WO2009105957A1 - 容积式流体机械联动变容机构 - Google Patents

容积式流体机械联动变容机构 Download PDF

Info

Publication number
WO2009105957A1
WO2009105957A1 PCT/CN2008/073843 CN2008073843W WO2009105957A1 WO 2009105957 A1 WO2009105957 A1 WO 2009105957A1 CN 2008073843 W CN2008073843 W CN 2008073843W WO 2009105957 A1 WO2009105957 A1 WO 2009105957A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
inner rotor
outer rotor
reaming
hole
Prior art date
Application number
PCT/CN2008/073843
Other languages
English (en)
French (fr)
Inventor
贲爱民
鞠昌明
薛国林
吴永红
张贤高
Original Assignee
江苏益昌集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏益昌集团有限公司 filed Critical 江苏益昌集团有限公司
Publication of WO2009105957A1 publication Critical patent/WO2009105957A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/38Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/02 and having a hinged member
    • F01C1/39Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/02 and having a hinged member with vanes hinged to the inner as well as to the outer member

Definitions

  • the invention belongs to the field of volumetric fluid machines, and in particular relates to a linkage back conversion capacity mechanism. It can be used in fluid working machines and fluid motive machines. Background technique
  • Fluid Machine A machine that uses fluid as the working medium to convert energy. These typically include turbines, steam turbines, gas turbines, expanders, wind turbines, pumps, fans, compressors, pneumatic tools, pneumatic motors, and hydraulic motors.
  • volumetric According to the working principle, fluid machinery can be divided into volumetric and vane. Volumetric fluid machinery relies on moving elements to change the working volume for energy conversion.
  • the volumetric fluid machine mainly has two kinds of variable displacement modes: reciprocating type and rotary type.
  • the reciprocating fluid mechanical variable capacity has a complicated structure, and the reciprocating motion of the piston and the relative motion of the cylinder are large, the energy loss is large, and the wear is severe.
  • variable capacity mechanism of the rotary fluid machine mainly includes a rotor type, a slide type, a screw type, and a scroll type. These kinds of variable-capacity mechanisms all have high-speed brooming movement or meshing motion, and the screw mechanism and the screw mechanism are complicated in processing, high in precision, and high in cost.
  • the driving mode can be changed into four ways: the outer rotor pushes the inner rotor, the outer rotor drives the inner rotor, the inner rotor pushes the outer rotor, and the inner rotor drives the outer rotor.
  • the power can be output from the outer rotor or from the inner rotor. If the direction of fluid supply is changed, the direction of rotation can be changed.
  • the volumetric fluid mechanical linkage varactor mechanism of the present invention comprises an outer rotor, an inner rotor and a linkage plate;
  • the outer diameter of the inner rotor is smaller than the inner diameter of the outer rotor, the inner rotor is located inside the outer rotor, and the inner rotor and the outer rotor do not coincide with each other;
  • the inner rotor is provided with an inner reaming hole, and the outer rotor is provided with an outer reaming hole, which is linked
  • the two sides of the plate are respectively provided with an outer hinge shaft and an inner hinge shaft, wherein the outer hinge shaft is hinged in the outer hinge hole, and the inner hinge shaft is hinged in the inner hinge hole.
  • the outer rotor has a cylindrical shape, and its inner surface is provided with an axially-shaped outer hinge hole shaped like a Greek letter " ⁇ ".
  • the hole can be provided with a bushing or a bearing, and an oil hole oil passage can be opened.
  • the inner rotor has a cylindrical shape, and the outer surface is also provided with an axially "omega"-shaped inner reaming hole.
  • the hole can be provided with a bushing or a bearing, an oil hole and an oil passage.
  • the linkage plate has a plate shape, and the two sides are cylindrical hinge shafts, the connecting side with the outer rotor is an outer hinge shaft, and the connecting side with the inner rotor is an inner hinge shaft, and the outer hinge shaft axis line and the inner hinge shaft axis line
  • the width between the outer rotor is larger than the distance from the outer reaming center line to the outer rotor shaft line plus the distance from the outer rotor shaft line to the inner rotor shaft line and the inner rotor center line of the inner rotor to the inner rotor axis line. The difference between the distances. working principle
  • the inner rotor is placed in the outer rotor, the outer rotor is rotated about the outer rotor axis, and the inner rotor is rotated about the inner rotor axis.
  • the distance between the outer rotor axis and the inner rotor axis is half the difference between the outer rotor inner diameter and the inner rotor outer diameter, so that the outer surface of the inner rotor and the inner surface of the outer rotor are tangentially formed.
  • the sealing strip, together with the linkage plate, forms a working chamber.
  • the linkage plate is disposed between the inner rotor and the outer rotor, and the outer hinge shaft is inserted into the outer reaming hole of the outer rotor to be hinged to the inner surface of the outer rotor, and the inner hinge shaft is inserted into the inner reaming hole of the inner rotor to be hinged
  • the inner hinge shaft and the outer hinge shaft oscillate within a certain range as the inner rotor and the outer rotor rotate.
  • the hinge portion remains active and sealed to form a compression chamber and an isostatic chamber together with the inner rotor outer surface and the outer rotor inner surface and the tangentially formed sealing strip.
  • the outer reaming hole of the outer rotor is hinged to the outer hinge shaft of the linkage plate, and the inner surface thereof is tangent to the outer surface of the inner rotor. At this time, the outer rotor and the inner rotor and the linkage plate together form a compression chamber and an equal pressure chamber, and transmit or Receive motivation.
  • the outer reaming and the outer hinge shaft drive the inner hinge shaft of the linkage plate and the inner reaming hole of the inner rotor, so that the inner rotor is clockwise around the inner rotor axis line together Turn.
  • the inner rotor rotates in the same direction as the outer rotor, but the axial lines are different.
  • the outer rotor rotates counterclockwise around the outer rotor axis
  • the outer reaming and the outer hinge shaft push the inner hinge shaft of the linkage plate and the inner reaming hole of the inner rotor, so that the inner rotor rotates counterclockwise around the inner rotor axis line Turn.
  • the inner rotor rotates in the same direction as the outer rotor, but the axial lines are different.
  • Inner rotor When the inner rotor rotates counterclockwise around the inner rotor axis, the inner reaming and the inner hinge shaft drive the outer hinge shaft of the linkage plate and the outer reaming hole of the outer rotor, so that the outer rotor rotates counterclockwise around the outer rotor axis line Turn.
  • the outer rotor rotates in the same direction as the inner rotor, but the axial lines are different.
  • the inner reaming hole of the inner rotor is hinged with the inner hinge shaft of the linkage plate, and the outer surface thereof is tangential to the inner surface of the outer rotor, and forms a compression chamber and an equal pressure chamber together with the outer rotor and the linkage plate, and transmits or receives power.
  • the outer hinge shaft of the linkage plate is hinged to the outer reaming hole of the outer rotor, and the inner hinge shaft is hinged to the inner reaming hole of the inner rotor, and the joint ensures the movement of the linkage plate and ensures the sealing thereof.
  • the linkage plate is equal in length to the inner rotor, and forms a compression chamber and an equal pressure chamber together with the inner surface of the inner rotor, the inner surface of the outer rotor and the sealing surface formed by the two surfaces, and is subjected to fluid pressure and transmits power.
  • the inner rotor is placed in the outer rotor, both of which rotate about their respective axes.
  • the distance between the outer rotor shaft line and the inner rotor shaft line is half the difference between the outer rotor inner diameter dimension and the inner rotor outer diameter dimension to ensure that the inner rotor outer surface and the outer rotor inner surface are tangentially moved to form a sealing strip.
  • the outer rotor and the inner rotor are hinged by a linkage plate, and the inner rotor, the outer rotor and the linkage plate together form a working cavity.
  • the working principle is basically the same. The following is only for working machines.
  • the outer rotor pushes the inner rotor to rotate counterclockwise, the outer rotor rotates counterclockwise around the outer rotor shaft, and its force acts on the outer hinge shaft.
  • the tangential direction of the rotor is consistent with the direction of rotation, and the force acts on the linkage plate and passes.
  • the linkage plate acts on the inner reaming hole of the inner rotor, because the width between the outer shaft axis of the linkage shaft and the axis line of the inner hinge shaft is larger than the distance from the outer reaming center line of the outer rotor to the outer rotor shaft line.
  • the difference between the distance from the outer rotor shaft line to the inner rotor shaft line and the distance from the inner reaming center line of the inner rotor to the inner rotor axis line, so the angle ⁇ is always less than 180°, and the direction of the inner reaming force
  • the dead center is not formed through the axial line of the inner rotor, so that the inner rotor rotates counterclockwise about its axial line, and the reverse plate does not reverse.
  • the structure of the mechanism is simple, the number of parts is extremely small, and the connection and driving modes are flexible. Due to its special structure, when used in fluid working machines, the driving method can be evolved into four ways, gP: 1. The outer rotor pushes the inner rotor, 2. the outer rotor drives the inner rotor, 3. the inner rotor pushes the outer rotor, 4 The inner rotor drives the outer rotor. When used in a fluid motive machine, the power can be output from the outer rotor or from the inner rotor. If the direction of fluid supply is changed, the direction of rotation can be changed.
  • the parts of the mechanism are easy to manufacture: the outer rotor has a cylindrical structure, and the inner rotor has a cylindrical structure, which can be completed by ordinary car grinding and drilling technology; the processing of the linkage plate utilizes forging, splicing technology or direct selection. The profile can be ground. The entire organization is easy to assemble and maintain, and it is easy to realize mass production of the line without the need for complicated special equipment.
  • Figure 1 is a schematic diagram of the static structure of the working principle.
  • Figure 2 is a schematic diagram of the dynamic structure of the working principle.
  • Figure 3 is a schematic structural diagram of the position of the linkage plate
  • Figure 4 is a schematic view of the overall structure
  • Figure 5 is a schematic diagram of the structure of the linkage principle
  • the angle between the outer reaming hole 11 and the tangent point 5 with respect to the outer rotor axis.
  • Outer rotor The outer rotor is cylindrical. The diameter and length dimensions are determined based on displacement, compression ratio and rotational speed, and other relevant factors.
  • the inner surface is provided with an axial hinge groove shaped like the Greek letter " ⁇ ", which is called an external reaming hole.
  • the hole can be set with a bushing or a bearing, and an oil hole and an oil passage can be opened.
  • the trimming dimension of the groove and its phase are related to the outer rotor outer diameter dimension, the outer rotor inner diameter dimension, the cross-sectional shape of the linkage plate, the size of the controlled volume, and the type of fluid medium, and one or more channels may be provided for the fluid. Flowing in or out, or placing valves at the fluid inlet or outlet as needed.
  • Inner rotor The inner rotor is cylindrical. The diameter and length dimensions are also calculated based on displacement, compression ratio, rotational speed and other relevant factors.
  • the outer surface also has an axial " ⁇ "-shaped hinge groove, which is called an inner reaming hole.
  • the hole can also be fitted with a bushing or a bearing, and an oil hole can be opened.
  • the trimming dimension of the groove and its phase are related to the inner rotor outer diameter dimension, the outer rotor inner diameter dimension, the cross-sectional shape of the linkage plate, the size of the controlled volume, and the type of fluid medium.
  • the linkage plate is plate-shaped, and its cross section can be straight or "S" shaped.
  • the length is the same as the inner rotor, and it can also be designed in multiple stages.
  • the two sides are cylindrical hinge shafts, the connecting side with the outer rotor is called the outer hinge shaft, and the side connected with the inner rotor is called the inner hinge shaft.
  • the width between the outer hinge axis line and the inner hinge axis line should be greater than the distance from the outer reaming center line of the outer rotor to the outer rotor axis line plus the distance from the outer rotor shaft line to the inner rotor axis line and Distance of the inner reaming center line of the inner rotor to the inner rotor axis line Difference.
  • Oil holes, oil passages, friction reducing rings, sealing rings, etc. can be arranged on the hinge cylinder and the two ends of the plate for sealing, decompression and lubrication.
  • the essence of the mechanism is that the relationship between the outer rotor shaft center line, the inner rotor shaft line, the inner reaming hole and the outer reaming hole is a double crank mechanism, which views the outer rotor shaft line and the inner rotor shaft line.
  • the outer reaming hole and the outer rotor shaft line are regarded as the crank 1.
  • the inner reaming hole and the inner rotor shaft line are regarded as the crank 2
  • the linkage plate is regarded as the connecting rod. If the length of the crankshaft plus the length of the connecting rod is greater than the length of the crankshaft plus the length of the frame, the mechanism will not form a self-locking (dead point) and the system will operate stably.
  • the driving mode of the mechanism can be evolved into four modes when used as a fluid working machine.
  • gP 1.
  • the outer rotor pushes the inner rotor, 2.
  • the outer rotor drives the inner rotor, and the inner rotor pushes the outer rotor.
  • the inner rotor drives the outer rotor.
  • the power can be output from the outer rotor or from the inner rotor. If the direction of fluid supply is changed, the direction of rotation can be changed.
  • the inner rotor of the mechanism rotates around the inner rotor axis
  • the outer rotor rotates around the outer rotor axis.
  • the inner rotor axis and the outer rotor axis are half the difference between the outer rotor inner diameter and the inner rotor outer diameter.
  • the outer surface of the inner rotor is tangent to the inner surface of the outer rotor. Since the relative positions of the two axes are fixed, how do the linkage plates placed between the inner rotor and the outer rotor and the inner rotor and the outer rotor pass through the tangent point?
  • the joint points of the inner rotor and the outer rotor are respectively embedded in the inner surface of the inner rotor and the inner surface of the outer rotor.
  • the opening angle and phase of the groove It can be calculated by parameters such as the inner rotor and outer rotor diameter difference, the shaft head size and the thickness of the linkage plate to ensure the free swing of the linkage plate when the inner rotor and outer rotor rotate.
  • the size and phase of the " ⁇ "-shaped groove trimming on the outer surface of the inner rotor and the inner surface of the outer rotor can be changed, so that the slit is shortest, the stress distribution is more reasonable, and the efficiency is improved. higher.
  • the width between the outer hinge axis of the linkage plate and the axis line of the inner hinge axis is greater than the distance from the outer reaming center line of the outer rotor to the outer rotor axis line plus the outer rotor shaft line to the inner rotor shaft.
  • the distance between the heart line and the distance from the center line of the inner reaming hole of the inner rotor to the inner rotor axis line can form a stable running mechanism, and the angle ⁇ is always less than 180°, and the linkage plate is followed by the inner rotor and the outer rotor.
  • the slit width of the inner reaming hole and the outer reaming hole will be smaller than the diameter, so that it can form a ball-like joint similar to the steering mechanism of the automobile steering mechanism. .
  • linkage plate It is hinged with the inner hinge shaft and the outer hinge shaft of the linkage plate, so that the linkage plate can form an equal pressure chamber and a compression chamber with the inner rotor and the outer rotor.
  • the fluid inlet and outlet holes or valves can be arranged on the " ⁇ " straight edge to solve the problem of allowing the fluid to flow as required.
  • a flow inlet hole is arranged on the long cut edge of the inner rotor, and a discharge hole is arranged on the long cut edge of the outer rotor.
  • the structure of the mechanism is simple, the number of parts is extremely small, and the connection mode is flexible. Due to its special structure, when used in fluid working machines, the driving method can be evolved into four ways, gP: 1.
  • the outer rotor pushes the inner rotor, 2. the outer rotor drives the inner rotor, 3. the inner rotor pushes the outer rotor, 4
  • the inner rotor drives the outer rotor.
  • the outer rotor can even be designed to be directly driven by the rotor of the motor.
  • the power can be output from the outer rotor or from the inner rotor. If the direction of fluid supply is changed, the direction of rotation can be changed.
  • the inner rotor and the outer rotor rotate about their respective axis lines, and the balance problem does not require special measures.
  • the inner rotor and outer rotor diameter and length dimensions are determined based on displacement, compression ratio, rotational speed, and other relevant factors.
  • the outer surface of the outer rotor can be added with annular or axial reinforcing ribs, and the inner rotor can excavate the weight reducing process hole, which not only can increase the strength, save materials, reduce weight, but also is more favorable for the balance of parts and systems.
  • bushings or bearings can be set in the inner and outer reaming holes, oil holes, oil passages, oil can be placed at both ends of the inner rotor and outer rotor. Holes, oil passages, placement of grinding ring, sealing ring; interlocking plate inner hinge shaft, outer hinge shaft surface and linkage plate at both ends can also be placed to reduce the grinding ring, sealing ring, oil hole and oil passage.
  • the angle and phase of the " ⁇ " grooving of the inner and outer rotors can be calculated.
  • the inner rotor and the outer rotor can open one or more holes in different parts of the inner rotor and the outer rotor for fluid to flow in or out, and a valve can be installed as needed, and the fluid flows in or out to be easily connected.
  • the length of the linkage plate is the same as that of the inner rotor.
  • the width between the outer hinge shaft axis and the inner hinge shaft axis is greater than the distance from the outer reaming center line of the outer rotor to the outer rotor shaft line plus the outer rotor shaft line to The difference between the distance between the inner rotor axis line and the distance from the inner reaming center line of the inner rotor to the inner rotor axis line
  • the cross-section of the plate may be straight or "S" shaped to change the size and phase of the " ⁇ " shaped groove on the inner rotor and outer rotor surface to improve the force and reduce the transition stroke. Further improve efficiency.
  • the linkage plate can also be designed in multiple sections to withstand tensile forces and pressures, improve stress distribution, and further improve reliability.
  • the organization can be cascaded or multi-staged to meet different working conditions, further optimizing and improving system efficiency.
  • the mechanism is widely used, due to its simple structure and application, it can accurately establish the functional model, efficiency model, stress model, leakage model, wear model and other related models of the mechanism, so as to conveniently establish the normalization of the device. , modular, serialized.
  • the parts of the mechanism are easy to manufacture: the outer rotor has a cylindrical structure, and the inner rotor has a cylindrical structure, which can be completed by ordinary car grinding and drilling technology; the processing of the linkage plate utilizes forging, splicing technology or direct selection.
  • the profile can be ground. The entire organization is easy to assemble and maintain, and it is easy to realize mass production of the line without the need for complicated special equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)

Description

容积式流体机械联动变容机构 技术领域
本发明属于容积式流体机械领域, 具体涉及一种联动回转变容机构。 可 用于流体工作机械和流体原动机械。 背景技术
流体机械: 以流体为工作介质来转换能量的机械。 通常包括水轮机、 汽 轮机、 燃气轮机、 膨胀机、 风力机、 泵、 通风机、 压缩机、 风动工具、 气动 马达和液压马达等。
容积式: 根据工作原理 , 流体机械可分为容积式和叶片式。 容积式流体 机械依靠运动元件改变工作容积来实现能量转化。
根据结构, 容积式流体机械主要有往复式和回转式两种变容方式。
往复式流体机械变容方式结构复杂, 活塞的往复运动与气缸的相对运动 速度大, 能量损失大, 磨损严重。
回转式流体机械的变容机构主要有转子式、 滑片式、 螺杆式和涡旋式等 几种。 这几种变容机构均存在高速扫膛运动或啮合运动, 且螺杆机构和蜗旋 机构加工工艺复杂, 精度要求高, 成本大。
上述几种变容机构均存在因其运动部件的高速相对运动或啮合运动而造 成磨损严重, 能量损耗大, 效率低, 或因加工工艺复杂, 精度要求高, 而导 致成本高等问题。 回转式变容机构一般仅用于工作机械, 鲜有原动机使用。 发明内容
技术问题
本发明的目的是提供一种容积式流体机械联动变容机构, 该机构结构简 单, 零件数量极少, 联接和驱动方式灵活。 用于流体工作机械时, 驱动方式 可演变为外转子推动内转子、 外转子带动内转子、 内转子推动外转子、 内转 子带动外转子四种方式。 用于流体原动机械时, 动力可由外转子输出, 也可 由内转子输出, 如果改变流体供给的方向, 即可改变转动方向。 技术方案
本发明的容积式流体机械联动变容机构包括外转子、 内转子、 联动板; 内转子的外径小于外转子的内径, 内转子位于外转子内部, 且内转子与外转 子的转动轴不重合; 在内转子上设有内铰孔, 在外转子上设有外铰孔, 联动 板的两 &分别设有外铰轴、 内铰轴, 其中外铰轴铰接在外铰孔中, 内铰轴铰 接在内铰孔中。
外转子呈圆筒状, 其内表面开有轴向的、 形状似希腊字母 " Ω " 的外铰 孔, 孔内可镶衬套或置轴承, 并开设油孔 油道。
内转子呈圆柱状, 其外表面也开有轴向的呈 " Ω "形的内铰孔, 孔内可 镶衬套或置轴承、 开设油孔、 油道。
联动板呈板状, 其两边为柱形铰轴, 与外转子的相连边为外铰轴, 与内 转子的相连边为内铰轴, 外铰轴轴心线与内铰轴轴心线之间的宽度大于外转 子的外铰孔圆心线至外转子轴心线的距离加外转子轴心线至内转子轴心线的 距离与内转子的内铰孔圆心线至内转子轴心线的距离之差。 工作原理
1、 零件间的装配关系
内转子置于外转子之中, 外转子绕外转子轴心线转动, 内转子绕内转子 轴心线转动。 外转子轴心线与内转子轴心线之间的距离为外转子内径尺寸与 内转子外径尺寸之差的一半, 以使内转子的外表面与外转子的内表面做相切 运动形成的密封带, 与联动板共同组成工作腔。 联动板置于内转子和外转子 之间, 其外铰轴置入外转子的外铰孔, 使其铰接于外转子的内表面, 内铰轴 置入内转子的内铰孔, 使其铰接于内转子的外表面, 内铰轴和外铰轴随着内 转子和外转子的转动在一定范围内摆动。 铰接部位既保持活动又保证密封, 以便与内转子外表面和外转子内表面及其相切形成的密封带共同组成压缩腔 和等压腔。
2、 各零件的功用:
外转子:
外转子的外铰孔与联动板的外铰轴相铰接, 其内表面与内转子的外表面 相切, 此时, 外转子与内转子、 联动板共同组成压缩腔和等压腔, 并传递或 接受动力。
当外转子绕外转子轴心线顺时针方向转动时, 外铰孔和外铰轴带动联动 板的内铰轴和内转子的内铰孔, 使内转子绕内转子轴心线一起作顺时针转动。 内转子转动方向与外转子转动方向相同, 但轴心线各异。
当外转子绕外转子轴心线逆时针方向转动时, 外铰孔和外铰轴推动联动 板的内铰轴和内转子的内铰孔, 使内转子绕内转子轴心线一起作逆时针转动。 内转子转动方向与外转子转动方向相同, 但轴心线各异。
同样, 当内转子绕内转子轴心线顺时针方向转动时, 内铰孔和内铰轴推 动联动板的外铰轴和外转子的外铰孔, 使外转子绕外转子轴心线一起作顺时 针转动。 外转子转动方向与内转子转动方向相同, 但轴心线各异。
当内转子绕内转子轴心线逆时针方向转动时, 内铰孔和内铰轴带动联动 板的外铰轴和外转子的外铰孔, 使外转子绕外转子轴心线一起作逆时针转动。 外转子转动方向与内转子转动方向相同, 但轴心线各异。 内转子:
内转子的内铰孔与联动板的内铰轴相铰接, 其外表面与外转子的内表面 相切, 与外转子、 联动板共同组成压缩腔和等压腔, 并传递或接受动力。
其功用分析类同于外转子。 联动板:
联动板的外铰轴铰接于外转子的外铰孔,内铰轴铰接于内转子的内铰孔, 其接点既保证联动板能活动, 又保证其密封。 联动板与内转子等长, 并与内 转子外表面、 外转子内表面及此二表面相切后所形成的密封带共同组成压缩 腔和等压腔, 同时承受流体压力, 并传递动力。
3、 工作过程分析:
内转子置于外转子之中, 两者均绕各自的轴心线转动。 外转子轴心线与 内转子轴心线之间的距离为外转子内径尺寸与内转子外径尺寸之差的一半, 以保证内转子外表面与外转子内表面做相切运动形成密封带。 外转子与内转 子间用联动板铰接, 内转子、 外转子、 联动板三者共同组成工作腔。 当内转 子、 外转子转动时, 由于有联动板相连, 故两者转动一周所需的时间相同, 其切点的相对运动距离仅为外转子内径周长与内转子外径周长之差, 与非联 动旋转方式如滑片式的机构相比, 后者相对运动距离为滑片扫膛外径周长, 故本机构相对运动小, 零件磨损小, 效率高。
虽然其工作方式有许多种, 但其工作原理基本相同, 以下仅以作工作机 械时外转子推动内转子作逆时针方向转动时的工作情况加以分析: 在外力作用下, 外转子绕外转子轴心线作逆时针方向转动, 其作用力作 用于外铰轴, 方向为外转子的切线方向, 且与转动方向一致, 该力作用于联 动板并通。
过联动板作用于内转子的内铰孔, 由于联动板外铰轴轴心线与内铰轴轴 心线之间的宽度大于外转子的外铰孔圆心线至外转子轴心线的距离加外转子 轴心线至内转子轴心线的距离与内转子的内铰孔圆心线至内转子轴心线的距 离之差, 故夹角 β始终小于 180°, 其内铰孔的作用力方向不会经过内转子的 轴心线而形成死点,从而使内转子绕其轴心线作逆时针方向转动, 联动板也不 会出现反向摆动。 当 cc >0时, 等压腔容积逐渐变大, 流体进入等压腔, 当转 动至 α =ο时, 等压腔容积变至最大值, 流入过程结束。 随着转动的继续, 压 缩腔容积变小, 压缩开始, 流体被压出压缩腔, 同时等压腔容积逐渐变大, 流体进入等压腔, 转动至 α =0时, 压缩腔容积变至最小值, 压缩过程结束, 流体通过排出孔排出, 同时等压腔容积又变至最大值, 流入过程结束。 如此 循环, 转子每转两周, 联动板两侧的工作腔分别完成流进和压缩排出, 流体 的进入和压缩在联动板两侧同时进行, 故工作效率高。 有益效果
本机构结构简单, 零件数量极少, 联接和驱动方式灵活。 因其结构的特 殊性, 用于流体工作机械时, 驱动方式可演变为四种方式, gP : 1、 外转子推 动内转子, 2、 外转子带动内转子, 3、 内转子推动外转子, 4、 内转子带动外 转子。 用于流体原动机械时, 动力可由外转子输出, 也可由内转子输出, 如 改变流体供给的方向, 即可改变转动方向。
另外, 本机构的零件易于加工制造: 外转子为圆筒状结构, 内转子为圆 柱状结构, 利用普通的车磨刨钻技术即可完成; 联动板的加工利用锻压、 悍 接技术或直接选用型材, 加以磨削加工即可。 整个机构装配、 维修简单, 无 需复杂的专用设备, 很容易实现流水线批量生产。 附图说明
图 1是工作原理静态结构示意图,
图 2是工作原理动态结构示意图,
图 3是联动板位置原理结构示意图, 图 4是整体结构示意图,
图 5是联动原理结构示意图
附图标号说明
1 外转子 内转子
3 联动板 压缩腔
切点 等压腔
11 外铰孔 外转子轴心线
13 内表面 内铰孔
22 内转子轴心线 外表面
31 外铰轴 内铰轴
α : 外铰孔 11与切点 5之间相对于外转子轴心线之间的夹角。
β : 联动板 3围绕内铰孔 21摆动, 其内铰轴 32轴心线与外铰轴 31轴心 线之间的连线与内转子内铰孔 21圆心线至内转子轴心线 22之间的夹角 具体实施方式
外转子: 外转子呈圆筒状。 其直径及长度尺寸系根据排量、 压缩比和转 动速度以及其它相关因素计算确定。 其内表面开有轴向的、 形状似希腊字母 " Ω " 的铰接槽, 称外铰孔, 孔内可镶衬套或置轴承, 并开设油孔、 油道。 该 槽的切边尺寸及其相位, 与内转子外径尺寸、 外转子内径尺寸、 联动板的截 面形状、 受控容积的大小以及流体介质的种类有关, 其上可有一至多个孔道 以供流体流进或排出, 亦可根据需要在流体流入口或流出口各安置阀门。
内转子: 内转子呈圆柱状。 其直径及长度尺寸也是根据排量、 压缩比、 转动速度以及其它相关因素计算确定。 其外表面也开有轴向的呈 " Ω "形的 铰接槽, 称内铰孔, 孔内也可镶衬套或置轴承、 开设油孔油道。 该槽的切边 尺寸及其相位, 与内转子外径尺寸、 外转子内径尺寸、 联动板的截面形状、 受控容积的大小以及流体介质的种类有关。 其上可有一至多个孔道以供流体 流进或排出, 亦可根据需要在流体流入口或流出口各安置阀门。
联动板: 联动板呈板状, 其横截面可以是直的, 也可以是 " S "形等异型 状。 长度与内转子等长, 也可多段设计。 其两边为柱形铰轴, 与外转子的相 连边称外铰轴, 与内转子的相连边称内铰轴。 外铰轴轴心线与内铰轴轴心线 之间的宽度应大于外转子的外铰孔圆心线至外转子轴心线的距离加外转子轴 心线至内转子轴心线的距离与内转子的内铰孔圆心线至内转子轴心线的距离 之差。 铰轴柱面及板体两头可设置油孔、 油道、 减磨圈、 密封圈等, 用以进 行密封、 减压和润滑。
理论分析:
本机构的实质是:外转子轴心线、 内转子轴心线、 内铰孔、 外铰孔四点间 的关系是一个双曲柄机构, 将外转子轴心线与内转子轴心线间视为机架, 外 铰孔与外转子轴心线间视为曲柄一、 内铰孔与内转子轴心线间视为曲柄二, 联动板视为连杆。 如果曲柄二的长度加连杆的长度大于曲柄一的长度加机架 的长度,机构就不会形成自锁 (死点), 系统就能稳定地运行。
因其结构的特殊性, 本机构用作流体工作机械时驱动方式可演变为四种 方式, gP : 1、 外转子推动内转子, 2、 外转子带动内转子, 3、 内转子推动外 转子, 4、 内转子带动外转子。 用于流体原动机械时, 动力可由外转子输出, 也可由内转子输出, 如果改变流体供给的方向, 即可改变转动方向。
解决几个具体问题的措施:
本机构的内转子绕内转子轴心线转动、 外转子绕外转子轴心线转动, 内 转子轴心线与外转子轴心线相距为外转子内径尺寸与内转子外径尺寸之差的 一半., 从而使内转子外表面与外转子内表面相切。 由于两者轴心线相对位置 固定不变, 那么, 置于内转子、 外转子之间并联结内转子、 外转子的联动板 如何通过切点处呢?
本机构采取了以下措施:
1、 内转子、外转子的联接点分别嵌于其内转子外表面、外转子内表面内。
2、 以内转子、 外转子各自的联接点为中心, 向联动板方向开挖 " V"型 切口, 与转子壁内圆形联接孔形成 " Ω " 形铰接孔槽, 该槽的开口角度及相 位, 可由内转子、 外转子直径尺寸差、 轴头尺寸和联动板厚度尺寸等参数计 算获得, 以保证内转子、 外转子转动时联动板的自由摆动。 如将联动板横截 面设计成 " S "形等异型状, 可改变内转子外表面、 外转子内表面 " Ω "形槽 切边的尺寸和相位, 从而使切口最短, 应力分布更加合理, 效率更高。
3、 由于联动板的外铰轴轴心线与内铰轴轴心线之间的宽度大于外转子的 外铰孔圆心线至外转子轴心线的距离加外转子轴心线至内转子轴心线的距离 与内转子的内铰孔圆心线至内转子轴心线的距离之差, 故能构成稳定的运转 机构, 其夹角 β始终会小于 180° , 联动板在随内转子、 外转子运动时, 不会 出现反向摆动, 其摆动幅度不会大于 180° , 内铰孔、 外铰孔的切口宽度均会 小于其直径, 故能构成类似于汽车转向机构拉杆球头状的联接。 " Ω "切槽的作用:
1、 铰接安装联动板, 传递或接受动力, 承受拉力或压力。
2、 与联动板内铰轴和外铰轴相互铰接, 以使联动板能与内转子、 外转子 组成等压腔和压缩腔。
3、 在内转子外表面、 外转子内表面相切处形成一个似矩形的空间 (见图 1 ) 以容纳联动板, 使联动板随内转子、 外转子转动时能顺利通过切点。
4、 在 " Ω "直线切边上可布置流体进出孔或阀门, 解决使流体按要求流 动的问题。 一般情况下, 内转子长切边上布置流进孔, 外转子长切边上布置 排出孔。
关于本机构的应用:
本机构结构简单, 零件数量极少, 联接方式灵活。 因其结构的特殊性, 用于流体工作机械时, 驱动方式可演变为四种方式, gP : 1、 外转子推动内转 子, 2、 外转子带动内转子, 3、 内转子推动外转子, 4、 内转子带动外转子。 当动力通过外转子输入时,甚至可以将外转子设计成电机的转子直接驱动。 用 于流体原动机械时, 动力可由外转子输出, 也可由内转子输出, 如改变流体 供给的方向, 即可改变转动方向。
内转子、 外转子绕各自的轴心线转动, 其平衡问题无需特别措施。
内转子、 外转子直径及长度尺寸根据排量、 压缩比、 转动速度以及其它 相关因素计算确定。
外转子外表面可增加环状或轴向加强筋, 内转子内部可开挖减重工艺孔, 这样做不仅可以增加强度, 节省材料, 减轻重量, 而且对零部件及系统的平 衡更为有利。
能较容易地解决润滑、 密封、 减压和减磨问题: 内铰孔和外铰孔内可镶 衬套或置轴承、 设油孔、 油道, 内转子、 外转子两端亦可设置油孔、 油道、 安置减磨圈、 密封圈; 联动板内铰轴、 外铰轴柱面及联动板两头部位也同样 可安放减磨圈、 密封圈、 设置油孔、 油道。
内转子、 外转子 " Ω "切槽切边的角度及相位可通过计算得到。
内转子、 外转子根据工况需要, 在其上不同部位可开出一至多个孔道以 供流体流进或排出, 并可根据需要设置安装阀门, 流体流进或排出容易连接。
联动板长度尺寸与内转子相同, 外铰轴轴心线与内铰轴轴心线之间的宽 度大于外转子的外铰孔圆心线至外转子轴心线的距离加外转子轴心线至内转 子轴心线的距离与内转子的内铰孔圆心线至内转子轴心线的距离之差, 联动 板横截面可以是直的, 也可以是 " S "形等异型状, 以改变内转子、 外转子表 面 " Ω "形槽切边的尺寸大小和相位, 从而改善受力和减小过渡行程, 进一 步提高效率。
联动板也可多段设计, 以分别承受拉力和压力, 改善应力分布, 进一步 提高可靠性。
本机构可分级或多级串联, 以适应不同的工况要求, 进一步优化和提高 系统效率。
作原动机时, 可用两组以上本机构错位布置, 以消除死角。
虽然本机构用途广泛, 但因其结构及应用简单, 可以较为准确地建立本 机构的功能模型、 效率模型、 应力模型、 泄漏模型、 磨损模型等相关模型, 从而方便地建立本机构装置的规格化、 模块化、 系列化。
另外, 本机构的零件易于加工制造:外转子为圆筒状结构, 内转子为圆柱 状结构, 利用普通的车磨刨钻技术即可完成; 联动板的加工利用锻压、 悍接 技术或直接选用型材, 加以磨削加工即可。 整个机构装配、 维修简单, 无需 复杂的专用设备, 很容易实现流水线批量生产。

Claims

权 利 要 求 书
1. 一种容积式流体机械联动变容机构, 其特征在于:
该机构包括外转子 (1)、 内转子 (2)、 联动板 (3); 内转子 (2) 的外径 小于外转子 (1) 的内径, 内转子 (2) 位于外转子 (1) 内部, 且内转子 (2) 与外转子 (1) 的转动轴不重合; 在内转子 (2) 上设有内铰孔 (21), 在外转 子 (1) 上设有外铰孔(11), 联动板 (3) 的两迖分别设有外铰轴 (31)、 内铰 轴 (32), 其中外铰轴 (31) 铰接在外铰孔 (11) 中, 内铰轴 (32) 铰接在内 铰孔 (21) 中。
2. 根据权利要求 1所述的容积式流体机械联动变容机构, 其特征在于:
外转子 (1) 呈圆筒状, 其内表面开有轴向的、 形状似希腊字母 " Ω " 的 外铰孔 (11), 孔内镶衬套或置轴承, 并开设油孔、 油道。
3. 根据权利要求 1所述的容积式流体机械联动变容机构, 其特征在于:
内转子(2)呈圆柱状, 其外表面也开有轴向的呈 " Ω "形的内铰孔(21), 孔内镶衬套或置轴承、 开设油孔、 油道。
4. 根据权利要求 1所述的容积式流体机械联动变容机构, 其特征在于:
联动板 (3) 的外铰轴 (31) 轴心线与内铰轴 (32) 轴心线之间的宽度大 于外转子 (1) 的外铰孔 (11) 圆心线至外转子轴心线 (12) 的距离加外转子 轴心线 (12) 至内转子轴心线 (22) 的距离与内转子 (2) 的内铰孔 (21) 圆 心线至内转子轴心线 (22) 的距离之差。
5. 根据权利要求 1所述的的容积式流体机械联动变容机构, 其特征在于: 联动板 (3) 沿内铰轴 (32) 轴心线方向的长度与内转子 (2) 沿其轴心 线方向的长度相同。
PCT/CN2008/073843 2008-02-29 2008-12-30 容积式流体机械联动变容机构 WO2009105957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2008100203335A CN101235727A (zh) 2008-02-29 2008-02-29 容积式流体机械联动变容机构
CN200810020333.5 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009105957A1 true WO2009105957A1 (zh) 2009-09-03

Family

ID=39919599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073843 WO2009105957A1 (zh) 2008-02-29 2008-12-30 容积式流体机械联动变容机构

Country Status (2)

Country Link
CN (1) CN101235727A (zh)
WO (1) WO2009105957A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101235727A (zh) * 2008-02-29 2008-08-06 江苏益昌投资有限公司 容积式流体机械联动变容机构
CN107218215B (zh) * 2017-08-03 2019-01-01 郭素英 叶片式容积泵
CN110685901A (zh) * 2018-07-04 2020-01-14 张龙兆 回转型叶片泵

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905727A (en) * 1971-07-28 1975-09-16 John B Kilmer Gerotor type fluid motor, pump or the like
CN1045151A (zh) * 1989-02-22 1990-09-05 浙江工学院 摆轮式流体发动机
DE4117939A1 (de) * 1991-05-31 1992-12-03 Weise Gustav A Verfahren zur aufbewahrung von druckschriften und buechern und vorrichtung zur durchfuehrung des verfahrens
CN1277325A (zh) * 2000-07-14 2000-12-20 肖雷明 流体转叶式转子泵
CN1287225A (zh) * 2000-06-28 2001-03-14 彭利 回转容积式流体压输及传动装置
JP2001065466A (ja) * 1999-08-26 2001-03-16 Isao Suzuki ポンプの構造
CN2434449Y (zh) * 2000-07-14 2001-06-13 肖雷明 流体转叶式转子泵
CN101235727A (zh) * 2008-02-29 2008-08-06 江苏益昌投资有限公司 容积式流体机械联动变容机构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905727A (en) * 1971-07-28 1975-09-16 John B Kilmer Gerotor type fluid motor, pump or the like
CN1045151A (zh) * 1989-02-22 1990-09-05 浙江工学院 摆轮式流体发动机
DE4117939A1 (de) * 1991-05-31 1992-12-03 Weise Gustav A Verfahren zur aufbewahrung von druckschriften und buechern und vorrichtung zur durchfuehrung des verfahrens
JP2001065466A (ja) * 1999-08-26 2001-03-16 Isao Suzuki ポンプの構造
CN1287225A (zh) * 2000-06-28 2001-03-14 彭利 回转容积式流体压输及传动装置
CN1277325A (zh) * 2000-07-14 2000-12-20 肖雷明 流体转叶式转子泵
CN2434449Y (zh) * 2000-07-14 2001-06-13 肖雷明 流体转叶式转子泵
CN101235727A (zh) * 2008-02-29 2008-08-06 江苏益昌投资有限公司 容积式流体机械联动变容机构

Also Published As

Publication number Publication date
CN101235727A (zh) 2008-08-06

Similar Documents

Publication Publication Date Title
US6659744B1 (en) Rotary two axis expansible chamber pump with pivotal link
EP2472115B1 (en) Spherical expansion compressor adapted to variable working conditions
JP5265705B2 (ja) 回転式圧縮機
CN201568303U (zh) 对称平衡式同步旋转压缩机械
CN201180646Y (zh) 容积式流体机械联动回转变容机构
WO2009105957A1 (zh) 容积式流体机械联动变容机构
CN105971826B (zh) 液压式风力发电机
CN108678810B (zh) 平面回转式膨胀机
CN201034074Y (zh) 一种双作用叶片式二次元件
WO2009121250A1 (zh) 转动式流体机械变容机构
CN103423150A (zh) 转子流体机械变容机构
KR100192066B1 (ko) 용적형 유체기계
CN214196600U (zh) 一种叠片式偏心轴孔结构组件及配装有该组件的空压机
CN214145579U (zh) 一种气动发电机
KR101488060B1 (ko) 압축성 매체용 로터리 모터
CN212671984U (zh) 一种摆动叶片液气动力装置
WO2011015122A1 (zh) 机械运动与流体运动的互转换装置
CN112682293A (zh) 一种叠片式偏心轴孔结构组件及配装有该组件的空压机
CN111287972A (zh) 叶旋压缩机
CN208024514U (zh) 一种对称通轴式定量轴向柱塞泵
CN213684251U (zh) 一种高效率双转子膨胀机
CN212535767U (zh) 一种高效率稳定性转子膨胀机
CN219344967U (zh) 柱面密封转子压缩机
CN210422767U (zh) 基于流体容积变化的能量转换装置
CN212155149U (zh) 一种偏心驱动平动式气液增压装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08872810

Country of ref document: EP

Kind code of ref document: A1