JPH11255519A - Apparatus for defoaming molten glass under reduced pressure - Google Patents

Apparatus for defoaming molten glass under reduced pressure

Info

Publication number
JPH11255519A
JPH11255519A JP5962498A JP5962498A JPH11255519A JP H11255519 A JPH11255519 A JP H11255519A JP 5962498 A JP5962498 A JP 5962498A JP 5962498 A JP5962498 A JP 5962498A JP H11255519 A JPH11255519 A JP H11255519A
Authority
JP
Japan
Prior art keywords
molten glass
defoaming
vacuum degassing
air
depressurizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5962498A
Other languages
Japanese (ja)
Other versions
JP3785792B2 (en
Inventor
Yusuke Takei
祐輔 竹居
Masataka Matsuwaki
正隆 松脇
Michito Sasaki
道人 佐々木
Shun Kijima
駿 木島
Junji Tanigaki
淳史 谷垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5962498A priority Critical patent/JP3785792B2/en
Publication of JPH11255519A publication Critical patent/JPH11255519A/en
Application granted granted Critical
Publication of JP3785792B2 publication Critical patent/JP3785792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for defoaming a molten glass under a reduced pressure, capable of manifesting a sufficient ability of a melting and defoaming treatment by changing the flow rate of the molten glass by blowing air into a riser of the defoaming apparatus having a depressurizing housing whose the interior is brought into a reduced pressure state, a depressurizing defoaming vessel installed in the housing, and the riser and a down comer of the molten glass communicated to the defoaming vessel. SOLUTION: This depressurizing defoaming apparatus 10 defoaming by sucking and lifting the molten glass G from a dissolving vessel 20 to a depressurizing defoaming vessel 14, carrying out the defoaming treatment in the depressurizing defoaming vessel 14 under a reduced pressure and supplying the treated molten glass to the following step has the depressurizing defoaming vessel 14 in the depressurizing housing, a riser 16 and a down comer 18. The depressurizing housing has a sucking opening 12c, and the interior of the depressurizing defoaming vessel in the interior is vacuum-sucked by a vacuum pump to reduce the pressure to a prescribed pressure. A blowing pipe 32 for blowing air into the molten glass G is arranged at the lower part of the riser 16, so that the flow rate of the molten glass G may be in-creased by a pumping-up effect of an air bubble. The defoaming processing capacity is increased by the blowing of the air without changing the apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続的に供給され
る溶融ガラスから気泡を除去するための溶融ガラスの減
圧脱泡装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum degassing apparatus for molten glass for removing air bubbles from a continuously supplied molten glass.

【0002】[0002]

【従来の技術】従来より、成形されたガラス製品の品質
を向上させるために、図2に示すように、溶融炉で溶融
した溶融ガラスを成形装置で成形する前に溶融ガラス内
に発生した気泡を除去する減圧脱泡装置が用いられてい
る。図2に示す減圧脱泡装置110は、溶解槽120内
の溶融ガラスGを減圧脱泡処理して、次の処理槽に連続
的に供給するプロセスに用いられるものであって、減圧
脱泡する際には、真空吸引されて内部が減圧される減圧
ハウジング112内に設けられ、減圧ハウジング112
と共に減圧される減圧脱泡槽114と、その両端部に、
下方に向かって垂直に取り付けられた上昇管116およ
び下降管118が配置されており、上昇管116の下端
は、溶解槽120に連通する上流側ピット122の溶融
ガラスG内に浸漬されており、下降管118の下端は、
同様に、次の処理槽(図示せず)に連通する下流側ピッ
ト124の溶融ガラスG内に浸漬されている。
2. Description of the Related Art Conventionally, in order to improve the quality of a molded glass product, as shown in FIG. 2, air bubbles generated in the molten glass before being molded by a melting furnace are formed by a molding apparatus. Is used. The vacuum degassing apparatus 110 shown in FIG. 2 is used for a process in which the molten glass G in the melting tank 120 is degassed under reduced pressure and is continuously supplied to the next processing tank. In this case, the pressure reducing housing 112 is provided in the decompression housing 112 in which the inside is decompressed by vacuum suction.
A vacuum degassing tank 114 that is decompressed with
An ascending pipe 116 and a descending pipe 118 vertically attached downward are arranged, and the lower end of the ascending pipe 116 is immersed in the molten glass G of the upstream pit 122 communicating with the melting tank 120, The lower end of the downcomer 118 is
Similarly, it is immersed in the molten glass G of the downstream pit 124 communicating with the next processing tank (not shown).

【0003】そして、減圧脱泡槽114は、図示しない
真空ポンプによって真空吸引されて内部が減圧される減
圧ハウジング112内に水平に設けられ、減圧ハウジン
グ112と共に減圧脱泡槽114の内部が1/3〜1/
20気圧に減圧されているので、上流側ピット122内
の脱泡処理前の溶融ガラスGは、上昇管116によって
吸引上昇されて減圧脱泡槽114に導入され、減圧脱泡
槽114内で減圧脱泡処理が行われた後、下降管118
によって下降させて下流側ピット124に導出される。
なお、本発明においては、溶融ガラスGは上昇管116
を上昇中に徐々に減圧され、これに伴い溶融ガラスG中
に存在する泡が膨張し、減圧脱泡槽114で溶融ガラス
表面からその上部の減圧雰囲気へ向け脱泡が行われ、清
浄になった溶融ガラスは下降管118を下降中に徐々に
常圧に復帰するものであるが、減圧脱泡処理は主に減圧
脱泡槽114で行われる。減圧ハウジング112は、金
属製、例えばステンレス製または耐熱鋼製のケーシング
であり、外部から真空ポンプ(図示せず)等によって真
空吸引されて内部が減圧され、内部に設けられた減圧脱
泡槽114内を所定の圧力、例えば1/3〜1/20気
圧に減圧して維持する。この減圧ハウジング112内の
減圧脱泡槽114、上昇管116および下降管118の
周囲には、これらを断熱被覆する耐火性レンガなどの断
熱材130が配設されている。
[0003] The vacuum degassing tank 114 is horizontally provided in a decompression housing 112 in which the inside is decompressed by vacuum suction by a vacuum pump (not shown). 3 to 1 /
Since the pressure has been reduced to 20 atm, the molten glass G in the upstream side pit 122 before the defoaming treatment is sucked up by the riser pipe 116 and introduced into the decompression degassing tank 114. After the defoaming process is performed, the downcomer 118
And is led out to the downstream pit 124.
In the present invention, the molten glass G is supplied to the rising pipe 116.
The pressure in the molten glass G expands in accordance with the pressure, and the bubbles existing in the molten glass G expand in accordance with the pressure. While the molten glass gradually returns to normal pressure while descending the downcomer 118, the vacuum degassing process is mainly performed in the vacuum degassing tank 114. The decompression housing 112 is a casing made of metal, for example, stainless steel or heat-resistant steel. The interior of the decompression housing 112 is vacuum-evacuated by a vacuum pump (not shown) or the like to reduce the pressure therein. The inside is reduced to a predetermined pressure, for example, 1/3 to 1/20 atm. A heat insulating material 130 such as a fire-resistant brick is provided around the vacuum degassing tank 114, the riser pipe 116, and the downcomer pipe 118 in the vacuum housing 112.

【0004】従来の減圧脱泡装置110においては、溶
解槽から減圧脱泡装置110内に吸引上昇されて減圧脱
泡処理され、次の処理槽、例えば成形槽に下降流出され
る溶融ガラスGの流量(または流速)は、上流側ピット
122と下流側ピット124との液面の高さの差、従っ
て上昇管116および下降管118の基部の溶融ガラス
素地面のレベル差hが、その間の圧損Δpに等しくなる
条件、すなわち下記式を満たすように決められる。 Δp=ρgh ここで、ρは溶融ガラスGの密度である。この時、正確
には、減圧脱泡装置110の減圧脱泡槽114は別途開
渠として計算するのがよいが、上昇管116、減圧脱泡
槽114および下降管118を円管と仮定し、円管の直
径をD、長さをLとすると、減圧脱泡処理される溶融ガ
ラスGの流速uは、下記式によって表わすことができ
る。 Δp=32μLu/gD2 (ハーゲン−ポアズイユの
式) ここで、μは溶融ガラスGの粘度である。
In the conventional vacuum degassing apparatus 110, the molten glass G is sucked and lifted from the melting tank into the vacuum degassing apparatus 110, subjected to a vacuum degassing process, and discharged into a next processing tank, for example, a forming tank. The flow rate (or flow rate) is determined by the difference in liquid level between the upstream pit 122 and the downstream pit 124, and therefore the level difference h between the molten glass bases at the bases of the riser 116 and the downcomer 118, due to the pressure loss therebetween. The condition is determined so as to satisfy the condition of being equal to Δp, that is, the following expression. Δp = ρgh Here, ρ is the density of the molten glass G. At this time, to be precise, it is better to calculate the vacuum degassing tank 114 of the vacuum degassing apparatus 110 separately as an open channel, but assuming that the riser pipe 116, the vacuum degassing tank 114, and the descending pipe 118 are circular pipes, Assuming that the diameter of the circular tube is D and the length is L, the flow velocity u of the molten glass G subjected to the degassing under reduced pressure can be represented by the following equation. Δp = 32 μLu / gD 2 (Hagen-Poiseuille equation) where μ is the viscosity of the molten glass G.

【0005】このように、従来の減圧脱泡装置110に
おいては、減圧脱泡処理される溶融ガラスGの流速は、
減圧脱泡装置110の構成や溶融ガラスGの成分や製造
工程を変更しない限り、ほぼ、溶融ガラスGの温度(粘
度μ)および上流側ピット122と下流側ピット124
との液面の高さの差hによって定まる。このため、減圧
脱泡装置110における溶融ガラスGの流量を変更する
場合には、溶融ガラスGの温度(粘度μ)を変化させる
か、上流側ピット122と下流側ピット124との液面
の高さの差hを変化させなければならない。
[0005] As described above, in the conventional vacuum degassing apparatus 110, the flow rate of the molten glass G subjected to the vacuum degassing process is:
The temperature (viscosity μ) of the molten glass G and the upstream pits 122 and the downstream pits 124 are substantially maintained unless the configuration of the vacuum degassing apparatus 110, the components of the molten glass G, and the manufacturing process are changed.
And the height difference h of the liquid level. Therefore, when changing the flow rate of the molten glass G in the vacuum degassing apparatus 110, the temperature (viscosity μ) of the molten glass G is changed or the liquid level of the upstream pit 122 and the downstream pit 124 is increased. The difference h must be changed.

【0006】しかし、従来の減圧脱泡装置110におい
て、溶融ガラスGの温度を変化させることは、特に、溶
融ガラスGの流量増大のために、温度を上昇させて、粘
度を低下させることは、減圧脱泡装置110の構成材
料、従来は白金などの貴金属、またはその合金の高温強
度の点から困難である。このため、従来の減圧脱泡装置
110において、溶融ガラスGの流量増大のためには、
上流側ピット122と下流側ピット124との液面の高
さの差hを増大させる必要が生じるが、この液面の高さ
の差hを変化させることも、一旦設備として完成された
減圧脱泡装置110の構成を変更することになり、容易
なことではない。すなわち、従来の減圧脱泡装置110
の装置構成上、出入口のレベルが外部条件で決められて
いる場合などのように、液面高さの差hを変えられな
い、もしくは他の条件から変えたくない場合なども多
い。
However, in the conventional vacuum degassing apparatus 110, changing the temperature of the molten glass G is not particularly effective in increasing the flow rate of the molten glass G by increasing the temperature and decreasing the viscosity. It is difficult from the viewpoint of the high-temperature strength of the constituent material of the vacuum degassing apparatus 110, conventionally, a noble metal such as platinum, or an alloy thereof. Therefore, in the conventional vacuum degassing apparatus 110, in order to increase the flow rate of the molten glass G,
It is necessary to increase the height difference h of the liquid level between the upstream pit 122 and the downstream pit 124, but it is also possible to change the height difference h of the liquid level once the vacuum decompression is completed as a facility. The configuration of the foaming device 110 is changed, which is not easy. That is, the conventional vacuum degassing apparatus 110
Due to the configuration of the apparatus, there are many cases where the difference h in the liquid level cannot be changed or it is not desired to change it from other conditions, such as when the level of the entrance is determined by external conditions.

【0007】[0007]

【発明が解決しようとする課題】このように、従来の減
圧脱泡装置110においては、溶融ガラスGの流速を変
化させることは容易ではない。仮に、減圧脱泡装置11
0において溶融ガラスGの流速を速くしてその流量を増
加させても十分な減圧脱泡処理能力があることが明らか
になったとしても、依然として処理能力が低いままで使
用せざるを得ないという問題があった。従って、従来の
減圧脱泡装置110においては、十分な減圧脱泡処理能
力があり、溶融ガラスGの流速を速くして減圧脱泡する
溶融ガラスGの流量を増加することが可能であったとし
ても、溶融ガラスGの温度や液面高さの差hを変え、溶
融ガラスGの流速を変化させることは容易ではなく、減
圧脱泡装置110の能力を十分に発揮することができな
いという問題があった。
As described above, in the conventional vacuum degassing apparatus 110, it is not easy to change the flow rate of the molten glass G. Assuming that the vacuum degassing apparatus 11
At 0, even if the flow rate of the molten glass G was increased and the flow rate was increased, it was found that there was sufficient vacuum degassing treatment capacity, but it still had to be used with low treatment capacity. There was a problem. Therefore, in the conventional vacuum degassing apparatus 110, there is a sufficient vacuum degassing treatment capacity, and it is possible to increase the flow rate of the molten glass G to increase the flow rate of the molten glass G and increase the flow rate of the molten glass G to be degassed under reduced pressure. However, it is not easy to change the flow rate of the molten glass G by changing the difference h between the temperature and the liquid level of the molten glass G, and the capability of the vacuum degassing apparatus 110 cannot be sufficiently exhibited. there were.

【0008】本発明の目的は、上記従来技術の問題点を
解消し、装置構成自体を変更することなく、減圧脱泡能
力に応じて、容易に溶融ガラスGの流速を速くし、減圧
脱泡する溶融ガラスGの流量を増加させることができ、
減圧脱泡能力を最大限に発揮させることができ、また、
装置設計の自由度を向上させることのできる溶融ガラス
の減圧脱泡装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to easily increase the flow rate of the molten glass G according to the reduced-pressure defoaming capability without changing the apparatus configuration itself. The flow rate of the molten glass G can be increased,
The vacuum defoaming ability can be maximized,
An object of the present invention is to provide a vacuum degassing apparatus for molten glass capable of improving the degree of freedom in apparatus design.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、真空吸引されて内部が減圧される減圧ハ
ウジングと、この減圧ハウジング内に設けられ、溶融ガ
ラスの減圧脱泡を行う減圧脱泡槽と、この減圧脱泡槽に
連通して設けられ、減圧脱泡前の溶融ガラスを吸引上昇
させて前記減圧脱泡槽に導入する上昇管と、前記減圧脱
泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前
記減圧脱泡槽から下降させて導出する下降管と、前記上
昇管の下方から空気を吹き込む空気吹込手段とを具備
し、この空気吹込手段から前記上昇管に前記空気を吹き
込み、前記溶融ガラスを前記空気とともに前記上昇管中
を上昇させることを特徴とする溶融ガラスの減圧脱泡装
置を提供するものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a decompression housing in which the inside is decompressed by vacuum suction, and a decompression defoaming of the molten glass provided in the decompression housing. A vacuum degassing tank, a rising pipe that is provided in communication with the vacuum degassing tank, suctions the molten glass before vacuum degassing and introduces the molten glass into the vacuum degassing tank, and communicates with the vacuum degassing tank. A downcomer pipe for lowering the molten glass after vacuum degassing from the vacuum degassing tank and leading it out, and air blowing means for blowing air from below the riser pipe. It is an object of the present invention to provide a vacuum degassing apparatus for molten glass, wherein the air is blown into a riser to raise the molten glass in the riser together with the air.

【0010】[0010]

【発明の実施の形態】本発明に係る溶融ガラスの減圧脱
泡装置を添付の図面に示す好適な実施形態に基づいて以
下に詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A vacuum degassing apparatus for molten glass according to the present invention will be described in detail below based on preferred embodiments shown in the accompanying drawings.

【0011】図1は、本発明の溶融ガラスの減圧脱泡装
置の概略断面図を示す。図1に示すように、本発明の溶
融ガラスの減圧脱泡装置10は、溶解槽20内から溶融
ガラスGを減圧脱泡槽14に吸引上昇させ、減圧された
減圧脱泡槽14において減圧脱泡処理を行い、次の処理
槽26、例えばフロートバスなどの板状の成形処理槽や
瓶などの成形作業槽などに連続的に供給するプロセスに
用いられるもので、基本的に、減圧ハウジング12、減
圧脱泡槽14、上昇管16および下降管18からなって
いる。
FIG. 1 is a schematic sectional view of a vacuum degassing apparatus for molten glass of the present invention. As shown in FIG. 1, a vacuum degassing apparatus 10 for molten glass of the present invention suctions and raises molten glass G from a melting tank 20 to a vacuum degassing tank 14, and decompresses the vacuum in the depressurized vacuum degassing tank 14. It is used for a process of performing a foaming process and continuously supplying it to the next processing tank 26, for example, a plate-shaped forming tank such as a float bath or a forming work tank such as a bottle. , A vacuum degassing tank 14, an ascending pipe 16 and a descending pipe 18.

【0012】減圧ハウジング12は、減圧脱泡槽14を
減圧する際の気密性を確保するための圧力容器として機
能するものであり、本実施例では、ほぼ門型に形成され
て、減圧脱泡槽14、および上昇管16と下降管18の
上部を包み込むように構成されている。この減圧ハウジ
ング12は、減圧脱泡槽14に必要とされる気密性およ
び強度を有するものであれば、その材質、構造は特に限
定されるものではないが、金属製、特にステンレス製ま
たは耐熱鋼製とすることが好ましい。減圧ハウジング1
2には、右上部に真空吸引して内部を減圧する吸引口1
2cが設けられており、図示しない真空ポンプによって
真空吸引されて減圧ハウジング12の内部が減圧され、
そのほぼ中央部に配置された減圧脱泡槽14内を所定の
圧力、例えば、1/3〜1/20気圧に減圧して維持す
るように構成されている。
The decompression housing 12 functions as a pressure vessel for ensuring airtightness when depressurizing the decompression degassing tank 14. In the present embodiment, the decompression housing 12 is formed substantially in a gate shape and is decompressed and degassed. It is configured to enclose the tank 14 and the upper portions of the riser tube 16 and the downcomer tube 18. The material and structure of the decompression housing 12 are not particularly limited as long as it has the airtightness and strength required for the decompression degassing tank 14, but are made of metal, particularly stainless steel or heat-resistant steel. It is preferable to make it. Decompression housing 1
2 is a suction port 1 for depressurizing the inside by vacuum suction in the upper right part.
2c is provided, and the inside of the decompression housing 12 is depressurized by being evacuated by a vacuum pump (not shown),
The inside of the vacuum degassing tank 14 arranged substantially at the center is reduced to a predetermined pressure, for example, 1/3 to 1/20 atm.

【0013】減圧ハウジング12のほぼ中央部には、減
圧脱泡槽14が水平に配置されている。この減圧脱泡槽
14の流路の断面は、従来と同様に、円形でもよいが、
本発明はこれに限定されず、例えば、楕円形や矩形など
の多角形や異形でもよく、特に、大流量の溶融ガラスG
の減圧脱泡処理を行うには長方形の方が好ましい。この
減圧脱泡槽14の左端部には上昇管16の上端部が、減
圧脱泡槽14の右端部には下降管18の上端部がそれぞ
れ下方に向かって垂直に連通されている。そして、上昇
管16および下降管18は門型に形成された減圧ハウジ
ング12の脚部12a,12bをそれぞれ貫通するよう
に配設されており、上昇管16および下降管18の下端
は、それぞれ溶解槽20に連通する上流側ピット22お
よび次の処理槽(図示せず)に連通する下流側ピット2
4の溶融ガラスG内に浸漬されている。ここで、減圧脱
泡槽14、上昇管16および下降管18は、大流量の溶
融ガラスGの減圧脱泡処理を行うには、電鋳耐火物製レ
ンガで構成するのがよいが、一部を白金等の貴金属や貴
金属合金などで構成してもよいし、溶融ガラスと接触す
る流路の全てを白金等の貴金属や貴金属合金などで構成
してもよい。
At a substantially central portion of the decompression housing 12, a decompression degassing tank 14 is horizontally disposed. The cross section of the flow path of the vacuum degassing tank 14 may be circular as in the related art.
The present invention is not limited to this. For example, polygons such as ellipses and rectangles and irregular shapes may be used.
In order to perform the vacuum degassing treatment, a rectangular shape is preferable. The left end of the vacuum degassing tank 14 communicates vertically with the upper end of a rising pipe 16, and the right end of the vacuum degassing vessel 14 communicates with the upper end of a downcomer pipe 18 vertically downward. The ascending pipe 16 and the descending pipe 18 are disposed so as to pass through the legs 12a and 12b of the gate-shaped decompression housing 12, respectively. The upstream pit 22 communicating with the tank 20 and the downstream pit 2 communicating with the next processing tank (not shown).
4 is immersed in the molten glass G. Here, the vacuum degassing tank 14, the rising pipe 16 and the descending pipe 18 are preferably made of electroformed refractory bricks in order to perform a vacuum degassing treatment of the molten glass G with a large flow rate. May be made of a noble metal such as platinum, a noble metal alloy, or the like, or all of the flow paths in contact with the molten glass may be made of a noble metal, a noble metal alloy, or the like such as platinum.

【0014】減圧脱泡槽14の上部には、減圧ハウジン
グ12を図示しない真空ポンプ等によって真空吸引する
ことによって、減圧脱泡槽14内を所定の圧力(1/3
〜1/20気圧)に減圧して維持するために、減圧ハウ
ジング12と連通する吸引孔14a,14bが設けられ
ている。減圧ハウジング12と、減圧脱泡槽14、上昇
管16および下降管18との間は、耐火物製レンガなど
の断熱材30で充填されて断熱被覆されている。この断
熱材30は、減圧脱泡槽14の真空吸引の支障とならな
いように、通気性を有する断熱材によって構成される。
Above the vacuum degassing tank 14, the vacuum housing 12 is evacuated by a vacuum pump or the like (not shown) so that the inside of the vacuum degassing tank 14 has a predetermined pressure (1/3).
Suction holes 14 a and 14 b communicating with the decompression housing 12 are provided in order to maintain the pressure reduced to (1 / 1/20 atm). The space between the decompression housing 12 and the decompression degassing tank 14, the riser tube 16, and the downcomer tube 18 is filled with a heat insulating material 30, such as a refractory brick, and covered with heat. The heat insulating material 30 is made of a heat insulating material having air permeability so as not to hinder the vacuum suction of the vacuum degassing tank 14.

【0015】上昇管16の下方には、上流側ピット22
内の溶融ガラスGに空気、例えば予熱された空気を吹き
込む本発明の空気吹込手段である空気吹込パイプ32が
配置されている。この空気吹込パイプ32から供給され
た空気は、溶融ガラスG中で泡となって上昇管16内を
溶融ガラスGとともに上昇し、減圧脱泡槽14内の溶融
ガラスGの液面にて破泡して消滅する。このとき、上昇
管16内の多数の空気泡を含む溶融ガラスGの見かけの
比重は、下降管18中の溶融ガラスGの比重より小さく
なり、空気泡のポンプアップ効果によって、上昇管16
から下降管18に向けてのヘッドが付与され、溶融ガラ
スGの流れが加速され、その流速が増大し、溶融ガラス
Gの流量を増大させることができる。空気吹込パイプ3
2に空気、例えば予熱された空気を供給する手段は、特
に制限的ではなく、従来公知の空気供給手段をそのまま
適用できる。ここで、空気吹込パイプ32は、白金管等
の貴金属管またはその合金管で構成するのがよい。空気
吹込パイプ32の形状、寸法も特に制限的ではないが、
本発明の減圧脱泡装置10が本来脱泡処理の対象として
いる泡のサイズより大きいサイズの泡を生成できる形
状、寸法であるのが好ましい。
Downstream of the riser 16 is an upstream pit 22
An air blowing pipe 32, which is an air blowing means of the present invention, for blowing air, for example, preheated air, into the molten glass G therein is disposed. The air supplied from the air blowing pipe 32 becomes bubbles in the molten glass G and rises in the rising pipe 16 together with the molten glass G, and breaks at the liquid level of the molten glass G in the vacuum degassing tank 14. And disappear. At this time, the apparent specific gravity of the molten glass G including a large number of air bubbles in the riser 16 becomes smaller than the specific gravity of the molten glass G in the descender 18, and the pumping effect of the air bubbles increases the riser 16.
From the head toward the downcomer 18, the flow of the molten glass G is accelerated, the flow velocity is increased, and the flow rate of the molten glass G can be increased. Air blow pipe 3
Means for supplying air, for example, preheated air, to 2 is not particularly limited, and a conventionally known air supply means can be applied as it is. Here, the air blowing pipe 32 is preferably made of a noble metal tube such as a platinum tube or an alloy tube thereof. The shape and size of the air blowing pipe 32 are not particularly limited, either.
It is preferable that the vacuum degassing apparatus 10 of the present invention has a shape and dimensions that can generate a foam having a size larger than the size of the foam originally targeted for the defoaming treatment.

【0016】ここで、本発明において、空気吹込パイプ
32から吹き込まれる空気によって溶融ガラスG中に生
成される泡は、本来、本発明で脱泡処理の対象の限度と
される微小サイズの泡、例えば、1mm以下、具体的に
は、建築用ガラスで直径0.3mmや0.2mm程度の
泡に比べてはるかに大きいサイズの泡、例えば直径数m
m〜1cm、好ましくは直径5〜8mm程度の泡である
のが良い。これは、本来の脱泡処理対象となる微小サイ
ズの泡の脱泡処理精度や効率の低下を招かないように、
溶融ガラスG中での泡の上昇力を大きくし、減圧脱泡槽
14での溶融ガラスGの液面への上昇を早め、液面での
破泡を確実かつ迅速に行うためである。なお、空気吹込
パイプ32によって生成された泡は、本来の脱泡対象の
微細な泡と物理的合体する効果もあるので、本発明の減
圧脱泡装置10の脱泡効率を向上させる効果をも奏す
る。また、空気吹込パイプ32から、溶融ガラスG中に
一定圧力で連続して空気を吹き込んで、一定サイズの空
気泡を所定間隔で発生させるのが好ましい。また、上昇
管16の溶融ガラスG中に吹き込む空気の量、あるい
は、上昇管16の溶融ガラスG中に存在させる空気泡の
量は、特に制限的ではなく、上昇管16中の溶融ガラス
Gに付与したい上昇力、従って、溶融ガラスGの流量、
すなわち脱泡処理量に応じて適宜選択すればよい。
Here, in the present invention, the bubbles generated in the molten glass G by the air blown from the air blowing pipe 32 are fine-sized bubbles which are originally limited in the object of the defoaming treatment in the present invention. For example, bubbles having a size much less than 1 mm or less, specifically, bubbles having a diameter of about 0.3 mm or 0.2 mm in architectural glass, for example, several meters in diameter.
It is good to be a foam having a diameter of m to 1 cm, preferably about 5 to 8 mm. This is done so that the precision and efficiency of the defoaming process of micro-sized bubbles that are the target of the defoaming process are not reduced.
This is because the rising force of the bubbles in the molten glass G is increased, the rising of the molten glass G to the liquid surface in the vacuum degassing tank 14 is accelerated, and the foaming at the liquid surface is reliably and promptly performed. Note that the bubbles generated by the air blowing pipe 32 also have an effect of physically combining with the original fine bubbles to be defoamed, and thus also have an effect of improving the defoaming efficiency of the vacuum degassing apparatus 10 of the present invention. Play. Further, it is preferable that air is continuously blown into the molten glass G from the air blowing pipe 32 at a constant pressure to generate air bubbles of a fixed size at predetermined intervals. The amount of air blown into the molten glass G of the riser 16 or the amount of air bubbles present in the molten glass G of the riser 16 is not particularly limited. The lifting force to be applied, and therefore the flow rate of the molten glass G,
That is, it may be appropriately selected according to the defoaming processing amount.

【0017】次に、本発明の溶融ガラスの減圧脱泡装置
10の作用について説明する。減圧脱泡槽14は、図示
しない真空ポンプによって真空吸引されて、所定の圧
力、例えば1/3〜1/20気圧に減圧して維持されて
いるので、溶融ガラスGは、上流側ピット22または下
流側ピット24の溶融ガラスGの液面の気圧(大気圧)
と減圧ハウジング12内の減圧された気圧との差によっ
て上昇管16または下降管18を通って減圧脱泡槽14
に吸引上昇され、一連の閉管路によって構成されたサイ
フォンとなる。そして、溶融ガラスGは、上流側ピット
22と下流側ピット24における溶融ガラスGの液面の
高さの差hに従って下流側ピット24に流出する。
Next, the operation of the vacuum degassing apparatus 10 for molten glass of the present invention will be described. The vacuum degassing tank 14 is evacuated by a vacuum pump (not shown) and maintained at a predetermined pressure, for example, 1/3 to 1/20 atm. Atmospheric pressure (atmospheric pressure) of the liquid surface of the molten glass G in the downstream pit 24
And the decompressed air in the decompression housing 12 through a riser pipe 16 or a downcomer pipe 18.
And a siphon is formed by a series of closed conduits. Then, the molten glass G flows out to the downstream pit 24 according to the difference h in the liquid level of the molten glass G between the upstream pit 22 and the downstream pit 24.

【0018】このとき、上流側ピット22または下流側
ピット24の溶融ガラスGの液面の高さと減圧脱泡槽1
4に吸引上昇された溶融ガラスGの液面の高さの差は、
減圧脱泡槽14内の減圧された気圧によっても異なる
が、ほぼ、2.5m〜3.5m程度となり、減圧脱泡槽
14内の溶融ガラスGの流速は、溶融ガラスGの粘度
(温度)および上流側ピット22と下流側ピット24の
溶融ガラスGの液面の高さの差hとによって定まる。減
圧脱泡槽14内に吸引上昇された溶融ガラスGは、減圧
脱泡槽14内が1/3〜1/20気圧に減圧されている
ので、溶融ガラスGに含まれた気泡が液面に上昇して破
泡する。減圧脱泡装置10は、このようにして、溶融ガ
ラスGに含まれている気泡を除去するものである。
At this time, the height of the liquid surface of the molten glass G in the upstream pit 22 or the downstream pit 24 and the pressure reduction degassing tank 1
The difference between the liquid surface heights of the molten glass G sucked and raised in FIG.
Although it depends on the reduced pressure in the vacuum degassing tank 14, the flow rate of the molten glass G in the vacuum degassing tank 14 is approximately 2.5 m to 3.5 m. And the height h of the liquid surface of the molten glass G between the upstream pit 22 and the downstream pit 24. Since the molten glass G sucked and raised in the vacuum degassing tank 14 is reduced in pressure to 1/3 to 1/20 atm in the vacuum degassing tank 14, bubbles contained in the molten glass G are reduced to a liquid level. Ascends and breaks bubbles. The reduced-pressure defoaming device 10 removes bubbles contained in the molten glass G in this manner.

【0019】このような減圧脱泡装置10の上昇管16
下方に、溶融ガラスGとほぼ同じ温度に予熱した空気を
吹き込む空気吹込パイプ32を配置し、この空気吹込パ
イプ32から上昇管16の下方に空気を吹き込むと、こ
の空気は、気泡34となって溶融ガラスG内に浮遊し、
溶融ガラスGとともに上昇管16内を上昇する。そし
て、この気泡34を含んだ溶融ガラスGの見掛けの比重
は、溶融ガラスGの比重、従って下降管18内の溶融ガ
ラスGの比重よりも当然に軽くなり、上昇管16内の気
泡34を含んだ溶融ガラスGは、この比重の差によって
上昇管16内を空気の吹き込みがない場合よりも早い流
速で、かつ減圧脱泡槽14内のより高い位置まで気泡3
4とともに吸引上昇することになる。
The rising pipe 16 of such a vacuum degassing apparatus 10
An air blowing pipe 32 for blowing air preheated to substantially the same temperature as the molten glass G is disposed below. When air is blown from the air blowing pipe 32 below the rising pipe 16, the air becomes bubbles 34. Floating in the molten glass G,
It rises in riser 16 together with molten glass G. The apparent specific gravity of the molten glass G including the bubbles 34 is naturally smaller than the specific gravity of the molten glass G, and therefore the specific gravity of the molten glass G in the downcomer 18, and includes the bubbles 34 in the riser 16. Due to this difference in specific gravity, the molten glass G has bubbles 3 at a higher flow rate in the riser tube 16 than in the case where no air is blown, and to a higher position in the vacuum degassing tank 14.
4 and will be sucked up.

【0020】もちろん、減圧脱泡槽14内の液面に達し
た気泡34は、液面まで上昇すると破泡して本来の脱泡
対象の微細な泡を含む溶融ガラスGのみが残るが、この
ときの液面の位置は、前述したように、気泡34を含み
見掛けの比重が小さい溶融ガラスの方が、気泡34を含
まない溶融ガラスよりも高い位置まで上昇するので、図
1に示すように、減圧脱泡槽14内の溶融ガラスGの液
面の勾配が大きくなり、より早い流速で下降管18に向
かって減圧脱泡槽14内を流れることになり、減圧脱泡
処理を行う溶融ガラスGの流量を増加することができ
る。
Of course, the bubbles 34 that have reached the liquid level in the vacuum degassing tank 14 break down when they rise to the liquid level, leaving only the molten glass G containing fine bubbles to be defoamed. As described above, the position of the liquid surface at this time is higher in the molten glass containing the bubbles 34 and having a smaller apparent specific gravity than in the molten glass not containing the bubbles 34, as shown in FIG. Then, the gradient of the liquid level of the molten glass G in the vacuum degassing tank 14 increases, and the molten glass G flows in the vacuum degassing tank 14 toward the downcomer pipe 18 at a higher flow rate, so that the molten glass to be subjected to the vacuum degassing process. The flow rate of G can be increased.

【0021】この気泡34の直径は温度または圧力によ
って変化し、溶融ガラスの組成や粘度によっても好適な
気泡の直径が異なるので、一概には言えないが、空気吹
込パイプ32の口元で数mm〜1cm程度の直径の気泡
とすることが好ましく、この気泡34の量を増減するこ
とによって、上昇管16内の溶融ガラスGの流速、すな
わち、減圧脱泡槽14内を流れる溶融ガラスGの流量を
変化させることができる。なお、減圧脱泡装置10にお
いて上流側ピット22と下流側ピット24の溶融ガラス
Gの液面の高さの差hが変更できない場合であっても、
あるいは装置構成の外部条件からこの液面差hが大きく
できない場合、またはとれない場合であっても、もしく
はこの液面差hを低く設定しても、本発明のように上昇
管16内の溶融ガラスGに空気吹込パイプ32から空気
を吹き込むことにより、減圧脱泡槽14内を流れる溶融
ガラスGの流量を増大させ、必要な脱泡処理量を確保す
ることができる。
The diameter of the bubble 34 varies depending on the temperature or pressure, and the suitable bubble diameter varies depending on the composition and viscosity of the molten glass. It is preferable that the bubbles have a diameter of about 1 cm. By increasing or decreasing the amount of the bubbles 34, the flow rate of the molten glass G in the rising pipe 16, that is, the flow rate of the molten glass G flowing in the vacuum degassing tank 14 is reduced. Can be changed. In addition, even if the difference h in the liquid surface height of the molten glass G between the upstream pit 22 and the downstream pit 24 cannot be changed in the vacuum degassing apparatus 10,
Alternatively, even when the liquid level difference h cannot be increased or cannot be obtained due to external conditions of the apparatus configuration, or even when the liquid level difference h is set low, the melting point in the riser pipe 16 as in the present invention is not increased. By blowing air from the air blowing pipe 32 into the glass G, the flow rate of the molten glass G flowing in the vacuum degassing tank 14 can be increased, and a necessary defoaming processing amount can be secured.

【0022】さらに、空気吹込パイプ32から溶融ガラ
スG内に吹き込む空気として、予熱した空気を使用する
ときには、以下のような効果を奏する。特に、溶融ガラ
スGがソーダガラスの場合は、空気中のO2 が溶融ガラ
スG内に容易に溶け込むので、気泡34は、O2 を除い
た空気(主にN2 )の気泡となり、前述したように、溶
融ガラスGとともに上昇する。そして、溶融ガラスG内
に溶け込でいるSO2 、CO2 、H2 O等の溶存ガス
は、この気泡34に向かって拡散して流入し、溶存ガス
の濃度が減少する。
Further, when preheated air is used as the air blown into the molten glass G from the air blowing pipe 32, the following effects are obtained. In particular, when the molten glass G is soda glass, O 2 in the air easily dissolves into the molten glass G, so that the bubbles 34 become bubbles of air (mainly N 2 ) excluding O 2 . Thus, it rises with the molten glass G. Then, dissolved gases such as SO 2 , CO 2 , and H 2 O dissolved in the molten glass G diffuse and flow toward the bubbles 34, and the concentration of the dissolved gas decreases.

【0023】また、溶融ガラスG内に溶け込んだO
2 は、周囲の溶融ガラスG内にO2 濃度の低い泡(特
に、溶融炉で添加した硫酸塩清澄剤に起因するSO2
泡)があると、溶融ガラスGからO2 濃度の低い泡に流
入して泡の径を拡大し、溶融ガラスG内を上昇して減圧
脱泡槽14内の溶融ガラスGの液面から破泡しやすくす
る。溶融ガラスG内に溶存しているSO2 が多いときに
は、次の図示しない処理槽で再沸する原因となるので、
空気吹込パイプ32から溶融ガラスG内に吹き込む空気
として予熱した空気を使用し、溶存しているSO2 を減
少させることは、さらに付随的な効果を有する。溶融ガ
ラスG内を上昇できない程度の小径の泡は、下降管18
を下降する間に圧力が常圧に回復する過程で、ほとん
ど、溶融ガラスGに吸収されて消滅する。
In addition, O dissolved in the molten glass G
2, low O 2 concentration bubbles in the periphery of the molten glass G (in particular, SO 2 bubbles caused by sulfate fining agent added in the melting furnace) when there is less of the molten glass G of the O 2 concentration bubbles To increase the diameter of the foam, rise in the molten glass G, and easily break the foam from the liquid level of the molten glass G in the vacuum degassing tank 14. When the amount of SO 2 dissolved in the molten glass G is large, the SO 2 becomes a cause of reboil in a processing tank (not shown).
Using preheated air as the air blown into the molten glass G from the air blowing pipe 32 to reduce the dissolved SO 2 has an additional effect. Bubbles having a small diameter that cannot be raised in the molten glass G are sent to the downcomer 18.
During the process in which the pressure recovers to the normal pressure while descending, almost all of it is absorbed by the molten glass G and disappears.

【0024】以上、本発明に係る溶融ガラスの減圧脱泡
装置について詳細に説明したが、本発明は上記実施例に
限定されず、本発明の要旨を逸脱しない範囲において、
各種の改良および変更を行ってもよいのはもちろんであ
る。
As described above, the degassing apparatus for depressurizing molten glass according to the present invention has been described in detail. However, the present invention is not limited to the above-described embodiment, but may be any other liquid that does not depart from the gist of the present invention.
Of course, various improvements and changes may be made.

【0025】[0025]

【発明の効果】以上に詳述したように、本発明によれ
ば、上昇管および下降管の下端の溶融ガラス素地面のレ
ベル差、すなわち溶融ガラス液面の高さの差が大きくで
きない、または変更できない場合であっても、上昇管の
下方に溶融ガラスとほぼ同じ温度に予熱した空気を吹き
込む空気吹込パイプを配置し、この空気吹込パイプから
上昇管の下方に空気を吹き込むことにより、容易に溶融
ガラスの流量を増加することができ、減圧脱泡装置の能
力を最大限に発揮させることができるし、逆に、同じ脱
泡処理能力の減圧脱泡装置において、上昇管および下降
管の下端の溶融ガラス素地面のレベル差を小さくするこ
とができ、装置設計の自由度を上げることができる。ま
た、空気吹込パイプから溶融ガラス内に吹き込む空気と
して、予熱した空気を使用するときには、溶融ガラスG
内に溶け込んだSO2 、CO2 、H2 O等の溶存ガス、
特にSO2 の濃度を減少させ、次の処理槽における再沸
を防止することができる。
As described above in detail, according to the present invention, the level difference between the molten glass bases at the lower ends of the riser pipe and the lowering pipe, that is, the difference in liquid glass level cannot be increased, or Even if it cannot be changed, an air blowing pipe that blows preheated air to almost the same temperature as the molten glass is arranged below the riser pipe, and air can be blown from the air blow pipe below the riser pipe to make it easier. The flow rate of the molten glass can be increased, and the capacity of the vacuum degassing device can be maximized. Conversely, in the vacuum degassing device with the same degassing capacity, the lower ends of the riser and the downcomer In this case, the difference in the level of the molten glass substrate can be reduced, and the degree of freedom in device design can be increased. When using preheated air as air blown into the molten glass from the air blowing pipe, the molten glass G
Dissolved gases such as SO 2 , CO 2 , H 2 O, etc.
In particular, it is possible to reduce the concentration of SO 2 and prevent reboil in the next processing tank.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る溶融ガラスの減圧脱泡装置の一
実施例の概略断面図である。
FIG. 1 is a schematic sectional view of one embodiment of a vacuum degassing apparatus for molten glass according to the present invention.

【図2】 従来の溶融ガラスの減圧脱泡装置の概略断面
図である。
FIG. 2 is a schematic sectional view of a conventional vacuum degassing apparatus for molten glass.

【符号の説明】[Explanation of symbols]

10,110 減圧脱泡装置 12,112 減圧ハウジング 12a,12b 脚部 12c 吸引口 14,114 減圧脱泡槽 14a,14b 吸引孔 16,116 上昇管 18,118 下降管 20,120 溶解槽 22,122 上流側ピット 24,124 下流側ピット 26 次の処理槽 30,130 断熱材 32 空気吹込パイプ 34 気泡 G 溶融ガラス h 液面の高さの差 10,110 Decompression degassing device 12,112 Decompression housing 12a, 12b Leg 12c Suction port 14,114 Decompression degassing tank 14a, 14b Suction hole 16,116 Rise pipe 18,118 Down pipe 20,120 Dissolution tank 22,122 Upstream pit 24,124 Downstream pit 26 Next processing tank 30,130 Insulation material 32 Air blowing pipe 34 Bubble G Molten glass h Difference in liquid level

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木島 駿 神奈川県横浜市鶴見区末広町1丁目1番地 旭硝子株式会社京浜工場内 (72)発明者 谷垣 淳史 神奈川県横浜市鶴見区末広町1丁目1番地 旭硝子株式会社京浜工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shun Kijima 1-1-1, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Keihin Plant of Asahi Glass Co., Ltd. (72) Atsushi Tanigaki 1-1-1, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Address Asahi Glass Co., Ltd. Keihin Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真空吸引されて内部が減圧される減圧ハウ
ジングと、この減圧ハウジング内に設けられ、溶融ガラ
スの減圧脱泡を行う減圧脱泡槽と、この減圧脱泡槽に連
通して設けられ、減圧脱泡前の溶融ガラスを吸引上昇さ
せて前記減圧脱泡槽に導入する上昇管と、前記減圧脱泡
槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記
減圧脱泡槽から下降させて導出する下降管と、前記上昇
管の下方から空気を吹き込む空気吹込手段とを具備し、 この空気吹込手段から前記上昇管に前記空気を吹き込
み、前記溶融ガラスを前記空気とともに前記上昇管中を
上昇させることを特徴とする溶融ガラスの減圧脱泡装
置。
1. A decompression housing, the interior of which is decompressed by vacuum suction, a decompression degassing tank provided in the decompression housing, and decompression degassing of molten glass, and provided in communication with the decompression degassing tank. A rising pipe for sucking and raising the molten glass before vacuum degassing and introducing the molten glass into the vacuum degassing tank, and provided in communication with the vacuum degassing tank; A downcomer pipe that descends from the tank and leads out, and air blowing means that blows air from below the riser pipe, wherein the air is blown into the riser pipe from the air blower means, and the molten glass and the air are blown together with the air. A vacuum degassing apparatus for molten glass, which is raised in a riser.
JP5962498A 1998-03-11 1998-03-11 Vacuum degassing equipment for molten glass Expired - Fee Related JP3785792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5962498A JP3785792B2 (en) 1998-03-11 1998-03-11 Vacuum degassing equipment for molten glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5962498A JP3785792B2 (en) 1998-03-11 1998-03-11 Vacuum degassing equipment for molten glass

Publications (2)

Publication Number Publication Date
JPH11255519A true JPH11255519A (en) 1999-09-21
JP3785792B2 JP3785792B2 (en) 2006-06-14

Family

ID=13118594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5962498A Expired - Fee Related JP3785792B2 (en) 1998-03-11 1998-03-11 Vacuum degassing equipment for molten glass

Country Status (1)

Country Link
JP (1) JP3785792B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050568A1 (en) * 2002-11-29 2004-06-17 Nippon Electric Glass Co., Ltd. Glass melting furnace and method for producing glass
DE10304973A1 (en) * 2003-02-06 2004-08-26 Schott Glas Control unit for melting and/or refining glass has control devices which form at least two regulating circuits
DE10333869A1 (en) * 2003-07-24 2005-02-17 Schott Ag Laying out installation for melting and/or refining glass melt comprises using target value for dimensions and/or operating parameters of installation
WO2008029649A1 (en) * 2006-08-30 2008-03-13 Asahi Glass Company, Limited Glass-making processes
KR100901098B1 (en) * 2002-12-27 2009-06-08 아사히 가라스 가부시키가이샤 Conduit for molten glass, molten glass degassing method, and molten glass degassing apparatus
JPWO2008093580A1 (en) * 2007-01-31 2010-05-20 旭硝子株式会社 Glass manufacturing method and vacuum degassing apparatus
JP4773095B2 (en) * 2002-10-25 2011-09-14 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Clarification chamber made of platinum group metal material
WO2011132785A1 (en) * 2010-04-23 2011-10-27 旭硝子株式会社 Vacuum degassing method for molten glass
WO2012141152A1 (en) * 2011-04-12 2012-10-18 旭硝子株式会社 Method for vacuum-degassing of molten glass, device for vacuum-degassing of molten glass, method for producing molten glass, device for producing molten glass, method for producing article made of glass, and device for producing article made of glass
CN106830624A (en) * 2017-04-06 2017-06-13 蚌埠玻璃工业设计研究院 A kind of staged vacuum degassing apparatus for improving melten glass liquid clear quality
CN108623132A (en) * 2018-05-18 2018-10-09 承德汇彩玻璃器皿有限公司 A kind of glass head slag removing machine

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773095B2 (en) * 2002-10-25 2011-09-14 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Clarification chamber made of platinum group metal material
EP1577270A1 (en) * 2002-11-29 2005-09-21 Nippon Electric Glass Co., Ltd. Glass melting furnace and method for producing glass
EP1577270A4 (en) * 2002-11-29 2007-03-28 Nippon Electric Glass Co Glass melting furnace and method for producing glass
WO2004050568A1 (en) * 2002-11-29 2004-06-17 Nippon Electric Glass Co., Ltd. Glass melting furnace and method for producing glass
US7497094B2 (en) 2002-11-29 2009-03-03 Nippon Electric Glass Co., Ltd. Glass melting furnace and method for producing glass
KR100901098B1 (en) * 2002-12-27 2009-06-08 아사히 가라스 가부시키가이샤 Conduit for molten glass, molten glass degassing method, and molten glass degassing apparatus
DE10304973A1 (en) * 2003-02-06 2004-08-26 Schott Glas Control unit for melting and/or refining glass has control devices which form at least two regulating circuits
DE10304973B4 (en) * 2003-02-06 2006-08-17 Schott Ag Devices, control device and control method for the refining of glass
DE10333869A1 (en) * 2003-07-24 2005-02-17 Schott Ag Laying out installation for melting and/or refining glass melt comprises using target value for dimensions and/or operating parameters of installation
DE10333869B4 (en) * 2003-07-24 2008-07-03 Schott Ag Method for laying out a plant for melting and / or refining glass
WO2008029649A1 (en) * 2006-08-30 2008-03-13 Asahi Glass Company, Limited Glass-making processes
JP5434077B2 (en) * 2006-08-30 2014-03-05 旭硝子株式会社 Glass manufacturing method
JPWO2008029649A1 (en) * 2006-08-30 2010-01-21 旭硝子株式会社 Glass manufacturing method
KR101419957B1 (en) * 2006-08-30 2014-07-16 아사히 가라스 가부시키가이샤 Glass-making processes
TWI394725B (en) * 2006-08-30 2013-05-01 Asahi Glass Co Ltd Glass manufacturing method
JPWO2008093580A1 (en) * 2007-01-31 2010-05-20 旭硝子株式会社 Glass manufacturing method and vacuum degassing apparatus
JP5470853B2 (en) * 2007-01-31 2014-04-16 旭硝子株式会社 Glass manufacturing method and vacuum degassing apparatus
JP5737285B2 (en) * 2010-04-23 2015-06-17 旭硝子株式会社 Vacuum degassing method for molten glass
WO2011132785A1 (en) * 2010-04-23 2011-10-27 旭硝子株式会社 Vacuum degassing method for molten glass
CN103476715A (en) * 2011-04-12 2013-12-25 旭硝子株式会社 Method for vacuum-degassing of molten glass, device for vacuum-degassing of molten glass, method for producing molten glass, device for producing molten glass, method for producing article made of glass, and device for producing article made of glass
WO2012141152A1 (en) * 2011-04-12 2012-10-18 旭硝子株式会社 Method for vacuum-degassing of molten glass, device for vacuum-degassing of molten glass, method for producing molten glass, device for producing molten glass, method for producing article made of glass, and device for producing article made of glass
US9352994B2 (en) 2011-04-12 2016-05-31 Asahi Glass Company Limited Method for vacuum-degassing molten glass, apparatus for vacuum-degassing molten glass, process for producing molten glass, apparatus for producing molten glass, process for producing glass product, and apparatus for producing glass product
JP5975022B2 (en) * 2011-04-12 2016-08-23 旭硝子株式会社 Method for defoaming molten glass, apparatus for defoaming molten glass, method for producing molten glass, apparatus for producing molten glass, method for producing glass product, and apparatus for producing glass product
CN106830624A (en) * 2017-04-06 2017-06-13 蚌埠玻璃工业设计研究院 A kind of staged vacuum degassing apparatus for improving melten glass liquid clear quality
CN108623132A (en) * 2018-05-18 2018-10-09 承德汇彩玻璃器皿有限公司 A kind of glass head slag removing machine
CN108623132B (en) * 2018-05-18 2023-10-27 承德汇彩玻璃器皿有限公司 Deslagging machine for glass rod head

Also Published As

Publication number Publication date
JP3785792B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
JP4110663B2 (en) Vacuum degassing method for molten glass flow
KR100855924B1 (en) Vacuum degassing apparatus for molten glass
JP5470853B2 (en) Glass manufacturing method and vacuum degassing apparatus
JPH11255519A (en) Apparatus for defoaming molten glass under reduced pressure
JP5423666B2 (en) Vacuum degassing equipment for molten glass
JP5387678B2 (en) Molten glass manufacturing method, vacuum degassing apparatus, and glass product manufacturing method
TWI403473B (en) Method for manufacturing float glass and apparatus for manufacturing the same
JP3005210B2 (en) Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment
JP4048646B2 (en) Vacuum degassing method for molten glass and glass manufacturing apparatus by vacuum degassing
JP2000290021A (en) Apparatus for production of glass by vacuum defoaming
JP2000247647A (en) Furnace material for vacuum deaerating apparatus for molten glass and vacuum deaerating apparatus
JPH0280328A (en) Treatment of molten glass
JP2000178029A (en) Vacuum defoaming equipment for molten glass
JP2003137556A (en) Vacuum deformer
JP4513248B2 (en) Vacuum degassing apparatus and vacuum degassing method
JP2000178028A (en) Vacuum defoaming equipment for molten glass
JPH11240725A (en) Vacuum deaerator for molten glass
JP3821109B2 (en) Method for refining molten metal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees