JP2000247647A - Furnace material for vacuum deaerating apparatus for molten glass and vacuum deaerating apparatus - Google Patents

Furnace material for vacuum deaerating apparatus for molten glass and vacuum deaerating apparatus

Info

Publication number
JP2000247647A
JP2000247647A JP11050529A JP5052999A JP2000247647A JP 2000247647 A JP2000247647 A JP 2000247647A JP 11050529 A JP11050529 A JP 11050529A JP 5052999 A JP5052999 A JP 5052999A JP 2000247647 A JP2000247647 A JP 2000247647A
Authority
JP
Japan
Prior art keywords
molten glass
vacuum degassing
electroformed refractory
refractory
degassing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11050529A
Other languages
Japanese (ja)
Other versions
JP2000247647A5 (en
Inventor
Toshihiro Ishino
利弘 石野
Koji Obayashi
浩治 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP11050529A priority Critical patent/JP2000247647A/en
Publication of JP2000247647A publication Critical patent/JP2000247647A/en
Publication of JP2000247647A5 publication Critical patent/JP2000247647A5/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/20Bridges, shoes, throats, or other devices for withholding dirt, foam, or batch
    • C03B5/205Mechanical means for skimming or scraping the melt surface

Abstract

PROBLEM TO BE SOLVED: To increase the flow rate of molten glass and to decrease the number of air bubbles generated in the molten glass during a vacuum deaerating treatment by forming the furnace portions in direct contact with the molten glass of electroforming refractories subjected to a heat treatment at >=700 deg.C under an oxygen-containing atmosphere. SOLUTION: The electroforming refractories subjected to the heat treatment at >=700 deg.C, more preferably >=1100 deg.C in the oxygen-containing atmosphere are used for the furnace materials of at least the portions in direct contact the molten glass in the flow passages of the vacuum deaerating apparatus. While the atmosphere is sufficient as the oxygen-containing atmosphere, the atmosphere made higher in oxygen partial pressure than the atmospheric pressure is preferably used. The electroforming refractories in direct contact with the molten glass are preferably formed by removing the surfaces thereof by >=5 mm from the surface layers of the casting surfaces of the electroforming refractories prior to the heat treatment. The electroforming refractories are adequately zirconia-base electroforming refractories, alumina-base electroforming refractories, alumina-zirconia-silica-base electroforming refractories, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続的に供給され
る溶融ガラスから気泡を除去する溶融ガラスの減圧脱泡
装置に用いる炉材およびこれを用いる溶融ガラスの減圧
脱泡装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace material used for a vacuum degassing apparatus for molten glass for removing air bubbles from a continuously supplied molten glass, and to a vacuum degassing apparatus for molten glass using the same.

【0002】[0002]

【従来の技術】従来より、成形されたガラス製品の品質
を向上させるために、溶解槽で溶融した溶融ガラスを成
形装置で成形する前に溶融ガラス内に発生した気泡を除
去する減圧脱泡装置が用いられている。このような従来
の減圧脱泡装置を図2に示す。図2に示す減圧脱泡装置
100は、溶解槽112中の溶融ガラスGを減圧脱泡処
理して、次の成形処理槽(図示せず)に連続的に供給す
るプロセスに用いられるものであって、真空吸引されて
いる。減圧ハウジング102内に水平に減圧脱泡槽10
4が収納配置され、その両端に垂直に取り付けられる上
昇管106および下降管108が収納配置されている。
2. Description of the Related Art Conventionally, in order to improve the quality of a formed glass product, a vacuum degassing apparatus for removing bubbles generated in a molten glass before forming the molten glass in a melting tank with a forming apparatus. Is used. FIG. 2 shows such a conventional vacuum degassing apparatus. The vacuum degassing apparatus 100 shown in FIG. 2 is used for a process in which the molten glass G in the melting tank 112 is degassed under reduced pressure and is continuously supplied to the next molding processing tank (not shown). And vacuum suction. The vacuum degassing tank 10 is placed horizontally in the vacuum housing 102.
4 are housed and arranged, and a rising pipe 106 and a descending pipe 108 vertically attached to both ends thereof are housed.

【0003】上昇管106は減圧脱泡槽104に連通
し、脱泡処理前の溶融ガラスGを溶解槽112から上昇
させて減圧脱泡槽104に導入する。下降管108は、
減圧脱泡槽104に連通し、脱泡処理後の溶融ガラスG
を減圧脱泡槽104から下降させて、次の成形処理槽に
導出する。そして、減圧ハウジング102内において、
減圧脱泡槽104、上昇管106および下降管108の
周囲には、これらを断熱被覆する断熱用レンガなどの断
熱材110が配設されている。なお、減圧ハウジング1
02は、金属製、例えばステンレス製であり、外部から
真空ポンプ(図示せず)等によって真空吸引され、内部
が減圧され、内設される減圧脱泡槽104内を所定の圧
力、例えば1/20〜1/3気圧の減圧状態に維持す
る。
The rising pipe 106 communicates with the vacuum degassing tank 104, and the molten glass G before defoaming is lifted from the melting tank 112 and introduced into the vacuum degassing tank 104. The downcomer 108 is
The molten glass G after the defoaming process is communicated with the vacuum degassing tank 104.
Is lowered from the vacuum degassing tank 104 and led out to the next molding processing tank. Then, in the decompression housing 102,
A heat insulating material 110, such as a heat insulating brick, is provided around the vacuum degassing tank 104, the riser tube 106, and the downcomer tube 108 to cover them with heat. The decompression housing 1
Numeral 02 is made of metal, for example, stainless steel, is vacuum-sucked from the outside by a vacuum pump (not shown) or the like, the inside is depressurized, and a predetermined pressure, for example, 1 / Maintain a reduced pressure of 20 to 1/3 atm.

【0004】従来の減圧脱泡装置100においては、高
温、例えば1200〜1400℃の温度の溶融ガラスG
を処理するように構成されているので、本出願人の出願
に係る特開平2−221129号公報に開示しているよ
うに、減圧脱泡槽104、上昇管106および下降管1
08などのように溶融ガラスGと直接接触する部分は、
通常白金または白金ロジウムのような白金合金などの貴
金属製円管で構成されている。
In the conventional vacuum degassing apparatus 100, the molten glass G at a high temperature, for example, at a temperature of 1200 to 1400 ° C.
Therefore, as disclosed in Japanese Unexamined Patent Application Publication No. 2-221129 filed by the present applicant, the vacuum degassing tank 104, the riser 106 and the downcomer 1
08, etc., the part which is in direct contact with the molten glass G,
Usually, it is formed of a circular pipe made of a noble metal such as platinum or a platinum alloy such as platinum rhodium.

【0005】ここで、溶融ガラスGと直接接触する部分
を白金または白金合金などの貴金属製円管で構成するの
は、白金合金などの貴金属は溶融ガラスとの高温反応性
が低く、溶融ガラスGとの反応による溶融ガラスGの不
均質化が生じないからである。
[0005] Here, the portion that is in direct contact with the molten glass G is formed of a circular tube made of a noble metal such as platinum or a platinum alloy because a noble metal such as a platinum alloy has a low high-temperature reactivity with the molten glass and the molten glass G This is because the nonuniformity of the molten glass G due to the reaction with does not occur.

【0006】[0006]

【発明が解決しようとする課題】ところで、減圧脱泡槽
104は、機械的強度の点からは円管とするのがよい
が、白金などの貴金属は高価であるため、その肉厚は厚
くできない。すなわち、コストおよび強度の両方の点か
ら円管の直径はあまり大きくできず、減圧脱泡槽104
で脱泡処理できる溶融ガラスGの流量にも限界があり、
大流量の減圧脱泡装置を構築できないという問題があっ
た。もちろん、減圧脱泡槽104の全長を長くして容量
を大きくし、脱泡処理できる溶融ガラスGの流量を増加
させることも考えられるが、装置が長大化し、高価にな
るという問題があった。
The vacuum degassing tank 104 is preferably a circular tube from the viewpoint of mechanical strength, but the thickness cannot be increased because precious metals such as platinum are expensive. . In other words, the diameter of the circular tube cannot be so large in terms of both cost and strength, and the vacuum degassing tank 104
There is also a limit on the flow rate of the molten glass G that can be defoamed by
There was a problem that a vacuum degassing apparatus with a large flow rate could not be constructed. Of course, it is conceivable to lengthen the entire length of the vacuum degassing tank 104 to increase the capacity and increase the flow rate of the molten glass G that can be degassed, but there is a problem that the apparatus becomes longer and expensive.

【0007】また、溶解槽112の温度は、粉体原料の
溶解を促進するためにも、また、溶融ガラスGの粘度を
低下させて減圧脱泡を促進するためにも、高い方が好ま
しい。しかしながら、白金などの貴金属の高温強度の点
から、従来の減圧脱泡装置100の入口での溶融ガラス
Gの温度は、上述した所定温度(1200〜1400
℃)に制限されていた。
[0007] The temperature of the melting tank 112 is preferably higher in order to promote the melting of the powdery raw material and to promote the defoaming under reduced pressure by lowering the viscosity of the molten glass G. However, in view of the high-temperature strength of a noble metal such as platinum, the temperature of the molten glass G at the entrance of the conventional vacuum degassing apparatus 100 is set at the above-mentioned predetermined temperature (1200 to 1400).
° C).

【0008】一方、成形処理槽において、脱泡処理済の
溶融ガラスを成形するのに適した温度は、成形物、例え
ば板材や瓶材などによって異なるが、所定温度(120
0〜1400℃)に制限される。このため、溶融ガラス
Gの流量(脱泡処理量)は大きくできず、溶融ガラスG
自体が持ち込む熱量もあまり大きくなくなる。その結
果、減圧脱泡装置100内で溶融ガラスGの温度が低下
し、減圧脱泡装置100の出口での溶融ガラスGの温度
が成形に必要な温度より低くなる問題があった。
On the other hand, the temperature suitable for forming the defoamed molten glass in the forming tank varies depending on the formed product, for example, a plate material or a bottle material.
0-1400 ° C.). Therefore, the flow rate (defoaming amount) of the molten glass G cannot be increased, and the molten glass G
The amount of heat brought by itself is not so large. As a result, there is a problem that the temperature of the molten glass G decreases in the vacuum degassing apparatus 100, and the temperature of the molten glass G at the outlet of the vacuum degassing apparatus 100 becomes lower than the temperature required for molding.

【0009】そこで、上述の問題点の克服のために、減
圧脱泡槽104や上昇管106や下降管108の溶融ガ
ラスGと直接接触する部分に高価な白金合金などの貴金
属を用いる替わりに、安価な耐火物を用いることが考え
られる。
Therefore, in order to overcome the above-mentioned problems, instead of using a noble metal such as an expensive platinum alloy for a portion of the vacuum degassing tank 104, the riser tube 106, or the downcomer tube 108 that directly contacts the molten glass G, It is conceivable to use inexpensive refractories.

【0010】ところが、一般に耐火物を溶融ガラスと直
接接触させて使用すると、耐火物の表面から溶融ガラス
中に細かい気泡が発生する。この気泡発生のメカニズム
として、耐火物に不可避的に存在する二酸化炭素(CO
2 )ガスや窒素(N2 )ガス等の気体の溶融ガラスへの
放出、耐火物中の炭素、炭化物、窒素、窒化物等の不純
物が溶融ガラス中に溶存している酸素や溶融ガラスのガ
ラス成分に酸化されることによる二酸化炭素(CO2
ガスや窒素(N2 )ガスの発生等が考えられる。このよ
うな気泡は、溶融ガラス内を浮上してその表面に到達で
きる程大きくないため、減圧脱泡によっても完全に除去
することは困難である。
However, in general, when the refractory is used in direct contact with the molten glass, fine bubbles are generated in the molten glass from the surface of the refractory. As a mechanism of this bubble generation, carbon dioxide (CO
2 ) Release of gas such as gas or nitrogen (N 2 ) gas into the molten glass, oxygen or molten glass in which impurities such as carbon, carbide, nitrogen, and nitride in the refractory are dissolved in the molten glass. Carbon dioxide (CO 2 ) due to oxidation into components
Generation of gas or nitrogen (N 2 ) gas is considered. Since such bubbles are not large enough to float in the molten glass and reach the surface thereof, it is difficult to completely remove the bubbles by vacuum degassing.

【0011】通常、溶解槽等に用いられる電鋳耐火物
は、黒鉛電極を用いたアーク式電気炉で耐火原料を溶融
した後、鋳型に鋳造、冷却、固化することにより製造さ
れる。この製造方法では、炭素、窒素,炭化物、窒化物
等が不純物として含有することは避けられず、これらの
不純物を含有しない電鋳耐火物を製造するのは極めて困
難である。
Usually, an electroformed refractory used for a melting tank or the like is produced by melting a refractory raw material in an arc type electric furnace using a graphite electrode, and then casting, cooling and solidifying the material in a mold. In this production method, it is inevitable that carbon, nitrogen, carbide, nitride and the like are contained as impurities, and it is extremely difficult to produce an electroformed refractory which does not contain these impurities.

【0012】通常の重油燃焼や電気溶融の溶解槽であれ
ば、過剰空気による燃焼や大気雰囲気下で溶融するた
め、熱上げ時、または操業初期段階において、数%程度
以上の酸素を含有した雰囲気にさらされることから、こ
れら不純物の炭素分や窒素分は酸化されて気体となり、
耐火物から除去される。このため、発泡が問題となるの
は、主に溶融開始初期の段階に限られる。例えば、特公
平5−9380号公報には、従来技術として、築炉後、
炉内の雰囲気を高温酸化状態に保持することで、炉内の
酸化雰囲気にさらされた耐火物の表面を酸化状態とし
て、操業初期に生じる発泡を減少する技術が記載されて
いる。
[0012] In the case of a usual melting tank for heavy oil combustion or electro-melting, since combustion is performed by excess air or melting in the atmosphere, an atmosphere containing several% or more of oxygen at the time of heating or in the initial stage of operation. , The carbon and nitrogen components of these impurities are oxidized into gases,
Removed from refractories. For this reason, the problem of foaming is mainly limited to the initial stage of melting. For example, Japanese Patent Publication No. 5-9380 discloses, as a prior art,
A technique is described in which the atmosphere in a furnace is maintained in a high-temperature oxidation state, whereby the surface of the refractory exposed to the oxidation atmosphere in the furnace is oxidized to reduce foaming generated in an early stage of operation.

【0013】しかしながら、減圧脱泡装置においては、
通常−500〜−600mmHgの雰囲気で減圧脱泡処
理するために、通常の溶解槽の雰囲気に比べて、酸素分
圧は、1/3〜1/5程度に低くなる。そのため、アル
ミナ−ジルコニア−シリカ系,アルミナ系,ジルコニア
系等の電鋳耐火物を溶融ガラスと直接接触する面に用い
た場合、操業初期段階に耐火物中の前記不純物を酸化さ
せて二酸化炭素、窒素等の気体として効率的に除去する
のは困難である。
However, in a vacuum degassing apparatus,
Normally, since the defoaming treatment is carried out under an atmosphere of -500 to -600 mmHg under reduced pressure, the oxygen partial pressure is reduced to about 1/3 to 1/5 as compared with an ordinary atmosphere in a dissolving tank. Therefore, when an electroformed refractory such as an alumina-zirconia-silica type, an alumina type, and a zirconia type is used for a surface which is in direct contact with the molten glass, the impurities in the refractory are oxidized at an early stage of operation to remove carbon dioxide, It is difficult to efficiently remove it as a gas such as nitrogen.

【0014】本発明は、上記実情に鑑みてなされたもの
であり、白金等の貴金属を使用した場合に比べ、大幅に
装置の製造コストが低減し、かつ、溶融ガラスの流量増
にも対応可能であり、かつ、減圧脱泡処理中に耐火物中
の不純物に起因して溶融ガラス中に発生する気泡個数を
低減し、優れた品質のガラス製品を得ることができる減
圧脱泡装置用炉材および減圧脱泡装置を提供することを
課題とする。
The present invention has been made in view of the above-mentioned circumstances, and the manufacturing cost of the apparatus is greatly reduced as compared with the case where a noble metal such as platinum is used, and the flow rate of molten glass can be increased. Furnace material for a vacuum degassing apparatus capable of reducing the number of bubbles generated in molten glass due to impurities in a refractory during a vacuum degassing treatment and obtaining a glass product of excellent quality. Another object is to provide a vacuum degassing apparatus.

【0015】[0015]

【課題を解決するための手段】すなわち、本発明は、第
1の態様として、溶融ガラスの脱泡処理を行う減圧脱泡
装置の流路の、少なくとも前記溶融ガラスと直接接触す
る部分に用いる炉材であって、酸素含有雰囲気下、70
0℃以上で加熱処理された電鋳耐火物であることを特徴
とする溶融ガラスの減圧脱泡装置用炉材を提供する。こ
こでいう電鋳耐火物は、耐火原料を完全に溶融し、その
溶融物を所定の形状の鋳型に鋳造後、徐冷、固化させて
得られる耐火レンガである。前記加熱処理された電鋳耐
火物は、前記溶融ガラスと直接接触する面が、前記加熱
処理される前に前記電鋳耐火物の鋳込み面の表層から5
mm以上除去して形成された電鋳耐火物であるのが好ま
しく、前記電鋳耐火物は、アルミナ系電鋳耐火物、ジル
コニア系電鋳耐火物およびアルミナ−ジルコニア−シリ
カ系電鋳耐火物の群より選択される少なくとも1種であ
るのが好ましい。
That is, according to a first aspect of the present invention, there is provided a furnace for use in at least a portion of a flow path of a vacuum degassing apparatus for defoaming molten glass which is in direct contact with the molten glass. Material, in an oxygen-containing atmosphere, at 70
A furnace material for a vacuum degassing apparatus for molten glass, which is an electroformed refractory heat-treated at 0 ° C. or higher. The electroformed refractory as referred to herein is a refractory brick obtained by completely melting a refractory raw material, casting the melt in a mold having a predetermined shape, then gradually cooling and solidifying the molten material. The surface of the heat-treated electroformed refractory, which is in direct contact with the molten glass, is 5 mm from the surface of the cast surface of the electroformed refractory before the heat treatment.
It is preferable that the electroformed refractory is formed by removing at least 1 mm or more, and the electroformed refractory is an alumina-based electroformed refractory, a zirconia-based electroformed refractory, and an alumina-zirconia-silica-based electroformed refractory. It is preferably at least one selected from the group.

【0016】また、本発明は、第2の態様として、減圧
吸引される減圧ハウジングと、この減圧ハウジング内に
収容され、溶融ガラスを減圧脱泡する減圧脱泡槽と、こ
の減圧脱泡槽に連通され、脱泡処理前の溶融ガラスを前
記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に
連通され、脱泡処理後の溶融ガラスを前記減圧脱泡槽か
ら導出する導出手段とを有し、前記減圧脱泡槽は、少な
くとも溶融ガラスと直接接触する部分が、前記減圧脱泡
装置用炉材で構成された流路を有することを特徴とする
溶融ガラスの減圧脱泡装置を提供する。ここで、前記導
入手段および前記導出手段はそれぞれ上昇管および下降
管であり、前記上昇管および前記下降管のうち少なくと
も前記下降管が、前記減圧脱泡装置用炉材で構成される
のが好ましい。
Further, as a second aspect, the present invention provides, as a second aspect, a decompression housing to be suctioned under reduced pressure, a decompression degassing tank accommodated in the decompression housing and defoaming the molten glass, and a decompression degassing tank. Introducing means for communicating the molten glass before the defoaming treatment to the vacuum degassing tank, and deriving means for communicating with the vacuum degassing tank and leading the molten glass after the defoaming treatment from the vacuum degassing tank. Wherein the vacuum degassing tank has a flow path constituted by a furnace material for the vacuum degassing device at least in a portion directly in contact with the molten glass. I will provide a. Here, the introduction means and the derivation means are a riser pipe and a downcomer pipe, respectively, and it is preferable that at least the downcomer pipe among the riser pipe and the downcomer pipe is constituted by the furnace material for the vacuum degassing apparatus. .

【0017】なお、本発明の第2の態様は、減圧吸引さ
れる減圧ハウジングと、この減圧ハウジング内に収容さ
れ、溶融ガラスを減圧脱泡する減圧脱泡槽と、この減圧
脱泡槽に連通され、脱泡処理前の溶融ガラスを前記減圧
脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通さ
れ、脱泡処理後の溶融ガラスを前記減圧脱泡槽から導出
する導出手段とを有し、前記減圧脱泡槽は、少なくとも
溶融ガラスと直接接触する部分が電鋳耐火物で構成さ
れ、予め酸素含有雰囲気下、700℃以上で加熱処理さ
れた流路を有することを特徴とする溶融ガラスの減圧脱
泡装置であってもよい。
In a second aspect of the present invention, a decompression housing to be suctioned under reduced pressure, a decompression degassing tank accommodated in the decompression housing and for defoaming molten glass, and a communication with the decompression degassing tank are provided. Introduced means for introducing the molten glass before the defoaming treatment into the vacuum degassing tank, and deriving means for communicating with the vacuum degassing tank and leading the molten glass after the defoaming treatment from the vacuum degassing tank. Wherein the vacuum degassing tank has at least a portion that is in direct contact with the molten glass is made of an electroformed refractory, and has a flow path that is heat-treated at 700 ° C. or more in advance in an oxygen-containing atmosphere. It may be an apparatus for defoaming molten glass under reduced pressure.

【0018】ここで、前記導入手段および前記導出手段
はそれぞれ上昇管および下降管であり、前記上昇管およ
び前記下降管のうち少なくとも前記下降管は、電鋳耐火
物で構成され、予め酸素含有雰囲気下、700℃以上で
加熱処理されるのが好ましい。さらに、前記電鋳耐火物
は、前記溶融ガラスと直接接触する面が、前記加熱処理
される前に前記電鋳耐火物の鋳込み面の表層から5mm
以上除去して形成された電鋳耐火物であるのが好まし
く、またアルミナ系電鋳耐火物、ジルコニア系電鋳耐火
物およびアルミナ−ジルコニア−シリカ系電鋳耐火物の
群より選択される少なくとも1種であるのが好ましい。
Here, the introduction means and the lead-out means are a riser and a downcomer, respectively, and at least the downcomer of the riser and the downcomer is made of an electroformed refractory and has an oxygen-containing atmosphere in advance. It is preferable that the heat treatment is performed at 700 ° C. or higher. Further, the surface of the electroformed refractory, which is in direct contact with the molten glass, is 5 mm from the surface of the casting surface of the electroformed refractory before the heat treatment.
It is preferably an electroformed refractory formed by removing the above, and at least one selected from the group consisting of an alumina-based electroformed refractory, a zirconia-based electroformed refractory, and an alumina-zirconia-silica-based electroformed refractory. Preferably it is a seed.

【0019】[0019]

【発明の実施の形態】以下、本発明に係る溶融ガラスの
減圧脱泡装置用炉材およびこれを用いる溶融ガラスの減
圧脱泡装置を添付の図面に示す好適実施例に基づいて、
詳細に説明する。図1は、本発明の第2の態様の溶融ガ
ラスの減圧脱泡装置の一実施例の断面模式図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a furnace material for a vacuum degassing apparatus for molten glass and a vacuum degassing apparatus for molten glass using the same according to the present invention will be described with reference to the accompanying drawings.
This will be described in detail. FIG. 1 is a schematic sectional view of one embodiment of a vacuum degassing apparatus for molten glass according to the second aspect of the present invention.

【0020】図1に示すように、本発明の第2の態様の
溶融ガラスの減圧脱泡装置10は、溶解槽24内の溶融
ガラスGを減圧脱泡処理して、図示しない次の成形処理
槽、例えば、板材の成形処理槽(例えば、フロートバ
ス)や瓶などの成形作業槽などに連続的に供給するプロ
セスに用いられる。そしてこの減圧脱泡装置10は、略
門型のステンレス製減圧ハウジング12と、減圧ハウジ
ング12内に水平に収納配置され、矩形断面をもつ減圧
脱泡槽14と、減圧脱泡槽14の左右両端部にそれぞれ
垂直に収納配置されて取り付けられる上昇管16および
下降管18とを有する。また、図示例の減圧脱泡装置1
0においては、減圧脱泡槽14、上昇管16および下降
管18と、減圧ハウジング12との間には断熱材20が
充填され、減圧脱泡槽14、上昇管16および下降管1
8の各々の周囲を断熱被覆している。
As shown in FIG. 1, a vacuum degassing apparatus for molten glass 10 according to a second embodiment of the present invention performs a degassing process on a molten glass G in a melting tank 24 under reduced pressure to perform a next forming process (not shown). It is used in a process of continuously supplying a tank, for example, a plate forming processing tank (for example, a float bath) or a forming work tank such as a bottle. The vacuum degassing apparatus 10 includes a generally portal-shaped stainless steel decompression housing 12, a decompression degassing tank 14 which is horizontally housed and disposed in the decompression housing 12, and has a rectangular cross section, and left and right ends of the decompression degassing tank 14. It has an ascending pipe 16 and a descending pipe 18 which are vertically housed and mounted in the respective sections. In addition, the reduced pressure defoaming device 1 of the illustrated example
0, a heat insulating material 20 is filled between the vacuum housing 12 and the vacuum degassing tank 14, the rising pipe 16 and the downcoming pipe 18, and the vacuum degassing tank 14, the rising pipe 16 and the downcoming pipe 1
8 is coated with heat insulation.

【0021】図示例においては、上昇管16の上側部分
は、減圧ハウジング12の脚部12aに収納配置され
る。また、上昇管16の下側部分は、減圧ハウジング1
2の脚部12aから突出し、上流案内ダクト26の開放
端に嵌入され、上流案内ダクト26内の溶融ガラスG内
に浸漬されている。そして、上流案内ダクト26は、溶
解槽24に連通されている。一方、下降管18の上側部
分は、減圧ハウジング12の脚部12bに収納配置され
る。また、下降管18の下側部分は、減圧ハウジング1
2の脚部12bから突出し、下流案内ダクト28の開放
端に嵌入され、下流案内ダクト28内の溶融ガラスG内
に浸漬されている。そして下流案内ダクト28は、図示
しない次の成形処理槽に連通されている。
In the illustrated example, the upper portion of the riser 16 is housed in the leg 12 a of the decompression housing 12. The lower portion of the riser 16 is provided with the decompression housing 1.
The second projection 12 protrudes from the leg 12 a, is fitted into the open end of the upstream guide duct 26, and is immersed in the molten glass G in the upstream guide duct 26. The upstream guide duct 26 is connected to the melting tank 24. On the other hand, the upper part of the downcomer 18 is housed and arranged in the leg 12 b of the decompression housing 12. The lower portion of the downcomer pipe 18 is provided with the decompression housing 1.
The second projection 12 protrudes from the leg 12b, is fitted into the open end of the downstream guide duct 28, and is immersed in the molten glass G in the downstream guide duct 28. The downstream guide duct 28 is communicated with a next molding processing tank (not shown).

【0022】減圧ハウジング12は、図示例では、両脚
部12aおよび12bを有する略門型をなすステンレス
製ハウジングであり、減圧脱泡槽14、上昇管16およ
び下降管18を収納し、これら、特に減圧脱泡槽14の
内部を所定の減圧条件(後述する)に維持するための圧
力容器として機能するもので、図中右上部に内部を真空
吸引して減圧するための吸引口12Cを有する。この減
圧ハウジング12の吸引口12Cは図示しない真空ポン
プ等に接続される。なお、減圧ハウジング12の形状お
よび材質は、その機能を阻害するものでなければ、何ら
限定されるものではない。
In the illustrated example, the decompression housing 12 is a substantially gate-shaped stainless steel housing having both legs 12a and 12b. The decompression housing 12 accommodates the decompression degassing tank 14, the ascending pipe 16 and the descending pipe 18; It functions as a pressure vessel for maintaining the inside of the vacuum degassing tank 14 under a predetermined pressure reducing condition (described later), and has a suction port 12C at the upper right portion in the drawing for vacuum suctioning the inside to reduce the pressure. The suction port 12C of the decompression housing 12 is connected to a vacuum pump or the like (not shown). Note that the shape and material of the decompression housing 12 are not limited at all, as long as the function is not hindered.

【0023】減圧脱泡槽14は、図1中左下側において
上昇管16の上端に連通し、右下側において下降管18
の上端に連通し、その左上側および右上側に、減圧脱泡
槽14内を所定の減圧状態(設定減圧条件)に維持する
ための吸引口14a,14bを有している。減圧脱泡槽
14内においては、上昇管16から導入された溶融ガラ
スGが図中右側に向って流れ、下降管18に導出される
が、減圧脱泡槽14の上部には溶融ガラスG中の気泡を
浮上させて破泡させるための上部空間14sが設けられ
る。さらに、減圧脱泡槽14内には溶融ガラスG中を浮
上してきた気泡を堰止め、破泡を促進するとともに、下
流への気泡の流出を低減し、もしくは防止するために、
溶融ガラスG中にその一部が浸漬され、その余が上部空
間14sに突出するバリヤ30a,30bが配設され
る。
The vacuum degassing tank 14 communicates with the upper end of the riser 16 at the lower left side in FIG. 1 and the downcomer 18 at the lower right side.
The suction ports 14a and 14b for maintaining the inside of the vacuum degassing tank 14 at a predetermined reduced pressure state (set reduced pressure condition) are provided on the upper left and upper right sides of the upper side of the tank. In the vacuum degassing tank 14, the molten glass G introduced from the rising pipe 16 flows toward the right side in the figure and is led out to the downcomer pipe 18. There is provided an upper space 14s for floating air bubbles to break them. Furthermore, in order to stop air bubbles floating in the molten glass G in the vacuum degassing tank 14 to promote foam breaking, and to reduce or prevent the outflow of air bubbles downstream,
Barriers 30a and 30b are provided, a part of which is immersed in the molten glass G and the remainder protrudes into the upper space 14s.

【0024】ここで、減圧脱泡槽14内での減圧条件
は、溶融ガラスGの粘度(温度)などの条件に応じて1
/20〜1/3気圧に設定される。また、溶解槽24の
溶融ガラスGと減圧脱泡槽14の溶融ガラスGとのレベ
ル差Hは、設定された減圧条件に応じて、溶融ガラスG
の突沸、減圧脱泡槽14からの素地のオーバフローなど
を防止するようなレベル差に設定される。従って、減圧
脱泡槽14内の圧力を1/20〜1/3気圧に設定する
と、溶解槽24と減圧脱泡槽14との溶融ガラスGのレ
ベル差Hは約2.5〜3.5mとなる。
Here, the decompression condition in the decompression degassing tank 14 depends on conditions such as the viscosity (temperature) of the molten glass G.
/ 20 to 1/3 atmosphere. Further, the level difference H between the molten glass G in the melting tank 24 and the molten glass G in the vacuum degassing tank 14 is determined by the molten glass G according to the set pressure reduction conditions.
The level difference is set so as to prevent bumping and overflow of the substrate from the vacuum degassing tank 14. Therefore, when the pressure in the vacuum degassing tank 14 is set to 1/20 to 1/3 atm, the level difference H of the molten glass G between the melting tank 24 and the vacuum degassing tank 14 is about 2.5 to 3.5 m. Becomes

【0025】減圧脱泡槽14は、所定寸法の流路断面形
状、好ましくは矩形断面を有し、所定長さの管、好まし
くは角筒状管(角管)であって、嵩密度が高く稠密な電
鋳耐火物で構成される。こうすることで、白金合金等の
貴金属製材料で構成する場合に比べ、装置の製造コスト
が大幅に低減し、大流量の溶融ガラスを処理できる。減
圧脱泡槽14の流路の断面形状は、矩形、円形、楕円
形、多角形等、どのような形状でもよく、特に限定され
ないが、矩形とすれば、設置面積に比して流量を大きく
できるので好ましい。
The vacuum degassing tank 14 is a pipe having a predetermined dimension, preferably a rectangular cross section, and a pipe of a predetermined length, preferably a square tubular pipe (square pipe), having a high bulk density. It is composed of dense electroformed refractories. By doing so, the manufacturing cost of the apparatus is significantly reduced as compared with the case where the apparatus is made of a precious metal material such as a platinum alloy, and a large flow of molten glass can be processed. The cross-sectional shape of the flow path of the vacuum degassing tank 14 may be any shape such as a rectangle, a circle, an ellipse, and a polygon, and is not particularly limited. It is preferable because it is possible.

【0026】電鋳耐火物は、耐火原料を電気溶融した後
に、所定の形状に鋳込み成形して製造された耐火物であ
れば特に限定されず、公知の種々の電鋳耐火物が使用可
能であり、ジルコニア系電鋳耐火物、アルミナ系電鋳耐
火物、アルミナ−ジルコニア−シリカ(AZS;Al2
3 −ZrO2 −SiO2 )系電鋳耐火物等が好適に例
示される。
The electroformed refractory is not particularly limited as long as it is a refractory manufactured by electroforming a refractory raw material and then casting it into a predetermined shape, and various known electroformed refractories can be used. Yes, zirconia-based electroformed refractories, alumina-based electroformed refractories, alumina-zirconia-silica (AZS; Al 2
O 3 -ZrO 2 -SiO 2) based electroforming refractories etc. are preferably exemplified.

【0027】ところで、減圧脱泡槽14においては、通
常燃焼の溶解槽の雰囲気に比べて、酸素分圧は、1/3
〜1/5程度に低くなる。そのため、通常の電鋳耐火物
を溶融ガラスと接触する面に用いると、操業初期段階に
耐火物中の炭素、炭化物、窒化物等の発泡の原因となる
不純物を酸化させて二酸化炭素、窒素等の気体として効
率的に除去するのは困難である。このため、減圧脱泡処
理中に、減圧脱泡処理の初期段階のみならずそれ以降に
おいても、これらの不純物が、ガラス中に溶存している
酸素やガラス中の酸化物に酸化されることにより、二酸
化炭素、窒素泡を多数断続的に発生させてしまうという
問題がある。これでは、ガラス製品の品質を十分に高く
できない。
Incidentally, in the vacuum degassing tank 14, the oxygen partial pressure is 1/3 that of the atmosphere in the melting tank for normal combustion.
It is reduced to about 1/5. Therefore, when a normal electroformed refractory is used on the surface in contact with the molten glass, carbon dioxide, nitrogen, etc. are oxidized in the initial stage of operation by oxidizing impurities causing foaming such as carbon, carbide and nitride in the refractory. It is difficult to efficiently remove it as a gas. Therefore, during the vacuum degassing process, not only during the initial stage of the vacuum degassing process but also thereafter, these impurities are oxidized to oxygen dissolved in the glass and oxides in the glass. There is a problem that a large number of carbon dioxide and nitrogen bubbles are generated intermittently. In this case, the quality of the glass product cannot be sufficiently increased.

【0028】そこで、本発明では、減圧脱泡装置の流路
の、少なくとも溶融ガラスと直接接触する部分に用いる
炉材として電鋳耐火物を選択し、これを予め所定条件下
で加熱処理しておく。これにより、減圧脱泡操業中、耐
火物の不純物に起因する発泡が大幅に低減することを知
見して本発明に至ったものである。すなわち、本発明で
は、酸素含有雰囲気下、700℃以上、好ましくは11
00℃以上で加熱処理された電鋳耐火物を、減圧脱泡装
置用炉材として使用する。
Therefore, in the present invention, an electroformed refractory is selected as a furnace material to be used at least in a portion of the flow path of the vacuum degassing apparatus which is in direct contact with the molten glass, and this is heat-treated under predetermined conditions in advance. deep. Accordingly, the present inventors have found that foaming caused by impurities in the refractory is significantly reduced during the vacuum degassing operation, and have led to the present invention. That is, in the present invention, in an oxygen-containing atmosphere, at least 700 ° C., preferably
An electroformed refractory heat-treated at 00 ° C. or higher is used as a furnace material for a vacuum degassing apparatus.

【0029】ここで、酸素含有雰囲気としては、酸素を
含有している限り特に限定されるものではなく、大気雰
囲気とすれば十分である。なお、酸素の分圧を大気より
も高めた雰囲気を使用してもよい。処理温度としては、
700℃以上で加熱処理することが、炉材からの発泡の
低減効果が認められる点から好ましく、1100℃以上
で加熱処理することが、特に好ましい。なお、処理温度
の上限は、使用する電鋳耐火物に応じて適宜決定すれば
よく、特に限定されないが、例えば1450℃以下であ
る。1450℃以上では、アルミナ−ジルコニア−シリ
カ(AZS;Al2 3 −ZrO2 −SiO 2 )系電鋳
耐火物から、粘度の高いガラス質が溶出するためであ
る。
Here, oxygen is used as the oxygen-containing atmosphere.
It is not particularly limited as long as it is contained.
Enclosure is enough. In addition, the partial pressure of oxygen
Alternatively, an enhanced atmosphere may be used. As processing temperature,
Heating at 700 ° C or higher can cause foaming from the furnace material.
It is preferable from the point that the reduction effect is recognized, and is 1100 ° C.
It is particularly preferable to perform a heat treatment. In addition, processing temperature
If the upper limit is appropriately determined according to the electroformed refractory used,
Although not particularly limited, for example, the temperature is 1450 ° C. or less.
You. Above 1450 ° C, alumina-zirconia-silicon
A (AZS; AlTwoOThree-ZrOTwo-SiO Two) Electroforming
This is because high-viscosity glassy material elutes from the refractory.
You.

【0030】加熱処理の方法としては、特に限定され
ず、公知の種々の方法により加熱を行えばよい。また、
減圧脱泡装置を構築する際は、加熱処理前の電鋳耐火物
を使用しておき、装置構築後、減圧加熱前に、予め酸素
含有雰囲気下で上記加熱処理を行う構成としてもよい。
The heating method is not particularly limited, and heating may be performed by various known methods. Also,
When constructing the vacuum degassing apparatus, an electroformed refractory before heat treatment may be used, and after the apparatus is constructed, the above heat treatment may be performed in advance in an oxygen-containing atmosphere before heating under reduced pressure.

【0031】ここで、溶融ガラスGと直接接触する電鋳
耐火物の表面は、上記加熱処理される前に電鋳耐火物の
鋳込み面の表層から5mm以上除去して形成されること
が好ましい。電鋳耐火物の鋳込み面の表層から5mm以
上除去するには、研磨や切断によって行なう。鋳込み面
の表層から5mm以上除去した後、加熱処理された電鋳
耐火物の表層付近は、鋳込み面の表層を除去せずに加熱
処理した電鋳耐火物の表層付近に比べ、操業初期段階の
発泡の原因となる不純物の含有量が少ないからである。
Here, the surface of the electroformed refractory which is in direct contact with the molten glass G is preferably formed by removing at least 5 mm from the surface layer of the casting surface of the electroformed refractory before the above heat treatment. Polishing or cutting is performed to remove 5 mm or more from the surface layer of the cast surface of the electroformed refractory. After removing 5 mm or more from the surface layer of the cast surface, the vicinity of the surface layer of the heat-treated electroformed refractory is compared with the vicinity of the surface layer of the heat-treated electroformed refractory without removing the surface layer of the cast surface. This is because the content of impurities causing foaming is small.

【0032】すなわち、電鋳耐火物に含まれる不純物、
例えば炭素の場合、黒鉛電極を用いたアーク式電気炉で
炭素を含む耐火原料が溶融されるため、さらには、有機
性樹脂材料で固めた砂や黒鉛によって鋳型が構成される
ため、製造された電鋳耐火物の表層付近は、その内部に
比べて、炭素含有量が多い。例えば、ジルコニア系電鋳
耐火物の場合、電鋳耐火物の表層から10mm以上30
mm以下の深さに含まれる不純物としての炭素含有量は
160ppmであり、電鋳耐火物の表層から90mm以
上110mm以下の深さに含まれる不純物の炭素含有量
も160ppmであるのに対し、電鋳耐火物の表層から
10mmまでの深さに含まれる不純物としての炭素含有
量は240ppmと多い。このように製造された電鋳耐
火物の表層付近は内部に比べて不純物の含有量が多いた
め、本発明では、電鋳耐火物の表層を研磨または切断し
て除去し、不純物の含有量が少ない電鋳耐火物の内部を
溶融ガラスGと直接接触する電鋳耐火物の表面とし、そ
の後この電鋳耐火物を酸素含有雰囲気下、加熱処理す
る。これによって鋳込み面の表層を除去しても依然とし
て電鋳耐火物に含まれる表層付近の不純物を酸化除去す
ることができるので、不純物の含有量は一層少なくな
る。
That is, impurities contained in the electroformed refractory,
For example, in the case of carbon, since a refractory raw material containing carbon is melted in an arc type electric furnace using a graphite electrode, furthermore, since a mold is constituted by sand or graphite hardened with an organic resin material, it is manufactured. The vicinity of the surface layer of the electroformed refractory has a higher carbon content than the inside thereof. For example, in the case of a zirconia-based electroformed refractory, the distance from the surface layer of the electroformed refractory is 10 mm or more and 30 mm or more.
The carbon content of impurities contained at a depth of not more than 1 mm is 160 ppm, and the carbon content of impurities contained at a depth of 90 mm or more and 110 mm or less from the surface layer of the electroformed refractory is also 160 ppm. The carbon content as an impurity contained at a depth of 10 mm from the surface layer of the cast refractory is as high as 240 ppm. Since the content of impurities near the surface layer of the electroformed refractory manufactured in this way is higher than that of the inside, in the present invention, the surface layer of the electroformed refractory is removed by polishing or cutting, and the content of impurities is reduced. The inside of the small number of electroformed refractories is made to be the surface of the electroformed refractories that directly contact the molten glass G, and then the electroformed refractories are heated in an oxygen-containing atmosphere. As a result, even if the surface layer on the casting surface is removed, impurities near the surface layer contained in the electroformed refractory can still be oxidized and removed, so that the content of impurities is further reduced.

【0033】なお、本発明では、電鋳耐火物の鋳込み面
の表層は、発泡の原因となる不純物を効率的に酸化除去
するため、5mm以上除去されることが好ましく、より
好ましくは、10mm以上除去されるとよい。除去する
ための研磨方法や切断方法は、特に限定されず、例えば
研磨は、平面研磨機等公知の研磨機を用いて研磨され、
切断は公知の切断機によって行なわれる。加熱処理は、
減圧脱泡装置を構築する前に、鋳込み面の表層が除去さ
れた電鋳耐火物各々に対して加熱処理を行ない、その後
この電鋳耐火物を組んで減圧脱泡装置を構築してもよい
し、また、鋳込み面の表層が除去された電鋳耐火物を組
んで減圧脱泡装置を構築した後加熱処理を行なってもよ
い。
In the present invention, the surface layer of the casting surface of the electroformed refractory is preferably removed by 5 mm or more, more preferably 10 mm or more, in order to efficiently remove the impurities causing foaming by oxidation. It should be removed. Polishing method and cutting method for removing is not particularly limited, for example, polishing is polished using a known polishing machine such as a plane polishing machine,
Cutting is performed by a known cutting machine. The heat treatment is
Before constructing a vacuum degassing apparatus, a heat treatment may be performed on each of the electroformed refractories from which the surface layer of the casting surface has been removed, and then the electrocast refractories may be assembled to construct a vacuum degassing apparatus. Alternatively, a heat treatment may be performed after a vacuum degassing apparatus is constructed by assembling the electroformed refractory from which the surface layer of the casting surface has been removed.

【0034】なお、減圧脱泡装置の全てを減圧脱泡装置
用炉材として上記電鋳耐火物で構成する必要はなく、溶
融ガラスの脱泡処理を行う減圧脱泡装置の流路40の、
少なくとも前記溶融ガラスと直接接触する部分のみを上
記減圧脱泡装置用炉材で構成してもよい。また、本発明
の減圧脱泡装置用炉材は、減圧脱泡槽のみに適用しても
よいし、減圧脱泡槽のみならず、上昇管や下降管にも適
用する構成としてもよい。この場合、少なくとも下降管
に適用することが好ましい。下降管の電鋳耐火物の表面
から発生した気泡は減圧脱泡による除去はできないから
である。
It is not necessary to constitute the entire vacuum degassing apparatus as the furnace material for the vacuum degassing apparatus with the above-mentioned electroformed refractory.
At least only the portion directly contacting the molten glass may be constituted by the furnace material for the vacuum degassing apparatus. Further, the furnace material for a vacuum degassing apparatus of the present invention may be applied to only a vacuum degassing tank, or may be applied to not only a vacuum degassing tank but also an ascending pipe or a descending pipe. In this case, it is preferable to apply at least to the downcomer. This is because bubbles generated from the surface of the electroformed refractory of the downcomer pipe cannot be removed by defoaming under reduced pressure.

【0035】このような本発明の減圧脱泡装置用炉材を
用いて所定の断面形状、例えば矩形断面を持つ所定長の
減圧脱泡槽を構築する方法は、特に制限的ではなく、例
えば小さい直方体の電鋳耐火物を互い違いに3次元的
に、すなわちラビリンス構造に積み上げ、その間の目地
の部分を目地材で埋めて、所定長の管、例えば角筒状管
を形成してもよいし、長さの短かい筒状、例えば角筒状
の電鋳耐火物を一列に積み重ねて、その間の目地の部分
を目地材で埋め、所定長の管、例えば角管を形成しても
よい。なお、本発明に用いられる所定断面形状の減圧脱
泡槽14の長さLは、特に制限的ではないが、減圧脱泡
槽14内における溶融ガラスGの深さ、種類、粘度(温
度)、流量(脱泡処理量)および流速などに応じて、溶
融ガラスG中の気泡が十分に浮上し、かつ破泡されて除
去されるのに必要な時間だけ溶融ガラスGが減圧脱泡槽
14内に留まることができる長さ、すなわち十分に脱泡
処理される時間が得られる長さに設定すればよい。
The method of constructing a vacuum degassing tank having a predetermined cross-sectional shape, for example, a rectangular cross-section and a predetermined length using the furnace material for a vacuum degassing apparatus of the present invention is not particularly limited. A rectangular parallelepiped refractory may be staggered three-dimensionally, that is, stacked in a labyrinth structure, and a joint portion between them may be filled with a joint material to form a pipe of a predetermined length, for example, a square tubular pipe, A tube having a short length, for example, a rectangular tube-shaped electroformed refractory may be stacked in a line, and a joint portion therebetween may be filled with a joint material to form a tube of a predetermined length, for example, a square tube. In addition, the length L of the vacuum degassing tank 14 having a predetermined cross-sectional shape used in the present invention is not particularly limited, but the depth, type, viscosity (temperature), In accordance with the flow rate (amount of defoaming treatment) and the flow rate, the molten glass G is removed from the molten glass G in the vacuum degassing tank 14 for a time necessary for the bubbles in the molten glass G to sufficiently float and to be broken and removed. The length may be set to a length capable of staying within the range, that is, a length capable of obtaining a sufficient time for the defoaming treatment.

【0036】上昇管16および下降管18は、それぞれ
減圧脱泡槽14内の溶融ガラスGと溶解槽24内の溶融
ガラスGとのレベル差Hを保つために、用いられるもの
である。上昇管16は、脱泡処理されていない溶融ガラ
スGを減圧によって溶解槽24から上流案内ダクト26
を経て持ち上げ、減圧脱泡槽14内に導入する。また下
降管18は、脱泡処理された溶融ガラスGを減圧脱泡槽
14から導出して下降させ、下流案内ダクト28を経由
して図示しない次の成形処理槽へ送り出す。
The riser pipe 16 and the descender pipe 18 are used to maintain the level difference H between the molten glass G in the vacuum degassing tank 14 and the molten glass G in the melting tank 24, respectively. The riser pipe 16 moves the undefoamed molten glass G from the melting tank 24 to the upstream guide duct 26 by reducing the pressure.
And introduced into the vacuum degassing tank 14. Further, the downcomer pipe 18 draws out the defoamed molten glass G from the vacuum degassing tank 14 and lowers it, and sends out the molten glass G to the next forming processing tank (not shown) via the downstream guide duct 28.

【0037】ところで、本発明においても、脱泡処理を
開始する際、すなわち溶融ガラスGを流し始める際に
は、減圧脱泡装置10の各部、すなわち上昇管16、減
圧脱泡槽14および下降管18の温度は適温から低下し
ているので、運転開始のために加熱が必要であり、この
ために、図示されていない運転開始用加熱装置が設けら
れている。さらに、図示されていないが、運転開始のた
めには、サイホンの原理を働かせる必要があり、上流案
内ダクト26のみならず下流案内ダクト28にも溶融ガ
ラスGがなければならないので、上流案内ダクト26か
ら下流案内ダクト28に溶融ガラスGを流すためのバイ
パス(図示せず)を設けておくのが好ましい。
Incidentally, also in the present invention, when the defoaming process is started, that is, when the molten glass G is started to flow, each part of the vacuum degassing apparatus 10, that is, the ascending pipe 16, the vacuum degassing tank 14, and the descending pipe. Since the temperature of 18 is lower than the appropriate temperature, heating is necessary for starting operation, and for this purpose, an operation start heating device (not shown) is provided. Further, although not shown, in order to start operation, it is necessary to operate the siphon principle, and not only the upstream guide duct 26 but also the downstream guide duct 28 must have the molten glass G. It is preferable to provide a bypass (not shown) for flowing the molten glass G to the downstream guide duct 28 from above.

【0038】ここで、本発明の減圧脱泡装置10の処理
対象となる溶融ガラスGは、特に制限的ではなく、例え
ば、ソーダライムシリカガラスやホウケイ酸ガラスなど
を挙げることができる。
Here, the molten glass G to be processed by the vacuum degassing apparatus 10 of the present invention is not particularly limited, and examples thereof include soda lime silica glass and borosilicate glass.

【0039】本発明に係る溶融ガラスの減圧脱泡装置
は、基本的に以上のように構成されるが、以下にその作
用について説明する。
The vacuum degassing apparatus for molten glass according to the present invention is basically constructed as described above, and its operation will be described below.

【0040】まず、減圧脱泡装置10の運転を開始する
に先立って、流路40を十分加熱する。予め流路40内
を加熱することで溶融ガラスGを減圧脱泡槽14に円滑
に減圧吸引して上昇させ、減圧脱泡するためである。ま
た、流路40の表面に存在する不純物を予め酸化して耐
火物表面から発生する気泡を抑えるため、酸素含有雰囲
気下、700℃以上で加熱処理を行う。その後、溶解槽
24内の溶融ガラスGを減圧脱泡装置10内、すなわち
図示しないバイパスを開放して上流案内ダクト26から
下流案内ダクト28内に導入し、上昇管16および下降
管18の両下端部を溶融ガラスG中に浸漬する。浸漬完
了後、図示しない真空ポンプを作動して、減圧ハウジン
グ12内を吸引口12cから真空引きして、従って減圧
脱泡槽14内を吸引口14aおよび14bから真空引き
して、減圧脱泡槽14内を1/20〜1/3気圧に減圧
する。その結果、溶融ガラスGが滑らかに上昇管16お
よび下降管18内を上昇し、減圧脱泡槽14内に導入さ
れ、溶解槽24と減圧脱泡槽14との溶融ガラスGのレ
ベル差Hが所定値となるように、減圧脱泡槽14内に所
定の深さまで満たされ、真空引きされた上部空間14s
が形成される。この後に、バイパスが閉止される。
First, before starting the operation of the vacuum degassing apparatus 10, the flow path 40 is sufficiently heated. This is because the inside of the flow path 40 is heated in advance so that the molten glass G is smoothly suctioned and decompressed into the decompression degassing tank 14 to be decompressed and defoamed. Further, in order to oxidize impurities existing on the surface of the flow channel 40 in advance and suppress bubbles generated from the surface of the refractory, heat treatment is performed at 700 ° C. or more in an oxygen-containing atmosphere. Thereafter, the molten glass G in the melting tank 24 is introduced into the vacuum degassing apparatus 10, that is, the bypass (not shown) is opened, and is introduced from the upstream guide duct 26 into the downstream guide duct 28. The part is immersed in the molten glass G. After completion of the immersion, a vacuum pump (not shown) is operated to evacuate the inside of the vacuum housing 12 from the suction port 12c, and thus evacuate the vacuum degassing tank 14 from the suction ports 14a and 14b. 14 is reduced to 1/20 to 1/3 atmosphere. As a result, the molten glass G smoothly rises in the riser 16 and the downcomer 18 and is introduced into the vacuum degassing tank 14, and the level difference H of the molten glass G between the melting tank 24 and the vacuum degassing tank 14 is reduced. An upper space 14s filled to a predetermined depth in the vacuum degassing tank 14 and evacuated so as to have a predetermined value.
Is formed. After this, the bypass is closed.

【0041】この後、溶融ガラスGは、溶解槽24から
上流案内ダクト26を経由し、上昇管16内を上昇し
て、減圧脱泡槽14内に導入される。そして溶融ガラス
Gは、減圧脱泡槽14内を流れる間に、所定の減圧条件
下で脱泡処理される。すなわち、所定の減圧条件下の減
圧脱泡槽14内において、溶融ガラスG中の気泡は、溶
融ガラスG中を浮上し、バリヤ30aおよび30bに堰
止められて破泡し、また、上部空間14sと溶融ガラス
Gの界面まで浮上して、破泡する。こうして、溶融ガラ
スG中から気泡が除去される。このようにして、脱泡処
理された溶融ガラスGは、減圧脱泡槽14内から下降管
18に導出され、下降管18内を下降して下流案内ダク
ト28内に導入され、下流案内ダクト28から、図示し
ない次の成形処理槽に導出される。
Thereafter, the molten glass G rises in the rising pipe 16 from the melting tank 24 via the upstream guide duct 26 and is introduced into the vacuum degassing tank 14. The molten glass G is defoamed under a predetermined decompression condition while flowing in the decompression degassing tank 14. That is, in the vacuum degassing tank 14 under a predetermined reduced pressure condition, the bubbles in the molten glass G float in the molten glass G, are blocked by the barriers 30a and 30b, break, and break in the upper space 14s. And rise to the interface of the molten glass G and break. Thus, bubbles are removed from the molten glass G. The defoamed molten glass G is led out of the vacuum degassing tank 14 to the downcomer pipe 18, descends in the downcomer pipe 18 and is introduced into the downstream guide duct 28. From the molding process tank (not shown).

【0042】[0042]

【実施例】以下に、本発明を実施例および比較例を挙げ
て具体的に説明する。なお、本発明はこれらの具体例に
限定されない。
The present invention will be specifically described below with reference to examples and comparative examples. Note that the present invention is not limited to these specific examples.

【0043】〔実施例1〜4、比較例1〜2〕試料とし
ては、減圧脱泡槽を構成する耐火物の一つであるアルミ
ナ−ジルコニア−シリカ系耐火物(ジルコニア含有量3
3%,商品名ZB1681(旭硝子株式会社製))をあ
らかじめ表1に示される処理温度で24時間大気雰囲気
下で加熱処理したサンプル(4mm×4mm×8mmの
形状のもの)をソーダライムシリカガラスとともに8m
m×8mm×高さ10mmの石英るつぼに入れ、130
0℃、−600mmHgの減圧条件下で、30分間溶解
した。耐火物からの泡の発生の評価としては、30分後
の耐火物表面(4×8mm2)から1分間に発生する泡
の個数が1〜2を「少」、3〜5個を「中」、6個以上
を「多」として表示した。また、評価は各処理温度につ
き、2回行った。
[Examples 1-4, Comparative Examples 1-2] As a sample, an alumina-zirconia-silica-based refractory (zirconia content of 3), which is one of the refractories constituting the vacuum degassing tank, was used.
3% (trade name: ZB1681 (manufactured by Asahi Glass Co., Ltd.)) was heat-treated in advance in the atmosphere at the treatment temperature shown in Table 1 for 24 hours, and a sample (having a shape of 4 mm × 4 mm × 8 mm) together with soda-lime silica glass was used. 8m
Place in a quartz crucible of mx 8 mm x 10 mm height, 130
The mixture was dissolved at 0 ° C. under a reduced pressure of −600 mmHg for 30 minutes. As for the evaluation of the generation of bubbles from the refractory, the number of bubbles generated in one minute from the surface of the refractory after 30 minutes (4 × 8 mm 2 ) was 1 to 2 for “small” and 3 to 5 for “medium”. , And 6 or more were indicated as "many." The evaluation was performed twice for each processing temperature.

【0044】表1に結果を示す。 Table 1 shows the results.

【0045】上記結果から明らかなように、700℃以
上、より好ましくは1100℃以上で加熱処理した後、
減圧条件下でガラスを溶融した場合、未処理品や、低温
で処理したものに比べて、耐火物からの発泡は減少する
ことが分かる。したがって、本発明の効果は明らかであ
る。
As is clear from the above results, after heat treatment at 700 ° C. or more, more preferably 1100 ° C. or more,
It can be seen that when the glass is melted under reduced pressure conditions, foaming from the refractory decreases as compared to untreated products and those treated at low temperatures. Therefore, the effect of the present invention is clear.

【0046】ところで、本発明の溶融ガラスの減圧脱泡
装置は、図1に示すサイフォン方式減圧脱泡装置のみな
らず、特開平5−262530号公報、特開平7−29
1633号公報に示す水平式減圧脱泡装置にも適用して
もよいのはもちろんである。本発明に係る溶融ガラスの
減圧脱泡装置に用いる炉材および溶融ガラスの減圧脱泡
装置について、種々の実施例を挙げて説明したが、本発
明は上述した実施例に限定されるわけではなく、本発明
の要旨を逸脱しない範囲において種々の改良や設計の変
更などが可能なことはもちろんである。
The vacuum degassing apparatus for molten glass according to the present invention is not limited to the siphon type vacuum degassing apparatus shown in FIG. 1, but is also disclosed in JP-A-5-262530 and JP-A-7-29.
As a matter of course, the present invention may be applied to a horizontal vacuum degassing apparatus disclosed in Japanese Patent No. 1633. The furnace material and the vacuum degassing apparatus for molten glass used in the vacuum degassing apparatus for molten glass according to the present invention have been described with reference to various embodiments, but the present invention is not limited to the above-described embodiments. Of course, various improvements and design changes can be made without departing from the spirit of the present invention.

【0047】[0047]

【発明の効果】以上詳述したように、本発明の減圧脱泡
装置用炉材および減圧脱泡装置によれば、白金等の貴金
属に代えて、本発明の溶融ガラスの減圧脱泡装置用炉材
を用いて減圧脱泡装置内の減圧脱泡槽等の流路を構成す
ることで、大幅に装置の製造コストが低減し、かつ、大
流量化にも対応可能でありながら、減圧脱泡操業中に耐
火物中の不純物に起因して溶融ガラス中に発生する気泡
個数を低減し、優れた品質のガラス製品を得ることが可
能となる。さらに、減圧脱泡装置用炉材に用いられる電
鋳耐火物は、加熱処理される前に、前記溶融ガラスと直
接接触する面が、鋳込み面の表層から5mm以上除去さ
れるので、溶融ガラスと接触した際の気泡の発生の原因
となる電鋳耐火物の表層に含まれる不純物が少なくな
り、溶融ガラス中の気泡個数を低減することができ、よ
り優れた品質のガラス製品を得ることが可能となる。
As described in detail above, according to the furnace material for a vacuum degassing apparatus and the vacuum degassing apparatus of the present invention, the molten glass for vacuum degassing of the present invention is replaced with a noble metal such as platinum. The furnace material is used to form a flow path such as a vacuum degassing tank in the vacuum degassing apparatus, so that the manufacturing cost of the apparatus can be greatly reduced and the vacuum degassing can be performed while increasing the flow rate. It is possible to reduce the number of bubbles generated in the molten glass due to impurities in the refractory during the foaming operation, and to obtain a glass product of excellent quality. Further, the electroformed refractory used in the furnace material for the vacuum degassing apparatus has a surface directly in contact with the molten glass before the heat treatment, and the surface is removed by 5 mm or more from the surface of the casting surface. Impurities contained in the surface layer of the electroformed refractory, which causes the generation of bubbles when contacted, are reduced, the number of bubbles in the molten glass can be reduced, and glass products of better quality can be obtained Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る溶融ガラスの減圧脱泡装置の一
実施例の断面模式図である。
FIG. 1 is a schematic cross-sectional view of one embodiment of a vacuum degassing apparatus for molten glass according to the present invention.

【図2】 従来の減圧脱泡装置の断面模式図である。FIG. 2 is a schematic sectional view of a conventional vacuum degassing apparatus.

【符号の説明】[Explanation of symbols]

10、110減圧脱泡装置 12、102減圧ハウジング 12a,12b 脚部 12c 吸引口 14、104 減圧脱泡槽 14a,14b 吸引口 14s 上部空間 16、106 上昇管 18、108 下降管 20、110 断熱材 24、112 溶解槽 26 上流案内ダクト 28 下流案内ダクト 30a,30b バリア 40 流路 G 溶融ガラス 10, 110 Decompression degassing device 12, 102 Decompression housing 12a, 12b Leg 12c Suction port 14, 104 Decompression degassing tank 14a, 14b Suction port 14s Upper space 16, 106 Ascending pipe 18, 108 Descending pipe 20, 110 Insulation material 24, 112 melting tank 26 upstream guide duct 28 downstream guide duct 30a, 30b barrier 40 flow path G molten glass

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】溶融ガラスの脱泡処理を行う減圧脱泡装置
の流路の、少なくとも前記溶融ガラスと直接接触する部
分に用いる炉材であって、酸素含有雰囲気下、700℃
以上で加熱処理された電鋳耐火物であることを特徴とす
る溶融ガラスの減圧脱泡装置用炉材。
1. A furnace material used in at least a portion of a flow path of a vacuum degassing apparatus for defoaming a molten glass, which is in direct contact with the molten glass, at 700 ° C. in an oxygen-containing atmosphere.
A furnace material for a vacuum degassing apparatus for molten glass, which is an electroformed refractory heat-treated as described above.
【請求項2】前記加熱処理された電鋳耐火物は、前記溶
融ガラスと直接接触する面が、前記加熱処理される前に
前記電鋳耐火物の鋳込み面の表層から5mm以上除去し
て形成された電鋳耐火物である請求項1に記載の溶融ガ
ラスの減圧脱泡装置用炉材。
2. The heat-treated electroformed refractory is formed by removing a surface directly in contact with the molten glass by 5 mm or more from a surface layer of a cast surface of the electroformed refractory before the heat treatment. The furnace material for a vacuum degassing apparatus for molten glass according to claim 1, which is an electroformed refractory obtained.
【請求項3】前記電鋳耐火物は、アルミナ系電鋳耐火
物、ジルコニア系電鋳耐火物およびアルミナ−ジルコニ
ア−シリカ系電鋳耐火物の群より選択される少なくとも
1種である請求項1または2に記載の溶融ガラスの減圧
脱泡装置用炉材。
3. The electroformed refractory according to claim 1, wherein the electroformed refractory is at least one selected from the group consisting of an alumina-based electroformed refractory, a zirconia-based electroformed refractory, and an alumina-zirconia-silica-based electroformed refractory. Or the furnace material for a vacuum degassing apparatus for molten glass according to 2 above.
【請求項4】減圧吸引される減圧ハウジングと、 この減圧ハウジング内に収容され、溶融ガラスを減圧脱
泡する減圧脱泡槽と、 この減圧脱泡槽に連通され、脱泡処理前の溶融ガラスを
前記減圧脱泡槽に導入する導入手段と、 前記減圧脱泡槽に連通され、脱泡処理後の溶融ガラスを
前記減圧脱泡槽から導出する導出手段とを有し、 前記減圧脱泡槽は、少なくとも溶融ガラスと直接接触す
る部分が、請求項1〜3のいずれかに記載の減圧脱泡装
置用炉材で構成された流路を有することを特徴とする溶
融ガラスの減圧脱泡装置。
4. A decompression housing that is suctioned under reduced pressure, a decompression tank that is housed in the decompression housing, and that decompresses and defoams the molten glass; And a deriving unit that communicates with the reduced-pressure defoaming tank, and that guides the molten glass after the defoaming process from the reduced-pressure defoaming tank. A vacuum degassing apparatus for molten glass, characterized in that at least a part directly in contact with the molten glass has a flow path constituted by the furnace material for a vacuum degassing apparatus according to any one of claims 1 to 3. .
【請求項5】前記導入手段および前記導出手段はそれぞ
れ上昇管および下降管であり、前記上昇管および前記下
降管のうち少なくとも前記下降管が、請求項1〜3のい
ずれかに記載の減圧脱泡装置用炉材で構成された、請求
項4に記載の溶融ガラスの減圧脱泡装置。
5. The vacuum decompression device according to claim 1, wherein said introduction means and said derivation means are a riser and a downcomer, respectively. The vacuum degassing apparatus for molten glass according to claim 4, comprising a furnace material for a foaming apparatus.
【請求項6】減圧吸引される減圧ハウジングと、 この減圧ハウジング内に収容され、溶融ガラスを減圧脱
泡する減圧脱泡槽と、 この減圧脱泡槽に連通され、脱泡処理前の溶融ガラスを
前記減圧脱泡槽に導入する導入手段と、 前記減圧脱泡槽に連通され、脱泡処理後の溶融ガラスを
前記減圧脱泡槽から導出する導出手段とを有し、 前記減圧脱泡槽は、少なくとも溶融ガラスと直接接触す
る部分が電鋳耐火物で構成され、予め酸素含有雰囲気
下、700℃以上で加熱処理された流路を有することを
特徴とする溶融ガラスの減圧脱泡装置。
6. A decompression housing to be suctioned under reduced pressure, a decompression tank accommodated in the decompression housing for defoaming the molten glass, and a molten glass before being degassed which is communicated with the decompression tank. And a deriving unit that communicates with the reduced-pressure defoaming tank, and that guides the molten glass after the defoaming process from the reduced-pressure defoaming tank. Is a vacuum degassing apparatus for molten glass, characterized in that at least a part in direct contact with the molten glass is made of an electroformed refractory, and has a flow path which has been previously heat-treated at 700 ° C. or more in an oxygen-containing atmosphere.
【請求項7】前記電鋳耐火物は、前記溶融ガラスと直接
接触する面が、前記加熱処理される前に前記電鋳耐火物
の鋳込み面の表層から5mm以上除去して形成された電
鋳耐火物である請求項6に記載の溶融ガラスの減圧脱泡
装置用炉材。
7. An electroformed refractory formed by removing a surface in direct contact with the molten glass from a surface layer of a casting surface of the electroformed refractory by 5 mm or more before the heat treatment. The furnace material for a vacuum degassing apparatus for molten glass according to claim 6, which is a refractory.
【請求項8】前記導入手段および前記導出手段はそれぞ
れ上昇管および下降管であり、前記上昇管および前記下
降管のうち少なくとも前記下降管は、電鋳耐火物で構成
され、予め酸素含有雰囲気下、700℃以上で加熱処理
された、請求項6または7に記載の溶融ガラスの減圧脱
泡装置。
8. The inflow means and the outflow means are an ascending pipe and a descending pipe, respectively. At least the descending pipe of the ascending pipe and the descending pipe is made of an electroformed refractory, and is previously stored in an oxygen-containing atmosphere. The vacuum degassing apparatus for molten glass according to claim 6 or 7, which has been heat-treated at 700 ° C or higher.
【請求項9】前記電鋳耐火物は、アルミナ系電鋳耐火
物、ジルコニア系電鋳耐火物およびアルミナ−ジルコニ
ア−シリカ系電鋳耐火物の群より選択される少なくとも
1種である請求項6〜8のいずれかに記載の溶融ガラス
の減圧脱泡装置。
9. The electroformed refractory according to claim 6, wherein the electroformed refractory is at least one selected from the group consisting of an alumina-based electroformed refractory, a zirconia-based electroformed refractory, and an alumina-zirconia-silica-based electroformed refractory. The vacuum degassing apparatus for molten glass according to any one of claims 1 to 8.
JP11050529A 1999-02-26 1999-02-26 Furnace material for vacuum deaerating apparatus for molten glass and vacuum deaerating apparatus Pending JP2000247647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11050529A JP2000247647A (en) 1999-02-26 1999-02-26 Furnace material for vacuum deaerating apparatus for molten glass and vacuum deaerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11050529A JP2000247647A (en) 1999-02-26 1999-02-26 Furnace material for vacuum deaerating apparatus for molten glass and vacuum deaerating apparatus

Publications (2)

Publication Number Publication Date
JP2000247647A true JP2000247647A (en) 2000-09-12
JP2000247647A5 JP2000247647A5 (en) 2005-04-14

Family

ID=12861529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11050529A Pending JP2000247647A (en) 1999-02-26 1999-02-26 Furnace material for vacuum deaerating apparatus for molten glass and vacuum deaerating apparatus

Country Status (1)

Country Link
JP (1) JP2000247647A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036509A1 (en) * 2000-11-06 2002-05-10 Schott Glas Method and device for refining a glass melt using negative pressure
WO2004060820A1 (en) * 2002-12-27 2004-07-22 Asahi Glass Company, Limited Conduit for molten glass, molten glass degassing method, and molten glass degassing apparatus
WO2006059576A1 (en) * 2004-12-01 2006-06-08 Nippon Sheet Glass Company, Limited Process for producing glass and glass production apparatus
US7294594B2 (en) 2003-02-18 2007-11-13 Nippon Electric Glass Co., Ltd. Glass composition
JP2010120845A (en) * 2008-11-24 2010-06-03 Corning Inc Degassing of isopipe material
WO2013042777A1 (en) * 2011-09-22 2013-03-28 旭硝子株式会社 Production method for positive electrode material for secondary battery
JP2015091754A (en) * 2001-07-18 2015-05-14 コーニング インコーポレイテッド Method for controlling foam generated in decompression refining
WO2016013523A1 (en) * 2014-07-24 2016-01-28 旭硝子株式会社 Glass melt production device, glass melt production method, glass product production device, and glass product production method
CN112135801A (en) * 2018-03-15 2020-12-25 欧文斯-布洛克威玻璃容器有限公司 Vacuum refining of molten glass

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036509A1 (en) * 2000-11-06 2002-05-10 Schott Glas Method and device for refining a glass melt using negative pressure
US7231788B2 (en) 2000-11-06 2007-06-19 Schott Ag Method and device for refining a glass melt using negative pressure
JP2015091754A (en) * 2001-07-18 2015-05-14 コーニング インコーポレイテッド Method for controlling foam generated in decompression refining
WO2004060820A1 (en) * 2002-12-27 2004-07-22 Asahi Glass Company, Limited Conduit for molten glass, molten glass degassing method, and molten glass degassing apparatus
US7377132B2 (en) 2002-12-27 2008-05-27 Asahi Glass Company, Limited Conduit for molten glass, molten glass degassing method and molten glass degassing apparatus
KR100901098B1 (en) * 2002-12-27 2009-06-08 아사히 가라스 가부시키가이샤 Conduit for molten glass, molten glass degassing method, and molten glass degassing apparatus
US7294594B2 (en) 2003-02-18 2007-11-13 Nippon Electric Glass Co., Ltd. Glass composition
WO2006059576A1 (en) * 2004-12-01 2006-06-08 Nippon Sheet Glass Company, Limited Process for producing glass and glass production apparatus
KR20100058409A (en) * 2008-11-24 2010-06-03 코닝 인코포레이티드 Isopipe material outgassing
JP2010120845A (en) * 2008-11-24 2010-06-03 Corning Inc Degassing of isopipe material
KR101644645B1 (en) 2008-11-24 2016-08-01 코닝 인코포레이티드 Isopipe material outgassing
WO2013042777A1 (en) * 2011-09-22 2013-03-28 旭硝子株式会社 Production method for positive electrode material for secondary battery
WO2016013523A1 (en) * 2014-07-24 2016-01-28 旭硝子株式会社 Glass melt production device, glass melt production method, glass product production device, and glass product production method
JPWO2016013523A1 (en) * 2014-07-24 2017-05-25 旭硝子株式会社 Glass melt manufacturing apparatus, glass melt manufacturing method, glass article manufacturing apparatus, and glass article manufacturing method
CN112135801A (en) * 2018-03-15 2020-12-25 欧文斯-布洛克威玻璃容器有限公司 Vacuum refining of molten glass
CN112135801B (en) * 2018-03-15 2022-12-20 欧文斯-布洛克威玻璃容器有限公司 Vacuum refining of molten glass

Similar Documents

Publication Publication Date Title
KR100682779B1 (en) Vacuum degassing apparatus for molten glass
US7650764B2 (en) Vacuum degassing apparatus for molten glass
JP5470853B2 (en) Glass manufacturing method and vacuum degassing apparatus
JP5434077B2 (en) Glass manufacturing method
JP4075161B2 (en) Method for producing glass by vacuum degassing
JP2000247647A (en) Furnace material for vacuum deaerating apparatus for molten glass and vacuum deaerating apparatus
JP2000007346A5 (en)
JP3785788B2 (en) Vacuum degassing equipment for molten glass
JP2000007346A (en) Vacuum defoaming unit for molten glass and method for making the unit
US6948338B2 (en) Vacuum degassing apparatus for molten glass
JP5387678B2 (en) Molten glass manufacturing method, vacuum degassing apparatus, and glass product manufacturing method
JP5975022B2 (en) Method for defoaming molten glass, apparatus for defoaming molten glass, method for producing molten glass, apparatus for producing molten glass, method for producing glass product, and apparatus for producing glass product
JP3785792B2 (en) Vacuum degassing equipment for molten glass
JP3005210B2 (en) Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment
JP2000007344A (en) Vacuum defoaming unit for molten glass
JP6597613B2 (en) Glass melt manufacturing apparatus, glass melt manufacturing method, glass article manufacturing apparatus, and glass article manufacturing method
JP4103236B2 (en) Glass manufacturing equipment by vacuum degassing
JP4821165B2 (en) Vacuum degassing apparatus for molten glass and method for clarifying molten glass using the vacuum degassing apparatus
JP2000086249A (en) Vacuum defoaming device for molten glass
JP4058935B2 (en) Vacuum deaerator
JP2000178029A (en) Vacuum defoaming equipment for molten glass
JPH11240725A (en) Vacuum deaerator for molten glass
JP4513248B2 (en) Vacuum degassing apparatus and vacuum degassing method
JPWO2010147123A1 (en) Vacuum degassing apparatus for molten glass, and method for producing molten glass using the same
JP2000007345A5 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129