapes of the vacuum degassing tank 14, the riser tube 16 and the downcomer tube 18 are not particularly limited as long as they are at least cylindrical tubes, and their cross-sectional shapes are circular, elliptical, rectangular such as square or rectangular, and other shapes. Polygon. The method of constructing the vacuum degassing tank 14, the riser pipe 16 and the descender pipe 18, the upstream and downstream connection pipes 22 and 24, the melting tank 20, and the next processing tank 26 using the electroformed brick is not particularly limited. For example, for example, small rectangular parallelepiped electroformed bricks may be piled up, and joints between them may be filled with jointing material to form a cylindrical tube of a predetermined length, or a cylindrical tube formed by casting into a cylindrical shape or a square cylindrical shape. May be stacked in a row, and the joints between them may be filled with joint material to form a tubular tube of a predetermined length, or a tube having a rectangular cross section by combining plate-like electroformed bricks A road may be formed, and a joint portion therebetween may be filled with a joint material to form a rectangular tube having a predetermined length.

【0028】なお、電鋳レンガとしては、耐火原料を電
気溶融した後、所定形状に鋳込み成形したレンガであれ
ば特に限定されず、従来公知の各種の耐火物製電鋳レン
ガを使用することができる。中でも、耐蝕性が高く、素
地からの発泡も少ない点で、アルミナ系電鋳耐火物、ジ
ルコニア系電鋳耐火物、アルミナ−ジルコニア−シリカ
(AZS;Al2 3 −ZrO2 −SiO2 )系電鋳耐
火物等が好適に例示され、具体的には、マースナイト
(MB、特にMB−G)、ZB−X950、ジルコナイ
ト(ZB)(いずれも旭硝子(株)製)等が例示され
る。
The electroformed brick is not particularly limited as long as the refractory raw material is electrofused and then cast into a predetermined shape, and various types of conventionally known refractory electroformed bricks can be used. it can. Among them, high corrosion resistance, foaming from the matrix is small in terms, alumina electroforming refractories, zirconia electroforming refractories, alumina - zirconia - silica (AZS; Al 2 O 3 -ZrO 2 -SiO 2) based Preferable examples include electroformed refractories, and specific examples include marsnite (MB, particularly MB-G), ZB-X950, and zirconite (ZB) (all manufactured by Asahi Glass Co., Ltd.).

【0029】なお、本発明において用いられる電鋳レン
ガは、その内部には閉気孔を持つものであるが、その鋳
込み面の気孔率はほぼ0である。しかしながら、減圧脱
泡槽14、上昇管16および下降管18を大型化すれ
ば、大型の電鋳レンガを用いるのが良いが、電鋳レンガ
自体の大型化にも限度があり、例えば1辺1mを超す大
型電鋳レンガの製造は困難である。このため、本発明に
おいては、複数の電鋳レンガを組仕上げする必要があ
り、電鋳レンガ間に目地ができてしまう。もちろん、こ
の目地は目地材等によって埋められるが、稠密度は電鋳
レンガに比べて低いため、空気や場合(劣化状態)によ
っては、溶融ガラスGも流通できるため、電鋳レンガ単
独では真空を保つことができない。
The electroformed brick used in the present invention has closed pores inside, but the porosity of the cast surface is almost 0. However, if the vacuum degassing tank 14, the riser pipe 16 and the downcomer pipe 18 are increased in size, it is better to use a large electroformed brick, but there is a limit to the size of the electroformed brick itself. It is difficult to manufacture large electroformed bricks. For this reason, in the present invention, it is necessary to finish a plurality of electroformed bricks, and joints are formed between the electroformed bricks. Of course, this joint is filled with a joint material or the like. However, since the denseness is lower than that of electroformed brick, depending on the air or the case (deteriorated state), molten glass G can be circulated. I can't keep it.

【0030】従って、本発明においては、上述したよう
に、耐熱性のある鋼板(ステンレス鋼板など)製減圧ハ
ウジング12で、溶解槽20と連通する上流側接続管路
22の一部、上昇管16、減圧脱泡槽14、下降管1
8、および次の処理槽26に連通する下流側接続管路2
4の一部を覆い、減圧ハウジング12の内部全体を減圧
している。本発明においては、耐火レンガは白金と異な
り最初から厚みを厚く構成することが可能で、従って高
価で最小限度量の白金を用いた場合と異なり、損耗した
流路を修復する頻度は非常に少なくなる。結果的に溶融
ガラスの流路を補修するために生産を中断する対策を設
計段階から織り込んでおく必要は乏しくなり、減圧装置
全体を上下する必要性はない。すなわち減圧装置とその
前後のガラス流路を固定的に構成することが可能にな
り、上昇管16および下降管18の各々の下端を図3に
示す従来の減圧脱泡装置110のように、自由表面を持
つ溶融ガラスG中に大気の存在下で浸漬する必要がない
ため、上昇管16および下降管18において、管外側の
大気と溶融ガラスGとの界面部分の劣化、特に目地部
(目地材)の劣化を防止することができる。また、この
ように構成することにより、減圧脱泡槽14、上昇管1
6および下降管18を含む減圧ハウジング12を全体と
して固定することができ、図3に示す従来の減圧脱泡装
置110のように上下動する必要がなく、運転立ち上げ
や休止や停止の際の作業を簡単なものとすることができ
る。
Therefore, in the present invention, as described above, the pressure reducing housing 12 made of a heat-resistant steel plate (stainless steel plate or the like) is used to reduce a part of the upstream connection pipe 22 communicating with the melting tank 20 and the rising pipe 16. , Vacuum degassing tank 14, downcomer 1
8, and the downstream connection pipe line 2 communicating with the next processing tank 26
4 is partially covered, and the entire interior of the decompression housing 12 is depressurized. In the present invention, refractory bricks can be configured to be thicker from the beginning, unlike platinum, and therefore, unlike the case of using the expensive and minimal amount of platinum, the frequency of repairing a worn channel is very low. Become. As a result, it is not necessary to incorporate measures for interrupting production from the design stage in order to repair the flow path of the molten glass, and there is no need to raise or lower the entire decompression device. That is, the pressure reducing device and the glass flow paths before and after the pressure reducing device can be fixedly configured, and the lower ends of the riser pipe 16 and the lowering pipe 18 can be freely set like the conventional vacuum degassing apparatus 110 shown in FIG. Since it is not necessary to immerse the molten glass G in the presence of the atmosphere in the molten glass G having a surface, deterioration of the interface between the atmosphere outside the pipe and the molten glass G in the riser pipe 16 and the descending pipe 18, particularly, joints (joint joints) ) Can be prevented from deteriorating. In addition, with such a configuration, the vacuum degassing tank 14 and the riser 1
The vacuum housing 12 including the vacuum chamber 6 and the downcomer pipe 18 can be fixed as a whole, and does not need to be moved up and down as in the conventional vacuum degassing apparatus 110 shown in FIG. The work can be simplified.

【0031】なお、減圧ハウジング12は、上流側接続
管路22および下流側接続管路24が通過するための開
口を有し、この減圧ハウジング12の開口部は、上下流
側接続管路22および24の外周との間を気密に接合す
るため、接続管路22および24にできるだけ近付けた
絞り構造とするのがよい。このため、これらの減圧ハウ
ジング12の開口部付近は、耐熱鋼製とするのが良い
が、あまり接続管路22、24に近付けすぎると、電鋳
レンガ等を貫流する熱によって鋼材(板)が融けること
になるので、部分的に水冷してもよい。また、この減圧
ハウジング12の開口部と上下流側接続22および24
との間から侵入する空気は、所定圧力、例えば1/20
〜1/3気圧、あるいは−400〜−600mmHgに
保たれる減圧脱泡槽14までの間に充填される耐火物製
レンガからなる断熱材30の圧力損失により、最小限に
保たれる。
The decompression housing 12 has an opening through which the upstream connection pipe 22 and the downstream connection pipe 24 pass. The opening of the decompression housing 12 is connected to the upstream and downstream connection pipes 22 and In order to hermetically join with the outer periphery of 24, it is preferable to adopt a throttle structure as close as possible to connection pipe lines 22 and 24. Therefore, the vicinity of the opening of the decompression housing 12 is preferably made of heat-resistant steel. However, if it is too close to the connection pipelines 22 and 24, the steel material (plate) is heated by the heat flowing through the electroformed brick and the like. Since it will melt, it may be partially water-cooled. The opening of the decompression housing 12 is connected to the upstream and downstream connections 22 and 24.
The air which enters from between the predetermined pressure and the predetermined pressure, for example, 1/20
The pressure loss is kept to a minimum due to the pressure loss of the heat insulating material 30 made of refractory bricks filled up to the vacuum degassing tank 14 maintained at 1 / 1/3 atm or −400 to −600 mmHg.

【0032】図1に示す例では、下降管18の下端に接
続される下流側接続管路24は、直接次の処理槽26に
連通しているけれども、本発明はこれに限定されず、溶
融ガラスGが自由表面を持つ下流側開渠に連通されるも
のであればよく、例えば図2に示すような攪拌槽30に
連通するものであってもよい。図2に示す攪拌槽30
は、同様に電鋳レンガで構成され、内部にスターラ34
を有し、溶融ガラスGは自由表面を有している。なお、
図2において、参照符号36は、スターラ34によって
攪拌された溶融ガラスGを次の処理槽、例えば成形槽へ
流出させる開口の大きさを調整し、溶融ガラスGの流出
量を調整する弁として機能する流量調節弁(ツイール)
である。
In the example shown in FIG. 1, the downstream connection line 24 connected to the lower end of the downcomer 18 communicates directly with the next processing tank 26, but the present invention is not limited to this. It is sufficient that the glass G communicates with a downstream open channel having a free surface, and for example, the glass G may communicate with a stirring tank 30 as shown in FIG. The stirring tank 30 shown in FIG.
Is similarly made of electroformed brick and has a stirrer 34 inside.
And the molten glass G has a free surface. In addition,
In FIG. 2, reference numeral 36 functions as a valve for adjusting the size of an opening through which the molten glass G stirred by the stirrer 34 flows out to the next processing tank, for example, a forming tank, and adjusting the amount of the molten glass G flowing out. Flow control valve (Tweel)
It is.

【0033】なお、図示していないが、上昇管16の下
端に接続される上流側接続管路22も、図1に示すよう
に直接溶解槽20に接続されるものに限定されず、同様
に電鋳レンガで製造された溶解槽などの溶融ガラスGが
自由表面を有する電鋳レンガ製の上流側開渠に連通され
るものであってもよいのはもちろんである。
Although not shown, the upstream connecting line 22 connected to the lower end of the riser 16 is not limited to the one directly connected to the dissolving tank 20 as shown in FIG. It goes without saying that the molten glass G such as a melting tank made of electroformed brick may be communicated with an upstream open channel made of electroformed brick having a free surface.

【0034】次に、本発明の溶融ガラスの減圧脱泡装置
の定常運転時における作用を説明する。図1に示す本発
明の溶融ガラスの減圧脱泡装置10において、減圧脱泡
槽14は、図示しない真空ポンプによって真空吸引され
て、所定の圧力、例えば1/20〜1/3気圧に減圧し
て維持されているので、溶融ガラスGは、開渠として構
成された溶解槽20または次の処理槽26の液面の気圧
(大気圧)と減圧ハウジング12内の気圧の差によっ
て、溶解槽20または次の処理槽26の液面より下に配
置された上下流接続管路22,24および上昇管16ま
たは下降管18を通って減圧脱泡槽14に吸引上昇さ
れ、一連の閉管路として構成されたサイフォンとなっ
て、溶解槽20と次の処理槽26における溶融ガラスG
の液面の高さの差に従って次の処理槽26に流出する。
Next, the operation of the vacuum degassing apparatus for molten glass of the present invention at the time of steady operation will be described. In the vacuum degassing apparatus 10 for molten glass of the present invention shown in FIG. 1, the vacuum degassing tank 14 is evacuated by a vacuum pump (not shown) to reduce the pressure to a predetermined pressure, for example, 1/20 to 1/3 atmosphere. The molten glass G is maintained in the melting tank 20 due to the difference between the atmospheric pressure (atmospheric pressure) of the liquid level in the melting tank 20 or the next processing tank 26 configured as an open channel and the pressure in the decompression housing 12. Alternatively, the liquid is sucked and raised into the vacuum degassing tank 14 through the upstream and downstream connecting pipes 22 and 24 and the rising pipe 16 or the falling pipe 18 disposed below the liquid level of the next processing tank 26, and is configured as a series of closed pipes. The molten glass G in the melting tank 20 and the next processing tank 26
Flows out to the next processing tank 26 in accordance with the difference in the liquid surface height.

【0035】このとき、溶解槽20または次の処理槽2
6の溶融ガラスGの液面の高さと減圧脱泡槽14に吸引
上昇された溶融ガラスGの液面の高さの差は、減圧脱泡
槽14内の減圧された圧力によって異なるが、ほぼ、
2.5m〜3.5m程度となり、減圧脱泡槽14内の溶
融ガラスGの流速は、溶融ガラスGの粘度(温度)と溶
解槽20または次の処理槽26の溶融ガラスGの液面の
高さの差とによって定まる。しかし、減圧脱泡槽14内
の溶融ガラスGの流速が50m/secを超えると、流
路を形成する電鋳レンガの浸食が早まるので、溶融ガラ
スGの流速は、50m/sec以下にすることが好まし
い。
At this time, the melting tank 20 or the next processing tank 2
The difference between the liquid level of the molten glass G and the liquid level of the molten glass G sucked and raised into the vacuum degassing tank 14 differs depending on the depressurized pressure in the vacuum degassing tank 14, but is almost the same. ,
The flow rate of the molten glass G in the vacuum degassing tank 14 depends on the viscosity (temperature) of the molten glass G and the liquid level of the molten glass G in the melting tank 20 or the next processing tank 26. It is determined by the difference in height. However, if the flow rate of the molten glass G in the vacuum degassing tank 14 exceeds 50 m / sec, the erosion of the electroformed bricks forming the flow path is accelerated. Therefore, the flow rate of the molten glass G should be 50 m / sec or less. Is preferred.

【0036】減圧脱泡槽14内に吸引上昇された溶融ガ
ラスGは、減圧脱泡槽14内が1/20〜1/3気圧に
減圧されているので、溶融ガラスGに含まれた気泡が液
面に上昇して破泡する。減圧脱泡装置10は、このよう
にして、溶融ガラスGに含まれている気泡を除去するも
のである。もちろん、溶融ガラスGの粘度は、高温にな
るに従って低くなるので、溶融ガラスGが高温になるほ
ど溶融ガラスGに含まれている気泡を除くことが容易に
なり、また、溶融ガラスGの流動性が高くなって、減圧
脱泡槽14内を通過して脱泡処理される溶融ガラスGの
流量も多くなる。このため、溶融ガラスGの粘度は10
4.5ポアズ以下にすることが好ましい。
The molten glass G sucked and raised in the vacuum degassing tank 14 is reduced in pressure to 1/20 to 1/3 atmosphere in the vacuum degassing tank 14, so that bubbles contained in the molten glass G are removed. It rises to the liquid level and breaks bubbles. The reduced-pressure defoaming device 10 removes bubbles contained in the molten glass G in this manner. Of course, the viscosity of the molten glass G decreases as the temperature increases, so that the higher the temperature of the molten glass G, the easier it is to remove bubbles contained in the molten glass G, and the higher the temperature of the molten glass G becomes. As a result, the flow rate of the molten glass G that passes through the vacuum degassing tank 14 and undergoes the defoaming process also increases. Therefore, the viscosity of the molten glass G is 10
It is preferable to be 4.5 poise or less.

【0037】このような減圧脱泡装置10の運転を立ち
上げる際には、減圧脱泡槽14、上昇管16、下降管1
8および上下流接続管路22,24からなる一連の閉管
路の内面(溶融ガラスGの流路)を溶融ガラスGと同じ
程度の温度まで予備加熱しておくのがよい。予備加熱が
不十分であると、溶融ガラスGを吸引上昇させる際に、
溶融ガラスGが冷却されて固化し、その後の運転が不能
になるおそれがある。
When the operation of the vacuum degassing apparatus 10 is started, the vacuum degassing tank 14, the rising pipe 16 and the downcoming pipe 1
It is preferable to preheat the inner surface (flow path of the molten glass G) of a series of closed conduits composed of the pipe 8 and the upstream and downstream connection conduits 22 and 24 to the same temperature as the molten glass G. If the preheating is insufficient, when the molten glass G is sucked up,
The molten glass G is cooled and solidified, and the subsequent operation may not be possible.

【0038】十分に予備加熱した後、溶解槽20から上
流側接続管路22に溶融ガラスGを流し込むとともに、
図示しないバイパス管路を開いて、接続管路22から下
流側接続管路24にも溶融ガラスGを流し込み、上下流
側接続管路22および24を溶融ガラスGで満たす。こ
の後、減圧ハウジング12内を減圧することによって、
溶融ガラスGを、上流側接続管路22から上昇管16を
通って、かつ下流側接続管路24から下降管18を通っ
て減圧脱泡槽14内に吸引上昇させる。上昇管16およ
び下降管18から上昇してきた溶融ガラスGが減圧脱泡
槽14内で合流し、減圧脱泡槽14が所定の圧力まで減
圧され、減圧脱泡槽14内の溶融ガラスGの液面が所定
の高さまで上昇した後、図示しないバイパス管路を閉
じ、減圧脱泡装置10は、定常運転に移行する。
After sufficiently preheating, the molten glass G is poured from the melting tank 20 into the upstream connection pipe 22,
By opening a bypass pipe (not shown), the molten glass G is also poured from the connection pipe 22 to the downstream connection pipe 24, and the upstream and downstream connection pipes 22 and 24 are filled with the molten glass G. Thereafter, by decompressing the inside of the decompression housing 12,
The molten glass G is suctioned and raised from the upstream connection pipe 22 through the riser pipe 16 and from the downstream connection pipe 24 through the downcomer pipe 18 into the vacuum degassing tank 14. The molten glass G rising from the riser pipe 16 and the descending pipe 18 joins in the vacuum degassing tank 14, the pressure in the vacuum degassing tank 14 is reduced to a predetermined pressure, and the liquid of the molten glass G in the vacuum degassing tank 14 is reduced. After the surface has risen to a predetermined height, the bypass conduit (not shown) is closed, and the vacuum degassing apparatus 10 shifts to a steady operation.

【0039】以上、本発明の溶融ガラスの減圧脱泡装置
について詳細に説明したが、本発明は上記実施例に限定
されず、本発明の要旨を逸脱しない範囲において、各種
の改良および変更を行ってもよいのはもちろんである。
Although the vacuum degassing apparatus for molten glass according to the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the scope of the present invention. Of course, you may.

【0040】[0040]

【発明の効果】以上に詳細に説明したように、本発明に
よれば、減圧脱泡槽、上昇管および下降管などを白金な
どの貴金属合金よりも安価な耐火物製の電鋳レンガで構
成し、貴金属合金の場合と同様に溶融ガラスを連続的に
減圧脱泡処理することができるので、白金などの貴金属
合金を用いる場合に比べて製造コストが下がり、コスト
の点から使用量を制限したり、それに伴う強度低下の点
から大きさを制限したりする必要性はなくなり、装置設
計の自由度が飛躍的に向上し、大流量の減圧脱泡装置の
構築が可能になるとともに、より高温での減圧脱泡処理
も可能にすることができる。また、減圧脱泡装置の上下
動を不要とし、減圧脱泡装置全体を固定することによっ
て、困難で危険を伴う減圧脱泡装置を上下動させる作業
を廃止することができ、より安全な減圧脱泡装置を構成
することができる。
As described above in detail, according to the present invention, the vacuum degassing tank, the riser pipe and the downcomer pipe are made of refractory electroformed bricks which are less expensive than noble metal alloys such as platinum. However, similar to the case of precious metal alloys, the molten glass can be continuously degassed under reduced pressure, so that the production cost is lower than when a precious metal alloy such as platinum is used, and the amount used is limited in terms of cost. There is no need to limit the size in view of the decrease in strength due to this, and the degree of freedom in equipment design is dramatically improved. Can also be performed under reduced pressure. Also, by eliminating the need for up-and-down movement of the vacuum degassing apparatus, and by fixing the entire vacuum degassing apparatus, it is possible to eliminate the difficult and dangerous work of vertically moving the vacuum degassing apparatus, and to achieve a safer vacuum degassing apparatus. A foam device can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の溶融ガラスの減圧脱泡装置の一実施
例の概略断面図を示す。
FIG. 1 is a schematic sectional view of one embodiment of a vacuum degassing apparatus for molten glass of the present invention.

【図2】 本発明の溶融ガラスの減圧脱泡装置の別の実
施例の概略断面図を示す。
FIG. 2 shows a schematic sectional view of another embodiment of the vacuum degassing apparatus for molten glass of the present invention.

【図3】 従来技術の溶融ガラスの減圧脱泡装置の概略
断面図を示す。
FIG. 3 is a schematic sectional view of a vacuum degassing apparatus for molten glass of the prior art.

【符号の説明】[Explanation of symbols]

10,110 減圧脱泡装置 12,112 減圧ハウジング 12a,12b 脚部 12c 吸引口 14,114 減圧脱泡槽 14a,14b 吸引孔 16,116 上昇管 18,118 下降管 20,120 溶解槽 22 上流側接続管路 24 下流側接続管路 26 処理槽 30,130 断熱材 32 攪拌槽 34 スターラ 36 流量調節弁 122 上流側ピット 124 下流側ピット G 溶融ガラス 10, 110 Decompression degassing device 12, 112 Decompression housing 12a, 12b Leg 12c Suction port 14, 114 Decompression degassing tank 14a, 14b Suction hole 16, 116 Rise pipe 18, 118 Descending pipe 20, 120 Dissolution tank 22 Upstream side Connection pipe 24 Downstream connection pipe 26 Processing tank 30, 130 Thermal insulation material 32 Stirrer tank 34 Stirrer 36 Flow control valve 122 Upstream pit 124 Downstream pit G Molten glass

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木島 駿 神奈川県横浜市鶴見区末広町1丁目1番地 旭硝子株式会社京浜工場内 (72)発明者 谷垣 淳史 神奈川県横浜市鶴見区末広町1丁目1番地 旭硝子株式会社京浜工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shun Kijima 1-1-1, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Keihin Plant of Asahi Glass Co., Ltd. (72) Atsushi Tanigaki 1-1-1, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Address Asahi Glass Co., Ltd. Keihin Plant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】真空吸引されて内部が減圧される減圧ハウ
ジングと、この減圧ハウジング内に設けられ、溶融ガラ
スの減圧脱泡を行う減圧脱泡槽と、この減圧脱泡槽に連
通して設けられ、減圧脱泡前の溶融ガラスを吸引上昇さ
せて前記減圧脱泡槽に導入する上昇管と、前記減圧脱泡
槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記
減圧脱泡槽から下降させて導出する下降管と、 溶融ガラスの自由表面を有する溶解槽または上流側開渠
と前記上昇管とを連通する上流側接続管路と、 溶融ガラスの自由表面を有する下流側開渠または処理槽
と前記下降管とを連通する下流側接続管路とを具備し、 前記上流側接続管路、前記上昇管、前記減圧脱泡槽、下
降管および下流側接続管路を一連の閉管路として構成
し、 これらの一連の閉管路の溶融ガラスに直接接触する流路
が耐火レンガで構成されていることを特徴とする溶融ガ
ラスの減圧脱泡装置。
1. A decompression housing, the interior of which is decompressed by vacuum suction, a decompression degassing tank provided in the decompression housing, and decompression degassing of molten glass, and provided in communication with the decompression degassing tank. A rising pipe for sucking and raising the molten glass before vacuum degassing and introducing the molten glass into the vacuum degassing tank, and provided in communication with the vacuum degassing tank; A downcomer pipe that descends from the tank and leads out; a melting tank having a free surface of the molten glass; or an upstream connection pipe communicating the upstream open channel with the riser pipe; and a downstream opening having a free surface of the molten glass. A downstream connection pipe that communicates the culvert or the treatment tank with the downcomer pipe, the upstream connection pipe, the riser pipe, the vacuum degassing tank, the downcomer pipe, and the downstream connection pipe are connected in series. It is configured as a closed pipe, and the molten gas of these series of closed A vacuum degassing apparatus for molten glass, wherein a flow path directly in contact with the lath is made of refractory brick.
【請求項2】前記一連の閉回路の溶融ガラスの流路を構
成する耐火レンガが、アルミナ−ジルコニア−シリカ系
電鋳耐火物、ジルコニア系電鋳耐火物およびアルミナ系
電鋳耐火物よりなる群から選ばれる少なくとも一つであ
る請求項1に記載の溶融ガラスの減圧脱泡装置。
2. A refractory brick constituting a flow path of the molten glass in the series of closed circuits, the refractory brick comprising an alumina-zirconia-silica electroformed refractory, a zirconia electroformed refractory, and an alumina electroformed refractory. The vacuum degassing apparatus for molten glass according to claim 1, which is at least one selected from the group consisting of:
【請求項3】前記減圧ハウジングは、前記減圧脱泡槽、
前記上昇管および前記下降管ならびに上流側および下流
側接続管路の各一部を一体に囲む金属製のケーシングで
あって、前記減圧ハウジングと前記減圧脱泡槽、前記上
昇管および前記下降管ならびに上流側および下流側接続
管路の各一部との間が、耐火物製レンガからなる断熱材
で充填されて多層断面構造となっていることを特徴とす
る請求項1または2に記載の溶融ガラスの減圧脱泡装
置。
3. The decompression housing according to claim 1, wherein the decompression housing includes:
A metal casing integrally surrounding each part of the riser pipe and the downcomer pipe and the upstream and downstream connection pipes, wherein the decompression housing and the decompression degassing tank, the riser pipe and the descender pipe, and 3. The melt according to claim 1, wherein a space between each of the upstream and downstream connection pipes is filled with a heat insulating material made of a refractory brick to form a multilayer cross-sectional structure. 4. Vacuum degassing equipment for glass.
【請求項4】前記減圧脱泡槽内の圧力が1/3〜1/2
0気圧であって、粘度が104.5ポアズ以下の溶融ガラ
スを50mm/sec以下の流速で流すことを特徴とす
る請求項1〜3のいずれかに記載の溶融ガラスの減圧脱
泡装置。
4. The pressure in the vacuum degassing tank is 1/3 to 1/2.
A 0 atm, vacuum degassing apparatus for molten glass according to any one of claims 1 to 3, characterized in that the viscosity of flow less molten glass 10 4.5 poise at a flow rate not less than 50 mm / sec.
JP4492698A 1997-10-06 1998-02-26 Vacuum deaerator for molten glass Withdrawn JPH11240725A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP4492698A JPH11240725A (en) 1998-02-26 1998-02-26 Vacuum deaerator for molten glass
US09/164,356 US6119484A (en) 1997-10-06 1998-10-01 Vacuum degassing apparatus for molten glass
KR1019980041667A KR100682778B1 (en) 1997-10-06 1998-10-02 Vacuum degassing apparatus for molten glass
TW087116447A TW498058B (en) 1997-10-06 1998-10-02 Vacuum degassing apparatus for molten glass
IDP981327A ID20649A (en) 1997-10-06 1998-10-05 REASON FOR THE DECREASE OF GAS HAMPA FOR GLASS RELEASE
EP98118842A EP0908417B2 (en) 1997-10-06 1998-10-06 Vacuum degassing apparatus for molten glass
DE69807812T DE69807812T3 (en) 1997-10-06 1998-10-06 Vacuum degassing apparatus for molten glass
EP00122258A EP1078891B1 (en) 1997-10-06 1998-10-06 Parallel arrangement of a vacuum degassing apparatus for molten glass
DE69823560T DE69823560T2 (en) 1997-10-06 1998-10-06 Parallel arrangement of a vacuum degassing device for molten glass
EP04007832A EP1439148A3 (en) 1997-10-06 1998-10-06 Apparatus for degassing molten glass under reduced pressure
CNB991025741A CN1184153C (en) 1998-02-26 1999-02-26 Vacuum degassing apparatus for molten glass
US09/473,680 US6405564B1 (en) 1997-10-06 1999-12-29 Vacuum degassing apparatus for molten glass
KR1020060029382A KR100682779B1 (en) 1997-10-06 2006-03-31 Vacuum degassing apparatus for molten glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4492698A JPH11240725A (en) 1998-02-26 1998-02-26 Vacuum deaerator for molten glass

Publications (1)

Publication Number Publication Date
JPH11240725A true JPH11240725A (en) 1999-09-07

Family

ID=12705089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4492698A Withdrawn JPH11240725A (en) 1997-10-06 1998-02-26 Vacuum deaerator for molten glass

Country Status (1)

Country Link
JP (1) JPH11240725A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104731A (en) * 2001-09-28 2003-04-09 Asahi Glass Co Ltd Conduit structure of molten glass and degassing device with reduced pressure for molten glass
US6948338B2 (en) 2001-09-14 2005-09-27 Asahi Glass Company, Limited Vacuum degassing apparatus for molten glass
WO2012070508A1 (en) * 2010-11-25 2012-05-31 旭硝子株式会社 Ceramic member and method for producing same, device and method for producing molten glass, and device and method for producing glass article
JP2018526319A (en) * 2015-09-09 2018-09-13 コーニング インコーポレイテッド Glass manufacturing apparatus and operation method thereof
CN109205997A (en) * 2017-06-30 2019-01-15 安瀚视特控股株式会社 The manufacturing method and glass substrate manufacturing device of glass substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6948338B2 (en) 2001-09-14 2005-09-27 Asahi Glass Company, Limited Vacuum degassing apparatus for molten glass
JP2003104731A (en) * 2001-09-28 2003-04-09 Asahi Glass Co Ltd Conduit structure of molten glass and degassing device with reduced pressure for molten glass
JP4674432B2 (en) * 2001-09-28 2011-04-20 旭硝子株式会社 Molten glass conduit structure, molten glass vacuum degassing apparatus, molten glass manufacturing method and glass article manufacturing method
WO2012070508A1 (en) * 2010-11-25 2012-05-31 旭硝子株式会社 Ceramic member and method for producing same, device and method for producing molten glass, and device and method for producing glass article
JPWO2012070508A1 (en) * 2010-11-25 2014-05-19 旭硝子株式会社 Ceramic member and manufacturing method thereof, molten glass manufacturing apparatus and manufacturing method, glass article manufacturing apparatus and glass article manufacturing method
JP5928340B2 (en) * 2010-11-25 2016-06-01 旭硝子株式会社 Ceramic member and manufacturing method thereof, molten glass manufacturing apparatus and manufacturing method, glass article manufacturing apparatus and glass article manufacturing method
JP2018526319A (en) * 2015-09-09 2018-09-13 コーニング インコーポレイテッド Glass manufacturing apparatus and operation method thereof
US11021386B2 (en) 2015-09-09 2021-06-01 Corning Incorporated Glass manufacturing apparatuses and methods for operating the same
CN109205997A (en) * 2017-06-30 2019-01-15 安瀚视特控股株式会社 The manufacturing method and glass substrate manufacturing device of glass substrate

Similar Documents

Publication Publication Date Title
KR100855924B1 (en) Vacuum degassing apparatus for molten glass
KR100682778B1 (en) Vacuum degassing apparatus for molten glass
JP5434077B2 (en) Glass manufacturing method
JP4075161B2 (en) Method for producing glass by vacuum degassing
JP3785788B2 (en) Vacuum degassing equipment for molten glass
JP2000007346A (en) Vacuum defoaming unit for molten glass and method for making the unit
JP2000007344A (en) Vacuum defoaming unit for molten glass
JP2000001319A (en) Low pressure defoaming device of fused glass
JPH11240725A (en) Vacuum deaerator for molten glass
JP6597613B2 (en) Glass melt manufacturing apparatus, glass melt manufacturing method, glass article manufacturing apparatus, and glass article manufacturing method
JP2000247647A (en) Furnace material for vacuum deaerating apparatus for molten glass and vacuum deaerating apparatus
JP3005210B2 (en) Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment
JP4103236B2 (en) Glass manufacturing equipment by vacuum degassing
JP3915288B2 (en) Vacuum degassing equipment for molten glass
JP2000086249A (en) Vacuum defoaming device for molten glass
JP4821165B2 (en) Vacuum degassing apparatus for molten glass and method for clarifying molten glass using the vacuum degassing apparatus
JP4048646B2 (en) Vacuum degassing method for molten glass and glass manufacturing apparatus by vacuum degassing
JP4058935B2 (en) Vacuum deaerator
JP3724153B2 (en) Vacuum degassing equipment for molten glass
JP4513248B2 (en) Vacuum degassing apparatus and vacuum degassing method
JPH11130443A (en) Parallel type reduced pressure deforming apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A761 Written withdrawal of application

Effective date: 20060323

Free format text: JAPANESE INTERMEDIATE CODE: A761