WO2009106174A1 - Wärmetauscher zur erwärmung von temperatur- und verweilzeitempfindlichen produkten - Google Patents
Wärmetauscher zur erwärmung von temperatur- und verweilzeitempfindlichen produkten Download PDFInfo
- Publication number
- WO2009106174A1 WO2009106174A1 PCT/EP2008/066485 EP2008066485W WO2009106174A1 WO 2009106174 A1 WO2009106174 A1 WO 2009106174A1 EP 2008066485 W EP2008066485 W EP 2008066485W WO 2009106174 A1 WO2009106174 A1 WO 2009106174A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- tube bundle
- product
- tube
- tubes
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/0263—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry or cross-section of header box
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
Definitions
- the invention relates to a heat exchanger for temperature-sensitive and / or polymerizable products.
- heat exchangers are known from the literature. Thus, for short residence times z. B. heat exchangers of the plate heat exchanger type or micro heat exchanger.
- these heat exchangers have the disadvantage that they are only suitable for low-viscosity products due to the narrow flow gaps. For higher viscosity products, the pressure drop across these heat exchangers can be very high.
- products prone to polymerization such as monomers or polymer syrup, which still contain monomers, there is a risk that the monomers will polymerize in the heat exchanger during operation or at standstill.
- the removal of polymerized syrup from the plate heat exchangers and micro heat exchangers is very expensive, if not impossible. For high viscosities, especially for several Pas, and high pressures, greater than 10 bar, no plate heat exchangers are offered due to the manufacturing method and the forces occurring.
- US Pat. No. 1,961,907 describes a tube bundle heat exchanger with helically grooved displacers in the tubes. Due to the helical flow, a particularly effective heat transfer is achieved. Due to the flow of the medium to be tempered within the displacement tube, however, an additional Produces pressure loss and an additional residence time that can be detrimental to the product. Moreover, the complex construction also entails high costs, poor disassembly, and difficult drainability.
- Heat exchangers which show a low pressure drop even with more viscous products are often z. B. of the tube bundle type. In this design, the product flows through several parallel tubes.
- the specific heat exchange area is defined herein as the ratio of the heat exchange area to the volume in the tubes that fills the product. Due to the low heat exchange surface are in the Usually large heat exchangers with thereby large Hold-up in the tubes needed. The residence time is therefore quite high in the tube bundle heat exchangers.
- the object now was to develop a heat exchanger which allows the residence time for the product to be heated or cooled in the heat exchanger to be as short as possible.
- the heat exchanger should continue to be constructed so that both low viscous and higher viscous products can be heated or cooled.
- the displacer rods are designed to occupy more than 40% of the volume in the tubes, preferably occupy more than 50% of the volume in the tubes, and more preferably occupy more than 60% of the volume in the tubes.
- one or more displacer are expediently arranged in the heat exchanger hoods of the apparatus or at least used a flat bottom.
- the tube bundle heat exchanger consists of a housing (4) and a tube bundle, which is formed from one or more of the product to be tempered flowed through, arranged substantially parallel tubes.
- the tubes can be aligned, offset or arranged on concentric hole circles to each other. Preference is given to a minimum and substantially equal pipe spacing, which results in a small product-filled volume (6). Particularly preferred is an arrangement of the tubes on concentric circles in order to obtain a uniform flow of the tubes and little dead zones in the bottom region.
- the product flows through the pipes and is heated or cooled by the pipe jacket.
- the heating or cooling medium (5) flows through the outer jacket of the tubes.
- the tubes can be flowed into the product flow of the heating or cooling medium (5) in crossflow, in countercurrent or in direct current to the product flow.
- the temperature control is carried out essentially in the cross-countercurrent, since so lower driving temperature gradient between tempering (5) and product space (6) sufficient. So that the emptying can be easily made, the heat exchanger is preferably flowed through by the product from top to bottom.
- the venting of the heating or cooling medium (5) can be easily done, the heat exchanger from the temperature control medium (5) is preferably flowed through from bottom to top.
- At least one end of the tube bundle is enclosed by a bottom through which the product enters or exits.
- This floor can be designed as a heat exchanger hood (2) with a small wall thickness or as a thick-walled but compact flat floor (17) be.
- the bottom preferably has an apparatus flange so that it can be flanged or disassembled to the heat exchanger body.
- the floor may have a preferably on-axis nozzle, through which the product can enter or exit. Also conceivable are several nozzles near the axis through which product can escape.
- the floor is preferably designed so that it can be heated or cooled with a temperature control medium. But also conceivable is an electric heating.
- heat exchanger is connected directly to another apparatus, so that can be dispensed with on this page on a corresponding floor.
- a compensator can be used in the outer jacket, if necessary, to compensate for the different thermal expansion between the tube bundle and the outer jacket.
- the pressure drop in the heat exchanger tubes is manageable for higher viscosity products by choosing suitable tube diameters.
- displacement rods (7, 10, 12, 15) are introduced into the tubes.
- the displacer rods (7, 10, 12, 15) can partially protrude into the heat exchanger hoods (2).
- the displacer rods (7, 10, 12, 15) are designed to be more than 40% of the volume in the heat exchanger tubes displace.
- more than 60% of the void volume of the tubes are displaced by the displacer rods (7, 10, 12, 15).
- less than 95% of the volume is displaced to obtain both a compact heat exchanger design and a low pressure drop.
- the outer contour of the displacer rods (7, 10, 12, 15) is designed such that the axis of the displacer rods (7, 10, 12, 15) is centered in the tubes to avoid dead zones and a homogeneous flow across the cross section of the heat exchanger tube to achieve.
- the product stream flows in the gap (11) between displacement rod (7, 10, 12, 15) and the inner wall of the heat exchanger tube.
- the displacer rods (7, 10, 12, 15) z. B be constructed as follows:
- the displacer rods (7, 10, 12, 15) are preferably pushed into the tubes (9), so that they can be removed again for cleaning and testing purposes if necessary.
- the displacer rods (7, 10, 12, 15) may also consist of several individual bars connected in series. It is also conceivable to use hollow displacer rods which are filled with a medium which improves the heat transport. For example, water may be contained which evaporates in the hot region and condenses in the cool region, so that heat is transported in the axial direction. It is also conceivable to additionally transfer heat with the aid of a heat transfer medium flowing through the displacer tubes. Another possibility is the use of electrically heated Verdrfiterstäben, whereby the specific heat transfer surface is further increased and the residence time can be further reduced. It is also conceivable that combinations of the above Verdrfiterstäbe be used.
- the displacer rods preferably produce a narrow cross-section in the heated part of the tubes, in the inlet region a cross-sectional widening may be provided to reduce the pressure loss in the tubesheet region.
- displacement bodies (3) are installed in the hoods (2).
- the hoods (2) can also be heated or cooled.
- B plates or pins on the outer sides.
- the heat exchanger tubes facing side is preferably made conical; see Fig. 7.
- the zones for product inlet (1) and product outlet (8) can also be designed as a flat bottom (17) with recesses (low volume head) (see FIG. 8).
- the recesses are dimensioned so that the residence time of the product in the soil at full load between 0.5 s and 20 s, preferably between 1, 5 s and 15 s, or at part load between 1 s and 40 s, preferably between 1, 5 s and 30 s.
- the recesses can be made for example by turning or milling.
- the recess of the flat bottom can be made conical. 5. Operating parameters
- the heat transfer medium (5) can be supplied in liquid or vapor form.
- the residence time of the products in the heat exchanger can be 1 s to 300 s.
- the heat exchanger allows the setting of a wide range of temperatures, pressures and viscosities.
- the pressure loss calculations are based on the analytical solution of the momentum conservation equation for the laminar flow-through pipe (Hagen-Poiselle flow) or for the laminar flow-through annular gap.
- the heat transfer calculations are based on semiempirical Nusselt number relationships for hydrodynamically and thermally not formed laminar flow. Unless otherwise stated, a mass flow of 1,000 kg / h, a residence time in the tubes of 60 seconds, a temperature increase of the medium to be heated of 100 K and a logarithmic temperature difference between the heat transfer medium (5) and medium to be heated of 30 K is assumed.
- the latter two numerical values can be combined to a quotient of 3.33.
- the material values used are a thermal conductivity of 0.15 W / mK, a density of 1 000 kg / m 3 , a specific heat capacity of 2,200 J / kgK and a constant dynamic viscosity of 1 Pas, ie it is a Newtonian medium went out.
- the heat transfer-side heat transfer resistance and the line resistance through the pipe wall are negligible.
- Example A shows that in conventional tube bundle heat exchangers very narrow, long tubes are necessary to reach the given conditions. These are difficult to produce and can not be cleaned practically.
- Examples B and C show that shorter tubes are possible with less residence time (case B) or changed thermal conditions (case C). At the same time, however, the pipe diameters sink even more and the number of pipes increases sharply, so that no alternative to Case A can be seen here.
- Examples D and E demonstrate that a larger pipe diameter can be achieved with the help of a longer residence time (case D) or higher wall temperatures (due to larger logarithmic temperature differences, case E).
- case D residence time
- case E higher wall temperatures
- the advantage of better cleanability due to the larger diameter is overcompensated by the extremely increased tube length, which complicates the manufacturability, as well as deteriorations in product quality due to increased residence times and wall temperatures.
- the space requirement of such long apparatus in buildings is problematic.
- Examples F and G show that a smaller tube diameter results in an extremely large number of tubes due to shorter residence time (case F) or changed thermal conditions (case G). Such a high number of filigree tubes is not manufacturable given the high pressures and temperatures to which the tube bundle apparatus would have to be designed.
- the not negligible pipe length also does not allow a cleaning of the apparatus inside.
- Example H states that a reduced pressure drop due to an increased number of tubes and a shortened length does not result in small tube diameters. Because of the high number of thin tubes with non-vanishing length, the cleanability, as well as the manufacturability, is practically impossible. Comparison of an inventive design (Example I) with those for conventional shell-and-tube heat exchangers (Examples AH):
- Example I shows an example of a design for a heat exchanger according to the invention with Verdrfiterstäben. Taking into account residence time, thermal conditions and pressure drop, in comparison to the examples of conventional heat exchangers (Examples A-H), this has a very large pipe diameter, which ensures good cleaning capability. In addition, compared to the examples A, D and E, the tube length is limited, whereby a good manufacturability and cleanability is possible and little space is required. Compared with Examples A-C and F-H, moreover, the number of tubes is small, so that a simple and cost-effective production is possible.
- the tube bundle heat exchanger according to the invention can be used particularly advantageously in the synthesis of polymers, since the low residence time with simultaneous effective heat transfer the product little thermally loaded and thus prevents unwanted polymerizations.
- L are the tube or annular gap length
- r is the residence time
- d a the outer diameter of the gap or tube diameter
- p the density
- c p the specific heat capacity
- ⁇ T S the temperature increase of the syrup, ie the hydraulic diameter, ⁇ the thermal conductivity, ⁇ 7 / g the logarithmic temperature difference between the heating medium (5) and Syrup.
- Pr is the Prandtl number and X is a dimensionless length:
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010547968A JP2011513685A (ja) | 2008-02-27 | 2008-12-01 | 温度および滞留時間に敏感な製品を加熱するための熱交換器 |
US12/918,952 US20110017439A1 (en) | 2008-02-27 | 2008-12-01 | Heat exchanger for heating temperature and residence time sensitive products |
CA2716616A CA2716616A1 (en) | 2008-02-27 | 2008-12-01 | Heat exchanger for heating temperature-and residence time-sensitive products |
MX2010009521A MX2010009521A (es) | 2008-02-27 | 2008-12-01 | Cambiador de calor para productos sensibles a temperatura de calentamiento y en funcion del tiempo de residencia. |
BRPI0822263-0A BRPI0822263A2 (pt) | 2008-02-27 | 2008-12-01 | Trocador de calor para aquecimento de produtos sensíveis a temperatura e a tempo de residência |
EP08872773A EP2245407A1 (de) | 2008-02-27 | 2008-12-01 | Wärmetauscher zur erwärmung von temperatur- und verweilzeitempfindlichen produkten |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008011341.7 | 2008-02-27 | ||
DE102008011341A DE102008011341A1 (de) | 2008-02-27 | 2008-02-27 | Wärmetauscher zur Erwärmung von Temperatur- und Verweilzeitempfindlichen Produkten |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009106174A1 true WO2009106174A1 (de) | 2009-09-03 |
Family
ID=40403819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/066485 WO2009106174A1 (de) | 2008-02-27 | 2008-12-01 | Wärmetauscher zur erwärmung von temperatur- und verweilzeitempfindlichen produkten |
Country Status (12)
Country | Link |
---|---|
US (1) | US20110017439A1 (de) |
EP (1) | EP2245407A1 (de) |
JP (1) | JP2011513685A (de) |
KR (1) | KR20100135725A (de) |
CN (1) | CN101532792A (de) |
BR (1) | BRPI0822263A2 (de) |
CA (1) | CA2716616A1 (de) |
DE (1) | DE102008011341A1 (de) |
MX (1) | MX2010009521A (de) |
RU (1) | RU2010139276A (de) |
TW (1) | TW201000844A (de) |
WO (1) | WO2009106174A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102278904A (zh) * | 2011-07-29 | 2011-12-14 | 华北电力大学 | 一种内分液罩式冷凝换热管 |
RU219424U1 (ru) * | 2023-02-20 | 2023-07-17 | Акционерное общество "Прогресс-Экология" | Теплообменник с жидкостным теплоносителем |
DE102023115797A1 (de) | 2022-06-29 | 2024-01-04 | Röhm Gmbh | Verbessertes Verfahren zur Herstellung eines Polymers |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5229344B2 (ja) * | 2011-03-18 | 2013-07-03 | 株式会社豊田自動織機 | 熱交換器 |
JP5488510B2 (ja) | 2011-03-25 | 2014-05-14 | 株式会社豊田自動織機 | 熱電変換ユニット |
CA2843141C (en) * | 2011-07-28 | 2020-03-10 | Nestec S.A. | Methods and devices for heating or cooling viscous materials |
EP2565572A1 (de) * | 2011-09-02 | 2013-03-06 | Aurotec GmbH | Wärmetauscherleitungsystem |
HUE053196T2 (hu) * | 2013-01-11 | 2021-06-28 | Basf Se | Berendezés és eljárás folyadékok gázokkal történõ folyamatos átalakítására |
WO2020028465A1 (en) * | 2018-08-02 | 2020-02-06 | The Curators Of The University Of Missouri | Heat exchanging liquid container |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE504542C (de) * | 1928-10-20 | 1930-08-06 | Bergedorfer Eisenwerk A G | Waermeaustauscher |
DE2541424A1 (de) * | 1975-09-17 | 1977-03-31 | Helmut Weinbrenner Maschinen U | Stehender, dampf- oder wasserbeheizter waermeaustauscher |
DE8903349U1 (de) * | 1989-03-16 | 1990-07-19 | VIA Gesellschaft für Verfahrenstechnik mbH, 4000 Düsseldorf | Rohrbündelwärmetauscher |
DE10311529B3 (de) * | 2003-03-17 | 2004-09-16 | Tuchenhagen Dairy Systems Gmbh | Vorrichtung zur Einflussnahme auf den Anströmbereich einer Rohrträgerplatte eines Rohrbündel-Wärmeaustauschers |
DE202005012879U1 (de) * | 2005-08-12 | 2005-10-27 | CALORPLAST WÄRMETECHNIK GmbH | Rohrbündel-Wärmeüberträger |
DE102005049067A1 (de) * | 2005-10-13 | 2007-04-19 | Basf Ag | Rohrbündelwärmeübertrager und Verfahren zur Entfernung von gelösten Stoffen aus einer Polymerlösung durch Entgasung in einem Rohrbündelwärmeübertrager |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1961907A (en) | 1931-11-25 | 1934-06-05 | George T Mott | Apparatus for heat exchanging |
CH296796A (de) * | 1951-09-19 | 1954-02-28 | Wetag Warmetechnische Apparate | Wärmetauscher zum Erhitzen oder Kühlen von Gasen mittels eines flüssigen Heiz- oder Kühlmittels. |
DE1103091B (de) * | 1958-08-29 | 1961-03-23 | Steinmueller Gmbh L & C | Verdraengungskoerper, insbesondere fuer Schwerwasser-Waermetauscher |
DE2814828C3 (de) * | 1978-04-06 | 1981-07-09 | Metallgesellschaft Ag, 6000 Frankfurt | Gaskühler mit innenberippten Bleirohren |
DE3045731A1 (de) * | 1980-12-04 | 1982-07-08 | Brown Boveri - York Kälte- und Klimatechnik GmbH, 6800 Mannheim | Waermetauscher |
DE8712815U1 (de) | 1987-09-23 | 1989-01-19 | VIA Gesellschaft für Verfahrenstechnik mbH, 4000 Düsseldorf | Rohrbündelwärmetauscher |
US4993485A (en) * | 1989-09-18 | 1991-02-19 | Gorman Jeremy W | Easily disassembled heat exchanger of high efficiency |
JPH07133993A (ja) * | 1993-10-15 | 1995-05-23 | Tada Denki Kk | 多管式熱交換器 |
JP2000130981A (ja) * | 1998-10-26 | 2000-05-12 | Kubota Corp | 熱交換器 |
FR2791983B1 (fr) * | 1999-04-12 | 2001-05-18 | Bp Chemicals Snc | Appareil et procede de polymerisation en phase gazeuse d'olefine |
WO2002026370A1 (en) * | 2000-09-26 | 2002-04-04 | Shell Internationale Research Maatschappij B.V. | Rod-shaped inserts in reactor tubes |
US20030116306A1 (en) * | 2001-12-26 | 2003-06-26 | Besik Ferdinand K. | Rotating film shell and tube type heat exchanger - evaporator |
DE10200171A1 (de) * | 2002-01-04 | 2003-07-10 | Roehm Gmbh | Verfahren zur kontinuierlichen Herstellung von Alkyl(meth)acrylaten |
JP4575636B2 (ja) * | 2002-02-14 | 2010-11-04 | 三菱レイヨン株式会社 | 多管式熱交換器、これを具備した蒸留装置、および熱交換方法 |
DE10312529B3 (de) * | 2003-03-20 | 2004-06-24 | Lurgi Ag | Abhitzekessel |
JP2006336936A (ja) * | 2005-06-01 | 2006-12-14 | Kobe Steel Ltd | フィンチューブ型熱交換器の冷媒供給方法 |
DE102007021199B4 (de) * | 2006-07-17 | 2016-02-11 | Evonik Degussa Gmbh | Zusammensetzungen aus organischem Polymer als Matrix und anorganischen Partikeln als Füllstoff, Verfahren zu deren Herstellung sowie deren Verwendung und damit hergestellte Formkörper |
-
2008
- 2008-02-27 DE DE102008011341A patent/DE102008011341A1/de not_active Withdrawn
- 2008-12-01 BR BRPI0822263-0A patent/BRPI0822263A2/pt not_active IP Right Cessation
- 2008-12-01 WO PCT/EP2008/066485 patent/WO2009106174A1/de active Application Filing
- 2008-12-01 EP EP08872773A patent/EP2245407A1/de not_active Withdrawn
- 2008-12-01 RU RU2010139276/06A patent/RU2010139276A/ru not_active Application Discontinuation
- 2008-12-01 JP JP2010547968A patent/JP2011513685A/ja active Pending
- 2008-12-01 MX MX2010009521A patent/MX2010009521A/es unknown
- 2008-12-01 KR KR1020107018943A patent/KR20100135725A/ko not_active Application Discontinuation
- 2008-12-01 US US12/918,952 patent/US20110017439A1/en not_active Abandoned
- 2008-12-01 CA CA2716616A patent/CA2716616A1/en not_active Abandoned
-
2009
- 2009-02-24 TW TW098105799A patent/TW201000844A/zh unknown
- 2009-02-24 CN CN200910007748A patent/CN101532792A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE504542C (de) * | 1928-10-20 | 1930-08-06 | Bergedorfer Eisenwerk A G | Waermeaustauscher |
DE2541424A1 (de) * | 1975-09-17 | 1977-03-31 | Helmut Weinbrenner Maschinen U | Stehender, dampf- oder wasserbeheizter waermeaustauscher |
DE8903349U1 (de) * | 1989-03-16 | 1990-07-19 | VIA Gesellschaft für Verfahrenstechnik mbH, 4000 Düsseldorf | Rohrbündelwärmetauscher |
DE10311529B3 (de) * | 2003-03-17 | 2004-09-16 | Tuchenhagen Dairy Systems Gmbh | Vorrichtung zur Einflussnahme auf den Anströmbereich einer Rohrträgerplatte eines Rohrbündel-Wärmeaustauschers |
DE202005012879U1 (de) * | 2005-08-12 | 2005-10-27 | CALORPLAST WÄRMETECHNIK GmbH | Rohrbündel-Wärmeüberträger |
DE102005049067A1 (de) * | 2005-10-13 | 2007-04-19 | Basf Ag | Rohrbündelwärmeübertrager und Verfahren zur Entfernung von gelösten Stoffen aus einer Polymerlösung durch Entgasung in einem Rohrbündelwärmeübertrager |
Non-Patent Citations (1)
Title |
---|
See also references of EP2245407A1 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102278904A (zh) * | 2011-07-29 | 2011-12-14 | 华北电力大学 | 一种内分液罩式冷凝换热管 |
DE102023115797A1 (de) | 2022-06-29 | 2024-01-04 | Röhm Gmbh | Verbessertes Verfahren zur Herstellung eines Polymers |
RU219424U1 (ru) * | 2023-02-20 | 2023-07-17 | Акционерное общество "Прогресс-Экология" | Теплообменник с жидкостным теплоносителем |
Also Published As
Publication number | Publication date |
---|---|
RU2010139276A (ru) | 2012-04-10 |
KR20100135725A (ko) | 2010-12-27 |
MX2010009521A (es) | 2011-03-29 |
TW201000844A (en) | 2010-01-01 |
BRPI0822263A2 (pt) | 2015-06-23 |
US20110017439A1 (en) | 2011-01-27 |
CA2716616A1 (en) | 2009-09-03 |
CN101532792A (zh) | 2009-09-16 |
EP2245407A1 (de) | 2010-11-03 |
JP2011513685A (ja) | 2011-04-28 |
DE102008011341A1 (de) | 2009-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009106174A1 (de) | Wärmetauscher zur erwärmung von temperatur- und verweilzeitempfindlichen produkten | |
EP1384502B1 (de) | Mischer/Wärmeaustauscher | |
EP2052199B1 (de) | Apparat zur kombinierten durchführung von wärmeübertragung und statischem mischen mit einer flüssigkeit | |
WO2007042529A1 (de) | Rohrbündelwärmeübertrager und verfahren zur entfernung von gelösten stoffen aus einer polymerlösung durch entgasung in einem rohrbündelwärmeübertrager | |
EP0290813B1 (de) | Wärmetauscher, insbesondere zum Kühlen von Spaltgasen | |
DE2033128B2 (de) | Wärmeaustauschaggregat mit Wärmetauschern, bei denen innerhalb eines AuBenmantels Rohrreihen durch einen Zwischenmantel umschlossen sind | |
DE2363063A1 (de) | Walze | |
DE112004001604B4 (de) | Dreidimensionale quer angeordnete Umlenkeinrichtung als inneres Element in einem Rohr, einem Fass oder einem Turm | |
AT411890B (de) | Verfahren zum beheizen und kühlen von extruderzylindern sowie vorrichtung hierfür | |
DE102010001065A1 (de) | Leitscheibenanordnung für einen Wärmetauscher, Wärmetauscher, Verfahren zum Herstellen eines Wärmetauschers sowie Aus- oder Nachrüstkit für einen Wärmetauscher | |
DE2536657C3 (de) | Wärmeaustauscher zum Vorwärmen von Verbrennungsluft für insbesondere ölbeheizte Industrieöfen | |
DE10123219A1 (de) | Wärmetauscher zum Erwärmen eines Produktes, insbesondere einer Masse zur Herstellung von Süßwaren | |
DE102015013516B4 (de) | Rohrbündelwärmeübertrager und Fertigungsverfahren für Rohrbündelwärmeübertrager | |
DE402945C (de) | Waermeaustauscher | |
DE2161402A1 (de) | Wärmeaustauscher | |
DE2121473A1 (de) | Röhrenwärmeaustauscher | |
DE68905806T2 (de) | Statische mischeinrichtung. | |
DE3131642A1 (de) | "waermetauscher fuer zaehfluessige und pastoese medien, insbesondere maische" | |
DE102007058334B3 (de) | Wärmeübertrager mit innenberippten Rohren in mehrgängiger Ausführung bei Gegenstrom der Fluide für kleine und mittlere Durchsätze | |
DE2427303B2 (de) | Waermetauscher | |
DE102004012607A1 (de) | Vorrichtung und Verfahren zur thermischen Behandlung einer Süßwarenmasse | |
AT214950B (de) | Wärmeaustauscher | |
DE102019009099A1 (de) | Wärmetauscher mit Mischfunktion | |
DE706790C (de) | Verdampfer mit aussenleigendem Plattenheizkoerper | |
DE1601167C3 (de) | Mischwärmetauscher |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08872773 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008872773 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: PI 2010003357 Country of ref document: MY |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12918952 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2716616 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20107018943 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5310/CHENP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010547968 Country of ref document: JP Ref document number: MX/A/2010/009521 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010139276 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0822263 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100826 |