JP3785792B2 - Vacuum degassing equipment for molten glass - Google Patents

Vacuum degassing equipment for molten glass Download PDF

Info

Publication number
JP3785792B2
JP3785792B2 JP5962498A JP5962498A JP3785792B2 JP 3785792 B2 JP3785792 B2 JP 3785792B2 JP 5962498 A JP5962498 A JP 5962498A JP 5962498 A JP5962498 A JP 5962498A JP 3785792 B2 JP3785792 B2 JP 3785792B2
Authority
JP
Japan
Prior art keywords
molten glass
vacuum degassing
tank
pipe
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5962498A
Other languages
Japanese (ja)
Other versions
JPH11255519A (en
Inventor
祐輔 竹居
正隆 松脇
道人 佐々木
駿 木島
淳史 谷垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5962498A priority Critical patent/JP3785792B2/en
Publication of JPH11255519A publication Critical patent/JPH11255519A/en
Application granted granted Critical
Publication of JP3785792B2 publication Critical patent/JP3785792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続的に供給される溶融ガラスから気泡を除去するための溶融ガラスの減圧脱泡装置に関する。
【0002】
【従来の技術】
従来より、成形されたガラス製品の品質を向上させるために、図2に示すように、溶融炉で溶融した溶融ガラスを成形装置で成形する前に溶融ガラス内に発生した気泡を除去する減圧脱泡装置が用いられている。
図2に示す減圧脱泡装置110は、溶解槽120内の溶融ガラスGを減圧脱泡処理して、次の処理槽に連続的に供給するプロセスに用いられるものであって、減圧脱泡する際には、真空吸引されて内部が減圧される減圧ハウジング112内に設けられ、減圧ハウジング112と共に減圧される減圧脱泡槽114と、その両端部に、下方に向かって垂直に取り付けられた上昇管116および下降管118が配置されており、上昇管116の下端は、溶解槽120に連通する上流側ピット122の溶融ガラスG内に浸漬されており、下降管118の下端は、同様に、次の処理槽(図示せず)に連通する下流側ピット124の溶融ガラスG内に浸漬されている。
【0003】
そして、減圧脱泡槽114は、図示しない真空ポンプによって真空吸引されて内部が減圧される減圧ハウジング112内に水平に設けられ、減圧ハウジング112と共に減圧脱泡槽114の内部が1/3〜1/20気圧に減圧されているので、上流側ピット122内の脱泡処理前の溶融ガラスGは、上昇管116によって吸引上昇されて減圧脱泡槽114に導入され、減圧脱泡槽114内で減圧脱泡処理が行われた後、下降管118によって下降させて下流側ピット124に導出される。なお、本発明においては、溶融ガラスGは上昇管116を上昇中に徐々に減圧され、これに伴い溶融ガラスG中に存在する泡が膨張し、減圧脱泡槽114で溶融ガラス表面からその上部の減圧雰囲気へ向け脱泡が行われ、清浄になった溶融ガラスは下降管118を下降中に徐々に常圧に復帰するものであるが、減圧脱泡処理は主に減圧脱泡槽114で行われる。
減圧ハウジング112は、金属製、例えばステンレス製または耐熱鋼製のケーシングであり、外部から真空ポンプ(図示せず)等によって真空吸引されて内部が減圧され、内部に設けられた減圧脱泡槽114内を所定の圧力、例えば1/3〜1/20気圧に減圧して維持する。
この減圧ハウジング112内の減圧脱泡槽114、上昇管116および下降管118の周囲には、これらを断熱被覆する耐火性レンガなどの断熱材130が配設されている。
【0004】
従来の減圧脱泡装置110においては、溶解槽から減圧脱泡装置110内に吸引上昇されて減圧脱泡処理され、次の処理槽、例えば成形槽に下降流出される溶融ガラスGの流量(または流速)は、上流側ピット122と下流側ピット124との液面の高さの差、従って上昇管116および下降管118の基部の溶融ガラス素地面のレベル差hが、その間の圧損Δpに等しくなる条件、すなわち下記式を満たすように決められる。
Δp=ρgh
ここで、ρは溶融ガラスGの密度である。
この時、正確には、減圧脱泡装置110の減圧脱泡槽114は別途開渠として計算するのがよいが、上昇管116、減圧脱泡槽114および下降管118を円管と仮定し、円管の直径をD、長さをLとすると、減圧脱泡処理される溶融ガラスGの流速uは、下記式によって表わすことができる。
Δp=32μLu/gD2 (ハーゲン−ポアズイユの式)
ここで、μは溶融ガラスGの粘度である。
【0005】
このように、従来の減圧脱泡装置110においては、減圧脱泡処理される溶融ガラスGの流速は、減圧脱泡装置110の構成や溶融ガラスGの成分や製造工程を変更しない限り、ほぼ、溶融ガラスGの温度(粘度μ)および上流側ピット122と下流側ピット124との液面の高さの差hによって定まる。このため、減圧脱泡装置110における溶融ガラスGの流量を変更する場合には、溶融ガラスGの温度(粘度μ)を変化させるか、上流側ピット122と下流側ピット124との液面の高さの差hを変化させなければならない。
【0006】
しかし、従来の減圧脱泡装置110において、溶融ガラスGの温度を変化させることは、特に、溶融ガラスGの流量増大のために、温度を上昇させて、粘度を低下させることは、減圧脱泡装置110の構成材料、従来は白金などの貴金属、またはその合金の高温強度の点から困難である。
このため、従来の減圧脱泡装置110において、溶融ガラスGの流量増大のためには、上流側ピット122と下流側ピット124との液面の高さの差hを増大させる必要が生じるが、この液面の高さの差hを変化させることも、一旦設備として完成された減圧脱泡装置110の構成を変更することになり、容易なことではない。すなわち、従来の減圧脱泡装置110の装置構成上、出入口のレベルが外部条件で決められている場合などのように、液面高さの差hを変えられない、もしくは他の条件から変えたくない場合なども多い。
【0007】
【発明が解決しようとする課題】
このように、従来の減圧脱泡装置110においては、溶融ガラスGの流速を変化させることは容易ではない。仮に、減圧脱泡装置110において溶融ガラスGの流速を速くしてその流量を増加させても十分な減圧脱泡処理能力があることが明らかになったとしても、依然として処理能力が低いままで使用せざるを得ないという問題があった。
従って、従来の減圧脱泡装置110においては、十分な減圧脱泡処理能力があり、溶融ガラスGの流速を速くして減圧脱泡する溶融ガラスGの流量を増加することが可能であったとしても、溶融ガラスGの温度や液面高さの差hを変え、溶融ガラスGの流速を変化させることは容易ではなく、減圧脱泡装置110の能力を十分に発揮することができないという問題があった。
【0008】
本発明の目的は、上記従来技術の問題点を解消し、装置構成自体を変更することなく、減圧脱泡能力に応じて、容易に溶融ガラスGの流速を速くし、減圧脱泡する溶融ガラスGの流量を増加させることができ、減圧脱泡能力を最大限に発揮させることができ、また、装置設計の自由度を向上させることのできる溶融ガラスの減圧脱泡装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、真空吸引されて内部が減圧される減圧ハウジングと、この減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、この減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを吸引上昇させて前記減圧脱泡槽に導入する上昇管と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から下降させて導出する下降管と、前記上昇管の下方から空気を吹き込む空気吹込手段とを具備し、
この空気吹込手段から前記上昇管に前記空気を吹き込み、前記溶融ガラスを前記空気とともに前記上昇管中を上昇させることを特徴とする溶融ガラスの減圧脱泡装置を提供するものである。
【0010】
【発明の実施の形態】
本発明に係る溶融ガラスの減圧脱泡装置を添付の図面に示す好適な実施形態に基づいて以下に詳細に説明する。
【0011】
図1は、本発明の溶融ガラスの減圧脱泡装置の概略断面図を示す。
図1に示すように、本発明の溶融ガラスの減圧脱泡装置10は、溶解槽20内から溶融ガラスGを減圧脱泡槽14に吸引上昇させ、減圧された減圧脱泡槽14において減圧脱泡処理を行い、次の処理槽、例えばフロートバスなどの板状の成形処理槽や瓶などの成形作業槽などに連続的に供給するプロセスに用いられるもので、基本的に、減圧ハウジング12、減圧脱泡槽14、上昇管16および下降管18からなっている。
【0012】
減圧ハウジング12は、減圧脱泡槽14を減圧する際の気密性を確保するための圧力容器として機能するものであり、本実施例では、ほぼ門型に形成されて、減圧脱泡槽14、および上昇管16と下降管18の上部を包み込むように構成されている。この減圧ハウジング12は、減圧脱泡槽14に必要とされる気密性および強度を有するものであれば、その材質、構造は特に限定されるものではないが、金属製、特にステンレス製または耐熱鋼製とすることが好ましい。
減圧ハウジング12には、右上部に真空吸引して内部を減圧する吸引口12cが設けられており、図示しない真空ポンプによって真空吸引されて減圧ハウジング12の内部が減圧され、そのほぼ中央部に配置された減圧脱泡槽14内を所定の圧力、例えば、1/3〜1/20気圧に減圧して維持するように構成されている。
【0013】
減圧ハウジング12のほぼ中央部には、減圧脱泡槽14が水平に配置されている。この減圧脱泡槽14の流路の断面は、従来と同様に、円形でもよいが、本発明はこれに限定されず、例えば、楕円形や矩形などの多角形や異形でもよく、特に、大流量の溶融ガラスGの減圧脱泡処理を行うには長方形の方が好ましい。
この減圧脱泡槽14の左端部には上昇管16の上端部が、減圧脱泡槽14の右端部には下降管18の上端部がそれぞれ下方に向かって垂直に連通されている。そして、上昇管16および下降管18は門型に形成された減圧ハウジング12の脚部12a,12bをそれぞれ貫通するように配設されており、上昇管16および下降管18の下端は、それぞれ溶解槽20に連通する上流側ピット22および次の処理槽(図示せず)に連通する下流側ピット24の溶融ガラスG内に浸漬されている。
ここで、減圧脱泡槽14、上昇管16および下降管18は、大流量の溶融ガラスGの減圧脱泡処理を行うには、電鋳耐火物製レンガで構成するのがよいが、一部を白金等の貴金属や貴金属合金などで構成してもよいし、溶融ガラスと接触する流路の全てを白金等の貴金属や貴金属合金などで構成してもよい。
【0014】
減圧脱泡槽14の上部には、減圧ハウジング12を図示しない真空ポンプ等によって真空吸引することによって、減圧脱泡槽14内を所定の圧力(1/3〜1/20気圧)に減圧して維持するために、減圧ハウジング12と連通する吸引孔14a,14bが設けられている。
減圧ハウジング12と、減圧脱泡槽14、上昇管16および下降管18との間は、耐火物製レンガなどの断熱材30で充填されて断熱被覆されている。この断熱材30は、減圧脱泡槽14の真空吸引の支障とならないように、通気性を有する断熱材によって構成される。
【0015】
上昇管16の下方には、上流側ピット22内の溶融ガラスGに空気、例えば予熱された空気を吹き込む本発明の空気吹込手段である空気吹込パイプ32が配置されている。この空気吹込パイプ32から供給された空気は、溶融ガラスG中で泡となって上昇管16内を溶融ガラスGとともに上昇し、減圧脱泡槽14内の溶融ガラスGの液面にて破泡して消滅する。このとき、上昇管16内の多数の空気泡を含む溶融ガラスGの見かけの比重は、下降管18中の溶融ガラスGの比重より小さくなり、空気泡のポンプアップ効果によって、上昇管16から下降管18に向けてのヘッドが付与され、溶融ガラスGの流れが加速され、その流速が増大し、溶融ガラスGの流量を増大させることができる。
空気吹込パイプ32に空気、例えば予熱された空気を供給する手段は、特に制限的ではなく、従来公知の空気供給手段をそのまま適用できる。
ここで、空気吹込パイプ32は、白金管等の貴金属管またはその合金管で構成するのがよい。空気吹込パイプ32の形状、寸法も特に制限的ではないが、本発明の減圧脱泡装置10が本来脱泡処理の対象としている泡のサイズより大きいサイズの泡を生成できる形状、寸法であるのが好ましい。
【0016】
ここで、本発明において、空気吹込パイプ32から吹き込まれる空気によって溶融ガラスG中に生成される泡は、本来、本発明で脱泡処理の対象の限度とされる微小サイズの泡、例えば、1mm以下、具体的には、建築用ガラスで直径0.3mmや0.2mm程度の泡に比べてはるかに大きいサイズの泡、例えば直径数mm〜1cm、好ましくは直径5〜8mm程度の泡であるのが良い。これは、本来の脱泡処理対象となる微小サイズの泡の脱泡処理精度や効率の低下を招かないように、溶融ガラスG中での泡の上昇力を大きくし、減圧脱泡槽14での溶融ガラスGの液面への上昇を早め、液面での破泡を確実かつ迅速に行うためである。なお、空気吹込パイプ32によって生成された泡は、本来の脱泡対象の微細な泡と物理的合体する効果もあるので、本発明の減圧脱泡装置10の脱泡効率を向上させる効果をも奏する。
また、空気吹込パイプ32から、溶融ガラスG中に一定圧力で連続して空気を吹き込んで、一定サイズの空気泡を所定間隔で発生させるのが好ましい。また、上昇管16の溶融ガラスG中に吹き込む空気の量、あるいは、上昇管16の溶融ガラスG中に存在させる空気泡の量は、特に制限的ではなく、上昇管16中の溶融ガラスGに付与したい上昇力、従って、溶融ガラスGの流量、すなわち脱泡処理量に応じて適宜選択すればよい。
【0017】
次に、本発明の溶融ガラスの減圧脱泡装置10の作用について説明する。
減圧脱泡槽14は、図示しない真空ポンプによって真空吸引されて、所定の圧力、例えば1/3〜1/20気圧に減圧して維持されているので、溶融ガラスGは、上流側ピット22または下流側ピット24の溶融ガラスGの液面の気圧(大気圧)と減圧ハウジング12内の減圧された気圧との差によって上昇管16または下降管18を通って減圧脱泡槽14に吸引上昇され、一連の閉管路によって構成されたサイフォンとなる。そして、溶融ガラスGは、上流側ピット22と下流側ピット24における溶融ガラスGの液面の高さの差hに従って下流側ピット24に流出する。
【0018】
このとき、上流側ピット22または下流側ピット24の溶融ガラスGの液面の高さと減圧脱泡槽14に吸引上昇された溶融ガラスGの液面の高さの差は、減圧脱泡槽14内の減圧された気圧によっても異なるが、ほぼ、2.5m〜3.5m程度となり、減圧脱泡槽14内の溶融ガラスGの流速は、溶融ガラスGの粘度(温度)および上流側ピット22と下流側ピット24の溶融ガラスGの液面の高さの差hとによって定まる。
減圧脱泡槽14内に吸引上昇された溶融ガラスGは、減圧脱泡槽14内が1/3〜1/20気圧に減圧されているので、溶融ガラスGに含まれた気泡が液面に上昇して破泡する。減圧脱泡装置10は、このようにして、溶融ガラスGに含まれている気泡を除去するものである。
【0019】
このような減圧脱泡装置10の上昇管16下方に、溶融ガラスGとほぼ同じ温度に予熱した空気を吹き込む空気吹込パイプ32を配置し、この空気吹込パイプ32から上昇管16の下方に空気を吹き込むと、この空気は、気泡34となって溶融ガラスG内に浮遊し、溶融ガラスGとともに上昇管16内を上昇する。
そして、この気泡34を含んだ溶融ガラスGの見掛けの比重は、溶融ガラスGの比重、従って下降管18内の溶融ガラスGの比重よりも当然に軽くなり、上昇管16内の気泡34を含んだ溶融ガラスGは、この比重の差によって上昇管16内を空気の吹き込みがない場合よりも早い流速で、かつ減圧脱泡槽14内のより高い位置まで気泡34とともに吸引上昇することになる。
【0020】
もちろん、減圧脱泡槽14内の液面に達した気泡34は、液面まで上昇すると破泡して本来の脱泡対象の微細な泡を含む溶融ガラスGのみが残るが、このときの液面の位置は、前述したように、気泡34を含み見掛けの比重が小さい溶融ガラスの方が、気泡34を含まない溶融ガラスよりも高い位置まで上昇するので、図1に示すように、減圧脱泡槽14内の溶融ガラスGの液面の勾配が大きくなり、より早い流速で下降管18に向かって減圧脱泡槽14内を流れることになり、減圧脱泡処理を行う溶融ガラスGの流量を増加することができる。
【0021】
この気泡34の直径は温度または圧力によって変化し、溶融ガラスの組成や粘度によっても好適な気泡の直径が異なるので、一概には言えないが、空気吹込パイプ32の口元で数mm〜1cm程度の直径の気泡とすることが好ましく、この気泡34の量を増減することによって、上昇管16内の溶融ガラスGの流速、すなわち、減圧脱泡槽14内を流れる溶融ガラスGの流量を変化させることができる。なお、減圧脱泡装置10において上流側ピット22と下流側ピット24の溶融ガラスGの液面の高さの差hが変更できない場合であっても、あるいは装置構成の外部条件からこの液面差hが大きくできない場合、またはとれない場合であっても、もしくはこの液面差hを低く設定しても、本発明のように上昇管16内の溶融ガラスGに空気吹込パイプ32から空気を吹き込むことにより、減圧脱泡槽14内を流れる溶融ガラスGの流量を増大させ、必要な脱泡処理量を確保することができる。
【0022】
さらに、空気吹込パイプ32から溶融ガラスG内に吹き込む空気として、予熱した空気を使用するときには、以下のような効果を奏する。
特に、溶融ガラスGがソーダガラスの場合は、空気中のO2 が溶融ガラスG内に容易に溶け込むので、気泡34は、O2 を除いた空気(主にN2 )の気泡となり、前述したように、溶融ガラスGとともに上昇する。
そして、溶融ガラスG内に溶け込でいるSO2 、CO2 、H2 O等の溶存ガスは、この気泡34に向かって拡散して流入し、溶存ガスの濃度が減少する。
【0023】
また、溶融ガラスG内に溶け込んだO2 は、周囲の溶融ガラスG内にO2 濃度の低い泡(特に、溶融炉で添加した硫酸塩清澄剤に起因するSO2 の泡)があると、溶融ガラスGからO2 濃度の低い泡に流入して泡の径を拡大し、溶融ガラスG内を上昇して減圧脱泡槽14内の溶融ガラスGの液面から破泡しやすくする。溶融ガラスG内に溶存しているSO2 が多いときには、次の図示しない処理槽で再沸する原因となるので、空気吹込パイプ32から溶融ガラスG内に吹き込む空気として予熱した空気を使用し、溶存しているSO2 を減少させることは、さらに付随的な効果を有する。
溶融ガラスG内を上昇できない程度の小径の泡は、下降管18を下降する間に圧力が常圧に回復する過程で、ほとんど、溶融ガラスGに吸収されて消滅する。
【0024】
以上、本発明に係る溶融ガラスの減圧脱泡装置について詳細に説明したが、本発明は上記実施例に限定されず、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよいのはもちろんである。
【0025】
【発明の効果】
以上に詳述したように、本発明によれば、上昇管および下降管の下端の溶融ガラス素地面のレベル差、すなわち溶融ガラス液面の高さの差が大きくできない、または変更できない場合であっても、上昇管の下方に溶融ガラスとほぼ同じ温度に予熱した空気を吹き込む空気吹込パイプを配置し、この空気吹込パイプから上昇管の下方に空気を吹き込むことにより、容易に溶融ガラスの流量を増加することができ、減圧脱泡装置の能力を最大限に発揮させることができるし、逆に、同じ脱泡処理能力の減圧脱泡装置において、上昇管および下降管の下端の溶融ガラス素地面のレベル差を小さくすることができ、装置設計の自由度を上げることができる。
また、空気吹込パイプから溶融ガラス内に吹き込む空気として、予熱した空気を使用するときには、溶融ガラスG内に溶け込んだSO2 、CO2 、H2 O等の溶存ガス、特にSO2 の濃度を減少させ、次の処理槽における再沸を防止することができる。
【図面の簡単な説明】
【図1】 本発明に係る溶融ガラスの減圧脱泡装置の一実施例の概略断面図である。
【図2】 従来の溶融ガラスの減圧脱泡装置の概略断面図である。
【符号の説明】
10,110 減圧脱泡装置
12,112 減圧ハウジング
12a,12b 脚部
12c 吸引口
14,114 減圧脱泡槽
14a,14b 吸引孔
16,116 上昇管
18,118 下降管
20,120 溶解槽
22,122 上流側ピット
24,124 下流側ピット
30,130 断熱材
32 空気吹込パイプ
34 気泡
G 溶融ガラス
h 液面の高さの差
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum degassing apparatus for molten glass for removing bubbles from continuously supplied molten glass.
[0002]
[Prior art]
Conventionally, in order to improve the quality of the molded glass product, as shown in FIG. 2, the vacuum degassing is used to remove bubbles generated in the molten glass before the molten glass melted in the melting furnace is molded by the molding apparatus. A foam device is used.
The vacuum degassing apparatus 110 shown in FIG. 2 is used in a process of vacuum degassing the molten glass G in the melting tank 120 and continuously supplying the molten glass G to the next processing tank. In this case, a vacuum degassing tank 114 that is provided in a vacuum housing 112 that is vacuumed by suction to decompress the inside, and a vacuum degassing tank 114 that is decompressed together with the vacuum housing 112, and a lift vertically attached to both ends thereof. The lower end of the rising pipe 116 is immersed in the molten glass G of the upstream pit 122 communicating with the melting tank 120, and the lower end of the lowering pipe 118 is similarly It is immersed in the molten glass G of the downstream pit 124 communicating with the next processing tank (not shown).
[0003]
The decompression defoaming tank 114 is horizontally provided in the decompression housing 112 that is vacuum-sucked by a vacuum pump (not shown) to decompress the inside, and the inside of the decompression defoaming tank 114 is 1/3 to 1 together with the decompression housing 112. Since the pressure is reduced to / 20 atm, the molten glass G before the defoaming process in the upstream pit 122 is sucked up by the riser 116 and introduced into the depressurized defoaming tank 114. After the decompression defoaming process is performed, it is lowered by the downcomer 118 and led to the downstream pit 124. In the present invention, the molten glass G is gradually depressurized while ascending the riser 116, and the bubbles present in the molten glass G are expanded along with this, and the vacuum defoaming tank 114 expands the upper surface from the surface of the molten glass. The defoaming is performed toward the reduced pressure atmosphere, and the molten glass that has been cleaned gradually returns to normal pressure while descending the downcomer 118, but the reduced pressure defoaming treatment is mainly performed in the reduced pressure defoaming tank 114. Done.
The decompression housing 112 is a casing made of metal, for example, stainless steel or heat-resistant steel. The decompression housing 112 is decompressed by vacuum suction from the outside by a vacuum pump (not shown) or the like, and the decompression defoaming tank 114 provided inside. The inside is reduced to a predetermined pressure, for example, 1/3 to 1/20 atm.
A heat insulating material 130 such as a refractory brick is provided around the vacuum degassing tank 114, the rising pipe 116, and the lowering pipe 118 in the vacuum housing 112 to cover them.
[0004]
In the conventional vacuum degassing apparatus 110, the flow rate (or the flow rate of the molten glass G that is suctioned and raised from the melting tank into the vacuum degassing apparatus 110 and subjected to the vacuum degassing process, and flows down to the next processing tank, for example, the molding tank (or The flow rate) is equal to the pressure difference Δp between the difference in liquid level between the upstream pit 122 and the downstream pit 124, and hence the level difference h of the molten glass base at the base of the ascending pipe 116 and the descending pipe 118. The following condition, that is, the following formula is satisfied.
Δp = ρgh
Here, ρ is the density of the molten glass G.
At this time, to be precise, the decompression defoaming tank 114 of the decompression defoaming apparatus 110 may be calculated as a separate opening, but the ascending pipe 116, the decompression defoaming tank 114 and the descending pipe 118 are assumed to be circular pipes, When the diameter of the circular tube is D and the length is L, the flow rate u of the molten glass G to be degassed under reduced pressure can be expressed by the following equation.
Δp = 32 μLu / gD 2 (Hagen-Poiseuille equation)
Here, μ is the viscosity of the molten glass G.
[0005]
Thus, in the conventional vacuum degassing apparatus 110, the flow rate of the molten glass G to be subjected to the vacuum degassing treatment is almost as long as the configuration of the vacuum degassing apparatus 110, the components of the molten glass G and the manufacturing process are not changed. It is determined by the temperature h of the molten glass G (viscosity μ) and the difference in the liquid level height h between the upstream pit 122 and the downstream pit 124. Therefore, when the flow rate of the molten glass G in the vacuum degassing apparatus 110 is changed, the temperature (viscosity μ) of the molten glass G is changed or the liquid level between the upstream pit 122 and the downstream pit 124 is increased. The difference h must be changed.
[0006]
However, in the conventional vacuum degassing apparatus 110, changing the temperature of the molten glass G means that the temperature is raised and the viscosity is lowered to increase the flow rate of the molten glass G. It is difficult from the viewpoint of the high temperature strength of the constituent material of the device 110, conventionally a noble metal such as platinum, or an alloy thereof.
For this reason, in the conventional vacuum degassing apparatus 110, in order to increase the flow rate of the molten glass G, it is necessary to increase the difference in liquid level height h between the upstream pit 122 and the downstream pit 124. Changing the height difference h of the liquid level also changes the configuration of the vacuum degassing apparatus 110 once completed as equipment, and is not easy. That is, the level h of the liquid level cannot be changed, or it is desired to change from other conditions, such as when the level of the entrance / exit is determined by external conditions due to the configuration of the conventional vacuum degassing apparatus 110. There are many cases that do not exist.
[0007]
[Problems to be solved by the invention]
Thus, in the conventional vacuum degassing apparatus 110, it is not easy to change the flow rate of the molten glass G. Even if the flow rate of the molten glass G is increased by increasing the flow rate of the molten glass G in the vacuum degassing apparatus 110, even if it becomes clear that there is sufficient vacuum degassing processing capability, the processing capability is still low. There was a problem that it had to be done.
Therefore, in the conventional vacuum degassing apparatus 110, there is sufficient vacuum degassing processing capacity, and it is possible to increase the flow rate of the molten glass G to be degassed by increasing the flow rate of the molten glass G. However, it is not easy to change the flow rate of the molten glass G by changing the temperature h of the molten glass G or the difference in liquid level height, and the ability of the vacuum degassing apparatus 110 cannot be fully exhibited. there were.
[0008]
The object of the present invention is to eliminate the above-mentioned problems of the prior art, and easily increase the flow rate of the molten glass G according to the vacuum degassing capability without changing the apparatus configuration itself, and the molten glass that is degassed under reduced pressure. An object of the present invention is to provide a vacuum degassing apparatus for molten glass that can increase the flow rate of G, maximize the vacuum degassing ability, and improve the degree of freedom in apparatus design. .
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention includes a decompression housing that is vacuumed to reduce the inside thereof, a decompression deaeration tank that is provided in the decompression housing and decompresses the molten glass, and this decompression desorption. Provided in communication with the foam tank, the riser pipe that sucks and raises the molten glass before vacuum degassing and introduces it into the vacuum degassing tank, and is provided in communication with the vacuum degassing tank, A downcomer pipe that descends the molten glass from the vacuum degassing tank and leads out, and an air blowing means for blowing air from below the riser pipe,
The present invention provides a vacuum degassing apparatus for molten glass, wherein the air is blown into the riser from the air blowing means, and the molten glass is raised together with the air in the riser.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A vacuum degassing apparatus for molten glass according to the present invention will be described below in detail based on preferred embodiments shown in the accompanying drawings.
[0011]
FIG. 1 shows a schematic cross-sectional view of a vacuum degassing apparatus for molten glass according to the present invention.
As shown in FIG. 1, the vacuum degassing apparatus 10 for molten glass according to the present invention sucks and raises the molten glass G from the melting tank 20 into the vacuum degassing tank 14, and the vacuum degassing tank 14 is depressurized and depressurized. It is used in a process for performing foam treatment and continuously supplying to the next processing tank, for example, a plate-shaped molding processing tank such as a float bath or a molding work tank such as a bottle. Basically, the decompression housing 12, It consists of a vacuum degassing tank 14, an ascending pipe 16 and a descending pipe 18.
[0012]
The decompression housing 12 functions as a pressure vessel for ensuring airtightness when the decompression deaeration tank 14 is decompressed. In this embodiment, the decompression housing 12 is formed in a substantially portal shape, And it is comprised so that the upper part of the raise pipe 16 and the down pipe 18 may be wrapped. The material and structure of the decompression housing 12 are not particularly limited as long as the decompression housing 12 has airtightness and strength required for the decompression defoaming tank 14, but is made of metal, particularly stainless steel or heat resistant steel. It is preferable to make it.
The decompression housing 12 is provided with a suction port 12c for vacuum suction at the upper right part to decompress the inside, and the inside of the decompression housing 12 is decompressed by a vacuum pump (not shown), and is arranged at the substantially central part thereof. The inside of the reduced pressure degassing tank 14 is configured to be maintained at a predetermined pressure, for example, 1/3 to 1/20 atm.
[0013]
A decompression defoaming tank 14 is disposed horizontally at a substantially central portion of the decompression housing 12. The cross section of the flow path of the vacuum degassing tank 14 may be circular as in the prior art, but the present invention is not limited to this, and may be, for example, a polygonal shape such as an ellipse or a rectangle or an irregular shape. In order to perform the degassing treatment of the molten glass G at a flow rate, a rectangular shape is preferable.
The upper end portion of the rising pipe 16 is connected to the left end portion of the vacuum degassing tank 14 and the upper end portion of the descending pipe 18 is vertically communicated with the right end portion of the vacuum degassing tank 14 downward. The ascending pipe 16 and the descending pipe 18 are disposed so as to penetrate the leg portions 12a and 12b of the decompression housing 12 formed in a gate shape, respectively, and the lower ends of the ascending pipe 16 and the descending pipe 18 are dissolved. It is immersed in the molten glass G of the upstream pit 22 communicating with the tank 20 and the downstream pit 24 communicating with the next processing tank (not shown).
Here, the vacuum degassing tank 14, the rising pipe 16 and the downfalling pipe 18 are preferably made of electrocast refractory bricks in order to perform a vacuum degassing treatment of a large flow rate of molten glass G. May be composed of a noble metal such as platinum, a noble metal alloy, or the like, or all of the flow paths contacting the molten glass may be composed of a noble metal such as platinum or a noble metal alloy.
[0014]
In the upper part of the vacuum degassing tank 14, the vacuum housing 12 is decompressed to a predetermined pressure (1/3 to 1/20 atm) by vacuum suction with a vacuum pump (not shown) or the like. In order to maintain, suction holes 14 a and 14 b communicating with the decompression housing 12 are provided.
The space between the decompression housing 12 and the decompression deaeration tank 14, the rising pipe 16 and the descending pipe 18 is filled with a heat insulating material 30 such as a refractory brick and covered with heat. This heat insulating material 30 is comprised with the heat insulating material which has air permeability so that the vacuum suction of the pressure reduction degassing tank 14 may not be obstructed.
[0015]
Below the ascending pipe 16, an air blowing pipe 32, which is an air blowing means of the present invention for blowing air, for example, preheated air, into the molten glass G in the upstream pit 22 is disposed. The air supplied from the air blowing pipe 32 becomes bubbles in the molten glass G and rises in the riser 16 together with the molten glass G, and breaks the bubbles at the liquid surface of the molten glass G in the vacuum degassing tank 14. And disappear. At this time, the apparent specific gravity of the molten glass G containing a large number of air bubbles in the ascending pipe 16 is smaller than the specific gravity of the molten glass G in the descending pipe 18 and descends from the ascending pipe 16 due to the pump-up effect of the air bubbles. A head toward the tube 18 is provided, the flow of the molten glass G is accelerated, the flow velocity is increased, and the flow rate of the molten glass G can be increased.
The means for supplying air, for example, preheated air, to the air blowing pipe 32 is not particularly limited, and conventionally known air supply means can be applied as it is.
Here, the air blowing pipe 32 is preferably composed of a noble metal tube such as a platinum tube or an alloy tube thereof. The shape and size of the air blowing pipe 32 are not particularly limited, but the shape and size are such that the vacuum degassing apparatus 10 of the present invention can generate bubbles having a size larger than the size of the bubbles originally targeted for defoaming treatment. Is preferred.
[0016]
Here, in the present invention, the foam generated in the molten glass G by the air blown from the air blowing pipe 32 is originally a micro-sized foam, for example, 1 mm, which is the limit of defoaming treatment in the present invention. Hereinafter, concretely, it is a foam having a size much larger than that of a glass having a diameter of about 0.3 mm or 0.2 mm, for example, a foam having a diameter of several mm to 1 cm, preferably a diameter of about 5 to 8 mm. Is good. This is to increase the foam rising force in the molten glass G so as not to reduce the accuracy and efficiency of the defoaming process of the micro-sized foam that is the original defoaming process target. This is to speed up the rising of the molten glass G to the liquid level and reliably and quickly break the bubbles on the liquid level. In addition, since the foam produced | generated by the air blowing pipe 32 also has an effect which unites with the fine foam of original defoaming object, it has the effect of improving the defoaming efficiency of the vacuum degassing apparatus 10 of this invention. Play.
Moreover, it is preferable that air is continuously blown into the molten glass G from the air blowing pipe 32 at a constant pressure to generate air bubbles of a certain size at predetermined intervals. The amount of air blown into the molten glass G of the riser tube 16 or the amount of air bubbles present in the molten glass G of the riser tube 16 is not particularly limited. What is necessary is just to select suitably according to the ascending force to give, therefore the flow volume of the molten glass G, ie, the defoaming amount.
[0017]
Next, the effect | action of the vacuum degassing apparatus 10 of the molten glass of this invention is demonstrated.
The vacuum degassing tank 14 is vacuumed by a vacuum pump (not shown) and maintained at a predetermined pressure, for example, reduced to 1/3 to 1/20 atm. Due to the difference between the pressure (atmospheric pressure) of the liquid surface of the molten glass G in the downstream pit 24 and the pressure reduced in the decompression housing 12, the suction is raised to the decompression deaeration tank 14 through the ascending pipe 16 or the descending pipe 18. The siphon is constituted by a series of closed pipes. Then, the molten glass G flows out to the downstream pit 24 in accordance with the difference in liquid level height h of the molten glass G between the upstream pit 22 and the downstream pit 24.
[0018]
At this time, the difference between the height of the molten glass G in the upstream pit 22 or the downstream pit 24 and the height of the molten glass G sucked and raised in the vacuum degassing tank 14 is the reduced pressure degassing tank 14. Although it varies depending on the reduced pressure of the inside, it is approximately 2.5 m to 3.5 m, and the flow rate of the molten glass G in the vacuum degassing tank 14 depends on the viscosity (temperature) of the molten glass G and the upstream pit 22. And the difference in the height h of the liquid level of the molten glass G in the downstream pit 24.
The molten glass G sucked and raised in the vacuum degassing tank 14 is decompressed to 1/3 to 1/20 atm in the vacuum degassing tank 14, so that bubbles contained in the molten glass G are on the liquid surface. Ascend and break. The vacuum degassing apparatus 10 is for removing bubbles contained in the molten glass G in this way.
[0019]
An air blowing pipe 32 for blowing air preheated to substantially the same temperature as the molten glass G is disposed below the rising pipe 16 of the vacuum degassing apparatus 10, and air is supplied from the air blowing pipe 32 to the lower side of the rising pipe 16. When blown, this air becomes bubbles 34 and floats in the molten glass G, and rises in the riser 16 together with the molten glass G.
The apparent specific gravity of the molten glass G including the bubbles 34 is naturally lighter than the specific gravity of the molten glass G, and thus the specific gravity of the molten glass G in the downcomer 18, and includes the bubbles 34 in the ascending pipe 16. However, the molten glass G is sucked up together with the bubbles 34 to a higher position in the vacuum degassing tank 14 at a higher flow rate than in the case where no air is blown in due to the difference in specific gravity.
[0020]
Of course, the bubbles 34 that have reached the liquid level in the vacuum degassing tank 14 break up when reaching the liquid level, leaving only the molten glass G containing the fine bubbles that are the original defoaming target. As described above, the position of the surface of the molten glass including the bubbles 34 and the apparent specific gravity is higher than that of the molten glass not including the bubbles 34. Therefore, as shown in FIG. The gradient of the liquid surface of the molten glass G in the bubble tank 14 is increased, and the flow rate of the molten glass G for performing the vacuum degassing process is that it flows in the vacuum degassing tank 14 toward the downcomer 18 at a faster flow rate. Can be increased.
[0021]
The diameter of the bubbles 34 varies depending on the temperature or pressure, and the suitable diameter of the bubbles varies depending on the composition and viscosity of the molten glass. Therefore, although it cannot be generally stated, it is about several mm to 1 cm at the mouth of the air blowing pipe 32. It is preferable to use bubbles of a diameter, and by increasing or decreasing the amount of the bubbles 34, the flow rate of the molten glass G in the ascending pipe 16, that is, the flow rate of the molten glass G flowing in the vacuum degassing tank 14 is changed. Can do. In the vacuum degassing apparatus 10, even if the difference in the height h of the liquid level of the molten glass G between the upstream pit 22 and the downstream pit 24 cannot be changed, or due to the external conditions of the apparatus configuration, this liquid level difference Even if h cannot be increased or cannot be taken, or even if this liquid level difference h is set low, air is blown into the molten glass G in the ascending pipe 16 from the air blowing pipe 32 as in the present invention. Thus, the flow rate of the molten glass G flowing in the vacuum degassing tank 14 can be increased, and a necessary defoaming amount can be ensured.
[0022]
Further, when preheated air is used as the air blown into the molten glass G from the air blowing pipe 32, the following effects are produced.
In particular, when the molten glass G is soda glass, since O 2 in the air easily dissolves in the molten glass G, the bubbles 34 become air bubbles (mainly N 2 ) excluding O 2 . Thus, it rises with the molten glass G.
Then, dissolved gases such as SO 2 , CO 2 , H 2 O and the like dissolved in the molten glass G diffuse and flow toward the bubbles 34, and the concentration of the dissolved gas decreases.
[0023]
Further, when O 2 dissolved in the molten glass G has bubbles with low O 2 concentration in the surrounding molten glass G (especially, SO 2 bubbles caused by a sulfate fining agent added in the melting furnace), The molten glass G flows into bubbles having a low O 2 concentration to expand the diameter of the bubbles, and the inside of the molten glass G is raised so that bubbles are easily broken from the liquid surface of the molten glass G in the vacuum degassing vessel 14. When there is a large amount of SO 2 dissolved in the molten glass G, it will cause re-boiling in a processing tank (not shown), so use preheated air as the air blown into the molten glass G from the air blowing pipe 32, Decreasing the dissolved SO 2 has an additional effect.
Bubbles of such a small diameter that cannot rise in the molten glass G are almost absorbed by the molten glass G and disappear in the process of recovering the pressure to the normal pressure while descending the downcomer 18.
[0024]
As described above, the vacuum degassing apparatus for molten glass according to the present invention has been described in detail. However, the present invention is not limited to the above-described embodiments, and various improvements and modifications may be made without departing from the spirit of the present invention. Of course it is good.
[0025]
【The invention's effect】
As described above in detail, according to the present invention, the difference in level between the molten glass bases at the lower ends of the ascending pipe and the descending pipe, that is, the difference in the height of the molten glass liquid surface cannot be increased or changed. However, an air blowing pipe that blows air preheated to approximately the same temperature as the molten glass is placed below the riser pipe, and the flow rate of the molten glass can be easily reduced by blowing air from the air blowing pipe below the riser pipe. It is possible to increase the capacity of the vacuum degassing apparatus to the maximum, and conversely, in the vacuum degassing apparatus having the same defoaming capacity, the molten glass substrate at the lower end of the rising pipe and the descending pipe Level difference can be reduced, and the degree of freedom in device design can be increased.
Further, as the air blown from the air blow pipe into the molten glass, when using preheated air, dissolved gas SO 2, CO 2, H 2 O or the like melted into the molten glass G, in particular reducing the concentration of SO 2 And re-boiling in the next treatment tank can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an embodiment of a vacuum degassing apparatus for molten glass according to the present invention.
FIG. 2 is a schematic cross-sectional view of a conventional vacuum degassing apparatus for molten glass.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10,110 Depressurization degassing apparatus 12,112 Decompression housing 12a, 12b Leg part 12c Suction port 14,114 Depressurization defoaming tank 14a, 14b Suction hole 16,116 Rising pipe 18,118 Lowering pipe 20,120 Melting tank 22,122 Upstream pits 24,124 Downstream pits 30,130 Insulation 32 Air blowing pipe 34 Bubbles G Molten glass h Difference in liquid level

Claims (1)

真空吸引されて内部が減圧される減圧ハウジングと、この減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、この減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを吸引上昇させて前記減圧脱泡槽に導入する上昇管と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から下降させて導出する下降管と、前記上昇管の下方から空気を吹き込む空気吹込手段とを具備し、
この空気吹込手段から前記上昇管に前記空気を吹き込み、前記溶融ガラスを前記空気とともに前記上昇管中を上昇させることを特徴とする溶融ガラスの減圧脱泡装置。
A vacuum housing that is vacuumed and depressurized inside, a vacuum degassing tank that is provided in the vacuum housing and performs vacuum degassing of the molten glass, and is provided in communication with the vacuum degassing tank. A riser pipe that sucks and raises the previous molten glass and introduces it into the vacuum degassing tank, and is provided in communication with the vacuum degassing tank, and lowers the molten glass after vacuum degassing from the vacuum degassing tank. A downcomer pipe to be led out, and air blowing means for blowing air from below the riser pipe,
A vacuum degassing apparatus for molten glass, wherein the air is blown into the riser from the air blowing means, and the molten glass is raised together with the air in the riser.
JP5962498A 1998-03-11 1998-03-11 Vacuum degassing equipment for molten glass Expired - Fee Related JP3785792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5962498A JP3785792B2 (en) 1998-03-11 1998-03-11 Vacuum degassing equipment for molten glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5962498A JP3785792B2 (en) 1998-03-11 1998-03-11 Vacuum degassing equipment for molten glass

Publications (2)

Publication Number Publication Date
JPH11255519A JPH11255519A (en) 1999-09-21
JP3785792B2 true JP3785792B2 (en) 2006-06-14

Family

ID=13118594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5962498A Expired - Fee Related JP3785792B2 (en) 1998-03-11 1998-03-11 Vacuum degassing equipment for molten glass

Country Status (1)

Country Link
JP (1) JP3785792B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249862B4 (en) * 2002-10-25 2020-06-10 AGC Inc. Refining chamber made from PGM materials
TWI272257B (en) * 2002-11-29 2007-02-01 Nippon Electric Glass Co Glass smelting furnace and manufacturing method of glass
CN100467409C (en) * 2002-12-27 2009-03-11 旭硝子株式会社 Conduit for molten glass, molten glass degassing method and molten glass degassing apparatus
DE10304973B4 (en) * 2003-02-06 2006-08-17 Schott Ag Devices, control device and control method for the refining of glass
DE10333869B4 (en) * 2003-07-24 2008-07-03 Schott Ag Method for laying out a plant for melting and / or refining glass
KR101419957B1 (en) * 2006-08-30 2014-07-16 아사히 가라스 가부시키가이샤 Glass-making processes
JP5470853B2 (en) * 2007-01-31 2014-04-16 旭硝子株式会社 Glass manufacturing method and vacuum degassing apparatus
TW201204664A (en) * 2010-04-23 2012-02-01 Asahi Glass Co Ltd Vacuum degassing method for molten glass
JP5975022B2 (en) * 2011-04-12 2016-08-23 旭硝子株式会社 Method for defoaming molten glass, apparatus for defoaming molten glass, method for producing molten glass, apparatus for producing molten glass, method for producing glass product, and apparatus for producing glass product
CN106830624A (en) * 2017-04-06 2017-06-13 蚌埠玻璃工业设计研究院 A kind of staged vacuum degassing apparatus for improving melten glass liquid clear quality
CN108623132B (en) * 2018-05-18 2023-10-27 承德汇彩玻璃器皿有限公司 Deslagging machine for glass rod head

Also Published As

Publication number Publication date
JPH11255519A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
JP4110663B2 (en) Vacuum degassing method for molten glass flow
KR100855924B1 (en) Vacuum degassing apparatus for molten glass
JP3785792B2 (en) Vacuum degassing equipment for molten glass
JP5470853B2 (en) Glass manufacturing method and vacuum degassing apparatus
JP4075161B2 (en) Method for producing glass by vacuum degassing
JP5423666B2 (en) Vacuum degassing equipment for molten glass
TWI403473B (en) Method for manufacturing float glass and apparatus for manufacturing the same
JP3005210B2 (en) Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment
JP4103236B2 (en) Glass manufacturing equipment by vacuum degassing
JP2000247647A (en) Furnace material for vacuum deaerating apparatus for molten glass and vacuum deaerating apparatus
JP4048646B2 (en) Vacuum degassing method for molten glass and glass manufacturing apparatus by vacuum degassing
JP4058935B2 (en) Vacuum deaerator
JP4096635B2 (en) Molten metal refining apparatus and method, and fine bubble generating apparatus
JP2000178029A (en) Vacuum defoaming equipment for molten glass
JP4513248B2 (en) Vacuum degassing apparatus and vacuum degassing method
JPH11240725A (en) Vacuum deaerator for molten glass
JP2000178028A (en) Vacuum defoaming equipment for molten glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees