WO2009105969A1 - 15环噻酮化合物及其制备方法与应用 - Google Patents

15环噻酮化合物及其制备方法与应用 Download PDF

Info

Publication number
WO2009105969A1
WO2009105969A1 PCT/CN2009/000218 CN2009000218W WO2009105969A1 WO 2009105969 A1 WO2009105969 A1 WO 2009105969A1 CN 2009000218 W CN2009000218 W CN 2009000218W WO 2009105969 A1 WO2009105969 A1 WO 2009105969A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
formula
substituted
unsubstituted
Prior art date
Application number
PCT/CN2009/000218
Other languages
English (en)
French (fr)
Other versions
WO2009105969A8 (zh
Inventor
邱荣国
Original Assignee
唐莉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐莉 filed Critical 唐莉
Priority to US12/919,487 priority Critical patent/US20110112149A1/en
Priority to EP09714253A priority patent/EP2261221A4/en
Priority to JP2010547935A priority patent/JP2011513248A/ja
Publication of WO2009105969A1 publication Critical patent/WO2009105969A1/zh
Publication of WO2009105969A8 publication Critical patent/WO2009105969A8/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/04Monocyclic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • Epothilone analog is an epoxy resin
  • pharmaceutical composition thereof use thereof and preparation method thereof
  • the present invention relates to a novel 15-cyclopolyketone compound and an intermediate thereof, which are structurally natural exemplified by epothilones, and in particular to a process for their preparation and their pharmaceutical use, in the preparation Use in pharmaceutical compositions containing them. Background technique
  • Epothilone A and epothilone B are a macrolide-type polyketide-derived 10 16-membered ring epothilone compound originally derived from the soil bacterium Sorangium cellulosum strain So ce90 Separated in, the structural formula is as follows. [Hofle et al, 1996, Angew. Chem. Int. Ed. Engl. 35(13/14): 1567-1569; Gerth et al" 1996. J. Antibiotics 49(6): 560-563].
  • the mechanism of action of the epothilone family is very similar to the well-known cancer drug paclitaxel (TAOLOL), including induction of tubulin polymerization and stabilization of microtubule formation.
  • TOLOL cancer drug paclitaxel
  • These compounds exhibit potent cell killing power against different cancer cell lines.
  • they have shown striking effects on tumor cell lines with multiple cancer drug resistance (MDR), especially tumor cell lines resistant to paclitaxel and other anticancer drugs [Altmaiin et al., 2000] Biochem. Biophys. Acta. 1470(3): M79-91; Bollag et al., Cancer Res. 55(11): 2325-2333].
  • MDR cancer drug resistance
  • Epothilone A and B also known as epothilones C and D
  • epothilones C and D have been successfully chemically synthesized, but can also produce fermented extracts from strain S. cellulosum from natural epothilones. It was detected together with many other similar structures of epothilone as a minor component.
  • the conversion of epothilone B to the corresponding lactam is described in PCT publication WO 99/27890 Conversion reaction of BMS247550.
  • the object of the present invention is to provide a series of 15-membered macrocyclic ketolactone or lactam derivatives; and to provide a method for production preparation, using chemical synthesis or chemical modification and biotransformation from Epothilone D or B And the novel compounds of the present invention and other novel derivatives of the compounds such as 4-demethyl epothilone D or B; the present invention further provides such novel macrocyclic ketolactone or lactam compounds in Use in the preparation of a pharmaceutical composition that is anti-tumor, inhibits excessive cell growth, and halts cell growth.
  • the polyketone compound provided by the present invention a novel type of 15-cycloketene compound has the following general formula (I)
  • A—D is a carbon-carbon double bond of the following formula (a) or an epoxy group of the formula (b), it does not exist,
  • A-D is a C-C single bond, it is hydroxyl or H
  • G is selected from a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a heteroaryl group, a heterocyclic group, a cycloalkyl group, or any one of the following formulas:
  • Q is selected from the group consisting of H, C M alkyl, NH 2 or a hydroxy protecting group such as a silyl ether, TMS, TES or TBS;
  • Ri, R 2 are each independently selected from H or a substituted or unsubstituted alkyl group (preferably a C M alkyl group, more preferably a methyl group), or together form a cycloalkyl group;
  • R 8 is selected from H, hydroxy, substituted or unsubstituted alkyl (preferably C M alkyl, more preferably methyl) or NH 2 , N 3 or NR 13 R 14;
  • X is 0, S or NR 15 , wherein 5 is 11, NR 16 R 17 , substituted or unsubstituted fluorenyl (preferably C alkyl, more preferably methyl), substituted or unsubstituted aryl, cycloalkyl Or a heterocyclic group;
  • Rm is selected from H, methyl, NR 16 R 17 or halomethyl
  • R 12 is selected from H, allyl, hydroxy, 3 ⁇ 4 or substituted or unsubstituted alkyl (preferably. 6 alkyl, more preferably methyl); Ri 2 is preferably allyl;
  • R 9 is selected from H, substituted or unsubstituted alkyl (preferably C M alkyl, more preferably methyl), aryl, heteroaryl, cyclodecyl, heterocyclic, preferably thiazolyl , pyridyl, oxazolyl, isoxazolyl, quinolinyl or benzoxazolyl;
  • Rk is selected from H, methyl, substituted or unsubstituted alkyl (preferably C w fluorenyl, more preferably methyl), aminoalkyl, hydroxyalkyl or haloalkyl;
  • R is selected from H, trifluoromethyl, substituted or unsubstituted alkyl (preferably C M alkyl, more preferably methyl) or halogen;
  • W is S or 0, NH or N-alkyl
  • G in the compound of formula I is selected from the group consisting of:
  • the compound of the invention has the structure shown by the general formula ( ⁇ ): Where X is ⁇ 15 or 0;
  • the compound of the present invention has the structure represented by the following formula (III):
  • Q1 and Q2 are any one of H, CM alkyl, H 2 or a hydroxy protecting group such as a silyl ether, TMS, TES or TBS, and the other groups are as defined above.
  • the compound of the invention has the structure shown by the following formula (IV):
  • the compound of the present invention has the structure represented by the following formula (V) :
  • X is NR 15 or 0; 5 is 11, methoxy or alkyl, and R 12 is H, allyl, substituted or unsubstituted alkyl (preferably 6 alkyl, more preferably methyl).
  • the compounds of the invention have a compound of the formula (VI):
  • X is NHR 15 , NR 15 P, OH or OQ; wherein R 15 is H, methoxy or fluorenyl; P is an N-protecting group; Z is II, substituted or unsubstituted fluorenyl (preferably _ 6 alkyl, more preferably methyl, tert-butyl), cycloalkyl, aryl or carboxyl protecting group;
  • Q1 and Q2 are each H, C M alkyl, NH 2 or hydroxy protecting group; unless otherwise stated, the general terms in this context have the following meanings:
  • Any asymmetric carbon atom may exist in the (R)-, (S)- or (R, S)-configuration, and thus the compounds of the invention may exist in a wide variety of optical, geometric and stereoisomeric forms, all such isomers And mixtures thereof are included within the scope of the invention.
  • the decyloxy group, alkyl group (including an alkyl group in a hydroxy group, a haloalkyl group, and an aminoalkyl group) as defined in the compound of the present invention is preferably a lower alkyl group or a lower decyloxy group, "lower".
  • Substituted fluorenyl refers to one to four substituents such as halogen, trifluoromethyl hydrazine, trifluoromethoxy, alkanoyl, aryloxy, amino, decylamino, heterocyclylamino, arylamino, aryl Amino group, alkanoylamino group, mercaptosulfonyl group, alkylthio group, alkoxycarboxy group and the like.
  • substituents such as halogen, trifluoromethyl hydrazine, trifluoromethoxy, alkanoyl, aryloxy, amino, decylamino, heterocyclylamino, arylamino, aryl Amino group, alkanoylamino group, mercaptosulfonyl group, alkylthio group, alkoxycarboxy group and the like.
  • the aryl group means a monocyclic or bicyclic aromatic group having 6 to 12 carbons in the ring, such as a phenyl group, a diphenyl group or the like, and the aryl group may be a substituted or unsubstituted aryl group.
  • the substituted aryl group means substituted by one to four substituents, and the substituent may be, for example, a substituted or unsubstituted alkyl group, a halogen, a CF 3 , a trifluoromethoxy group, a hydroxyl group, an alkoxy group, a cycloalkoxy group, a ring.
  • Heteroaryl refers to any 5- or 6-membered ring containing 1-3 heteroatoms selected from nitrogen, oxygen and/or sulfur, wherein the 5-membered ring has 0-2 double bonds and the 6-membered ring There are 0-3 double keys.
  • the nitrogen and sulfur heteroatoms may be optionally oxidized, optionally also quaternized, preferably having a mono- or bicyclic group having at least one nitrogen atom and 0 or 1 oxygen atom and 0 or 1 sulfur atom.
  • a heteroaryl group and preferably a group wherein the linking ring has 5 to 12, more preferably 5 or 6 ring atoms, and the heteroaryl group may be unsubstituted or one or more preferably selected from halogen, oxime Base, alkylthio, hydroxy, alkane Substituents for the group and/or alkanoyl group are substituted.
  • the heteroaryl group is preferably selected from the group consisting of thiazolyl, pyridyl, oxazolyl, quinolyl, benzoxazolyl or benzothiazolyl.
  • Cycloalkyl refers to a saturated carbocyclic ring which may be optionally substituted, preferably containing from 1 to 3 rings, each having from 3 to 7 carbon atoms, which may be further fused to an unsaturated C 3 -C 7 carbocyclic ring.
  • the cyclodecyl group is preferably a cyclopropyl group, a cyclopentyl group or the like.
  • Heterocyclyl means an optionally substituted, saturated non-aromatic ring group, such as a 4 to 7 membered monocyclic ring, a 7 to 11 membered bicyclic ring, or a 10 to 15 membered polycyclic ring having at least one impurity in at least one ring.
  • the atom may have 1, 2, or 3 heteroatoms selected from nitrogen, oxygen, and sulfur in the ring of each heterocyclic group, wherein the nitrogen and sulfur heteroatoms may also be optionally oxidized, and the nitrogen atom may also be optionally selected.
  • the heterocyclic group can be attached to any heteroatom or carbon atom.
  • the heteroaryl group may be further fused to an unsaturated C 3 -C 7 carbocyclic ring, and the fused group is, for example, pyrazolyl, thiazolyl, pyridyl, oxazolyl, isoxazolyl, quinolyl, Benzooxazolyl or benzothiazolyl, imidazolyl and furanyl.
  • the hydroxy protecting group, the N-protecting group and the carboxy protecting group involved in the definition of the compound of the present invention are the protecting groups commonly used in the art, for example, the hydroxy protecting group is preferably a silyl decyl ether such as TMS, TES or TBS;
  • the N-protecting group is preferably a tert-butylcarboxylic acid;
  • the carboxy protecting group is preferably a methyl group, a tert-butyl group (such as a tert-butyl group formed from t-butyl alcohol and carbodiimide), or the like.
  • the functional group which should not participate in the reaction in the raw material compound may be present in an unprotected form or may be protected by one or more protecting groups or completely or partially removed.
  • the protective groups are characterized in that they are themselves readily solvolyzed, reduced, photolyzed or removed by enzymatic activity and are not present in the final product.
  • the hydroxy protecting group is preferably a lower alkylsilyl-type hydroxy protecting group as referred to herein, and is introduced as required herein in a manner similar to that described herein and removed as desired, with selective protection or deprotection being possible. In this context, some protecting groups are not mentioned where appropriate, and the skilled artisan will know when a protecting group should or must be used.
  • Molecular cyclization can be carried out under conventional conditions.
  • X' is a hydroxyl group, and cyclization corresponds to macrolide lactonization.
  • X' is NH2 to obtain NHR (alkyl group), and cyclization corresponds to macrolactam formation.
  • the acid (or anhydride) compound precursor (or from the protected derivative) to the free hydroxyl group in accordance with the conditions described in M. Yamaguchi et al, Bull. Chem. Soc. Jpn. 1979, 52: 1989
  • the macrolide lactation reaction is carried out in a solvent or solvent mixture. Lactam formation
  • Micro-lactamization is carried out under conditions which are often associated with carboxylic acid and amide linkages, especially the use of standard coupling agents commonly used in peptide chemistry such as DCC HOBt or diphenylphosphoryl azide or bromotripyrrole Alkyl hexaphosphate
  • the compound of the formula (I) wherein AD is formed into an epoxy group and a CC single bond can be produced by chemically epoxidizing a compound of the formula (I) wherein AD is a CC double bond, according to a method known per se, such as using a peroxide, preferably a dimethyl group.
  • reaction is carried out under reduced temperature conditions in a suitable solvent or solvent mixture.
  • the compound of the formula II can be produced by chemical modification or/and biotransformation using epothilone or its derivative LL.
  • synthetic route 1 Such as: synthetic route 1:
  • the C-14 of epothilone or a derivative thereof is first hydroxylated using a microbial-derived hydroxylase, such as synthetic route 1.
  • This C-14 hydroxylated epothilone derivative L1 can be obtained by the microbial transformation method described in Example 1.
  • Epothilone C or D can be readily obtained as disclosed in CN1629283, published June 22, 2005, such as the inactivation of the P450 gene by the epothilone biosynthesis gene resulting in natural epothilone A and B.
  • the resulting bacteria produce the main metabolite, epothilone C or D.
  • the present invention relates to the synthesis of a compound of the formula ( ⁇ ) wherein W is 0 from an oxazole counterpart of an epothilone derivative.
  • thiazole epothilone compound is regulated by supplementing excess serine in the epothilone-producing bacterium in a manner that facilitates the production of the oxazole counterpart. Producing bacteria.
  • Compound L4 can be prepared from a C-14 hydroxylated epothilone derivative by the general procedure described in Chemical Reaction Synthesis Route 2. This compound L4 can also be obtained by the method described in Example 2. Synthetic pathway 2:
  • the azide is then reduced to NH2 using Adam's catalyst (Pt02) or a reducing agent such as triphenylphosphine in ethanol.
  • Pt02 Adam's catalyst
  • a reducing agent such as triphenylphosphine in ethanol.
  • the protecting group may be present in the precursor of the 14-OH epothilone compound and the functional groups involved should be protected from unwanted side reactions such as acylation, etherification, oxidation, solvolysis and the like. reaction.
  • the protective groups are characterized in that they are themselves readily solvolyzed, reduced, photolyzed or removed by enzymatic activity and are not present in the final product.
  • the first protecting group may be present in the 3-, 7-, and 14-OH free hydroxyl groups of the precursor 14-OH epothilone, respectively, Pl, P2 and P3, before the macrolide, 14-OH
  • the P3 protecting group can be selectively removed by using AcOH in THF without causing removal of the protecting groups P1, P2, and the carboxylic acid in the final formula is reacted with the 14-OH macrolide to obtain a protected L4 intermediate.
  • the deprotection of P1 and P2 can be carried out by a method known in the art.
  • P1 and P2 are silyl ethers, such as TMS, TES or TBS
  • HR can be used by using an acid such as dichloromethane. Treatment with pyridine or trichloroacetic acid for deprotection affords L4.
  • R8 in the formula ( ⁇ ) is NHR15 and R15 is not H, it can be obtained by C-14 hydroxylated epothilone derivative by the general method described in the chemical reaction synthesis route 2-B.
  • R15NH-L4-4 can be prepared by using an allyl palladium ⁇ pair such as tetrakis(triphenylphosphine) palladium, followed by primary amine treatment, wherein R15 is OH, substituted or unsubstituted alkyl , cycloalkyl, aryl, heteroaryl, 0-alkyl.
  • the macrolide lactidation reaction will be carried out in accordance with the conditions described in M. Yamaguchi et al., Bull. Chem. Soc. Jpn. 1979, 52: 1989.
  • R15 is OH, remove the protecting group from R15-0-TMS to obtain the final product.
  • the compound of formula II is further preferably a compound of the compound of formula L7.
  • the general procedure described in Scheme 3 is prepared from a C-14 hydroxylated epothilone compound, as described in Example 3.
  • the free hydroxyl groups 3 and 7-OH are P1 and P2, respectively, and the P3 protecting group of 14-OH can be selectively removed using AcOH in THF without causing removal of the protecting groups PI, P2.
  • the 3, 7-protected form of the epothilone derivative is formed by using tetrakis(triphenylphosphine)palladium to form an allyl palladium ⁇ pair, followed by a primary amine treatment, or with diphenylphosphoryl azide
  • DBU diazabicyclo11-7-ene
  • the compound of the formula II is further preferably a compound of the compound L9 which can be obtained by chemically reacting the general method c-14 hydroxylated epothilone compound described in the route 4.
  • the JL9 compound of the present invention is prepared by the preparation of the corresponding ring-opening epothilone hydroxy acid intermediate by saponification, for example, by using sodium hydroxide in an aqueous methanol solution or by using an esterase (such as Kg liver esterase). Hydrolysis treatment in DMSO converts the epothilone derivative to a ring-opened seco-acid hydroxy acid. Finally, according to the method of Yamaguchi et al., 14-OH and carboxylic acid to give lactonization ⁇ L9.
  • the open-loop epothilone hydroxy acid intermediate can be obtained by using t-butyl alcohol, carbodiimide (such as dicyclohexylcarbodiimide) and 4-(dimethylamino)pyridine as a catalyst.
  • the acid is converted to a tert-butyl ester or the hydroxy acid is converted to its methyl ester by reaction with trimethylsilyldiazomethane.
  • the -OH protecting the methyl ester is protected, for example, by silanization such as trimethylsilyl chloride/trimethylsilyl imidazole.
  • the compound of the formula (III) can also be obtained from epothilone D or a derivative thereof such as 4-demethylepothilin D by a general method described in the chemical reaction synthesis route 5, as in Example 4. description.
  • X' is OP3, NR15I> or SF
  • P1, P2 are independent H or the same or different protecting groups
  • P3 is H or a protecting group
  • P is H or N-protecting group
  • ⁇ ' is H or S- Protection group.
  • X is 0, ⁇ , >3 ⁇ 415 or 3.
  • ring-opening epothilone hydroxy acid intermediate by saponification, for example by hydrolysis with sodium hydroxide or with a suitable esterase (such as Pig ver esterase) in aqueous methanol
  • the derivative is converted to a ring-opened seco-acid via a base acid.
  • a ring-opening epothilone hydroxy acid intermediate can be converted to its methyl ester by reaction with an alkylating agent such as trimethylsilyldiazomethane (TMSCHN 2 ), for example by silanization.
  • TMSCHN 2 trimethylsilyldiazomethane
  • Different or the same protecting group can be introduced, such as t-butyldimethylsilyl trifluoromethane sulfonate, trimethylsilyl chloride/trimethylsilyl imidazolium Protect the 3-, 7- and 15-free hydroxyl groups of the methyl ester (PI, ⁇ 2 or / and ⁇ 3).
  • the protecting group of the methyl ester can be removed by treatment with a certain base such as an oxide (LiOH) to obtain a carboxylated open-loop epothilone derivative.
  • a certain base such as an oxide (LiOH)
  • the selectively deprotected 14-X' is subjected to macrolide or lactamization with 1-carboxylic acid to give 3-, 7-protected or deprotected L15.
  • the synthesis method is the same as the general method 4, 5, 6 described in the chemical reaction synthesis route 5.
  • the Wittigyl key salt can be prepared by reacting a corresponding phosphomoxyl salt with a strong base such as bis(trimethylsilyl) potassium amide (KHMDS) or sodium (NaHMDS), butyl lithium,
  • KHMDS bis(trimethylsilyl) potassium amide
  • NaHMDS sodium
  • the Wittigide salt is prepared by sodium hydride or the like, or by other methods known in the art.
  • the phosphomoxyl salt can be prepared by the reaction of a mercapto halide with a triaryl- or tridecylphosphine such as triphenylphosphine or tributylphosphine, see Example 6.
  • the phosphonium salt L23 (wherein L8 is L3 when L13 is L23) is prepared by the synthesis route 8.
  • organometallic reagents such as ⁇ '-allyl magnesium bromide.
  • the phosphonium salt L24 (where L8 is L24, R8 in L13 is NR15P) can be prepared by the synthesis scheme 9. Synthetic pathway 9:
  • dehydration conditions such as catalytic amount of p-toluenesulfonic acid and azeotropic removal of water, it can be prepared by treatment with an amine.
  • P is a t-butyloxycarbonyl suitable for N protection.
  • R15 is not H
  • the compound is N-thiolated by halogenation in the presence of a base such as sodium hydroxide.
  • organometallic reagents such as alkyl or aryl magnesium halides or isoxalates.
  • organometallic reagent such as a mercapto or aryl halogenated mirror or an isoxygluconate.
  • Preferred compounds of the formula (I) of the present invention and salts thereof can also be produced by chemical total synthesis as shown by the synthesis routes 12 and 12B.
  • Synthetic pathway 12 :
  • L30-B/L12 L31 B L32 A compound such as L28 wherein PI is an oxygen protecting group such as tert-butyldimethylsilyl group can be obtained by a known method (i.e., Nicolaou, KC et al. Angew. Chem. IntEd. EngL ⁇ Applied Chemistry - International English Edition 1997, 36: 166) Prepared from the compound of formula L27.
  • the compound of the formula 29 can be produced by a known method (i.e., Schinzer, D. et al., Eur. Chem. Chron. 1996, 1:7). Aldol condensation of a compound of formula L28 and a compound of formula 29-A provides a compound of formula L30-A.
  • X' When X' is -OH in formula L31, it can be coupled with a compound of formula L30 and a compound of formula 31 by reaction with a standard esterifying agent such as DCC and DMAP; or by using standard amide bond when X' is NHR15 in L31.
  • an aldol reaction of a compound of the formula L28 and a compound of the formula 29-B can be carried out to obtain a compound of the formula L30-B (when R11, R12 is a methyl group, L30-B is L12).
  • the macrolide lactone or amidation can be carried out by a compound of the formula L30-B and a compound of the formula L31-B by suitable Wittig olefination.
  • a macrolide lactonization is carried out by using a standard esterification agent such as DCC and DMAP to obtain a compound of the formula L32; or when X' is NHR15 in L31, by using a standard
  • the amide bond coupling agent such as DCC, BOP, EDC/HOBT, PyBroP is subjected to macrocyclic amidation to prepare a compound of the formula L32. See synthetic route 12B.
  • the L31 compound can be produced from an aldehyde compound by synthesizing the synthesis reaction shown by the synthesis route 13.
  • An aldehyde compound in which G is a substituted or unsubstituted fluorenyl group, an aryl group, a heteroaryl group, a bicyclic heteroaryl group or G is preferably an aldehyde compound of the following formula by treatment with an olefinic ethylating agent such as ethylenylmagnesium bromide The olefin is ethylated to obtain X, which is an L31-A compound of OH.
  • G is a substituted or unsubstituted 'alkyl group, aryl group, heteroaryl group, bicyclic ring
  • the aryl group or G is preferably an aldehyde compound of the following formula which is reacted with an amine under dehydrating conditions, and is subjected to treatment with an olefinic ethylating agent such as ethylenylmagnesium bromide to ethylate the G compound to obtain X, L31-A compound of NHR15.
  • the L31-B phosphine salt can be synthesized from the L31-A compound by the same method as the general method 3, 4, 5 described in the chemical reaction synthesis route 8.
  • G is preferably the following:
  • the benzothiazole aldehyde compound can be obtained according to the following synthetic route 14 or the aldehyde compound L33 can be obtained by the method described in Example 8, and the L31 compound can be obtained by the synthesis route 13.
  • the compound of the formula (I) is further preferably a 12-transformed derivative.
  • Such compounds can be prepared by the general procedure for chemical modification as described in Chemical Reaction Scheme 16 to prepare a C-12 hydroxy compound of Formula I.
  • the invention provides a compound of formula (I) having the structure below.
  • the compounds of the invention can be screened using conventional analytical methods well known to those skilled in the art.
  • the cytotoxicity of a compound can be determined by SRB analysis as disclosed in Skehan et al, J. Natl. Cancer Inst. 1990, 82: 1107, which is incorporated herein by reference.
  • the compounds of the invention can be screened for tubulin polymerization using conventional analytical methods well known to those skilled in the art.
  • the compounds are screened for tubulin polymerization as described in Gianakakou et al, Intl. J. Cancer, 1998, 75: 63, which is incorporated herein by reference.
  • the invention further provides pharmaceutical compositions comprising a compound of the invention or a pharmaceutically acceptable salt, hydrate, polycrystalline structure, optical isomer, racemate, diastereomer or Enantiomers and one or more conventional pharmaceutical carriers and/or diluents.
  • composition of the present invention is in addition to the compound of the present invention or a pharmaceutically acceptable salt, hydrate, polycrystalline structure, optical isomer, racemate, diastereomer or enantiomer thereof.
  • one or more active drugs may also be included.
  • the invention also provides the use of a compound of the invention in the manufacture of a medicament for the treatment of a proliferative disorder.
  • the compounds of the present invention are useful for the preparation of a medicament for inhibiting excessive cell growth and halting cell growth.
  • the proliferative disease is preferably selected from the group consisting of tumors, multiple sclerosis, rheumatoid arthritis, atherosclerosis and restenosis.
  • the present invention provides a method of treating a proliferative disease using a compound of the present invention, which is preferably selected from the group consisting of tumors, multiple sclerosis, rheumatoid arthritis, atherosclerosis and restenosis.
  • the present invention also provides a pharmaceutical composition for treating a proliferative disease, which is preferably selected from the group consisting of tumors, multiple sclerosis, rheumatoid arthritis, atherosclerosis and restenosis.
  • the compound of the present invention may be in a free form or a pharmaceutically acceptable carrier, and an acceptable carrier such as an alcohol (ethanol), ethylene glycol (propylene glycol), polyoxyethylene glycol (PEG), Tween, or Solutol, etc., a pharmaceutical combination It may contain at least one cyclodextrin and an acceptable carrier.
  • an acceptable carrier such as an alcohol (ethanol), ethylene glycol (propylene glycol), polyoxyethylene glycol (PEG), Tween, or Solutol, etc.
  • PEG polyoxyethylene glycol
  • the compounds of the present invention may be formulated with a pharmaceutically acceptable carrier or diluent for oral, intravenous or subcutaneous administration, by standard methods, using solids suitable for the desired mode of administration or A liquid carrier, a diluent and an additive, a pharmaceutical composition is formulated.
  • a pharmaceutical composition is formulated.
  • the compound of the present invention can be administered in the form of a tablet, a capsule, a granule, a powder or the like, and the dose of the compound of the present invention is about
  • 0.05 to 200 mg/kg/day may be administered in a single dose or in a 2 to 5 minute dosage form.
  • the compounds of the present invention can be prepared by other methods known in the art for preparing low water solubility drugs.
  • the compound can form an emulsion with vitamin E and/or PEG polyacrylic acid derivatives (see WO 0/71163 and
  • the compound of the invention is first dissolved in ethanol and then the vitamin E and/or PEG polyacrylic acid derivative is added to form a therapeutic agent solution. Remove the ethanol and then form a precursor emulsion or add a surfactant (stable The aqueous solution of the formulation) forms a precursor emulsion.
  • the precursor emulsion can be dispersed to form a uniform emulsion.
  • the precursor emulsion is typically placed in a gel capsule.
  • the mechanism of action of the compound of Formula I is very similar to the cancer drug paclitaxel and epothilone, primarily by inducing tubulin polymerization and stabilizing microtubule assembly ( Microtubule assembly), thereby interfering with the function of cellular microtubules. This leads to inhibition of cell division and cell migration as well as intracellular signaling and protein secretion, as these behaviors depend on the rapid and efficient depolymerization of microtubules.
  • the compounds of formula I are effective against many proliferative diseases such as solid tumor diseases, liquid tumor diseases such as leukemia, and the like.
  • Cancers treated by the compounds of the invention including the head and neck; liver and biliary cancer; breast cancer, ovarian cancer, genitourinary cancer, colorectal cancer, lung cancer, brain cancer, kidney cancer, leukemia, gastric cancer, liver cancer, nerve Gliomas, malignant tumors, and lymphomas.
  • the method comprises administering to a cancer patient a therapeutically effective amount of a compound of the invention. If necessary, the method can be repeated to prevent cancer from spreading or to cure cancer. Especially due to their anti-angiogenic activity.
  • the compounds of formula I are useful in therapeutic combinations of possible combinations, especially one or more anti-proliferative, cytostatic or cytotoxic compounds.
  • the compounds and compositions of the invention can be used in combination with other anti-cancer drugs or therapies.
  • the compounds of the invention are useful in the treatment of non-cancerous diseases characterized by hyperproliferation of cells.
  • the compounds described herein are used to coat stents, similar to line-mesh tubes, to stop cell growth, and to prevent re-narrowing or re-occlusion of arteries.
  • the compounds of the invention may result in one or more of the following phenomena: (i) increasing arterial blood flow; (ii) reducing the clinical symptoms of the disease; (iii) reducing the rate of restenosis after heart valve surgery; or Iv) Prevent/reduce the progression of chronic atherosclerosis.
  • Streptomyce sp. ATCC55098 strain with 1 vial (lml) cryotube was inoculated with 5 ml of seed medium (20 g/L glucose, 20 g/L peptone, lOg/L Yeast Extract, pH 7.0 adjusted with NaOH. Used after sterilization) .
  • seed medium (20 g/L glucose, 20 g/L peptone, lOg/L Yeast Extract, pH 7.0 adjusted with NaOH. Used after sterilization
  • the culture was incubated for 2 days on a shaker at 30 °C.
  • Step 1 Treatment with a catalytic amount of tetrakis(triphenylphosphine)palladium (0.58 g) in argon gas in a solution of 55 ml of degassed tetrahydrofuran (THF) / water (10: lv / v) OH epothilone D (2.62 g), and the suspension was stirred at 25 C under Ar gas for 30 minutes, and the resulting bright yellow homogeneous solution was immediately dehydrated with sodium azide (0.49 g) (25 ml).
  • Solution treatment The reaction is at 45. C was kept for 1 hour, then diluted with 50 ml of water and extracted with ethyl acetate. The extract was washed with a saturated NaCl solution, dried over Na 2 SO 4 , filtered and evaporated. The product was purified by SiO 2 chromatography.
  • Step 2a Treatment of the above step 1 product (565 mg, 15-azide) in 15 ml of THF/water (10:1) solution in argon with a solution of trimethylidene 1.0 M in toluene (3 ml). ) 2 hours. The mixture was concentrated and the product was purified by EtOAc.
  • Step 2b The above step 1 product (565 mg, 15-azide) in a solution of 15 ml of THF/7j (10:1) was treated with triphenylphosphonium (19 mg) in argon for 2 hours. The mixture was concentrated and the product was purified by EtOAc.
  • Step 3 Macrolide lactonation, adding triethylamine and 2,4,6-trichlorobenzoyl chloride to the THF solution of the product in step 2 at room temperature. After 20 minutes, the mixture was diluted with toluene and added dropwise to a warm solution of 4-(dimethylamino)pyridine in toluene over 4 hours. After the addition was completed, the mixture was concentrated, and the product was purified by EtOAc. Cyclothiazide keto lactone compound 15 HH1 (C 27 3 ⁇ 4 2 N 2 0 5 S) of the MS (ESI +): 507 [ M + H] + Example 3. Preparation of 15-one ring thiazol amide compound HH2
  • step 3 Treat the methanol solution of the above step 2 product with 1N NaOH at room temperature, monitor by TLC or HPLC, and terminate the reaction by adding pH 4 phosphate buffer, remove the methanol by evaporation in vacuo, and extract the aqueous residue with ethyl acetate. It was then dried over Na 2 SO 4 , filtered and evaporated.
  • step 3 product (540 mg) was dissolved in 15 ml of acetonitrile / dimethylformamide (20: lv / v) solution to 0 ° C, followed by 1-light benzotriazole (0.135 g) and 1 -(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.5 g).
  • the mixture was heated to ambient temperature for 12 hours then diluted with water and extracted with ethyl acetate.
  • the extract is then washed with water, saturated NaHC03, and saturated NaCl, then dried over Na2SO4. Dry, filter and evaporate.
  • the product was purified by SiO 2 chromatography to obtain a protected 15-cycloketalactam compound.
  • the protected product was dissolved in 1:1 trifluoroacetic acid and dichloromethane to afford the final product.
  • step 6 Demethyl ester: 2.2 mg of the above step 6 product was dissolved in 0.5 ml of t-butyl alcohol/water (2:1), treated with 1 M LiOH (40 ⁇ L), and reacted at room temperature. Stir for 48 hours. The product was purified by chromatography on Si0 2.
  • step 7 Dissolve the above step 7 product in a mixture of acetonitrile, water and acetic acid, monitor the reaction by TLC or HPLC, and once the starting material disappears, the mixture is evaporated to dryness under vacuum.
  • the above step 7 compound may be used in a desmethylsilyl reagent or an acid in an inert solvent or a mixture thereof such as HF in TASF or THF. The pyridine is hydrolyzed to give a selective desilylation.
  • Macrolide lactation 87 ⁇ l of triethylamine and 68 ⁇ l of 2,4,6-trichlorobenzoyl chloride at room temperature
  • step 9 a hydroxy acid product of 0.216 g in 3 ml of THF. It was stirred at 0 C for 1 hour, and then added dropwise to a warm 0.354 g of N,N-(dimethylamino)pyridine solution in toluene over 4 hours at room temperature. After complete addition, stirred for 2 hours, the mixture was concentrated by evaporation, the product was purified by chromatography on Si0 2. 10. Deprotection: The protected product (67 mg) was dissolved in 1.5 mL THF and treated with hydrogen fluoride-pyridine (0.6 mL). After 20 minutes, the reaction was allowed to warm to rt for 3.5 h then cooled back to EtOAc.
  • the protected product (67 mg) was dissolved in 1.5 mL of THF and was taken &lt After 20 minutes, the reaction was allowed to warm to rt for 3.5 h then cooled back to EtOAc. The methoxytrimethylsilane (6 ml) was slowly added, the mixture was allowed to warm to room temperature and evaporated to an oil.
  • the 15-cycloketene lactone compound HH5 was obtained by the chemical epoxidation method of the reaction formula 15 of the present invention described in Example 9 to obtain the MS of the 14-epoxycetophenone compound HH6 (C 26 H 39 N0 6 S ) (ESI+ ): 494 [M+H]+.
  • Example 6 Preparation of (2-methyl-4-thiazole) methyltributylphosphine chloride
  • methyldiphenyl benzothiazole iodide can be prepared by reacting with triphenylphosphine to prepare dimethyl phenylthiazole phosphate salt L34.
  • the benzothiazole phosphate salt L34 prepared in the present example is prepared according to the preparation method of the fourth embodiment of the present invention (step 6-11) and the L12 compound (L12 when R, R1, and R2 are methyl groups).
  • a solution of dimethyldioxirane (0.1 M in acetone, 17 mD to a deoxygenated compound of the invention (505 mg) in 10 ml of CH 2 Cl 2 was added dropwise at 78 ° C. The mixture was heated to 50 ° C. After 1 hour, another portion of dimethyl digoxime solution (5 ml) was added and the reaction was continued at 50 ° C for 1.5 hours. The reaction was dried in a 50 ° C N 2 vapor. Purify the product.
  • the anti-cancer activity of the selective compounds of the invention against four different tumor cell lines was screened using the thiorhodamine B (SRB) assay.
  • SRB thiorhodamine B
  • the cultured cells were trypsinized, counted, and diluted to a suitable concentration (5000-7500 cells / 100 ⁇ l) with the growth medium.
  • the ⁇ /well cell suspension was added to a 96-well microtiter plate to inoculate the cells. After 20 hours, the compound tested in the growth medium diluted to 2 ⁇ 1000 ⁇ to 2 0.001 ⁇ ⁇ ⁇ ⁇ was added to each well.
  • the cells were fixed with 100 ⁇ of 110% trichloroacetic acid at 4 ° C for 1 hour, and then stained with 0.2% SRB/1% acetic acid for 20 minutes at room temperature.
  • the unbound dye was rinsed with 1% acetic acid, and the bound SRB was dissolved with 200 ⁇ l, 10 mM Tris base.
  • the amount of the binding dye was estimated by measuring the OD value at a wavelength of 515 nm. The amount of binding dye is proportional to the total cellular protein amount. Data were analyzed using the Kaleida Graph program and the half-inhibitory concentration (IC50) was calculated. Epothilone D and B were measured in parallel for comparison. The cytotoxicity test results of the selected compounds tested in the present invention are shown below. Other compounds of the invention can also be assayed in a similar manner.
  • the mechanism of action was determined using a cell-level (cdl-based) tubulin polymerization assay.
  • MCF-7 cells cultured in a 35 mm culture dish were treated with a compound of the present invention at 37 ° C for 1 hour.
  • the cells were washed twice with 2 mL of PBS without Ca and Mg, and 30 ( ⁇ L lysate (20 Mm Tris, ph 6.8, 1 mM MgCl 2 , 2 mM EDTA, 1% Triton X-100, plus
  • the cells were lysed by treating the cells for 5-10 minutes.
  • the lysate was transferred to a 1.5-mL Eppendorf tube.
  • the lysate was centrifuged at 18000 g for 12 minutes at room temperature.
  • Cythiazole derivatives have the same mechanism of action as epothilone and have similar kinetics and utility to epothilone under test conditions.
  • Other compounds of the invention can also be assayed by the same method.
  • Compound cell growth half inhibitory concentration
  • breast cancer MDR breast cancer
  • glioma glioma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Rheumatology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Pyrane Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Description

埃坡霉素类似物、 其药物组合物、 用途及其制备方法
技术领域
本发明涉及了新型 15环聚酮化合物及其中间体, 该聚酮化合物在结构上为天然的埃 5 坡霉素衍生物,本发明还特别涉及它们的制备方法及它们的药物用途,在制备含它们的药 物组合物中的应用。 背景技术
埃坡霉素 A (EpoA)和埃坡霉素 B (EpoB)为一种大环内酯类聚酮化合物衍生的 10 16元环环氧噻酮化合物,其最初从土壤细菌 Sorangium cellulosum菌株 So ce90 中分离出 来, 结构式如下所示。 [Hofle et al, 1996, Angew. Chem. Int. Ed. Engl. 35(13/14): 1567-1569; Gerth et al" 1996. J. Antibiotics 49(6): 560-563].
Figure imgf000002_0001
EpoA: R=H; EpoB: R=CH; 埃坡霉素对治疗癌症有巨大的潜能。虽然在结构上不相似,但埃坡霉素族的作用机理 和有名的癌症药物紫杉醇 (paclitaxel, Taxol)极为相似, 包括诱导微管蛋白聚合, 以及稳定 微管形成。这些化合物表现出对不同癌细胞系的强大细胞杀伤力。特别是,它们对具有多 种癌症药物耐药性 (MDR)的肿瘤细胞系, 尤其是对耐紫杉醇和其它抗癌药物的肿瘤细胞 系, 显示出引人注目的效果 [Altmaiin et al., 2000. Biochem. Biophys. Acta. 1470(3): M79-91; Bollag et al., Cancer Res. 55(11): 2325-2333]。
埃坡霉素 A和 B的脱氧配对物,也称为埃坡霉素 C和 D,已经成功地被化学全合成, 但也能从天然的埃坡霉素产生菌株 S. cellulosum的发酵提取物中, 和许多作为微量组分 的其它埃坡霉素类似结构一起检测到。目前,人们正致力于开发作为更加有效的化疗试剂 的埃坡霉素和其相关结构的类似物,如通过化学半合成可对天然存在的埃坡霉素化合物进 行修饰, 如。 PCT出版物 WO99/27890中描述了埃坡霉素 B转化成为相应的内酰胺类似 物 BMS247550的转化反应。
然而, 现已发现由埃坡霉素衍生而成的式 I的 15-元环噻酮内酯或内酰胺化合物具有 有益的药理学特性,并且可用于治疗增生性疾病,因此发明新型埃坡霉素衍生物具有持续 不断的兴趣。 发明内容
本发明的目的在于提供一系列 15-元大环噻酮内酯或内酰胺衍生物; 还提供了生产制 备的方法, 采用化学合成或化学修饰及生物转化等方法从埃坡霉素 D或 B及 4一脱甲基 埃坡霉素 D或 B等化合物中制得本发明的这类新型化合物及其它新型衍生物; 本发明进 一步提供了这类新型大环噻酮内酯或内酰胺化合物在制备抗肿瘤、抑制细胞过度增长和中 止细胞生长的药物组合物中的应用。
本发明提供的聚酮化合物, 一类新型 15-环噻酮化合物具有如下通式(I)
Figure imgf000003_0001
其中
当 A— D为下述式 (a)的碳碳双键或为式 (b)的环氧基团时, 不存在,
Figure imgf000003_0002
当 A— D为 C-C单键时, 为羟基或 H,
G选自取代或未取代的烷基、取代或未取代的芳基、杂芳基、杂环基、环烷基, 或下 式中任意一种:
Figure imgf000003_0003
Q选自 H、CM烷基、 NH2或羟基保护基如甲硅烷基醚中的任意一种 TMS, TES或 TBS; Ri, R2各自独立地选自 H或取代或未取代的烷基(优选 CM烷基, 更优选甲基), 或 共同形成环烷基;
R8选自 H、 羟基、 取代或未取代的烷基(优选 CM烷基, 更优选甲基)或 NH2、 N3 或 NR13R14;
X为 0, S或 N-R15,其中 5为11、 NR16R17、取代或未取代的垸基(优选 C^烷基, 更优选甲基)、 取代或未取代的芳基、 环烧基或杂环基;
Rm选自 H、 甲基、 NR16R17或卤代甲基;
R12选自 H、 烯丙基,羟基、 ¾或取代或未取代的烷基 (优选 .6烷基, 更优选甲 基); Ri2优选为烯丙基;
R9选自 H、 取代或未取代的烷基(优选 CM烷基, 更优选甲基)、 芳基、 杂芳基、 环 焼基、 杂环基, 所述杂芳基优选为噻唑基、吡啶基、噁唑基、 异噁唑基、喹啉基或苯并噁 唑基;
R5, , R7, Rn, R13, R14, R16, R17各自独立地选自 H、 羟基、 H2或取代 或未取代的烷基(优选 Cw垸基, 更优选甲基), 其中 R5, 也可共同形成 C=€双键;
Rk选自 H、 甲基、 取代或未取代的烷基(优选 Cw垸基, 更优选甲基)、 氨基烷基、 羟基烷基或卤代烷基;
R选自 H、 三氟甲基、 取代或未取代的烷基(优选 CM烷基, 更优选甲基)或卤素;
W为 S或 0, NH或 N-烷基;
或者上述化合物的药学可接受的盐、 水合物、 多晶结构体、 光学异构体、 外消旋体、 非对映异构体或对映异构体。 优选地, 式 I化合物中的 G选自:
Figure imgf000004_0001
在一个实施方案中, 本发明的化合物具有如下通式 (Π)所示的结构:
Figure imgf000005_0001
其中, X为 ^ 15或0;
为1¾115或0(2, 其它各基团定义同上所述。
在另一个实施方案中, 本发明的化合物具有如下通式 (III)所示的结构:
式 III
Figure imgf000005_0002
Q1和 Q2为 H、 CM烷基、 H2或羟基保护基如甲硅烷基醚中的任意一种 TMS,TES 或 TBS, 其它各基团的定义同上。 在另一个实施方案中, 本发明的化合物具有如下通式 (IV)所示的结构:
式 IV
Figure imgf000005_0003
其中, 式 IV中各基团的定义同上所述。
在又一个实施方案中, 本发明的化合物具有如下通式 (V)所示的结构 :
式 V
Figure imgf000005_0004
其中, X为 NR15或0; 5为11、 甲氧基或烧基, R12为 H、 烯丙基、 取代或未取的 烷基 (优选为 6烷基, 更优选为甲基)。 在又一个实施方案中, 本发明的化合物具有如下通式(VI) 的化合物:
式 VI
Figure imgf000006_0001
其中
X,为 NHR15、 NR15P、 OH或 OQ;其中, R15为 H、 甲氧基或垸基; P为 N-保护基团; Z为 II、 取代或未取代的垸基(优选为 _6烷基, 更优选为甲基,叔丁基)、 环烷基、 芳基或羧基保护基团;
Q1和 Q2各自为 H、 CM烷基、 NH2或羟基保护基; 除非另有说明, 否则本文上下文中通用术语具有下列含义:
任何不对称碳原子均可以以(R) -, (S) -或(R, S) -构型存在, 因此本发明化合物 可以大量光学、几何和立体异构体形式存在,所有这些异构体及其混合物都包括在本发明 的范围内。
除非另有说明, 否则本发明化合物中定义的垸氧基、烷基(包括羟基嫁基、 卤代烷基 和氨基烷基等中的烷基)优选为低级烷基或低级焼氧基, "低级"表示不超过且包括 6个 碳原子的基团,优选不超过且包括 4个碳原子的基团,其中所述基团为直链或具有一个或 多个分支的支链基团。取代的垸基是指被一到四个取代基, 如卤素, 三氟甲垸, 三氟甲氧 基, 烷酰基, 芳氧基, 氨基, 垸氨基, 杂环基氨基, 芳氨基, 芳焼基氨基, 烷酰基氨基, 垸基磺酰基, 烷硫基, 烷氧羧基等。 芳基是指环上具有 6-12个碳的单环或双环芳香基, 如苯基,二苯基等,芳基可为取代或未取代芳基。取代芳基是指被一个至四个取代基取代, 取代基可以是例如取代或未取代的烷基, 卤素, CF3, 三氟甲氧基, 羟基, 烷氧基, 环烷 氧基, 环浣基氨基, 垸酰基, 芳氧基, 氨基, 垸氨基, 杂环基氨基, 芳氨基, 芳烷基氨基, 垸酰基氨基, 烷基磺酰基, 巯基, 垸硫基, 环烧硫基, 硝基, 羧基, 羧基烷基, 氨基甲酰 基, 垸氧羧基等。杂芳基是指含有 1-3个选自氮、氧和 /或硫的杂原子的任何 5-或 6-元环, 其中 5-元环有 0-2个双键, 而 6-元环有 0-3个双键。其中氮和硫杂原子可任选被氧化, 也 可任选被季化, 优选具有至少一个氮原子和 0或 1个氧原子和 0或 1个硫原子的单 -或双 环基团的不饱和的杂芳基, 并优选是其中连接环具有 5-12个, 更优选 5或 6环原子的基 团, 并且所述杂芳基可未取代或被一个或多个优选选自卤素, 垸氧基, 烷硫基, 羟基, 烷 基和 /或烷酰基的取代基取代。 杂芳基优选选自噻唑基, 吡啶基, 噁唑基, 喹啉基, 苯并 噁唑基或苯并噻唑基。环烷基指可任选被取代的饱和碳环, 优选含有 1-3个环, 每环具有 3-7个碳原子, 可进一步与不饱和的 C3-C7碳环稠合。 环焼基优选为环丙基, 环戊基等 。 杂环基是指可任选被取代的、 饱和的非芳香环基, 如 4到 7元单环, 7到 11元双环, 或 10到 15元散环,其至少一个环中具有至少一个杂原子,在每个杂环基的环中可以有 1, 2, 或 3个选自氮, 氧, 硫的杂原子, 其中氮和硫杂原子也可任选被氧化, 氮原子也可任选被 季铵化, 杂环基可在任何杂原子或碳原子上连接。杂芳基可进一步与不饱和的 C3-C7碳环 稠合, 稠合后的基团例如为吡唑基, 噻唑基, 吡啶基, 噁唑基, 异噁唑基, 喹啉基, 苯并 噁唑基或苯并噻唑基, 咪唑基和呋喃基。
本发明化合物定义中所涉及的羟基保护基、 N-保护基团和羧基保护基团为本领域常 用的保护基, 例如, 羟基保护基优选为甲硅垸基醚, 如 TMS, TES或 TBS; N-保护基团优 选为叔丁基羧酸;羧基保护基团优选为甲基、叔丁基(如由叔丁基醇和碳化二亚胺而形成 的叔丁基)等。
在制备本发明的化合物时,在根据需要进行的工艺步骤中,原料化合物中不应参与反 应的官能团可以未保护的形式存在或可以由一个或多个保护基团保护或完全或部分除去。 保护基团的特征是它们本身易于通过溶剂解,还原,光解或通过酶活性除去,并且不存在 于最终产物中。羟基保护基团优选本文中提到的低级烷基甲硅烷基型羟基保护基团,且根 据需要以类似于本文所述方法引入,并根据需要除去,其中选择性保护或解保护也是可能 的。在本文中,有些保护基团在适当使用的地方未提到,熟练技术人员将清楚何时应该或 必须使用保护基团。
分子环化可以在常规条件下进行, 如 X'为羟基, 则环化对应于大环内酯化, 如 X'为 NH2获 NHR (烷基), 则环化对应于大环内酰胺形成。 由酸(或酐)化合物前体(或由 被保护的衍生物) 与游离羟基, 按照 M. Yamaguchi等人, Bull. Chem. Soc. Jpn. 1979, 52:1989中所描述的条件在合适的溶剂或溶剂混合物中进行大环内酯化反应。 内酰胺形成
(大环内酰胺化)在将连接羧酸与酰胺键常有的条件下进行,尤其是使用肽化学中常用的 标准偶合剂如 DCC HOBt 或二苯基磷酰基叠氮化物或溴代三吡咯烷基磷六磷酸盐
(PyBroP)进行相应的大环内酰胺的转化。
式 (I) 中 A-D形成为环氧和 C-C单键的化合物可以根据本身已知的方法利用化学 环氧化由 A-D为 C-C双键的式(I)化合物制备, 如使用过氧化物优选二甲基二环氧乙烷
(dioxirane)在合适的溶剂或溶剂混合物中,在降低的温度条件下进行反应。
Figure imgf000008_0001
Figure imgf000008_0002
其中, 通式 II化合物可以利用埃坡霉素或其衍生物 LL通过化学修饰或 /和生物转化 而制得。 如: 合成途径 1:
Figure imgf000008_0003
首先使用一种来源于微生物的羟基化酶使埃坡霉素或其衍生物的 C-14羟基化, 如合 成途径 1。该类 C-14羟基化埃坡霉素衍生物 L1可通过实施例 1中描述的微生物转化方法 制得。 根据 2005年 6月 22日公开的 CN1629283中所公开的, 可以容易地获得埃坡霉素 C或 D,如通过埃坡霉素生物合成基因的 P450基因失活导致天然埃坡霉素 A和 B的产生 菌产生主要代谢产物埃坡霉素 C或 D。 根据 2004年 8月 18日公开的 CN1521258中所公 幵的, 可以容易地获得 4-脱甲基埃坡霉素 A及 B或 C及 D, 一般情况下, 通过埃坡霉素 生物合成基因的伸展组件 (extender module) 8 中的 MT转甲基结构域的失活导致天然 埃坡霉素产生菌产生主要代谢产物 4-脱甲基埃坡霉素。 这两篇专利文献在此引作参考。 另一方面, 本发明涉及从埃坡霉素衍生物的噁唑 (oxazole)对应物 (counterpart), 合成 其中 W是 0的结构式(Π)中的化合物。根据 CN1521258中所述, 通过对埃坡霉素产生 菌中补充过量的丝氨酸,以有利于噁唑对应物产生的方式调节正常产生噻唑埃坡霉素化合 物的产生菌。
通式 II化合物进一步优选化合物 L4可通过化学反应合成途径 2中描述的通用方法由 C-14羟基化埃坡霉素衍生物制得。 该类化合物 L4也可通过实施例 2中描述的方法制得。 合成途径 2:
Figure imgf000009_0001
1. 利用 14-OH 埃坡霉素及衍生物通过使用 四 (三苯膦) 合鈀
( tetrakis(triphenyphosphine)palladium in THF/water中形成烯丙基钯 π配对物, 接用叠氮化 钠处理, 形成开环的叠氮化合物,
2. 然后用 Adam'scatalyst (Pt02)或还原剂如在乙醇中的三苯膦(triphenylphosphine) 将叠氮还原成 NH2。
3. 将式中羧酸与 14-OH进行大环内酯化反应,使用 Yamaguchi条件,在 OC下 THF 中利用大环内酯化试剂, 如 1, 3, 5-三氯苯甲酰氯, 和三乙胺处理羟基酸, 接着向反应 混合物中加入在甲苯溶液中 4- (二甲基氨基)吡啶, 并升温至 75C, 而获得 L4化合物或 保护的 L4中间体。
4. 保护基团可以存在于 14-OH埃坡霉素化合物的前体中, 并且应该保护所涉及的 官能团以防止不需要的副反应, 如酰化, 醚化, 氧化, 溶剂解和类似的反应。保护基团的 特征是它们本身易于通过溶剂解,还原,光解或通过酶活性除去,并且不存在于最终产物 中。 如首先保护基团可以存在于前体 14-OH埃坡霉素的 3-, 7-, 和 14-OH游离羟基中, 分别为 Pl, P2和 P3, 大环内酯化前, 14-OH的 P3保护基可利用在 THF中的 AcOH在 不导致除去保护基 Pl, P2的条件下选择性除去,最后式中的羧酸与能 14-OH反应大环内 酯化, 获得保护的 L4中间体, 利用本领域公知的方法可以进行 P1和 P2的去保护, 当 P1和: P2是甲硅烷基醚, 如 TMS、 TES或 TBS时, 可通过使用酸, 如二氯甲垸中的 HR 吡啶或三氯乙酸处理进行去保护而获得 L4。
合成途径 2-B:
Figure imgf000010_0001
当通式(Π) 中 R8为 NHR15时, R15不为 H时,可通过化学反应合成途径 2-B中描 述的通用方法由 C-14羟基化埃坡霉素衍生物制得。
1. 首先通过使用如四 (三苯膦) 合鈀形成烯丙基钯 π配对物, 接用伯胺处理, 可制 备 R15NH-的 L4-4, 其中 R15为 OH,取代或非取代的烷基、 环烷基、 芳基, 杂芳基、 0- 烷基。
2. 按照 M. Yamaguchi等人, Bull. Chem. Soc. Jpn. 1979, 52:1989中所描述的条件 将进行大环内酯化反应。
3. 如果 R15 为 OH,需要将 R15-0-TMS除去保护基团获得终产品。
通式 II化合物进一步优选化合物 L7化合物化学反应合成途径 3中描述的通用方法由 C-14羟基化埃坡霉素化合物制得, 如实施例 3中所述。
合成途径 3:
1. 首先可通过用合适的基团如三乙基甲硅烷基, 丁基二甲基甲硅烷基等等, 保
Figure imgf000010_0002
护游离羟基 3-和 7-OH分别为 P1和 P2, 14-OH的 P3保护基可利用在 THF中的 AcOH 在不导致除去保护基 PI, P2的条件下选择性除去。
2. 将 3, 7-保护形式的埃坡霉素衍生物通过使用四(三苯膦)合鈀形成烯丙基钯 π配对物, 接用伯胺处理, 或用二苯基磷酰基叠氮化物和二氮杂双环十一 -7-烯(DBU)反 应制得 14-叠氮基埃坡霉素。 再用三甲基膦和 ΝΗ40Η水溶液还原, 制得 3, 7-保护形式 的 14-.氨基-埃坡霉素衍生物
3. 将 3, 7-保护形式的 ί4-氨基-埃坡霉素衍生物在其中内酯羧基被选择性还原的 条件下与还原剂, 例如二 (异丁基) 氢化铝 (DiBAI-H) 反应, 获得保护的开环中间体
4. 在保护的开环中间体通过使用标准的酰胺键偶合剂如二苯基磷酰基叠氮化物 (diphenylphosphoryl azid)和碳酸氢钠或 EDC/HOBT -hydiOxybenzotriazole)和在 DMF 中 的 1-(3二甲基氨丙基)-3-乙基碳化二亚胺 {1- (3- dime laminopropyl)-3- ethylcarbodiimide} 或溴代三吡咯烷基磷六磷酸盐 (PyBroP)进行相应的大环内酰胺的转化, 获得保护的 L7 中间体, 去保护得到 L7化合物。
通式 II化合物进一步优选化合物 L9化合物,可通过化学反应合成途径 4中描述的通 用方法 c-14羟基化埃坡霉素化合物制得。
合成途径 4:
Figure imgf000011_0001
参照合成途径 4,使用通过皂化作用制备相应的开环埃坡霉素羟基酸中间体制备本发 明的 JL9化合物, 例如通过在甲醇水溶液中用氢氧化钠或用酯酶(如 Kg liver esterase)在 DMSO中水解处理, 将埃坡霉素衍生物转化为开环的段酸(seco-acid)羟基酸。最后根据 Yamaguchi等人方法将 14-OH与羧酸进行内酯化作用} 得到 L9。 在工艺上, 开环埃坡霉 素羟基酸中间体可通过使用叔丁基醇,碳化二亚胺(例如二环己基碳化二亚胺)和 4- (二 甲基氨基)吡啶作为催化剂,将酸转化为叔丁酯,或通过与三甲基甲硅烷基重氮甲烷反应, 将羟基酸转化为它的甲基酯。 例如通过硅烷化作用, 如三甲基甲硅烷基氯 /三甲基甲硅烷 ¾咪唑处理保护甲基酯的 -OH。通过用樟脑磺酸(CSA)在甲醇和二氯甲垸中或氢氧化 钠处理之后用乙酸处理, 除去中间体的叔丁酯或甲基酯的保护基团。 - OH与羧酸大环 内酯化反应后, 得到游离羟基被保护的 L9中间体, 接着进行去保护得到 L9。 在本发明的一些实施方案中涉及的优选化合物, 当 G为
Figure imgf000012_0001
提供下面结构的式 (ΠΙ) 的化合物及其盐:
式 III
Figure imgf000012_0002
通式 (III) 化合物,也可通过化学反应合成途径 5中描述的通用方法由埃坡霉素 D或 其衍生物如 4-脱甲基埃坡雩素 D制得,如实施例 4中所描述。
合成途径 5:
Figure imgf000012_0003
其中, X'为 OP3, NR15I>或 SF, P1, P2为独立的 H或相同或不同的保护基 , P3为 H 或保护基, P为 H或 N-保护基 , Ρ'为 H或 S-保护基 . X为 0,丽, >¾15或3。
1. 使用通过皂化作用制备相应的开环埃坡霉素羟基酸中间体,例如通过在甲醇水 溶液中用氢氧化钠或用合适的酯酶(如 Pig ver esterase等)水解处理, 将埃坡霉素衍生 物转化为开环的段酸(seco-acid)经基酸。 2. 开环埃坡霉素羟基酸中间体可通过与烷化剂如三甲基甲硅烷基重氮甲烷 (TMSCHN2) 反应, 将羟基酸转化为它的甲基酯, 例如通过硅烷化作用与能引入不同或 相同的保护基, 如叔丁基二甲硅基三氟甲磺酸酯 (t-butyldimethylsilyl trifluoromethane sulfonate) ,三甲基甲硅垸基氯 /三甲基甲硅垸基咪唑处理保护甲基酯的 3-, 7-和 15-游离 羟基(PI , Ρ2或 /和 Ρ3)。
3. 保护的 Lli通过臭氧 (ozone)氧化切断 12位上的双键, 获得化合物如式 L12 所示。
4. L12与化合物 L13通过合适的 Wittig烯化作用获得 L14,
5. 甲基酯的保护基团可通过用一定的碱如 氧化物(LiOH)处理除去, 而获得羧 酸化开环埃坡霉素衍生物。将选择性去保护的 14-X'与 1-羧酸进行大环内酯化或内酰胺化 作用, 得到 3-, 7-保护或去保护的 L15
6. 最后将亚乙基的 L15迸行环氧化反应获得 L16。
在本发明的一些实施方案中涉及的优选化合物, 当 G为
Figure imgf000013_0001
提供下面结构的式(IV) 的化合物及其盐。
式 IV
Figure imgf000013_0002
合成途径 6:
Figure imgf000013_0003
L20 L21 通式 IV化合物,也可通过化学反应合成途径 6中描述的通用方法由 L12和 L17(优选 Rm =CH3)制得。 合成方法相同于化学反应合成途径 5中描述的通用方法 4, 5, 6。
合成途径 7:
Figure imgf000014_0001
在本发明的其他实施方案中, 根据合成途径 7 中详细描述的合成利用式(IV)化合 物可以制备化合物 L22, 见实施例 5。 其中 R9优选为
Figure imgf000014_0002
例如 A.Rivkin等人在 J.Am.Chem.Soc. 2003, 125:2899中描述了其中 P1和 P2是羟基 保护基的酮 L20化合物与合适的维蒂希内鑰盐的反应得到保护的化合物, 接着去保护得 到式 L22的化合物。
通过相应的磷鑰盐与强碱反应可制备维蒂希内鑰盐,所述强碱如双 (三甲基甲硅垸基) 氨化钾 (KHMDS ) 或钠 (NaHMDS ), 丁基锂, 氢化钠或类似物, 或根据本领域公知的 其他方法制备维蒂希内鐺盐。 通过垸基卤化物与三芳基 -或三垸基膦(如三苯基膦或三丁 基膦的反应可以制备磷鑰盐, 见实施例 6。
在本发明的一些实施方案中, 膦鑰盐 L23 (当 L13为 L23时, L13中 R8为 OP3 ), 可通过按合成途径 8所示而制备。
合成途径 8:
Figure imgf000015_0001
通过标准的 Wittig烯化作用 (Meng, D., 等人 J. Org. Chem., 1996,61:7999)
1. 通过有机金属试剂如用 Χ'-烯丙基溴化镁处理。
2. 通过用在 DMF中的三乙基氯硅垸 (triethylsilyl chloride )将游离羟基用 TES 保护基保护 OP3。 在通过 Sharpless法与 AD-mix-a反应, 随后用乙酸乙酯中的四醋酸铅 ( lead tetraacetate)氧化断裂键,再用 还原剂如在甲醇中的硼氢化钠(sodium borohydride) 还原。
3. 通过与在甲苯(toluene) 中的 I, 咪唑(imidazole)和三苯膦反应。
4. 通过与三苯膦在乙氰中回流反应。
在本发明的一些实施方案中,膦鍮盐 L24 (当 L13为 L24时, L13 中 R8为 NR15P), 可通过按合成途径 9所示而制备。 合成途径 9:
Figure imgf000015_0002
Figure imgf000015_0003
1. 通过使用脱水条件如催化量的对甲苯磺酸及共沸除去水, 可用胺处理制得
2. 通过用烯丙基化试剂如 3-X'-炼丙基溴化镁处理
3. 以下的合成方法相同于化学反应合成途径 8中描述的通用方法 3, 4, 5。 在本发明的一些实施方案中,当 L13中 R9 为噻唑或吡啶或合成途径 9中原料物为噻 唑或吡啶醛化合物时,可以通过使用已知方法 (Taylar,R.E. Tetrahedron Lett. 1997, 38:2061) 或按合成途径 9-B所示而制备噻唑醛或吡啶醛,再按合成途径 8或 9所示方法制备 R9 为 噻唑或吡啶的膦鑰盐化合物。 合成途径 9-B:
Figure imgf000016_0001
在本发明的一些实施方案中, 膦鑰盐 L25 (当 L17为 L25时, L17中 X'=NR15P, R8 为甲基), 可通过按合成合成途径 10所示而制备。 合成途径 10:
Figure imgf000016_0002
1. 通过用烯乙基甘氨酸 N-保护, P 为适合于 N 保护的叔丁基羧基 ( t-butyloxycarbonyl )。
2. 当 R15不为 H时,通过在碱如氢氧化钠的存在下用卤代垸使化合物 N-垸基化。
3. 使用 N.O-二甲基羟胺和标准的偶合剂如 EDCI和 HOBT处理。
4. 用有机金属试剂如烷基或芳基卤化镁或异羟污酸酯处理。
5. 以下的合成方法相同于化学反应合成途径 8中描述的通用方法 3, 4, 5。 在本发明的一些实施方案中,膦鑰盐 L26 (当 L17为 L26时, L17中 X'=OP3, R8 为 甲基), 可通过按合成合成途径 11所示而制备。 合成途径 11 :
Figure imgf000017_0001
1. 通过用硝酸处理烯乙基甘氨酸。
2.通过用在 DMF中的三乙基氯硅烷(triethylsilyl chloride)将游离羟基用 TES保护 基保护 OP3
3. 使用 N.O-二甲基羟胺和标准的偶合剂如 EDCI和 HOBT处理。
4.用有机金属试剂如垸基或芳基卤化镜或异羟污酸酯处理。
5. 以下的合成方法相同于化学反应合成途径 8中描述的通用方法 3, 4, 5。
本发明的通式(I)中涉及的优选化合物及其盐,也可以通过合成途径 12和 12B所示 的化学全合成而制备。 合成途径 12:
Figure imgf000017_0002
合成途径 12B
Figure imgf000018_0001
L30-B/L12 L31 B L32 如其中 PI为氧保护基如叔丁基二甲基甲硅垸基的 L28的化合物可按已知方法 (即, Nicolaou, K.C.等 Angew.Chem.IntEd.EngL{应用化学-国际英文版} 1997, 36:166) 由式 L27 化合物制备。式 29化合物可按已知方法(即, Schinzer, D.等 Eur.Chem.Chron. 1996, 1:7) 制备。 式 L28化合物和式 29-A化合物的醛醇缩合反应可得式 L30-A化合物。 当式 L31 中 X'为 -OH时, 通过使用标准的酯化剂如 DCC和 DMAP反应, 可由式 L30化合物和式 31化合物偶合;或当 L31中 X'为 NHR15时,通过使用标准的酰胺键偶合剂如 DCC,BOP, EDC/HOBT, PyBroP可由式 L30-A化合物和式 L31-A化合物偶合; 再通过使用 Grubbs (RuCl2(=CHPh)(PCY3)2;见 Grubbs.等 Angew.Chem.IntEd.Engl. 1995, 34:2039或 Schrock 催化剂(见 Schrock,R.R.等 J. Am. Chem. Soc. 1990, 112-3875)进行键烯闭环复分解反应, 制得式 L32化合物 (合成途径 12)。
或可由式 L28化合物和式 29-B化合物的醛醇缩合反应可得式 L30-B化合物(当 R11, R12为甲基时, L30-B为 L12)。 可由式 L30-B化合物和式 L31-B化合物, 通过合适的 Wittig烯化作用偶合, 再进行大环内酯或酰胺化作用。 当式 L31中 X'为 -OH时, 通过使 用标准的酯化剂如 DCC和 DMAP反应, 进行大环内酯化制得式 L32化合物; 或当 L31 中 X'为 NHR15时, 通过使用标准的酰胺键偶合剂如 DCC, BOP, EDC/HOBT, PyBroP 进行大环酰胺化制得式 L32化合物。 见合成途径 12B。
合成途径 13 :
Figure imgf000018_0002
L31化合物可以通过合成合成途径 13所示的合成反应由醛化合物而制备。 通过与烯 乙基化试剂如烯乙基溴化镁处理, 使其中 G为取代或未取代的垸基, 芳基, 杂芳基, 二 环杂芳基或 G优选为下列各式的醛化合物烯乙基化, 制得 X,为 OH的 L31-A化合物, 当 L31-A中 X'为 时, 使其中 G为取代或未取代的'烷基, 芳基, 杂芳基, 二环杂芳 基或 G优选为下列各式的醛化合物与胺在脱水条件下反应, 在通过与烯乙基化试剂如烯 乙基溴化镁处理, 使 G化合物烯乙基化, 制得 X,为 NHR15的 L31-A化合物。 由 L31-A 化合物可按合成方法相同于化学反应合成途径 8中描述的通用方法 3,4, 5合成制得 L31-B 膦鑰盐。
G优选为下列各式:
Figure imgf000019_0001
当 G为苯并噻唑时, 可根据下列合成途径 14制得苯并噻唑醛化合物或通过实施例 8 中所描述, 制得醛化合物 L33, 再通过合成途径 13制得 L31化合物。
合成途径 14:
Figure imgf000019_0002
通式 (I)化合物进一步优选化合物为环氧化物 ( 12, 13-环氧衍生物)。该类化合物可 通过实施例 9中描述的本发明反应式 15的化学环氧化方法制得。 反应式 15:
Figure imgf000019_0003
通式 (I)化合物进一步优选 12-经基化衍生物。 该类化合物可通过化学反应式 16中 描述化学改性的通用方法制得式 I的 C-12羟基化合物。 化学反应式 16:
Figure imgf000020_0001
在其他实施方案中, 本发明提供通式 (I) 中具有下面结构的化合物。
oz
Figure imgf000021_0001
Figure imgf000021_0002
8TZ000/600ZN3/X3d 696S0T/600Z OAV 利用本领域技术人员公知的常规分析方法可以筛选本发明的化合物。 如根据 Skehan 等, J. Natl. Cancer Inst. 1990, 82: 1107中公开的通过 SRB分析可以测定化合物的细胞毒 性, 该篇文献在此引作参考。
利用本领域技术人员公知的常规分析方法可以对本发明的化合物筛选微管蛋白聚合 作用。如根据 Gianakakou等, Intl. J. Cancer, 1998, 75: 63中公开的方法对化合物筛选 微管蛋白聚合作用, 该篇文献在此引作参考。
本发明进一步提供了药物组合物,其包含本发明的化合物或者这些化合物的药学可接 受的盐、水合物、 多晶结构体、光学异构体、外消旋体、非对映异构体或对映异构体以及 —种或多种常规药用载体和 /或稀释剂。
本发明的药物组合物除了本发明的化合物或其药学可接受的盐、水合物、多晶结构体、 光学异构体、外消旋体、非对映异构体或对映异构体之外,还可含有一种或多种活性药物。
本发明还提供了本发明的化合物在制备治疗增殖疾病的药物中的应用。本发明的化合 物可用于制备抑制细胞过度增长和中止细胞生长的药物中的应用。所述增殖疾病优选选自 如下组成的组: 肿瘤、 多发性硬化、 类风湿性关节炎、 动脉粥样硬化和再狭窄。
本发明提供了利用本发明的化合物治疗增殖疾病的方法,所述增殖疾病优选选自如下 组成的组: 肿瘤、 多发性硬化、 类风湿性关节炎、 动脉粥样硬化和再狭窄。
本发明还提供了一种用于治疗增殖疾病的药物组合物,所述增殖疾病优选选自如下组 成的组: 肿瘤、 多发性硬化、 类风湿性关节炎、 动脉粥样硬化和再狭窄。
本发明的化合物可以是自由形式或者药物可接受的载体, 可接受的载体如醇类 (乙 醇), 乙二醇(丙二醇), 聚氧乙二醇(PEG), Tween, 或 Solutol等, 药物组合可以含有 至少一种环糊精和可接受的载体。 如前体药(produrg)和本发明化合物的盐和酯。 化合 物可以是任何形态的,如固态,半固态或液态。本发明所述的化合物可与药学上可接受的 载体或稀释剂配制成用于口服,静脉给药或皮下给药的制剂,可按标准方法,使用适用于 所需的给药方式的固体或液体载体, 稀释剂和添加剂, 配制药物组合物, 对于口服制剂, 本发明化合物可以片剂、 胶囊、 颗粒、 粉末等形式给药, 本发明化合物的剂量范围为约
0.05到 200mg/kg/天, 可单剂量或 2到 5分剂量形式给药。
本发明的化合物可以采用其它如已知的制备低水溶性药物的制剂方法制得。例如,化 合物可以和维生素 E和 /或 PEG聚丙烯酸衍生物形成乳剂 (参见文献 WO00/71163 和
US6458373 B1 )。 通常, 先将本发明的化合物溶于乙醇, 然后加入维生素 E和 /或 PEG聚 丙烯酸衍生物形成治疗剂溶液。将乙醇去除,然后形成前体乳剂或者加入含表面活性剂 (稳 定剂)的水溶液来形成前体乳剂。用于静脉注射的给药方式,可将前体乳剂分散形成均勾 的乳剂。 用于口服药剂, 前体乳剂一般置于凝胶胶囊中。
基于其作用为微管蛋白解聚抑制剂的功效,式 I的化合物的作用机理和癌症药物紫杉 醇 (paclitaxel)和埃坡霉素极为相同, 主要是通过诱导微管蛋白聚合以及稳定微管装配 (microtubule assembly), 从而干扰细胞微管的功能。 这就导致了对细胞分裂和细胞迁移以 及胞内的信号传递和蛋白分泌的抑制,因为这些行为都有赖于微管快速和高效的解聚。因 此式 I的化合物可有效对抗许多增生性疾病, 如实体瘤疾病、 液体肿瘤疾病 (如白血病) 等。
本发明化合物治疗的癌症, 包括头部和颈部; 肝和胆部的癌症; 乳腺癌, 卵巢癌, 泌 尿生殖癌, 结肠直肠癌, 肺癌, 脑癌, 肾癌, 白血病, 胃癌, 肝癌, 神经胶质瘤、 恶性肿 瘤,以及淋巴瘤。该方法包括给癌症患者使用治疗有效量的本发明化合物。如果必要的话, 该方法可以重复, 以防止癌扩散或者是根治癌症。 尤其是由于它们的抗血管生成活性。 式 I化合物可用于可能的组合的治疗剂尤其是一种或多种抗增殖、抑制细胞生长或细胞毒 性化合物另一方面,本发明的化合物和组合物能与其它抗癌药物或疗法共同使用。另一方 面,本发明的化合物可用于治疗以细胞过度增生为特征的非癌类疾病。在本发明的一方面, 本发明描述的化合物用于包覆支架, 类似于线-网管, 用于中止细胞生长, 以及防止再狭 窄或动脉的再阻塞。 临床试验上, 本发明的化合物会导致一种或几种如下现象: (i)增加 动脉血流; (ii)减轻疾病的临床症状; (iii) 降低心瓣手术后的再狭窄速率; 或 (iv) 阻 止 /减轻慢性动脉硬化症的进程。 实施例
实施例 1 产生 14-羟基化埃坡霉素衍生物的生物转化
用 1小瓶(lml)冻存管的 Streptomyce sp. ATCC55098菌株接种 5ml种子培养基(20g/L glucose, 20g/L peptone, lOg/L Yeast Extract,用 NaOH调 pH7.0。灭菌消毒后使用)。培养 物在 30°C摇床上培养 2天。将 2.5ml的培养物转移到烧瓶内 50ml的发酵培养基中(发 酵培养基配方为: 30g/L面包酵母; 15g/L玉米浆, lg/L CaC03, 45g/L玉米淀粉, 23.8g/L HEPES, 20g/L糊精,用 NaOH调 pH7.0。 灭菌消毒后使用), 然后在 30°C下培 养 24小时, 加入 5- lOmg的埃坡霉素 D或适当的本发明化合物到培养液中, 继续培养 2到 3天。 从培养物中分离出转化产物并回收 14-轻基化埃坡霉素衍生物。 例如, 14-羟 基埃坡霉素 D作为主要生物转化产物从起始化合物的埃坡霉素 D中分离出来。
14-羟基埃坡霉素 D ( C^H^NOsS ) 的 MS (ESI+) : 508 [M+H]+ 实施例 2. 15-环噻酮内酯化合物 HH1的制备
Figure imgf000024_0001
步骤 1 : 用催化量的四 (三苯基磷)合钯(0.58g)在氩气中处理容于 55ml脱气化的 四氢呋喃(THF) /水(10: lv/v)溶液中的 14-OH埃坡霉素 D (2.62g), 并将该悬浮液在 25C及 Ar气下搅拌 30分钟, 将所得的亮黄色均相溶液立即用叠氮化钠 (0.49g) 的脱气 水 (25ml)溶液处理。 反应在 45。C保持 1小时, 然后用 50ml水稀释, 并用乙酸乙酯提 取。 用饱和 NaCl液洗涤提取物, 用 Na2S04干燥, 过滤后蒸发。 用 Si02色谱提纯产物。
步骤 2a: 环境温度下, 在氩气中用三甲基磯 1.0M的甲苯(3ml)溶液处理容于 15ml THF/水 ( 10: 1 )溶液的上述步骤 1产物(565mg, 15-叠氮化物) 2小时。 浓缩混合物, 用 Si02色谱提纯产物。
步骤 2b.在氩气中用三苯磷 (19mg) 处理容于 15ml THF/7j ( 10: 1 )溶液的上述步 骤 1产物 (565mg, 15-叠氮化物) 2小时。 浓缩混合物, 用 Si02色谱提纯产物。
步骤 3.大环内酯化作用,室温下, 将三乙胺和 2, 4, 6-三氯苯甲酰氯加入到步骤 2 中产品的 THF溶液中。 20分钟后, 用甲苯稀释混合物并用 4小时滴加给温热的在甲苯中 的 4- (二甲基氨基) 吡啶溶液。 加入完成后, 浓缩混合物, 用 Si02色谱提纯产物。 15- 环噻酮内酯化合物 HH1 (C27¾2N205S ) 的 MS (ESI+): 507 [M+H]+ 实施例 3. 15-环噻酮内酰胺化合物 HH2的制备
Figure imgf000025_0001
Figure imgf000025_0002
1. 将 1.5ml干躁 THF 中的 3, 7-0- (叔丁基二甲基甲硅烷基) - 14-OH epothiloneD
(30mg) 的溶液冷却至 0C, 并用二苯基憐酰基叠氮化物(15.5微升)处理 5分钟后, 加 入 1, 8-二氮杂(5.4.0)双环十一 -7-烯(DBU) 8.8微升, 并且在 0C下将反应搅拌 2小 时,然后温热至室温反应搅拌 20小时。将溶液倒入 30ml乙酸乙酯,并用 2x10ml水洗涤, 合并的水相用乙酸乙酯(2X15ml)萃取, 然后用 Na2S04干燥, 过滤并蒸发。 用 Si02色 谱提纯 3, 7-0- (叔丁基二甲基甲硅浣基)保护的 14-叠氮基埃坡霉素产品。
2a.将 0.3ml的 THF 中上述步骤的叠氮化物(14mg)和三甲基膦(33微升的 1MTHF 溶液) 的溶液搅拌 5分钟, 然后用 80微升水处理并再搅拌 3小时, 叠氮化物全部耗尽, 加入 50微升 28%的 NH40H水溶液时磷酰亚胺完全转化为胺。 25C室温撹拌 1小时后, 将混合物的溶剂用真空蒸发至干, 在硅胶上进行色谱分离 (10%甲醇的氯仿溶液), 得到
3, 7-0- (叔丁基二甲基甲硅烷基)保护的 14-氨基埃坡霉素产品。
2b.另一种方法: 将林德乐催化剂 18mg悬浮在 0.5ml 乙醇中并且使其饱和, 随后加 入溶于乙醇 -甲醇混合物中的上述步骤的叠氮化物,室温下搅拌 30分钟,该混悬液经硅藻 土过滤, 用乙酸乙酯洗漆, 真空干燥。
3. 室温下, 用 1N的 NaOH处理上述步骤 2产品的甲醇溶液, 通过 TLC或 HPLC监 测, 并且通过加入 pH4的磷酸盐缓冲液终止反应, 真空蒸发除去甲醇, 用乙酸乙酯萃取 含水残余物, 然后用 Na2S04干燥, 过滤并蒸发。
4a. 将上述步骤 3产品 (540mg)容于 15ml乙腈 /二甲基甲酰胺 (20: lv/v) 溶液冷 却到 0°C, 继而用 1-轻基苯并三唑(0.135g)和 1-(3-二甲基氨丙基 )-3-乙基碳化二亚胺盐 酸盐 (0.5g) 处理。 将混合物加热到环境温度下并保持 12小时, 然后用水稀释并用乙酸 乙酯提取。 继而用水, 饱和 NaHC03, 以及饱和 NaCl液洗涤提取物, 然后用 Na2S04干 燥, 过滤并蒸发。 用 Si02色谱提纯产品以获得保护的 15-环噻酮内酰胺化合物。 将保护 的产品溶解于 1:1三氟乙酸和二氯甲烷中去保护获得终产物。
4b.另一种方法: 在 OC 及 Ax下, 用固体 (0.42g) 和二苯基磷酰基叠氮化物 (diphenylphosp oryl azid, 0.54ml)处理上述步骤 2化合物(0.33g) 脱气 DMF (250ml) 溶液, 将所得悬浮液在 4C搅拌 24小时, 在 0C用磷酸盐缓冲液(250ml, pH7.0)稀释, 用乙酸乙酯 (4X100ml)萃取, 将有机相用 10%氯化锂水溶液(2x100ml)洗涤, 然后用 Na2S04 干燥, 过滤并蒸发。 用 Si02 色谱提纯产品。 15-环噻酮内酰胺化合物 HH2 (C27H42N205S ) 的 MS (ESI+): 507 [M+H]+ 实施例 4. 15-环噻酮化合物 HH3的制备
Figure imgf000026_0001
1. 开环: 将埃坡霉素 D (8.4mg)溶解在 125微升的 DMSO,并用 5ml pH7.0 的磷 酸缓冲液稀释, 加入猪肝脂酶 (Pig liver esterase) 200单位 37C水解过夜而获得。 混合物用 1NHC1调 PH =4.5, 在用 2x5ml二氯甲烷(dichloromethane)提取, 提取物用 Na2S04干 燥, 过滤并蒸发。 用 Si02色谱法(含 1%乙酸的乙酸乙酯洗脱)提纯产品。 MS (ESI+): 510 [M+H]+
2.羧酸甲基化: 1 mg上述步骤 1产品溶于 0.5ml的 2:7 甲醇:甲苯 (methanol:toluene) 的混合液中, 加入 2滴三甲基硅垸基重氮甲烷 (trimethylsilyl diazomethane), 25C处理 10 分钟后, 让混合物蒸干, 进行 Si02色谱提纯, 得到纯的产品。 MS (ESI+): 524 [M+H]+ 3.游离羟基保护:上述步骤 2产品 20.4 mg溶于 2ml无水二氯甲垸,加入 2,6-二甲基 吡啶 (2,6-lutidine ) ( 23 微升 ) 冷却至 -14C , 滴加叔丁基二甲硅基三氟甲磺酸盐
(t-Butyldimethysilyl triflate) (32微升), 反应 30分钟后, 继续加入 2,6-二甲基吡啶 (2,6-lutidine) (33微升 )和叔丁基二甲硅基三氟甲磺酸盐 (t-Butyldimethysilyl triflate) (65微升), 反应 12小时后, 加人饱和 NaHC03 (5ml), 用 2x5ml二氯甲垸提取, 提取物 用然后用 Na2S04干燥, 过滤并蒸发。 用 Si02色谱提纯产品 (三 3,7,15-TBS-EpoD)。 MS (ESI+): 852 [M+H-CH3]+
4.分子断裂: 上述步骤 3产品 6.4mg溶于 2ml无水二氯甲垸,冷却至 -78C, 将臭氧 (Ozone)通过溶液约 1分钟,溶液变为浅兰色。加入三苯基瞵(Triphenylphosphine) (8mg), 然后在 30分钟内温热至室温, 让混合物蒸干, 进行 Si02色谱提纯, 得到纯的产品 (L12 当 、 Rl、 R2为甲基时的化合物)。 MS (ESI+): 573 [M+H]+
5.磷鑰盐的制备: 小分子化合物 L24 (其中 R9为噻唑, X,OP3, R15=H), 可按 实施方案中合成途径 9的通用方法制备而得。
Figure imgf000027_0001
6. Wittig: 上述步骤 5产品 18mg溶于 0.5ml无水四氢呋喃(tetrahydroftiran) ,冷却 至 0°C,加入二 (三甲硅基)氨基钠 (Sodiumbis(trimethylsilyl)amide) (31微升), 溶液 变为棕色, 混合物冷却至 -20C, 加入溶于 0.5ml无水 THF上述步骤 4产品 7.3mg, 反应 10分钟后, 加入饱和 NaHC03 (4ml), 用 2x2ml二氯甲烷提取, 提取物然后用 Na2S04 干燥, 过滤并蒸发。 用 Si02色谱提纯产品。 MS (ESI+): 867 [M+H-CH3]+
7.去甲基酯:上述步骤 6产品 2.2mg溶于 0.5ml叔丁醇 /7 (t-butyl alcohol/water )(2:1), 用 lM LiOH (40微升) 处理, 反应在室温下搅拌 48小时。 用 Si02色谱提纯产品。
8. 14-OH去保护 (去 P3): 将上述步骤 7产品溶解于乙晴, 水和乙酸的混合物, 通过 TLC或 HPLC监测反应, 起始物一旦消失, 真空下将混合物蒸发至干。 或将上述步骤 7 化合物用去甲硅垸基试剂或惰性溶剂中的酸或其混合物如 TASF或 THF中的 HF。吡啶水 解, 得到选择性去甲硅烷基化的。
9.大环内酯化作用: 室温下, 将 87微升三乙胺和 68微升 2, 4, 6-三氯苯甲酰氯
(Aldrich)加入到步骤 9中羟基酸产品 0.216克在 3毫升 THF溶液中。在 0C下搅拌 1小 时, 然后在室温下经 4小时滴加给温热的在甲苯中的 0.354克 N, N- (二甲基氨基) -吡 啶溶液。 加入完成后, 再搅拌 2小时, 蒸发浓缩混合物, 用 Si02色谱提纯产物。 10. 去保护: 将保护的产品 (67mg)溶解于 1.5ml 的 THF并在 0C下用氟化氢- 吡啶 (0.6ml)处理。 20分钟后, 让反应温热至室温, 保持 3.5小时, 然后冷却回 0C。 缓 慢加入甲氧基三甲基硅烷 (6ml), 让混合物升至室温并蒸发至油状物, 将该油状物进行 SiC 色谱提纯, 得到纯的产品。 15-环噻酮内酯化合物 (C27H42N205S ) 的 MS (ESI+): 507 [M+H]+
11. 环氧化: 将上述步骤 10产品按实施例 9进行化学环氧化反应而制得 15-环环 氧噻酮化合物 HH3 (C27¾2N206S ) 的 MS (ESI+): 523 [M+H]+ 实施例 5 15-环噻酮内酰胺化合物 HH4的制备
Figure imgf000028_0001
-30C下, 向 3mlTHF中的 2-甲基噻唑 -4-甲基三正丁基氯化物 (0.64g) 的溶液经 10 分钟滴加甲苯(1.5ml) 中的 0.5M双(三甲基甲硅垸基)氨化钾 (KHMDS)溶液。 让该 溶液经 40分钟温热至 0C,然后冷却至 -70C,并且经 10分钟滴加 1ml在 THF 中的式 L20 (当 L20 中 Rm 为甲基, X为 NH) 酮化合物 (85mg) 的溶液 (A.Rivkin等人在 J.Am.Chem.Soc. 2003, 125:2899.) 20分钟后,让混合物经 1小时温热至 -30C。保持 2小时。 通过加入人饱和的氯化铵水溶液终止反应并且用乙酸乙酯萃取, 提取物然后用盐水洗涤, MgS04干燥, 过滤并蒸发。 用 Si02色谱提纯得到保护的产品。
将保护的产品 (67mg)溶解于 1.5ml 的 THF并在 0C下用氟化氢-吡啶 (0.6ml) 处 理。 20分钟后, 让反应温热至室温, 保持 3.5小时, 然后冷却回 0C。 缓慢加入甲氧基三 甲基硅烷(6ml), 让混合物升至室温并蒸发至油状物, 将该油状物进行 Si02色谱提纯, 得到纯的产品。 15-环噻酮内酰胺化合物 HH4 (C26H40N2O4S )的 MS (ESI+): 477 [M+H]+ 当利用 L20中 Rm为甲基, X为 0的 L20酮化合物进行反应, 获得 15-环噻酮内酯 化合物 HH5 (C26H39N05S ) 的 MS (ESI+): 478 [M+H]+。
15-环噻酮内酯化合物 HH5通过实施例 9中描述的本发明反应式 15的化学环氧化方 法制得 14-环氧噻酮化合物 HH6 (C26H39N06S ) 的 MS (ESI+): 494 [M+H]+。 实施例 6 (2-甲基 4-噻唑) 甲基三丁基膦氯化物的制备
Figure imgf000029_0001
30mmol 的 1.3-二氯丙酮和 30mmol 的硫代乙酰胺的混合物溶于 21ml的无水乙醇, 并在氮气下回流过夜。 真空下浓缩, 残余物溶于 100ml水中, 调水溶液 pH8.0, 然后用 乙醚萃取。 依次用加人饱和 NaHC03 (4ml), 用 2x2ml二氯甲垸提取, 提取物然后用饱 和的 NaHC.03, 水, 盐水洗涤, 有机相拥 Na2S04干燥, 过滤并蒸发。 用 Si02色谱提纯 产品 2-甲基 -4-氯甲基噻唑。
向 3ml苯中的 557mg的 2-甲基 -4-氯甲基噻唑(滴加三正丁基膦。 得到的溶液在氮气 下回流过夜, 真空下浓缩溶液, 通过加入 1 : 1 (v/v) 乙醚和己烧混合物结晶残余物。 然 后过滤固体, 用少量己垸洗涤后干燥, 获得的膦盐为白色固体物。 实施例 7 15-环吡啶内酰胺化合物 HH9的制备
Figure imgf000029_0002
制备(2-吡啶基) 甲基三正丁基膦氯化物。 氮气下, 向 15ml苯中 lOmmol的 2- (氯 甲基) -吡啶溶液滴加 lOmmol三正丁基膦, 将得到的溶液回流 18小时后冷却至室温。 真 空下浓縮溶液; 采取必要的措施减少与空气接住。 通过向残余物加入乙醚生成白色固体。 过滤掉母液, 氮气下用乙醚将白色固体真空干燥, 得到白色粉末产物。
根据实施例 5的方法制备化合物, 用 (2-吡啶基) 甲基三正丁基膦氯化物与式 L20 酮 (当 X为 NH) 反应。 在终止前将反应温热至 -10C。 得到纯的产品。 15-环吡啶内酰胺 化合物 HH9 (C27H40N2O4 ) 的 MS (ESI+): 457 [M+H]+
实施例 8苯并噻唑膦鑰盐化合物 L34及 14-环氧苯丙噻酮化合物 HH8的制备
Figure imgf000029_0003
将 10.5克 N-溴代琥珀酰亚胺加入 8克二甲基苯丙噻唑(Fluka, Buchs)在 50毫升四 氯化碳溶液中,用钨灯辐照并加热 4小时至 80C。将反应混合物冷却至室温后,过滤并蒸 发溶剂, 获得的油物用 100毫升 50%乙酸水溶液和 23, 4克六亚甲基四胺混合, 加热 2 小时至 110C。然后用水终止反应, 然后用乙酸乙酯萃取。提取物依次用饱和的 NaHC03, 水, 盐水反萃取, 用 Na2S04干燥, 过滤并蒸发。 用 Si02色谱提纯产品。
根据合成途径 8描述的方法 2, 3, 4, 5, 用二甲基苯丙噻唑醛与烯乙基溴化镁反应,
P3保护, Sharpless还原, I化, 最后甲二基苯丙噻唑碘化物与三苯基膦反应可以制备二 甲基苯丙噻唑磷鑰盐 L34。
将本实施例所制备的苯丙噻唑磷鎗盐 L34按照本发明的实施例 4的制备方法 (步 骤 6-11 )与 L12化合物 (L12当 R、 Rl、 R2为甲基时的化合物)制得 14-环氧苯丙噻酮 化合物 HH8 (C27H39N06S ) 的 MS (ESI+): 504 [M+H]+
Figure imgf000030_0001
本实施例描述了当 A-Q连在一起形成 C=C双键的式 I化合物的环氧化反应。 在一 78°C,滴加二甲基二环氧乙烷溶液(丙酮中 0.1M, 17mD到本发明的脱氧化合物(505mg) 的 10ml CH2Cl2溶液中。将混合物加热到一 50°C, 保持 1小时, 之后加入另一部分二甲基 二环氧乙垸溶液(5ml), 反应在一50°C下继续 1.5小时。在一 50。C的 N2蒸汽中干燥反应 物。 用 Si02色谱提纯产物。 实施例 10 ■
生物活性的测定
采用硫罗丹明 B (SRB)试验, 筛选本发明的选择性化合物对四种不同的肿瘤细胞品 系的抗癌活性。 在 SRB分析中, 使培养的细胞被胰蛋白酶化, 然后计数, 并用生长培养 基稀释到合适的浓度(5000-7500细胞 /100μ1)。 将 ΙΟΟμΙ /孔的细胞悬浮液加入 96-孔的微 量滴定板中接种细胞。 20小时后,将在生长培养基中稀释成 2χ1000ηΜ至 2χ0.001ηΜ的 ΙΟΟμΙ测试的化合物加到每个孔中。经过 3天的培养后,用 100μ110%的三氯乙酸,在 4°C 下固定细胞 1小时, 然后用 0.2%SRB/1%乙酸在室温下染色 20分钟。 用 1 %的乙酸漂洗 未结合的染料, 用 200μ1, 10mM的 Tris碱溶解结合的 SRB。 结合染料的量通过测定波长 515nm的 OD值来推算。结合染料的量与总的细胞蛋白量成正比。数据用 Kaleida Graph程 序分析并计算半数抑制浓度(IC50)。平行测定埃坡霉素 D和 B以作比较。本发明中测试 的选择化合物的细胞毒性试验结果如下所示。 本发明的其它化合物也可用相似的方法测 定。
用细胞水平的 (cdl-based)微管蛋白聚合试验测定作用机理。 试验中, 在 37°C下, 用 ΙμΜ本发明的化合物对培养于 35mm培养皿中的 MCF-7细胞处理 1小时。 用 2mL不 含 Ca和 Mg的 PBS洗涤细胞两遍,在室温下用 30(^L的裂解液(20Mm Tris, ph 6.8, 1 mM MgCl2, 2 mM EDTA, 1% Triton X-100,加上蛋白酶抑制剂)处理细胞 5-10分钟而使细胞裂 解。将裂解液转移到 1.5-mL的 Eppendorf 管中。室温下,裂解液在 18000g离心 12分钟。 将含有可溶性或未聚合的微管蛋白的上清液与含不溶性或聚合的微管蛋白的粒状沉淀分 离, 并转移到新管中。 然后用 30(^L的裂解液重新悬浮粒状沉淀。 通过 SDS-PAGE和用 β -微管蛋白抗体(Sigma)进行免疫印迹分析每个样品,, 然后用 NIHImage程序分析印 迹上 e -微管蛋白信号的量,从而测定细胞中微管蛋白聚合的变化。
微管蛋白聚合试验说明 15环噻唑衍生物具有与埃坡霉素相同的作用机理, 在测试条 件下与埃坡霉素有相似的动力学和效用。 本发明的其它化合物也可用相同方法测定。 化合物 细胞生长半数抑制浓度
(IC50, nM)
MCF-7 NCI/ADR-RES SF-268 NC1-H460
(乳腺癌:) (MDR乳腺癌) (神经胶质瘤) (肺癌)
Epo D 13 42 18 17
Epo B 0.5 5 0.8 0.7
15-氨基环氧噻酮 1 3 1 0.5
HH3
14-环氧噻酮 HH6 0.2 1 1 0.5
14-环氧苯并噻酮 0.5 0.5 1 0.2

Claims

权利要求
1. 具有如下通式(I) 的 15-环噻酮化合物:
Figure imgf000032_0001
其中,
当 A— D为下述式 (a)的碳碳双键或为式 (b)的环氧基团时, 不存在,
Figure imgf000032_0002
当 A— D为 C-C单键时, 为羟基或 H,
G选自取代或未取代的烷基、取代或未取代的芳基、杂芳基、 杂环基、环垸基, 或下 式中任意一种:
Figure imgf000032_0003
Q选自 H、 CM烷基、 NH2或羟基保护基:
Ri , R2各自独立地选自 H或取代或未取代的 CM烷基, 或共同形成环垸基; R8选自 H、 羟基、 取代或未取代的 .6垸基或 NH2、 N3或 NR13R14 ;
X为 0, S或 N-R15,其中 5为11、 NR16R17、 取代或未取代的 Cw垸基、 取代或未 取代的芳基、 环烷基或杂环基;
R9选自 H、 取代或未取代的 CM烷基、 芳基、 杂芳基、 环垸基或杂环基;
Ri2选自 H、 烯丙基、 羟基、 NH2或取代或未取代的 C^烷基;
Rm选自 H、 甲基、 NR16R17或卤代甲基;
Rk选自 H、 取代或未取代的 Cw烷基、 氨基烷基、 羟基垸基或卤代烷基;
3, , R5, , R7, Ru, R13, R14, R16, R17各自独立地选自 H、 羟基、 NH2或取代 或未取代的 烷基, 其中 R5, 也可共同形成 C=C双键;
R选自 H、 三氟甲基、 取代或未取代的'垸基或卤素; W为 S或 0, NH, N-烷基; 或者
上述化合物的药学可接受的盐、 水合物、 多晶结构体、 光学异构体、 外消旋体、 非对 映异构体或对映异构体。
2. 如权利要求 1所述的化合物, 其特征在于所述的化合物 G选自:
Figure imgf000033_0001
3、 如权利要求 1所述的化合物, 其具有如下通式(Π) 所示的结构:
式 II
Figure imgf000033_0002
其中, X为 NR15或0; 其它各基团定义同权利要求 1。
4、 如权利要求 1所述的化合物, 其具有如下通式 (III)所示的结构:
式 III
Figure imgf000033_0003
其中, Q1和 Q2各自独立地为 H、 .4烷基、 NH2或羟基保护基; 其它各基团 的定义同权利要求 1。
5、 如权利要求 1所述的化合物, 其具有如下通式 (IV)所示的结构: 式 IV
O OQ2 O 其中各基团的定义同权利要求 1。
6、 如权利要求 1所述的化合物, 其具有如下通式 (V) 所示的结构:
Figure imgf000034_0001
其中, X为 NR15或0; 5为11、 甲氧基或烷基; 2为11、 烯丙基、 取代或未取的
C卜 6焼基。
7、 如权利要求 1所述的化合物, 其选自下列化合物-
n
Figure imgf000035_0001
Figure imgf000035_0002
8TZ000/600ZN3/X3d 696S0T/600Z OAV
8、 如下通式 (VI) 的化合物:
式 VI
Figure imgf000036_0001
其中
X,为 NHR15、 NR15P、 OH或 OQ;其中, R15为 H、 甲氧基或烷基; P为 N-保护基团; Z为 H、 取代或未取代的垸基、 环烷基、 芳基或羧基保护基团;
Q1和 Q2各自独立地为 H、 Cw烷基、 NH2或羟基保护基。
9、 药物组合物, 其包含权利要求 1~7中任意一项所述的化合物或者上述化合物的药 学可接受的盐、水合物、多晶结构体、光学异构体、外消旋体、非对映异构体或对映异构 体以及一种或多种药用载体和 /或稀释剂。
10、 根据权利要求 9的组合物, 其除了权利要求 1〜7中任意一项所述的化合物或其 药学可接受的盐、水合物、多晶结构体、光学异构体、外消旋体、非对映异构体或对映异 构体之外, 还含有一种或多种活性药物。
11、 权利要求 1〜7中任意一项所述的化合物在制备治疗增殖疾病的药物中的应用。
12、 根据权利要求 11所述的应用, 其中所述增殖疾病选自如下组成的组: 肿瘤、 多 发性硬化、 类风湿性关节炎、 动脉粥样硬化和再狭窄。
13、 一种制备权利要求 1中式 I化合物的方法- 其中: 使用 14-羟基埃坡霉素通过化学反应合成途径 2-4, 进行 15元环的大环内酯 化或大环内酰胺化制备式 I的 15环噻酮化合物或 15环噻酮内酰胺化合物。
利用埃坡霉素 D及其衍生物 LL通过化学反应合成途径 5,得到式 L12化合物,该式化合 物与膦鑰盐式 L13或式 L17或 L34化合物进行 15元环的大环内酯或内酰胺化获得式 L16 或 L21化合物(化学反应合成途径 5和 6)或 HH8。 也可以通过合成途径 12和 12B所示 的化学全合成利用式 L31-A、 L31-B (L12)化合物而制备式 L32化合物。
PCT/CN2009/000218 2008-02-29 2009-03-02 15环噻酮化合物及其制备方法与应用 WO2009105969A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/919,487 US20110112149A1 (en) 2008-02-29 2009-03-02 Epothilone analogues, their pharmaceutical compositions, their use and their prepa rations
EP09714253A EP2261221A4 (en) 2008-02-29 2009-03-02 EPOTHILONE ANALOGUES, THEIR PHARMACEUTICAL COMPOSITIONS, THEIR USE AND PREPARATIONS
JP2010547935A JP2011513248A (ja) 2008-02-29 2009-03-02 エポシロン類似体及びその医薬組成物、応用並びにその調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810082360.5A CN101519404B (zh) 2008-02-29 2008-02-29 15环噻酮衍生物及其制备方法与应用
CN200810082360.5 2008-02-29

Publications (2)

Publication Number Publication Date
WO2009105969A1 true WO2009105969A1 (zh) 2009-09-03
WO2009105969A8 WO2009105969A8 (zh) 2010-10-07

Family

ID=41015521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000218 WO2009105969A1 (zh) 2008-02-29 2009-03-02 15环噻酮化合物及其制备方法与应用

Country Status (5)

Country Link
US (1) US20110112149A1 (zh)
EP (1) EP2261221A4 (zh)
JP (1) JP2011513248A (zh)
CN (1) CN101519404B (zh)
WO (1) WO2009105969A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514281A (ja) * 2009-12-17 2013-04-25 唐莉 エポシロン化合物並びにその調製方法及び用途
WO2013092998A1 (en) 2011-12-23 2013-06-27 Innate Pharma Enzymatic conjugation of antibodies
WO2014140300A1 (en) 2013-03-15 2014-09-18 Innate Pharma Solid phase tgase-mediated conjugation of antibodies
US9427478B2 (en) 2013-06-21 2016-08-30 Innate Pharma Enzymatic conjugation of polypeptides
US10036010B2 (en) 2012-11-09 2018-07-31 Innate Pharma Recognition tags for TGase-mediated conjugation
US10071169B2 (en) 2013-06-20 2018-09-11 Innate Pharma Enzymatic conjugation of polypeptides
US10132799B2 (en) 2012-07-13 2018-11-20 Innate Pharma Screening of conjugated antibodies
WO2019092148A1 (en) 2017-11-10 2019-05-16 Innate Pharma Antibodies with functionalized glutamine residues

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973987B (zh) * 2010-10-18 2012-08-22 天津尚德药缘科技有限公司 埃博霉素类似物,制备方法及其药物组合物和用途
EP3371176A4 (en) 2015-10-16 2019-09-04 William Marsh Rice University EPOTHILONE ANALOGS, METHODS OF SYNTHESIS, METHODS OF TREATMENT, AND MEDICAMENT CONJUGATES THEREOF
WO2021204188A1 (zh) * 2020-04-08 2021-10-14 北京华昊中天生物医药股份有限公司 优替德隆半水合物单晶及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027890A2 (en) 1997-12-04 1999-06-10 Bristol-Myers Squibb Company A process for the preparation of ring-opened epothilone intermediates which are useful for the preparation of epothilone analogs
US6204388B1 (en) * 1996-12-03 2001-03-20 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US6458373B1 (en) 1997-01-07 2002-10-01 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
CN1521258A (zh) 2003-01-28 2004-08-18 北京华昊中天生物技术有限公司 一类新型埃坡霉素化合物及其制备方法和用途
CN1629283A (zh) 2003-08-15 2005-06-22 北京华昊中天生物技术有限公司 治疗肿瘤和血管再狭窄的微管稳定剂埃坡霉素

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69927790T2 (de) * 1998-02-25 2006-07-20 Sloan-Kettering Institute For Cancer Research Synthese von epothilonen, ihren zwischenprodukten und analogen verbindungen
EP1140944B1 (en) * 1998-12-22 2003-08-27 Novartis AG Epothilone derivatives and their use as antitumor agents
DE10331004A1 (de) * 2003-07-03 2005-02-24 Schering Ag Verfahren für die Herstellung von C1-C15-Fragmenten von Epothilonen und deren Derivaten
CA2628227A1 (en) * 2005-11-22 2007-05-31 The Scripps Research Institute Chemical synthesis of a highly potent epothilone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204388B1 (en) * 1996-12-03 2001-03-20 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US6458373B1 (en) 1997-01-07 2002-10-01 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
WO1999027890A2 (en) 1997-12-04 1999-06-10 Bristol-Myers Squibb Company A process for the preparation of ring-opened epothilone intermediates which are useful for the preparation of epothilone analogs
CN1521258A (zh) 2003-01-28 2004-08-18 北京华昊中天生物技术有限公司 一类新型埃坡霉素化合物及其制备方法和用途
CN1629283A (zh) 2003-08-15 2005-06-22 北京华昊中天生物技术有限公司 治疗肿瘤和血管再狭窄的微管稳定剂埃坡霉素

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
A.RIVKIN, J.AM.CHEM.SOC., vol. 125, 2003, pages 2899
ALTMANN, BIOCHEM. BIOPHYS. ACTA, vol. 1470, no. 3, 2000, pages 79 - 91
BOLLAG, CANCER RES., vol. 55, no. 11, pages 2325 - 2333
GERTH, J. ANTIBIOTICS, vol. 49, no. 6, 1996, pages 560 - 563
GIANAKAKOU, INTL. J. CANCER, vol. 75, 1998, pages 63
GRUBBS., ANGEW. CHEM. INT. ED. ENGL., vol. 34, 1995, pages 2039
HOFLE, ANGEW. CHEM. INT. ED. ENGL., vol. 35, 1996, pages 1567 - 1569
M. YAMAGUCHI, BULL. CHEM. SOC. JPN., vol. 52, 1979, pages 1989
MENG, D., J. ORG. CHEM., vol. 61, 1996, pages 7999
NICOLAOU, K.C., ANGEW.CHEM. INT. ED. ENGL., vol. 36, 1997, pages 166
SCHINZER, D., EUR.CHEM.CHRON., vol. 1, 1996, pages 7
SCHROCK,R.R., J. AM. CHEM. SOC., 1990, pages 112 - 3875
See also references of EP2261221A4
SKEHAN, J. NATL. CANCER INST., vol. 82, 1990, pages 1107
TAYLAR, R.E., TETRAHEDRON LETT., vol. 38, 1997, pages 2061

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514281A (ja) * 2009-12-17 2013-04-25 唐莉 エポシロン化合物並びにその調製方法及び用途
US9764038B2 (en) 2011-12-23 2017-09-19 Innate Pharma Enzymatic conjugation of antibodies
WO2013092998A1 (en) 2011-12-23 2013-06-27 Innate Pharma Enzymatic conjugation of antibodies
WO2013092983A2 (en) 2011-12-23 2013-06-27 Innate Pharma Enzymatic conjugation of polypeptides
US10675359B2 (en) 2011-12-23 2020-06-09 Innate Pharma Enzymatic conjugation of antibodies
US9717803B2 (en) 2011-12-23 2017-08-01 Innate Pharma Enzymatic conjugation of polypeptides
US10132799B2 (en) 2012-07-13 2018-11-20 Innate Pharma Screening of conjugated antibodies
US10036010B2 (en) 2012-11-09 2018-07-31 Innate Pharma Recognition tags for TGase-mediated conjugation
EP3564259A2 (en) 2012-11-09 2019-11-06 Innate Pharma Recognition tags for tgase-mediated conjugation
US10611824B2 (en) 2013-03-15 2020-04-07 Innate Pharma Solid phase TGase-mediated conjugation of antibodies
WO2014140300A1 (en) 2013-03-15 2014-09-18 Innate Pharma Solid phase tgase-mediated conjugation of antibodies
US10071169B2 (en) 2013-06-20 2018-09-11 Innate Pharma Enzymatic conjugation of polypeptides
US9427478B2 (en) 2013-06-21 2016-08-30 Innate Pharma Enzymatic conjugation of polypeptides
US10434180B2 (en) 2013-06-21 2019-10-08 Innate Pharma Enzymatic conjugation of polypeptides
WO2019092148A1 (en) 2017-11-10 2019-05-16 Innate Pharma Antibodies with functionalized glutamine residues

Also Published As

Publication number Publication date
WO2009105969A8 (zh) 2010-10-07
CN101519404B (zh) 2016-01-20
JP2011513248A (ja) 2011-04-28
US20110112149A1 (en) 2011-05-12
CN101519404A (zh) 2009-09-02
EP2261221A4 (en) 2011-08-10
EP2261221A1 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
WO2009105969A1 (zh) 15环噻酮化合物及其制备方法与应用
KR100685336B1 (ko) C-21 변형 에포틸론
AU746597B2 (en) Epothilone analogs
US6531497B1 (en) Epothilone derivatives and their synthesis and use
AU2003260002B2 (en) Synthesis of epothilones, intermediates thereto, analogues and uses thereof
US6958401B2 (en) Method for synthesizing epothilones and epothilone analogs
US6660758B1 (en) Epothilone analogs
US20060293527A1 (en) Analogs of epothilone
JP2002533346A (ja) エポシロン誘導体およびそれらの抗腫瘍剤としての使用
JP2009007367A (ja) シクロプロピルおよびシクロブチルエポチロンアナログ
JP2004500388A (ja) エポチロン、その中間体およびその類似体の合成
US20040053995A1 (en) Synthesis of epothilones, intermediates thereto and analogues thereof
JP5839328B2 (ja) エポシロン化合物並びにその調製方法及び用途
RU2311415C2 (ru) Синтез эпотилонов, их промежуточных продуктов, аналогов и их применения
End et al. Total Synthesis and Biological Evaluation of a C (10)/C (12)‐Phenylene‐Bridged Analog of Epothilone D
US20070203346A1 (en) Method for synthesizing epothilones and epothilone analogs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714253

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010547935

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009714253

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12919487

Country of ref document: US