WO2009107293A1 - 燃料噴射弁 - Google Patents

燃料噴射弁 Download PDF

Info

Publication number
WO2009107293A1
WO2009107293A1 PCT/JP2008/070914 JP2008070914W WO2009107293A1 WO 2009107293 A1 WO2009107293 A1 WO 2009107293A1 JP 2008070914 W JP2008070914 W JP 2008070914W WO 2009107293 A1 WO2009107293 A1 WO 2009107293A1
Authority
WO
WIPO (PCT)
Prior art keywords
slit
fuel injection
coupling pipe
movable body
coupling
Prior art date
Application number
PCT/JP2008/070914
Other languages
English (en)
French (fr)
Inventor
浩司 川添
雄平 三浦
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Priority to DE112008003324T priority Critical patent/DE112008003324T5/de
Priority to CN200880124462.7A priority patent/CN101910611B/zh
Publication of WO2009107293A1 publication Critical patent/WO2009107293A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0675Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages
    • F02M51/0678Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages all portions having fuel passages, e.g. flats, grooves, diameter reductions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages

Definitions

  • the present invention relates to a fuel injection valve that injects fuel.
  • the present invention relates to a structure of a movable body that opens and closes a fuel injection hole.
  • JP-A-2-107877 discloses a fuel injection valve for injecting fuel into a combustion engine (internal combustion engine).
  • the fuel injection valve is disposed in the fuel flow path, a main body having a fuel injection hole provided at the downstream end of the fuel flow path, and the fuel flow path, and slides along the fuel flow path to A movable body that opens and closes the injection hole, an urging member that urges the movable body to the downstream side of the fuel flow path, and moves the movable body to the upstream side of the fuel flow path against the urging force of the urging member. It has an electromagnet.
  • the movable body is in contact with the main body to close the fuel injection valve, the armature is located upstream of the valve body and receives the urging force by the urging member and the attraction force by the electromagnet, and the valve body And a tubular connecting tube for connecting the armature to each other.
  • Japanese Patent Laid-Open No. 2-107877 also discloses a technique for manufacturing a tubular part constituting a coupling pipe from a plate material.
  • a rectangular or parallelogram-shaped metal piece is prepared, and the metal piece is bent into a tubular shape to produce a tubular part that becomes a coupling pipe. According to this technique, the manufacturing cost can be suppressed as compared with a manufacturing method using a tubular material.
  • the rigidity in the axial direction is significantly reduced.
  • the rigidity of the coupling pipe for example, it is conceivable to increase its thickness, but in this case, secondary problems such as a reduction in the capacity of the fuel injection valve and an increase in manufacturing cost occur.
  • the present invention provides a technique that can suppress a decrease in rigidity of a coupling pipe in which a slit exists.
  • a fuel injection valve includes a main body having a fuel flow path and a fuel injection hole provided at a downstream end of the fuel flow path, and is disposed in the fuel flow path and slides along the fuel flow path.
  • a movable body that opens and closes the fuel injection hole, a biasing member that biases the movable body to the downstream side of the fuel flow path, and an upstream side of the fuel flow path that resists the biasing force of the biasing member. It has an electromagnet to move to.
  • the movable body is in contact with the main body to close the fuel injection valve, the armature is located upstream of the valve body and receives the urging force by the urging member and the attraction force by the electromagnet, and the valve body And a tubular connecting tube connecting the armature.
  • a slit extending from the upstream end to the downstream end is formed in the coupling pipe.
  • the slit formed in the coupling pipe is formed with a displacement portion that extends while the slit is displaced in the circumferential direction with respect to the axis of the coupling pipe.
  • the extension displacement angle of the slit in the displacement portion is set to an angle exceeding 45 degrees.
  • the extension displacement angle of the slit here refers to “the direction in which the slit extends toward the downstream end” and “the direction toward the downstream end of the coupling pipe parallel to the axis of the coupling pipe (downstream direction of the axis)”.
  • the extension displacement angle of the slit is an angle formed by “the direction in which the slit extends toward the upstream end” and “the direction toward the upstream end of the coupling pipe parallel to the axis of the coupling pipe (the upstream direction of the axis)”.
  • Stretch displacement angle of the slit is from 0 degree when the slit extends in the axial downstream direction toward the downstream end, and from 90 degree when the slit extends in the circumferential direction perpendicular to the axial downstream direction toward the downstream end.
  • the range of 180 degrees can be taken when the slit extends in the axial upstream direction toward its downstream end.
  • both sides of the coupling tube facing each other across the slit are opposed to each other in the axial direction of the coupling tube (however, they do not necessarily face each other). Therefore, when the coupling pipe receives a compressive force in the axial direction, both sides of the coupling pipe come into contact with each other at the displacement portion, and the both sides of the coupling pipe are temporarily connected. As a result, tension is generated in the circumferential direction across the slit in the displacement portion, and deformation of the coupling tube is suppressed. That is, by providing the displacement portion in the slit of the coupling tube, the rigidity in the axial direction of the coupling tube can be significantly improved.
  • both sides of the coupling pipe facing each other across the slit may be separated in the circumferential direction.
  • the extension displacement angle of the slit is smaller than 45 degrees, both side sides of the coupling pipe facing each other across the slit are greatly separated in the axial direction as compared to the distance separating in the circumferential direction. In such a state, even when the coupling pipe receives a compressive force in the axial direction, both sides of the coupling pipe facing each other across the slit may not contact each other even in the displacement portion.
  • the extension displacement angle of the slit in the displacement portion is an angle of 90 degrees or more.
  • the stretching displacement angle of the slit in the displacement portion is 90 degrees or more, even when both sides of the coupling tube are separated in the circumferential direction by the springback, both sides of the coupling tube are not separated in the axial direction.
  • the coupling pipe receives a compressive force in the axial direction and both sides of the coupling pipe come into contact with each other at the displacement portion, the sides of the coupling pipe are more strongly connected. Therefore, the rigidity in the axial direction of the coupling pipe is further improved.
  • the extension displacement angle of the slit in the displacement portion exceeds 90 degrees. If the extension displacement angle of the slit in the displacement portion is an angle exceeding 90, both sides of the coupling tube are engaged with each other in the displacement portion.
  • the coupling pipe receives a compressive force in the axial direction, strong tension is generated in the circumferential direction across the slit in the displacement portion, and deformation of the coupling pipe is strongly suppressed. Therefore, the rigidity in the axial direction of the coupling pipe is remarkably improved.
  • a plurality of the displacement portions described above are formed in the slit formed in the coupling pipe.
  • both sides of the coupling pipe facing each other across the slit are connected at a plurality of locations. Therefore, the rigidity in the axial direction of the coupling pipe is further improved.
  • the slit formed in the coupling pipe has a displacement portion extending while displacing the slit in one circumferential direction with respect to the coupling pipe axis, and the slit in the circumferential direction with respect to the coupling pipe axis. It is preferable that the displacement portions that extend while being displaced to the other of these are alternately formed with a straight portion where the slit extends parallel to the axis of the coupling tube. In this embodiment, unevenness that meshes with each other is formed on both sides of the coupling pipe facing each other across the slit, and the rigidity in the axial direction of the coupling pipe is further improved.
  • At least one displacement portion formed in the slit is within the range in which the side wall hole is formed in the axial direction of the coupling pipe. It is preferable to be located at. According to this embodiment, it is possible to effectively suppress the decrease in rigidity of the coupling tube due to the presence of the side wall hole.
  • the present invention it is possible to suppress a decrease in rigidity of the coupling pipe in which the slit exists, and it is possible to manufacture a fuel injection valve having excellent performance at a low manufacturing cost.
  • Sectional drawing which shows the structure of the fuel injection valve of an Example.
  • FIG. 4 shows a movable body 40 embodying the present invention.
  • the movable body 40 is a part for opening and closing the fuel injection hole of the fuel injection valve, and can be suitably used as the movable body 40 of the fuel injection valve 10 (see FIG. 1) of an embodiment described later.
  • the movable body 40 includes a valve body 42, an armature 48, and a tubular coupling tube 44 that couples the valve body 42 and the armature 48.
  • the valve body 42 and the armature 48 will be described in detail in the embodiments described later.
  • the coupling tube 44 is formed with a slit 46 extending from the upstream end 44a to the downstream end 44b.
  • the slit 46 is formed with a displacement portion 46 s that extends while the slit 46 is displaced in the circumferential direction with respect to the axis C of the coupling tube 44.
  • the displacement part 46 s is formed in the middle part of the slit 46. It should be noted that at both end portions of the slit 46 (a part extending from the upstream end 46 a to a certain length and a part extending from the downstream end 46 b to a certain length), the slit 46 with respect to the axis C of the coupling tube 44. Is formed in a straight portion 46p extending in parallel.
  • the coupling pipe 44 has a plurality of side wall holes 44d that open to the side walls thereof.
  • the displacement portion 46s of the slit 46 is located within a range in which the side wall hole 44d is formed with respect to the axial direction of the coupling tube 44 (direction parallel to the axial line C).
  • FIG. 5 shows an enlarged view of the displacement portion 46 s formed in the slit 46.
  • the extension displacement angle of the slit 46 is 60 degrees.
  • the extension displacement angle of the slit 46 refers to the direction A in which the slit 46 extends toward the downstream end 46b and the direction toward the downstream end 44b of the coupling tube 44 parallel to the axis C of the coupling tube 44 (downstream of the axis).
  • Direction is an angle formed by B. Accordingly, even when the coupling pipe 44 is spring-backed and both sides 44f of the coupling pipe 44 facing each other across the slit 46 are separated from each other by the distance D1, both sides 44f of the coupling pipe 44 are separated in the axial direction.
  • the distance is suppressed to a distance D2 that is shorter than the distance D1.
  • D2 D1 / Tan60 ° ⁇ D1. Therefore, in the displacement portion 46s of the slit 46, both sides 44f of the coupling tube 44 continue to approach each other in the axial direction even when the coupling tube 44 is springbacked.
  • the extension displacement angle of the slit 46 is not limited to 60 degrees. If the extension displacement angle of the slit 46 exceeds 45 degrees, the distance D2 at which the both sides 44f of the coupling tube 44 are separated in the axial direction is larger than the distance D1 at which the both sides 44f of the coupling tube 44 are separated in the circumferential direction. Shorter. Therefore, it is effective to set the extension displacement angle of the slit 46 in the displacement portion 46s to an angle exceeding 45 degrees.
  • both side sides 44f of the coupling pipe 44 facing each other across the slit 46 come into contact with each other at the displacement portion 46s.
  • a frictional force is generated between both sides 44f of the coupling tube 44, and the sides 44f are temporarily connected in the circumferential direction.
  • tension is generated in the circumferential direction across the slit 46, and deformation of the coupling tube 44 is suppressed. That is, the coupling tube 44 has a relatively high rigidity in the axial direction despite the presence of the slit 46.
  • the rigidity in the axial direction of the coupling pipe 44 is greatly reduced within the range in the axial direction where the side wall hole 44d exists, but is displaced within the range.
  • the portion 46s the rigidity reduction is effectively suppressed.
  • the coupling tube 44 of the movable body 40 can be manufactured using a tubular part manufactured from a plate material. That is, by preparing a plate material (metal piece) having a shape in which the coupling tube 44 is developed in a plane, and bending the plate material into a tubular shape, a tubular part that becomes the coupling tube 44 can be manufactured. According to this technique, the manufacturing cost of the fuel injection valve 10 can be kept lower than preparing a tubular material according to the diameter of the coupling pipe 44. Further, since the deformation of the coupling pipe 44 during the operation of the fuel injection valve 10 is prevented, a situation such as a malfunction or inability of the fuel injection valve 10 is prevented. Therefore, by adopting the movable body 40, the fuel injection valve 10 having excellent performance can be realized at a low manufacturing cost.
  • FIG. 6 shows another movable body 40 embodying the present invention.
  • the movable body 40 of this form 2 can also be suitably used as the movable body 40 of the fuel injection valve 10 of the embodiment described later.
  • the movable body 40 of the second embodiment also has a tubular coupling pipe 44 that couples the valve body 42 and the armature 48, and the coupling pipe 44 has an upstream end 44a.
  • a slit 46 extending to the downstream end 44b is formed.
  • a displacement portion 46 s is formed in the middle portion of the slit 46 so that the slit 46 extends while being displaced in the circumferential direction with respect to the axis C of the coupling tube 44.
  • the coupling tube 44 has a plurality of side wall holes 44d, and the displacement portion 46s of the slit 46 is located within the range in which the side wall hole 44d is formed in the axial direction of the coupling tube 44. ing.
  • FIG. 7 shows an enlarged view of the displacement portion 46s of the second embodiment.
  • the extension displacement angle of the slit 46 is 90 degrees. That is, the direction A in which the slit 46 extends toward the downstream end 46b and the axial downstream direction B of the coupling pipe 44 form an angle of 90 degrees.
  • a springback occurs in the coupling pipe 44, and even when both sides 44f of the coupling pipe 44 facing each other across the slit 46 are separated by a distance D1 in the circumferential direction, the displacement portion 46s has the coupling pipe 44. Both side sides 44f keep abutting without separating.
  • both side sides 44f of the coupling tube 44 strongly come into contact with each other at the displacement portion 46s of the slit 46, and both side sides 44f of the coupling tube 44 are brought together.
  • the space is relatively strongly connected.
  • both sides 44f of the coupling tube 44 face each other in the axial direction in the displacement portion 46s, a strong frictional force is generated on the sides 44f in the circumferential direction.
  • strong tension is generated in the circumferential direction across the slit 46 in the displacement portion 46s, and the deformation of the coupling tube 44 is strongly suppressed. That is, the coupling tube 44 has higher rigidity in the axial direction despite the presence of the slit 46.
  • the fuel injection valve 10 having excellent performance can be realized at a low manufacturing cost.
  • FIG. 8 shows another movable body 40 embodying the present invention.
  • the movable body 40 of this form 3 can also be suitably used as the movable body 40 of the fuel injection valve 10 of the embodiment described later.
  • the movable body 40 of the third form also has a tubular coupling pipe 44 that couples the valve body 42 and the armature 48, and the coupling pipe 44 has an upstream end 44a.
  • a slit 46 extending to the downstream end 44b is formed.
  • a displacement portion 46 s is formed in the middle portion of the slit 46 so that the slit 46 extends while being displaced in the circumferential direction with respect to the axis C of the coupling tube 44.
  • the coupling tube 44 has a plurality of side wall holes 44d, and the displacement portion 46s of the slit 46 is located within the range in which the side wall hole 44d is formed in the axial direction of the coupling tube 44. ing.
  • FIG. 9 shows an enlarged view of the displacement portion 46s of the third embodiment.
  • the extension displacement angle of the slit 46 is 135 degrees. That is, the direction A in which the slit 46 extends toward the downstream end 46b and the axial downstream direction B of the coupling pipe 44 form an angle of 135 degrees.
  • both side sides 44f of the coupling pipe 44 facing each other across the slit 46 try to separate in the circumferential direction, both side sides 44f interfere with each other in the displacement portion 46s. Hold on.
  • both side sides 44f of the coupling pipe 44 are engaged in the circumferential direction, and the spring back itself of the coupling pipe 44 is suppressed.
  • both side sides 44f of the coupling tube 44 are engaged with each other at the displacement portion 46s. Therefore, when the coupling pipe 44 receives a compressive force in the axial direction, a stronger tension is generated in the circumferential direction in the displacement portion 46s across the slit 46, and the deformation of the coupling pipe 44 is more strongly suppressed. That is, in this movable body 40, the coupling pipe 44 has very high rigidity in the axial direction despite the presence of the slit 46. Also by adopting the movable body 40 of this form 3, the fuel injection valve 10 having excellent performance can be realized at a low manufacturing cost.
  • FIG. 1 is a cross-sectional view showing a configuration of a fuel injection valve 10 embodying the present invention.
  • the fuel injection valve 10 is a valve device that injects fuel pumped by a fuel pump or the like into a combustion chamber of an engine.
  • the fuel injection valve 10 includes a main body 20, a movable body 40, a coil spring 50, and an electromagnetic coil 52.
  • the main body 20 has a fuel flow path 28 and a fuel injection hole 36 located at the downstream end of the fuel flow path 28.
  • the movable body 40 is disposed in the fuel flow path 28 of the main body 20, and is supported so as to be slidable along the fuel flow path 28.
  • the movable body 40 opens and closes the fuel injection hole 36 by sliding in the fuel flow path 28.
  • the coil spring 50 urges the movable body 40 to the downstream side (fuel injection hole 36 side) of the fuel flow path 28.
  • the electromagnetic coil 52 constitutes an electromagnet together with the fixed core 24 described later, and moves the movable body 40 to the upstream side (anti-fuel injection hole 36 side) of the fuel flow path 28 against the urging force of the coil spring 50. . That is, the fuel injection valve 10 opens the fuel injection hole 36 and injects fuel when the electromagnetic coil 52 is energized.
  • the main body 20 mainly includes a fixed core 24, a body 32 positioned on the downstream side of the fuel flow path 28 with respect to the fixed core 24, and a nonmagnetic ring 30 that couples the fixed core 24 and the body 32 in a liquid-tight manner. It has.
  • the fixed core 24 is made of a magnetic material, and more specifically is made of electromagnetic stainless steel.
  • the fixed core 24 has a generally cylindrical shape, and has a through hole that constitutes a part of the fuel flow path 28. In the through hole of the fixed core 24, a fuel filter 22 for removing foreign matters from the fuel, a spring pin 26 in contact with the upstream end of the coil spring 50, and the coil spring 50 are disposed from the upstream side. .
  • the body 32 is made of a magnetic material, and more specifically is made of electromagnetic stainless steel.
  • the body 32 has a generally cylindrical shape and has a through hole that constitutes a part of the fuel flow path 28.
  • a movable body 40 is slidably accommodated in the through hole of the body 32.
  • a valve seat member 34 is provided in the downstream portion of the through hole of the body 32.
  • the valve seat member 34 is a cylindrical member formed of metal, and the downstream end of the through hole is reduced in diameter to constitute the fuel injection hole 36.
  • An orifice plate 38 for adjusting the opening area of the fuel injection hole 36 is provided on the downstream end face of the valve seat member 34.
  • the nonmagnetic ring 30 is an annular member made of a nonmagnetic material, and more specifically is made of austenitic stainless steel (SUS304).
  • the nonmagnetic ring 30 is interposed between the body 32 and the fixed core 24, and liquid-tightly connects the through hole of the body 32 and the through hole of the fixed core 24.
  • the nonmagnetic ring 30 is provided at a position surrounding the opposing ends of the armature 48 and the fixed core 24 from the periphery.
  • the coil spring 50 is disposed in the fuel flow path 28.
  • the coil spring 50 is located between the spring pin 26 and the movable body 40.
  • the coil spring 50 is in a sufficiently compressed state and urges the movable body 40 toward the downstream side where the fuel injection hole 36 is located.
  • the electromagnetic coil 52 is provided so as to go around the fixed core 24.
  • the electromagnetic coil 52 is electrically connected to an external control unit (not shown), and a current is supplied at a timing at which fuel should be injected.
  • the electromagnetic coil 52 is energized, the armature 48 of the fixed core 24 and the movable body 40 is magnetized, and the movable body 40 is attracted upstream so as to separate from the fuel injection hole 36.
  • the electromagnetic coil 52 is fixed integrally with the main body 20 by a resin holder 58 formed by insert molding.
  • the resin holder 58 is provided with a connector 56 to which a wire harness can be connected.
  • a plurality of terminal pins 54 that are electrically connected to the electromagnetic coil 52 are arranged on the connector 56.
  • the fuel injection valve 10 is electrically connected to an external control unit via a wire harness.
  • FIG. 2 shows the movable body 40 of this embodiment as a single unit.
  • the movable body 40 includes a valve body 42, an armature 48 positioned on the upstream side with respect to the valve body 42, and a tubular coupling pipe that joins the valve body 42 and the armature 48. 44.
  • the valve body 42 has a spherical shape and is formed of a metal material.
  • the valve body 42 is located at the downstream end of the movable body 40.
  • the valve body 42 is pressed against the valve seat member 34 by the biasing force of the coil spring 50, and comes into liquid-tight contact with the valve seat member 34 to close the fuel injection hole 36.
  • the armature 48 (also referred to as a movable core) is made of a magnetic material, and more specifically is made of electromagnetic stainless steel. The armature 48 is in contact with the downstream end of the coil spring 50. That is, the urging force by the coil spring 50 is applied to the armature 48. Further, when the electromagnetic coil 52 is energized, an attractive force to the magnetized fixed core 24 is also applied to the armature 48.
  • the coupling tube 44 is made of a metal material.
  • the upstream end 44a of the coupling pipe 44 is press-fitted into the through-hole of the armature 48, and the coupling pipe 44 and the armature 48 are welded over the entire circumference (except for the slit 46). Further, the downstream end 44b of the coupling pipe 44 is also welded to the valve body 42 over the entire circumference (except for the slit 46).
  • the coupling tube 44 is manufactured by bending a plate-shaped metal piece, and a slit 46 extending from the upstream end 44a to the downstream end 44b is formed.
  • the coupling pipe 44 is formed with a plurality of side wall holes 44d through which fuel passes. As shown in FIG.
  • the slit 46 includes a rectilinear portion 46 p that extends parallel to the axis C of the coupling tube 44, and the slit 46 is displaced in the circumferential direction with respect to the axis C of the coupling tube 44.
  • a plurality of displacement portions 46s that are extended are formed.
  • the plurality of rectilinear portions 46p and the displacement portions 46s are alternately formed from the upstream end 46a to the downstream end 46b of the slit 46.
  • one displacement portion 46 s is located in a range where the side wall hole 44 d is formed with respect to the axial direction of the coupling pipe 44.
  • the extension displacement angle ⁇ of the slit 46 is 135 degrees which is larger than 90 degrees. That is, the angle ⁇ formed by the direction A in which the slit 46 extends toward the downstream end 46b and the axial downstream direction B is 135 degrees which is greater than 90 degrees. Accordingly, concave and convex shapes that engage with each other are formed on both sides 44f of the coupling tube 44 that face each other across the slit 46. That is, on both sides 44f of the coupling tube 44, a convex portion with a wide top and a concave portion with a wide bottom are formed alternately, and the convex and concave portions on both sides 44f of the coupling tube 44 are engaged with each other. Yes.
  • the spring back of the coupling pipe 44 is suppressed, and the width of the slit 46 in the rectilinear portion 46p is very narrow.
  • the strength of the welding between the coupling pipe 44 and the valve body 42 and the welding between the coupling pipe 44 and the armature 48 increases as the circumferential distance between the both ends 44a and 44b of the slit 46 decreases.
  • the fuel injection hole 36 is closed by the valve body 42, and fuel is not injected from the fuel injection hole 36.
  • the movable body 40 is attracted to the fixed core 24 by the generated magnetic force. That is, the movable body 40 moves to the upstream side against the urging force of the coil spring 50.
  • the valve body 42 is separated from the valve seat member 34, the fuel injection hole 36 is opened, and fuel is injected from the fuel injection hole 36.
  • the movable body 40 When the electromagnetic coil 52 is not energized, the movable body 40 is pressed against the valve seat member 34 by the biasing force of the coil spring 50. At this time, since the urging force of the coil spring 50 is applied to the armature 48, a strong compressive force acts on the coupling tube 44 in the axial direction thereof.
  • the rigidity of the coupling pipe 44 in the axial direction is significantly reduced. More specifically, when the slit 46 is formed in the coupling pipe 44, since the circumferential tension does not act between both sides 44 f of the coupling pipe 44 facing each other across the slit 46, the coupling pipe 44 is strong in the axial direction.
  • the coupling tube 44 When a compressive force is applied, the coupling tube 44 is easily deformed while the slit 46 is widened. Therefore, the coupling pipe 44 in which the slit 46 exists may be deformed without being able to withstand the compressive force in the axial direction, which may cause problems such as malfunction or inability of the fuel injection valve 10.
  • both sides 44f of the coupling pipe 44 facing each other across the slit 46 are engaged with each other in the circumferential direction. Therefore, when the coupling pipe 44 receives a compressive force in the axial direction, tension acts in the circumferential direction across the slit 46 between the both sides 44 f of the coupling pipe 44. Thereby, deformation of the coupling tube 44 is suppressed. That is, in this movable body 40, the coupling pipe 44 has very high rigidity in the axial direction despite the presence of the slit 46.
  • the coupling pipe 44 of the movable body 40 can be manufactured using a tubular part manufactured from a plate material. That is, by preparing a metal piece having a shape in which the coupling tube 44 is developed in a plane and bending the plate material into a tubular shape, a tubular part that becomes the coupling tube 44 can be manufactured. Both sides 44f of the coupling tube 44 have a complicated shape, but there is no particular problem with press working using a mold. The manufacturing cost of the fuel injection valve 10 can be kept lower than preparing a tubular material according to the diameter of the coupling pipe 44.
  • FIG. 3 shows another movable body 40 that can be employed in the fuel injection valve 10 described above.
  • the stretching displacement angle ⁇ at the displacement portion 46 s of the slit 46 is designed to be 90 degrees compared to the movable body 40 shown in FIG. 2. For this reason, in this movable body 40, a springback occurs in the coupling tube 44, and even if both side sides 44f of the coupling tube 44 are separated in the circumferential direction, the distance between the slits 46 in the displacement portion 46s does not change.
  • the slit 46 in the displacement portion 46s is intentionally spaced.
  • both side sides 44 f of the coupling pipe 44 abut against each displacement portion 46 s of the slit 46. Fit. Therefore, when both side sides 44f of the coupling pipe 44 are separated from each other in the circumferential direction, a frictional force is generated between the both side sides 44f of the coupling pipe 44, and a tension is exerted between the both side sides 44f of the coupling pipe 44 in the circumferential direction. Will occur. That is, both side sides 44f of the coupling pipe 44 are temporarily connected in the circumferential direction.
  • the coupling tube 44 also has sufficient rigidity in the axial direction despite the presence of the slit 46.
  • the slit 46 is provided with the rectilinear portion 46s (the portion where the stretching displacement angle is 0 degree), but the rectilinear portion 46s is displaced in the circumferential direction at an appropriate angle with respect to the axial direction. May be.
  • the slit 46 may be a rectilinear portion 46p.

Abstract

 燃料噴射弁は、燃料流路及びその燃料流路の下流端に設けられた燃料噴射孔を有する本体と、燃料流路内に配設されており、燃料流路に沿ってスライドして燃料噴射孔を開閉する可動体と、可動体を燃料流路の下流側に付勢する付勢部材と、可動体を付勢部材の付勢力に抗して燃料流路の上流側へ動かす電磁石を備える。可動体は、燃料噴射弁を閉塞する弁体と、弁体よりも上流側に位置しているアーマチャと、弁体とアーマチャを結合している管状の結合管を有している。結合管には、その上流端から下流端まで伸びているスリットが形成されている。スリットには、結合管の軸線に対してスリットが周方向に変位しながら延伸する変位部が形成されている。そして、変位部におけるスリットの延伸変位角度が、45度を超える角度となっている。この構成によると、スリットの存在によって結合管の剛性低下を抑制することができる。

Description

燃料噴射弁
 本出願は、2008年2月29日に出願された日本国特許出願第2008-50734号に基づく優先権を主張する。その出願の全ての内容は、この明細書中に参照により援用されている。
 本発明は、燃料を噴射する燃料噴射弁に関する。特に、燃料噴射孔を開閉する可動体の構造に関する。
 特開平2-107877号公報に、燃焼機関(内燃機関)に燃料を噴射する燃料噴射弁が記載されている。この燃料噴射弁は、燃料流路及びその燃料流路の下流端に設けられた燃料噴射孔を有する本体と、燃料流路内に配設されており、燃料流路に沿ってスライドして燃料噴射孔を開閉する可動体と、可動体を燃料流路の下流側へ付勢している付勢部材と、可動体を付勢部材の付勢力に抗して燃料流路の上流側へ動かす電磁石を備えている。可動体は、本体に当接して燃料噴射弁を閉塞する弁体と、その弁体よりも上流側に位置しているとともに付勢部材による付勢力及び電磁石による吸引力を受けるアーマチャと、弁体とアーマチャを互いに結合している管状の結合管を有している。
 特開平2-107877号公報にはまた、結合管を構成する管状部品を、板材から製造する技術が開示されている。この技術では、長方形又は平行四辺形の金属片を準備し、その金属片を管状に曲げ加工することによって、結合管となる管状部品を製造する。この技術によると、管状の素材を用いる製造方法に比して、製造コストを抑制することが可能となる。
 結合管には、付勢部材の付勢力を受けることによって、その軸線方向に大きな圧縮力が加えられる。このとき、結合管の軸線方向における剛性が十分でなければ、結合管が大きく塑性変形してしまい、燃料噴射弁の動作不良や動作不能といった事態が発生する。
 板材から製造した管状部品を用いた結合管では、その上流端から下流端まで延伸するスリットが形成される。スリットが存在する結合管は、スリットにおいて周方向に張力が生じないため、軸線方向に沿って圧縮力が加えられたときに変形しやすい。即ち、スリットが存在する結合管では、その軸線方向における剛性が顕著に低下してしまう。結合管の剛性を確保するためには、例えばその板厚を厚くすることが考えられるが、この場合、燃料噴射弁の能力低下や製造コストの増大といった二次的な問題が発生してしまう。
 上記の問題を鑑み、本発明は、スリットが存在する結合管の剛性低下を抑制し得る技術を提供する。
 本発明に係る燃料噴射弁は、燃料流路及びその燃料流路の下流端に設けられた燃料噴射孔を有する本体と、燃料流路内に配設されており、燃料流路に沿ってスライドして燃料噴射孔を開閉する可動体と、可動体を前記燃料流路の下流側に付勢する付勢部材と、可動体を付勢部材の付勢力に抗して燃料流路の上流側へ動かす電磁石を備えている。可動体は、本体に当接して燃料噴射弁を閉塞する弁体と、その弁体よりも上流側に位置しているとともに付勢部材による付勢力及び電磁石による吸引力を受けるアーマチャと、弁体とアーマチャを結合している管状の結合管を有している。結合管には、その上流端から下流端まで伸びているスリットが形成されている。結合管に形成されたスリットには、結合管の軸線に対してスリットが周方向に変位しながら延伸する変位部が形成されている。ここで、その変位部におけるスリットの延伸変位角度は、45度を超える角度に設定されている。
 ここでいうスリットの延伸変位角度とは、「スリットがその下流端に向けて延伸する方向」と「結合管の軸線と平行に結合管の下流端に向かう方向(軸線下流方向)」とが成す角度を意味する。従って、このスリットの延伸変位角度は、「スリットがその上流端に向けて延伸する方向」と「結合管の軸線と平行に結合管の上流端に向かう方向(軸線上流方向)」とが成す角度と表現することもできる。スリットの延伸変位角度は、スリットがその下流端に向けて軸線下流方向に延伸する場合の0度から、スリットがその下流端に向けて軸線下流方向と垂直に周方向に延伸する場合の90度を超えて、スリットがその下流端に向けて軸線上流方向に延伸する場合の180度の範囲を取り得る。
 スリットが周方向に変位する変位部では、スリットを挟んで対向する結合管の両側辺が、結合管の軸線方向において互いに対向する(ただし、必ずしも正対はしない)。従って、結合管が軸線方向に圧縮力を受けた場合、結合管の両側辺が変位部において互いに当接し合い、結合管の両側辺間が一時的に接続された状態となる。その結果、変位部ではスリットを跨いで周方向に張力が生じ、結合管の変形が抑制される。即ち、結合管のスリットに変位部を設けることによって、結合管の軸線方向における剛性を有意に向上することができる。
 ただし、スリットが存在する結合管では、その径が拡がる方向にスプリングバックが生じ、スリットを挟んで対向する結合管の両側辺が周方向に離反することがある。このとき、スリットの延伸変位角度が45度よりも小さいと、スリットを挟んで対向する結合管の両側辺は、周方向に離反する距離に比して、軸線方向に大きく離反することになる。このような状態では、結合管が軸線方向に圧縮力を受けた場合でも、スリットを挟んで対向する結合管の両側辺が、変位部においても互いに当接しないことがある。
 それに対し、スリットの延伸変位角度が45度を超える角度であると、結合管にスプリングバックが生じた場合、結合管の両側辺が軸線方向に離反する距離が、周方向に離反する距離よりも小さく抑えられる。従って、結合管が軸線方向に圧縮力を受けた場合、スリットを挟んで対向する結合管の両側辺は、変位部においてより確実に当接し合うことになる。
 上記した燃料噴射弁では、変位部におけるスリットの延伸変位角度が、90度以上の角度であることが好ましい。
 変位部におけるスリットの延伸変位角度が90度以上であると、スプリングバックによって結合管の両側辺が周方向に離反したときでも、結合管の両側辺が軸線方向に離反することはない。そして、結合管が軸線方向に圧縮力を受け、結合管の両側辺が変位部において互いに当接したときに、結合管の両側辺間はより強く接続されることになる。従って、結合管の軸線方向における剛性がより向上することになる。
 上記した燃料噴射弁では、変位部におけるスリットの延伸変位角度が、90度を超えることがより好ましい。
 変位部におけるスリットの延伸変位角度が90を超える角度であれば、結合管の両側辺は変位部において互いに係合した状態とる。そして、結合管が軸線方向に圧縮力を受けた場合、変位部ではスリットを跨いで周方向に強い張力が生じ、結合管の変形が強く抑制される。従って、結合管の軸線方向における剛性が顕著に向上することになる。
 上記した燃料噴射弁では、結合管に形成されたスリットに、前記した変位部が複数形成されていることが好ましい。
 この形態によると、結合管が軸線方向に圧縮力を受けた場合に、スリットを挟んで対向する結合管の両側辺間が、複数箇所で接続された状態となる。従って、結合管の軸線方向における剛性がより向上することになる。
 上記した燃料噴射弁では、結合管に形成されたスリットに、結合管の軸線に対してスリットが周方向の一方に変位しながら延伸する変位部と、結合管の軸線に対してスリットが周方向の他方に変位しながら延伸する変位部が、結合管の軸線に対してスリットが平行に伸展する直進部を介在させて、交互に形成されていることが好ましい。
 この形態では、スリットを挟んで対向する結合管の両側辺に、互いに噛み合うような凹凸が形成され、結合管の軸線方向における剛性がより向上することになる。特に、各変位部におけるスリットの延伸変位角度が90を超える角度であれば、スリットを挟んで対向する結合管の両側辺には、周方向において強く係合し合う凹凸が形成され、結合管の軸線方向における剛性がより向上することになる。
 上記した燃料噴射弁において、結合管の側壁に側壁孔が形成されている場合、スリットに形成された少なくとも一つの変位部が、結合管の軸線方向に関して、その側壁孔が形成されている範囲内に位置することが好ましい。
 この形態によると、側壁孔の存在による結合管の剛性低下についても、効果的に抑制することができる。
 本発明により、スリットが存在する結合管の剛性低下を抑制することが可能となり、性能の優れた燃料噴射弁を低い製造コストで製造することが可能となる。
実施例の燃料噴射弁の構成を示す断面図。 上記実施例の可動体を示す図。 他の可動体を示す図。 本発明を実施した可動体の第1の典型例を示す図。 第1の典型例に設けたスリットの変位部を説明する図。 本発明を実施した可動体の第2の典型例を示す図。 第2の典型例に設けたスリットの変位部を説明する図。 本発明を実施した可動体の第3の典型例を示す図。 第3の典型例に設けたスリットの変位部を説明する図。
 最初に、本発明の典型的な実施形態の可動体について説明する。
(形態1) 図4に、本発明を実施した可動体40を示す。この可動体40は、燃料噴射弁の燃料噴射孔を開閉するための部品であり、後述する実施例の燃料噴射弁10(図1参照)の可動体40として好適に用いることができる。図4に示すように、可動体40は、弁体42と、アーマチャ48と、弁体42とアーマチャ48を結合している管状の結合管44を有している。弁体42及びアーマチャ48については、後述する実施例において詳細に説明する。
 結合管44には、その上流端44aから下流端44bまで伸びているスリット46が形成されている。スリット46には、結合管44の軸線Cに対してスリット46が周方向に変位しながら延伸する変位部46sが形成されている。この変位部46sは、スリット46の中間部分に形成されている。なお、スリット46の両端部分(上流端46aから或る長さに亘る一部、及び、下流端46bから或る長さに亘る一部)には、結合管44の軸線Cに対してスリット46が平行に伸展する直進部46pが形成されている。結合管44には、その側壁に開口する側壁孔44dが複数形成されている。スリット46の変位部46sは、結合管44の軸線方向(軸線Cに平行な方向)に関して、側壁孔44dが形成されている範囲内に位置している。
 図5は、スリット46に形成された変位部46sを拡大して示している。図5に示すように、変位部46sでは、スリット46の延伸変位角度が60度となっている。ここで、スリット46の延伸変位角度とは、スリット46がその下流端46bに向けて延伸する方向Aと、結合管44の軸線Cと平行に結合管44の下流端44bに向かう方向(軸線下流方向)Bとが成す角度である。従って、結合管44にスプリングバックが生じ、スリット46を挟んで対向する結合管44の両側辺44fが周方向に距離D1だけ離反した場合でも、結合管44の両側辺44fが軸線方向に離反する距離は、距離D1よりも短い距離D2に抑制される。ここで、D2=D1/Tan60°<D1である。従って、スリット46の変位部46sでは、結合管44にスプリングバックが生じた場合でも、結合管44の両側辺44fが軸線方向において近接し続ける。
 ここで、スリット46の延伸変位角度は60度に限定されない。スリット46の延伸変位角度が45度を超える角度であれば、結合管44の両側辺44fが周方向に離反する距離D1よりも、結合管44の両側辺44fが軸線方向に離反する距離D2の方が短くなる。従って、変位部46sにおけるスリット46の延伸変位角度は、45度を超える角度に定めることが有効である。
 上記した可動体40では、結合管44がその軸線方向に圧縮力を受けた場合、スリット46を挟んで対向する結合管44の両側辺44fが、変位部46sにおいて互いに当接し合う。結合管44の両側辺44fの間には摩擦力が生じ、その両側辺44f間が周方向に関して一時的に接続された状態となる。その結果、変位部46sではスリット46を跨いで周方向に張力が生じ、結合管44の変形が抑制される。即ち、この結合管44は、スリット46が存在するにもかかわらず、軸線方向において比較的に高い剛性を有している。特に、結合管44の側壁に側壁孔44dが形成されている場合、結合管44の軸線方向における剛性は、側壁孔44dが存在する軸線方向の範囲内で大きく低下するが、当該範囲内に変位部46sが形成されていることにより、その剛性低下が効果的に抑制されている。
 この可動体40の結合管44は、板材から製造した管状部品を用いて製造することができる。即ち、結合管44を平面に展開した形状の板材(金属片)を準備し、その板材を管状に曲げ加工することによって、結合管44となる管状部品を製造することができる。この手法によると、結合管44の径に応じて管状の素材を準備するよりも、燃料噴射弁10の製造コストを低く抑えることができる。また、燃料噴射弁10の動作時における結合管44の変形が防止されるため、燃料噴射弁10の動作不良や動作不能といった事態が防止される。従って、この可動体40を採用することにより、性能に優れた燃料噴射弁10を低い製造コストで実現することができる。
(形態2) 図6に、本発明を実施した他の可動体40を示す。この形態2の可動体40も同様に、後述する実施例の燃料噴射弁10の可動体40として好適に用いることができる。図6に示すように、形態2の可動体40についても、弁体42とアーマチャ48を結合している管状の結合管44を有しており、その結合管44には、その上流端44aから下流端44bまで伸びているスリット46が形成されている。
 スリット46の中間部分には、結合管44の軸線Cに対してスリット46が周方向に変位しながら延伸する変位部46sが形成されている。また、スリット46の両端部分には、結合管44の軸線Cに対してスリット46が平行に伸展する直進部46pが形成されている。本実施形態においても、結合管44には側壁孔44dが複数形成されており、スリット46の変位部46sは、結合管44の軸線方向に関して、側壁孔44dが形成されている範囲内に位置している。
 図7は、形態2の変位部46sを拡大して示している。図7に示すように、変位部46sでは、スリット46の延伸変位角度が90度となっている。即ち、スリット46がその下流端46bに向けて延伸する方向Aと、結合管44の軸線下流方向Bが、90度の角度を成している。このような形態の場合、結合管44にスプリングバックが生じ、スリット46を挟んで対向する結合管44の両側辺44fが周方向に距離D1だけ離反した場合でも、変位部46sでは結合管44の両側辺44fが離反することなく当接し続ける。
 形態2の可動体40では、結合管44がその軸線方向に圧縮力を受けた場合、結合管44の両側辺44fがスリット46の変位部46sにおいて強く当接し合い、結合管44の両側辺44f間が比較的に強く接続された状態となる。特に、変位部46sでは結合管44の両側辺44fが軸線方向において正対しているので、その両側辺44fには周方向に強い摩擦力が生じる。その結果、変位部46sではスリット46を跨いで周方向に強い張力が生じ、結合管44の変形が強く抑制される。即ち、この結合管44は、スリット46が存在するにもかかわらず、軸線方向においてより高い剛性を有している。
 この形態2の可動体40を採用することによっても、性能に優れた燃料噴射弁10を低い製造コストで実現することができる。
(形態3) 図8に、本発明を実施した別の可動体40を示す。この形態3の可動体40も同様に、後述する実施例の燃料噴射弁10の可動体40として好適に用いることができる。図8に示すように、形態3の可動体40についても、弁体42とアーマチャ48を結合している管状の結合管44を有しており、その結合管44には、その上流端44aから下流端44bまで伸びているスリット46が形成されている。
 スリット46の中間部分には、結合管44の軸線Cに対してスリット46が周方向に変位しながら延伸する変位部46sが形成されている。また、スリット46の両端部分には、結合管44の軸線Cに対してスリット46が平行に伸展する直進部46pが形成されている。本実施形態においても、結合管44には側壁孔44dが複数形成されており、スリット46の変位部46sは、結合管44の軸線方向に関して、側壁孔44dが形成されている範囲内に位置している。
 図9は、形態3の変位部46sを拡大して示している。図9に示すように、変位部46sでは、スリット46の延伸変位角度が135度となっている。即ち、スリット46がその下流端46bに向けて延伸する方向Aと、結合管44の軸線下流方向Bが、135度の角度を成している。このような形態の場合、結合管44にスプリングバックが生じ、スリット46を挟んで対向する結合管44の両側辺44fが周方向に離反しようとすると、変位部46sではその両側辺44fが互いに干渉し合う。即ち、変位部46sでは結合管44の両側辺44fが周方向において係合しており、結合管44のスプリングバック自体が抑制される。
 形態3の可動体40では、結合管44の両側辺44fが変位部46sにおいて互いに係合している。従って、結合管44がその軸線方向に圧縮力を受けた場合、変位部46sではスリット46を跨いで周方向により強い張力が生じ、結合管44の変形がより強く抑制される。即ち、この可動体40では、スリット46が存在するにもかかわらず、結合管44が軸線方向において非常に高い剛性を有している。
 この形態3の可動体40を採用することによっても、性能に優れた燃料噴射弁10を低い製造コストで実現することができる。
 図1は、本発明を実施した燃料噴射弁10の構成を示す断面図である。燃料噴射弁10は、燃料ポンプ等によって圧送される燃料をエンジンの燃焼室内に噴射する弁装置である。図1に示すように、燃料噴射弁10は、本体20と、可動体40と、コイルばね50と、電磁コイル52を備えている。本体20は、燃料流路28と、その燃料流路28の下流端に位置する燃料噴射孔36を有している。可動体40は、本体20の燃料流路28内に配設されており、燃料流路28に沿ってスライド可能に支持されている。可動体40は、燃料流路28内をスライドすることによって、燃料噴射孔36を開閉する。コイルばね50は、可動体40を燃料流路28の下流側(燃料噴射孔36側)に付勢している。電磁コイル52は、後述する固定コア24と共に電磁石を構成しており、可動体40をコイルばね50の付勢力に抗して燃料流路28の上流側(反燃料噴射孔36側)へ移動させる。即ち、燃料噴射弁10は、電磁コイル52に通電されたときに、燃料噴射孔36を開放して燃料を噴射する。
 燃料噴射弁10の詳細な構成について、先ずは本体20について説明する。本体20は、主に、固定コア24と、固定コア24に対して燃料流路28の下流側に位置するボディ32と、固定コア24とボディ32を液密に連結している非磁性リング30を備えている。
 固定コア24は、磁性材料によって形成されており、詳しくは電磁ステンレス鋼によって形成されている。固定コア24は概して筒状形状を有しており、燃料流路28の一部を構成する貫通孔を有している。固定コア24の貫通孔内には、その上流側から、燃料から異物を取り除くための燃料フィルタ22、コイルばね50の上流端に当接しているスプリングピン26、コイルばね50が配設されている。
 ボディ32は、磁性材料によって形成されており、詳しくは電磁ステンレス鋼によって形成されている。ボディ32は概して筒状形状を有しており、燃料流路28の一部を構成する貫通孔を有している。ボディ32の貫通孔内には、可動体40がスライド可能に収容されている。また、ボディ32の貫通孔の下流部には、弁座部材34が設けられている。
 弁座部材34は、金属によって形成された筒状部材であり、その貫通孔の下流端が縮径して燃料噴射孔36を構成している。弁座部材34の下流側端面には、燃料噴射孔36の開口面積を調整するためのオリフィスプレート38が設けられている。弁座部材34には、コイルばね50の付勢力によって、可動体40に設けられた弁体42が液密に当接する。それにより、燃料噴射孔36が閉塞される。
 非磁性リング30は、非磁性材料によって形成された環状の部材であり、詳しくはオーステナイト系ステンレス鋼(SUS304)によって形成されている。非磁性リング30は、ボディ32と固定コア24の間に介装されており、ボディ32の貫通孔と固定コア24の貫通孔を液密に接続している。非磁性リング30は、アーマチャ48と固定コア24の互いに対向する端部を周囲から囲繞する位置に設けられている。
 コイルばね50は、燃料流路28内に配設されている。コイルばね50は、スプリングピン26と可動体40の間に位置している。コイルばね50は、十分に圧縮された状態となっており、可動体40を燃料噴射孔36が位置する下流側に向けて付勢している。
 電磁コイル52は、固定コア24の周囲を周回するように設けられている。電磁コイル52は、外部の制御ユニット(図示省略)に電気的に接続され、燃料を噴射すべきタイミングで電流が通電される。電磁コイル52が通電されると、固定コア24及び可動体40のアーマチャ48が磁化し、可動体40が燃料噴射孔36から離反するように上流側へと吸引される。それにより、燃料噴射孔36が開放され、燃料噴射孔36から燃料が噴射される。電磁コイル52は、インサート成形による樹脂ホルダ58によって、本体20と一体に固定されている。
 樹脂ホルダ58には、ワイヤハーネスが接続可能なコネクタ56が設けられている。コネクタ56には、電磁コイル52と電気的に接続する複数の端子ピン54が配列されている。燃料噴射弁10は、ワイヤハーネスを介して、外部の制御ユニットに電気的に接続される。
 次に、図1、図2を参照して、可動体40の構成について説明する。図2は、本実施例の可動体40を単体で示している。図1、図2に示すように、可動体40は、弁体42と、弁体42に対して上流側に位置するアーマチャ48と、弁体42とアーマチャ48を結合している管状の結合管44を有している。
 弁体42は、球形状を有しており、金属材料によって形成されている。弁体42は、可動体40の下流端に位置している。弁体42は、コイルばね50の付勢力によって弁座部材34に押し付けられ、弁座部材34と液密に当接して燃料噴射孔36を閉塞する。
 アーマチャ48(可動コアとも称される)は、磁性材料によって形成されており、詳しくは電磁ステンレス鋼によって形成されている。アーマチャ48には、コイルばね50の下流端が当接している。即ち、コイルばね50による付勢力は、アーマチャ48に加えられている。また、電磁コイル52に通電が行われた場合、磁化した固定コア24への吸引力もアーマチャ48に加えられる。
 結合管44は、金属材料で形成されている。結合管44の上流端44aはアーマチャ48の貫通孔に圧入され、結合管44とアーマチャ48は全周に亘って溶接されている(ただし、スリット46の部分は除く)。また、結合管44の下流端44bも、弁体42に全周に亘って溶接されている(ただし、スリット46の部分は除く)。結合管44は、板状の金属片を曲げ加工して製造されており、その上流端44aから下流端44bまで伸びているスリット46が形成されている。また、結合管44には、その側壁に燃料が通過するための側壁孔44dが複数形成されている。
 図2に示すように、スリット46には、結合管44の軸線Cに対してスリット46が平行に伸展する直進部46pと、結合管44の軸線Cに対してスリット46が周方向に変位しながら延伸する変位部46sが、それぞれ複数形成されている。複数の直進部46p及び変位部46sは、スリット46の上流端46aから下流端46bに到るまで、交互に形成されている。また、一つの変位部46sは、結合管44の軸線方向に関して、側壁孔44dが形成されている範囲内に位置している。
 すべての変位部46sでは、スリット46の延伸変位角度θが、90度よりも大きい135度となっている。即ち、スリット46がその下流端46bに向けて延伸する方向Aと、軸線下流方向Bとが成す角度θが90度よりも大きい135度となっている。従って、スリット46を挟んで対向する結合管44の両側辺44fには、互いに係合しあう凹凸形状が形成されている。即ち、結合管44の両側辺44fには、その頂部が幅広の凸部及びその底部が幅広の凹部が互い違いに形成され、結合管44の両側辺44fの凸部と凹部が互いに係合している。それにより、結合管44のスプリングバックが抑制され、直進部46pにおけるスリット46の幅も非常に狭くなっている。ここで、スリット46の両端44a、44bにおける周方向の間隔が狭いほど、結合管44と弁体42間の溶接、及び結合管44とアーマチャ48間の溶接の強度は高くなる。
 次に、燃料噴射弁10の動作について説明する。燃料噴射弁10には、固定コア24の上流端(図1の上端)から昇圧された燃料が流入する。流入した燃料は、図1の矢印Fに示すように、フィルタ部材22、スプリングピン26の貫通孔、固定コア24の貫通孔、アーマチャ48の貫通孔、結合管44の軸孔及び側壁孔44dを通って、弁座部材34及び弁体42からなる弁部に到る。
 電磁コイル52に電流が通電されていない場合、弁体42はコイルばね50の付勢力によって弁座部材34に液密に当接している。この場合、燃料噴射孔36は弁体42によって閉塞され、燃料噴射孔36から燃料は噴射されない。
 一方、電磁コイル52に電流が通電されると、発生した磁力によって可動体40が固定コア24に吸着される。即ち、可動体40は、コイルばね50の付勢力に抗して上流側へと移動する。その結果、弁体42が弁座部材34から離反し、燃料噴射孔36が開放されて、燃料噴射孔36から燃料が噴射される。
 電磁コイル52への非通電時、可動体40は、コイルばね50の付勢力によって弁座部材34に押し付けられている。このとき、コイルばね50の付勢力はアーマチャ48に加えられているため、結合管44にはその軸線方向に強い圧縮力が作用する。通常、結合管44にスリット46が形成されていると、結合管44の軸線方向における剛性は顕著に低下する。詳しくは、結合管44にスリット46が形成されていると、スリット46を挟んで対向する結合管44の両側辺44f間には周方向の張力が働かないため、結合管44の軸線方向に強い圧縮力を加えると、結合管44はスリット46を拡幅させながら容易に変形する。従って、スリット46が存在する結合管44は、軸線方向の圧縮力に耐えられずに変形してしまい、燃料噴射弁10の動作不良や動作不能といった問題を引き起こすことがある。
 しかしながら、本実施例の燃料噴射弁10では、スリット46を挟んで対向する結合管44の両側辺44fが、周方向において互いに係合している。従って、結合管44がその軸線方向に圧縮力を受けた場合、結合管44の両側辺44f間にはスリット46を跨いで周方向に張力が作用する。それにより、結合管44の変形が抑制される。即ち、この可動体40では、スリット46が存在するにもかかわらず、結合管44が軸線方向において非常に高い剛性を有している。特に、スリット46には複数の変位部46sが広範囲に亘って配置されているので、スリット46による剛性低下は非常に小さく抑えられている。結合管44が軸線方向において十分な剛性を持つことにより、結合管44の変形による燃料噴射弁10の動作不良や動作不能といった問題が解決される。
 本実施例の燃料噴射弁10では、可動体40の結合管44を、板材から製造した管状部品を用いて製造することができる。即ち、結合管44を平面に展開した形状の金属片を準備し、その板材を管状に曲げ加工することによって、結合管44となる管状部品を製造することができる。結合管44の両側辺44fは複雑な形状であるが、金型を用いたプレス加工によれば特に問題とはならない。結合管44の径に応じて管状の素材を準備するよりも、燃料噴射弁10の製造コストを低く抑えることができる。
 図3は、上記した燃料噴射弁10に採用可能な他の可動体40を示している。図3に示す可動体40では、図2に示す可動体40と比較して、スリット46の変位部46sにおける延伸変位角度θが90度に設計されている。そのことから、この可動体40では、結合管44にスプリングバックが生じ、結合管44の両側辺44fが周方向に離反しても、変位部46sにおけるスリット46の間隔は変化しない。なお、この可動体40では、変位部46sにおけるスリット46には意図的に間隔を設けている。
 図3に示す可動体40を用いた燃料噴射弁10では、結合管44がその軸線方向に圧縮力を受けた場合、結合管44の両側辺44fがスリット46の各変位部46sにおいて強く当接し合う。そのことから、結合管44の両側辺44fが周方向に離反しようとすると、結合管44の両側辺44f間には摩擦力が発生し、結合管44の両側辺44f間には周方向に張力が発生する。即ち、結合管44の両側辺44fは、周方向に関して一時的に接続された状態となる。従って、結合管44に軸線方向の圧縮力が加えられた場合でも、結合管44の変形が顕著に抑制される。即ち、この結合管44もまた、スリット46が存在するにもかかわらず、軸線方向において十分な剛性を有している。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 例えば、上記した実施例では、スリット46に直進部46s(延伸変位角度が0度の部分)を設けているが、それらの直進部46sを軸線方向に対して適度な角度で周方向に変位させてもよい。ただし、スリット46の両端部分においては、スリット46を直進部46pとするとよい。この場合、スリット46が周方向に変位する場合よりも、スリット46の両端部46a、46bにおける周方向の間隔が狭くなることから、結合管44と弁体42との間の溶接、及び結合管44とアーマチャ48との間の溶接を強固に行うことができる。
 本明細書又は図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載された組合せに限定されるものではない。本明細書又は図面に例示した技術は、複数の目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

Claims (6)

  1.  燃料流路及びその燃料流路の下流端に設けられた燃料噴射孔を有する本体と、
     前記燃料流路内に配設されており、前記燃料流路に沿ってスライドして前記燃料噴射孔を開閉する可動体と、
     前記可動体を前記燃料流路の下流側に付勢する付勢部材と、
     前記可動体を前記付勢部材の付勢力に抗して前記燃料流路の上流側へ動かす電磁石を備え、
     前記可動体は、前記本体に当接して前記燃料噴射弁を閉塞する弁体と、その弁体よりも上流側に位置しているとともに前記付勢部材による付勢力及び前記電磁石による吸引力を受けるアーマチャと、前記弁体と前記アーマチャを結合している管状の結合管を有し、
     前記結合管には、その上流端から下流端まで伸びているスリットが形成されており、
     前記スリットには、前記結合管の軸線に対して前記スリットが周方向に変位しながら延伸する変位部が形成されており、
     前記変位部におけるスリットの延伸変位角度が、45度を超える角度であることを特徴とする燃料噴射弁。
  2.  前記変位部におけるスリットの延伸変位角度が、90度以上の角度であることを特徴とする請求項1に記載の燃料噴射弁。
  3.  前記変位部におけるスリットの延伸変位角度が、90度を超える角度であることを特徴とする請求項2に記載の燃料噴射弁。
  4.  前記スリットには、前記変位部が複数形成されていることを特徴とする請求項1から3のいずれか一項に記載の燃料噴射弁。
  5.  前記スリットには、前記結合管の軸線に対して前記スリットが周方向の一方に変位しながら延伸する変位部と、前記結合管の軸線に対して前記スリットが周方向の他方に変位しながら延伸する変位部が、前記結合管の軸線に対して前記スリットが平行に伸展する直進部を介在させて、交互に形成されていることを特徴とする請求項4に記載の燃料噴射弁。
  6.  前記結合管には、その側壁に開口する側壁孔が形成されており、
     前記スリットの少なくとも一つの変位部は、前記結合管の軸線方向に関して、前記側壁孔が形成されている範囲内に位置することを特徴とする請求項1から5のいずれか一項に記載の燃料噴射弁。
PCT/JP2008/070914 2008-02-29 2008-11-18 燃料噴射弁 WO2009107293A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112008003324T DE112008003324T5 (de) 2008-02-29 2008-11-18 Kraftstoffeinspritzer
CN200880124462.7A CN101910611B (zh) 2008-02-29 2008-11-18 燃料喷射阀

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008050734A JP5042073B2 (ja) 2008-02-29 2008-02-29 燃料噴射弁
JP2008-050734 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009107293A1 true WO2009107293A1 (ja) 2009-09-03

Family

ID=41015700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070914 WO2009107293A1 (ja) 2008-02-29 2008-11-18 燃料噴射弁

Country Status (4)

Country Link
JP (1) JP5042073B2 (ja)
CN (1) CN101910611B (ja)
DE (1) DE112008003324T5 (ja)
WO (1) WO2009107293A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401162B2 (ja) 2020-08-04 2023-12-19 日立Astemo株式会社 電磁式燃料噴射弁用の連結管

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949344B (zh) * 2010-09-10 2012-07-04 浙江冯仕特电喷技术有限公司 一种燃油电磁喷射阀
JP7134341B2 (ja) * 2019-04-25 2022-09-09 三菱電機株式会社 燃料噴射弁

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107877A (ja) * 1988-09-14 1990-04-19 Robert Bosch Gmbh 電磁作動式の弁
JP2006289496A (ja) * 2005-03-17 2006-10-26 Seiko Epson Corp 円筒軸とその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560174B2 (ja) * 1994-05-17 2004-09-02 株式会社デンソー 流体噴射ノズル及びそれを用いた燃料噴射弁
JP2008050734A (ja) 2006-08-28 2008-03-06 Sedaa Japan Kk 帽子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107877A (ja) * 1988-09-14 1990-04-19 Robert Bosch Gmbh 電磁作動式の弁
JP2006289496A (ja) * 2005-03-17 2006-10-26 Seiko Epson Corp 円筒軸とその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401162B2 (ja) 2020-08-04 2023-12-19 日立Astemo株式会社 電磁式燃料噴射弁用の連結管

Also Published As

Publication number Publication date
DE112008003324T5 (de) 2011-02-17
JP2009209693A (ja) 2009-09-17
CN101910611B (zh) 2012-12-26
JP5042073B2 (ja) 2012-10-03
CN101910611A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
US9316191B2 (en) Valve assembly for an injection valve and injection valve
US9528480B2 (en) Valve assembly for an injection valve and injection valve
US9664161B2 (en) Valve assembly for an injection valve and injection valve
US8662472B2 (en) Electromagnetic fuel injection valve
US8931718B2 (en) Valve assembly for an injection valve and injection valve
JP5239965B2 (ja) 燃料噴射弁
US20100213286A1 (en) Adjusting and filter arrangement for an injection valve and injection valve
US8919372B2 (en) Valve assembly for an injection valve and injection valve
US20150102135A1 (en) Valve Assembly for an Injection Valve and Injection Valve
JP5042073B2 (ja) 燃料噴射弁
JP6092375B2 (ja) 噴射弁
US9394868B2 (en) Valve assembly and injection valve
WO2015072031A1 (ja) 燃料噴射弁、及び燃料噴射弁の製造方法
US10024287B2 (en) Valve body and fluid injector
US20190186419A1 (en) Fluid Injector and Needle for a Fluid Injector
JP4127703B2 (ja) 燃料噴射装置
US20170114764A1 (en) Fuel injection valve
JP6020194B2 (ja) 燃料噴射弁
EP1724463B1 (en) Electromagnetic fuel injection valve
KR102007016B1 (ko) 밸브 조립체 및 분사 밸브
EP2375051A1 (en) Valve assembly for an injection valve and injection valve
JP4584895B2 (ja) 電磁式燃料噴射弁
WO2016063492A1 (ja) 燃料噴射弁
JP2012177426A (ja) 燃料供給弁
JP4340916B2 (ja) 燃料噴射弁

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124462.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873012

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120080033242

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112008003324

Country of ref document: DE

Date of ref document: 20110217

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08873012

Country of ref document: EP

Kind code of ref document: A1