WO2011015122A1 - 机械运动与流体运动的互转换装置 - Google Patents

机械运动与流体运动的互转换装置 Download PDF

Info

Publication number
WO2011015122A1
WO2011015122A1 PCT/CN2010/075628 CN2010075628W WO2011015122A1 WO 2011015122 A1 WO2011015122 A1 WO 2011015122A1 CN 2010075628 W CN2010075628 W CN 2010075628W WO 2011015122 A1 WO2011015122 A1 WO 2011015122A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
rotor
stator
diameter
partition
Prior art date
Application number
PCT/CN2010/075628
Other languages
English (en)
French (fr)
Inventor
王海军
王德良
张旭
Original Assignee
Wang Haijun
Wang Deliang
Zhang Xu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Haijun, Wang Deliang, Zhang Xu filed Critical Wang Haijun
Publication of WO2011015122A1 publication Critical patent/WO2011015122A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/38Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C2/02 and having a hinged member
    • F04C2/39Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C2/02 and having a hinged member with vanes hinged to the inner as well as to the outer member

Definitions

  • the invention belongs to the technical field of rotary piston type machinery, relates to a mutual conversion device of mechanical motion and fluid motion, and is suitable for a pump and a compressor for inputting mechanical energy to realize output fluid energy, or an engine and hydraulic pressure for inputting a mechanical rotary motion of a fluid compression medium output. transmission. Background technique
  • the vacuum pump includes a stator, a rotor, a diaphragm, and a swing shaft.
  • One end of the baffle is inserted into the pendulum shaft to slide with the pendulum shaft, and the other end of the baffle plate is fixed on the outer edge of the rotor.
  • the baffle has a passage for communicating the air inlet to the cavity between the stator and the rotor.
  • the "cam pump” patent structure device also includes a stator (and a base), a rotor (ie, a moving roller), a diaphragm, a crankshaft, and the stator is a cylindrical cavity member.
  • the outer diameter of the rotor is smaller than the inner diameter of the stator cavity, and the rotor is mounted on the rotor.
  • In the stator cavity two openings are arranged on the stator as the input port and the output port of the fluid medium.
  • the partition plate is arranged between the stator and the rotor, and the stator, the rotor and the baffle are matched in three parts, and the remaining cavity between the stator and the rotor is arranged.
  • the high-pressure working fluid medium enters from one opening, flows out from the other opening, drives the rotor to move, and obtains a mechanical rotary motion output from the movement of the crankshaft; or the crankshaft drives the rotor to move under the driving of the external mechanical power, forcing the fluid medium Entering from one opening, flowing out of the other opening, obtaining fluid medium movement, or storing energy storage. Realizing mechanical movement and Mutual conversion of fluid motion.
  • one end of the baffle is pressed against the outer edge of the rotor and the other end is coupled to the stator. Since the end of the baffle and the outer edge of the rotor are subjected to motion friction, the outer edge of the baffle is easily worn, resulting in leakage of the double cavity, reducing work efficiency, and even failing to work when the wear is severe;
  • the object of the present invention is to prolong the service life of the diaphragm of the variable-capacity mechanical device, reduce the maintenance burden, and improve the operating efficiency of the device, and propose a new mutual conversion device for mechanical motion and fluid motion.
  • the mutual conversion device for mechanical motion and fluid motion of the present invention is implemented by the following scheme, which comprises a base, a stator, a rotor, a diaphragm, a crankshaft and an end cover; the stator cavity is a cylindrical cavity, and the rotor is located in the stator cavity The inside of the stator has a fluid medium input slot channel and a fluid medium output slot channel.
  • the stator mount is on the base, the rotor diameter is smaller than the stator cavity diameter of the stator, and the rotor shaft has a rotor shaft hole.
  • the rotor shaft and the side shafts on both sides thereof are formed, and the two shafts are coaxial, and the cylindrical surface of the rotor shaft and the side shafts on both sides have a cylindrical line and three lines collinear on each cylindrical surface, and the three shafts are one piece
  • the diameters of the two shafts are equal, and the side axis is smaller than the diameter of the rotor shaft.
  • the difference between the diameter of the rotor shaft and the diameter of the side shaft is equal to one-half the difference between the diameter of the stator cavity and the diameter of the rotor.
  • each end cover is provided with a fluid medium passage hole, and the fluid medium input slot passage and the fluid medium output slot passage are respectively communicated with the fluid medium passage hole of the end cover;
  • the partition plate is a rectangular plate, and the partition plate is composed of two guide shafts and a substrate.
  • the two guide shafts are located on both sides of the long side of the partition plate, and are integral pieces, and one guide shaft cylinder surface is tangent to the plate surface on one side of the substrate, and the other guide is
  • the cylinder surface of the shaft is tangent to the plate surface on the other side of the substrate, the diameter of the guide shaft is larger than the thickness of the substrate, the partition plate is the same length as the axial direction of the stator and the rotor, and the width of the diaphragm plate is larger than the difference between the diameter of the stator cavity and the diameter of the rotor;
  • the axial direction of the cylindrical cavity of the stator cavity is opened with a cylindrical guide shaft groove, and the axial groove is located between the fluid medium input slot channel and the fluid medium output slot channel, and the cross-sectional line of the guide shaft groove is larger than a semicircular arc whose chord length of the arc is larger than the plate thickness of the baffle and smaller than the diameter of the guide shaft;
  • the rotor When assembled, the rotor is located in the stator cavity, the partition is located between the stator and the rotor, a guide shaft of the partition lies in the guide shaft groove of the stator, and the other guide shaft of the partition lies in the guide shaft groove of the rotor.
  • the partition has no fixed end to avoid the influence of stress and strain
  • the baffle has no contact with the stator and the tip of the rotor to avoid friction loss.
  • the pendulum shaft mechanism is removed, and the baffle mechanism is improved.
  • the baffle is hinged to the rotor and the stator so that there is no sliding friction pair between the pendulum shaft and the baffle plate, which effectively avoids the wedge when the transient overload state is encountered. Tight card stuck fault wedge phenomenon;
  • Figure 1 is a schematic axial cross-sectional view of a prior art spool valve vacuum pump
  • FIG. 2 is a schematic axial cross-sectional view of a mutual conversion device for mechanical motion and fluid motion of the present invention
  • FIG. 3 is a schematic view of a rotor of a mutual conversion device for mechanical motion and fluid motion of the present invention
  • Figure 4 is a schematic view of a crankshaft of a mutual conversion device for mechanical motion and fluid motion of the present invention
  • FIG. 5 is a partially enlarged schematic view of the stator A of Figure 2 of the present invention.
  • Figure 6 is a schematic view showing an end cover of a mutual conversion device for mechanical motion and fluid motion of the present invention
  • Figure 7 is a schematic view showing a partition of a mutual conversion device for mechanical motion and fluid motion of the present invention.
  • FIG. 8 is a perspective view showing the appearance of a mutual conversion device for mechanical motion and fluid motion of the present invention
  • FIG. 9 is a four-quadrant diagram showing a rotational position of a rotor of a mutual conversion device for mechanical motion and fluid motion of the present invention
  • FIG. 10 is a schematic view showing a second embodiment of a mutual conversion device for mechanical motion and fluid motion of the present invention
  • FIG. 11 is a schematic view showing a second embodiment of a mutual conversion device for mechanical motion and fluid motion of the present invention.
  • FIG. 2 is a schematic axial cross-sectional view of the interconversion device for mechanical motion and fluid motion of the present invention.
  • the utility model comprises a base 1, a stator 2, a rotor 3, a partition 4, a crankshaft and an end cover 5; the inner cavity of the stator 2 is a cylindrical cavity, the rotor 3 is located in the cavity of the stator 2, and a fluid medium input slot is opened in the lower part of the stator 2
  • the hole passage 6 and the fluid medium output slot passage 7 are fixed on the base 1, and the base 1 and the stator 2 may also be a single piece; the rotor diameter ⁇ 1 of the rotor 3 is smaller than the stator cavity diameter ⁇ 2 of the stator 2,
  • the rotor shaft 3 has a rotor shaft hole 8 (see Fig.
  • the crankshaft (see Fig. 4) is composed of a first side shaft 9, a rotor shaft 10 and a second side shaft 11, the first side shaft 9 and the second side shaft 11 common axis, located at two ends of the rotor shaft 10, the cylindrical surface of the rotor shaft 10 and each of the first side shaft 9 and the second side shaft 11 have a cylindrical line three-line collinear, the three axes are one
  • the axial length ⁇ 3 of the first side shaft 9 and the second side shaft 11 are equal, and the side shaft diameter ⁇ 3 is smaller than the rotor shaft diameter ⁇ 4 of the rotor shaft 10, the rotor shaft diameter ⁇ 4 and the side shaft diameter ⁇
  • the difference between 3 is equal to one-half the difference between the diameter ⁇ 2 of the stator cavity and the diameter ⁇ 1 of the rotor; there are two end caps 5, and the end cap 5 has a shaft shaft hole 12 (see Fig. 6), and each end cover is opened.
  • There is a fluid medium passage hole 13 and the fluid
  • the partition plate 4 is a rectangular plate (see FIG. 7).
  • the partition plate 4 is composed of a first guide shaft 14, a base plate 15, and a second guide shaft 16, and is a single piece, a first guide shaft 14 and a second guide shaft. 16 are respectively located on both sides of the long side of the substrate 15, the cylindrical surface of the first guiding shaft 14 is connected to the plate surface on the side of the substrate 15, and the cylindrical surface of the second guiding shaft 16 is connected to the surface of the other side of the substrate 15, the first guiding
  • the diameter of the shaft 14 and the diameter ⁇ 5 of the second guide shaft 16 are larger than the thickness h of the substrate 15, the partition 4 is the same length as the axial direction of the stator 2 and the rotor 3, and the plate width L of the partition plate 4 satisfies the diameter ⁇ 2 of the stator cavity. - rotor diameter ⁇ 1 ⁇ partition 4 plate width L;
  • the stator 2 cavity has a cylindrical first guide shaft groove 17 (see FIG. 5) in the axial direction, and the first guide shaft groove 17 is located in the fluid medium input slot passage 6 and the fluid medium output slot passage.
  • the cylindrical surface of the rotor 3 has a cylindrical second guide shaft groove 18 in the axial direction, and the cross-sectional arc of the second guide shaft groove 18 is an arc larger than a semicircle, and the chord length of the arc-deficient is larger than the partition 4
  • the rotor 3 When assembled, the rotor 3 is located in the cavity of the stator 2, the partition 4 is located between the stator 2, the rotor 3, the first guide shaft 14 of the partition 4 lies in the first guide shaft groove 17 of the stator 2, and the second of the partition 4
  • the guide shaft 16 is placed in the second guide shaft groove 18 of the rotor 3, the side of the partition plate 4 is hinged to the rotor 3, and the other side is hinged to the stator 2.
  • the partition 4 divides the cavity formed between the rotor 3 and the stator 2 into Two left and right non-intersecting cavities; the crankshaft is inserted into the rotor shaft hole 8, the diameter of the rotor shaft hole 8 is larger than the diameter of the rotor shaft ⁇ 4 0. 05 ⁇ 0.
  • Fig. 8 is a perspective view showing the appearance of the mutual conversion device of the mechanical motion and the fluid motion of the present invention.
  • the components of the mutual conversion device for mechanical motion and fluid motion of the present invention are steel, nickel-chromium alloy steel, or engineering plastic.
  • FIG. 9 is a schematic view showing the four-quadrant position of the rotor moving position of the mutual conversion device of the mechanical motion and the fluid motion of the present invention.
  • the first shaft 9 is coupled as an input shaft to the drag motor, and the motor is started by the first side shaft 9 and the rotor shaft 10
  • the second side shaft 11 is an integral member, and the first side shaft 9 and the second side shaft 11 rotate, and since the rotor shaft diameter ⁇ 4 is larger than the side shaft diameter ⁇ 3 , the first side shaft 9 and the second side shaft 11 At the time of rotation, the axis of the rotor shaft 10 revolves around the axes of the first side shaft 9 and the second side shaft 11, and the revolution angular velocity is the same as the rotation angular speed.
  • the initial phase of the rotor shaft 10 is zero, the rotor 3 and the stator 2 are in contact with the cylinder line at the quadrant I zero position, the rotor 3 moves from the quadrant I to the quadrant II, the left chamber 19 increases, and the water is input through the fluid medium.
  • the slot passage 6 is drawn into the left chamber 19, while the right chamber 20 is reduced, and the water in the right chamber 20 is compressed, forcing water to flow out of the fluid medium output slot passage 7, as the rotor 3 continues to turn to the quadrant III, In quadrant IV, the left chamber 19 continues to increase, and the right chamber 20 continues to decrease.
  • the rotor 3 When the rotor 3 is in contact with the stator 2 and the cylinder line moves to the end of the quadrant IV, the rotor 3 cylinder seals the fluid medium output slot passage 7, The backflow of water is limited, the rotor 3 continues to move, the new left chamber 19 is generated, the original left chamber 19 is converted into a new right chamber 20, and the transition from the left chamber 19 and the chamber 20 is repeated, so that water is drawn from the fluid medium into the input slot.
  • the hole passage 6 enters and is discharged from the fluid medium output slot passage 7 to realize the boosting and lifting function.
  • the first embodiment of the mutual conversion device for mechanical motion and fluid motion of the present invention is a lift pump for pumping water.
  • the partition plate 4 is a flat baffle plate, and other components are the same as those described above, and will not be repeated.
  • the boost pump is described below.
  • the stator 2 has an inner diameter of 124 mm;
  • Rotor 3 outer diameter 112mm;
  • the rotor shaft 10 is eccentric 6mm;
  • the second embodiment of the mutual motion conversion device for mechanical motion and fluid motion of the present invention is identical to the first embodiment except for the partition plate 4, and the other components are identical, and the mechanical motion and fluid motion of the present embodiment
  • the partition plate body of the mutual conversion device is an arc-shaped partition plate 21 (see FIG. 10 and FIG. 11), and the curvature of the inner arc surface of the plate body is close to the curvature of the cylinder surface of the rotor 3, and the curvature of the outer arc surface of the plate body is close to the stator 2 Cavity cylinder curvature.
  • a second embodiment of the mutual conversion device for mechanical motion and fluid motion of the present invention is a hydraulic motor that outputs power.
  • Rotor length p 40mm
  • End cap 7 155x30mm
  • the volume minus the angle of the inlet and outlet is 90ml, and the bilateral motor: 180ml per revolution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

说明书
机械运动与流体运动的互转换装置 技术领域
本发明属于旋转活塞式机械技术领域, 涉及一种机械运动与流体运动的互 转换装置, 适用于输入机械能实现输出流体能的泵、 压缩机, 或输入流体压缩 介质输出机械旋转运动的发动机及液压传动。 背景技术
现有技术中, 例如 《机械工程师手册》 (见机械工业出版社 2000, 5, 第 二版 1178页)和《凸轮泵》的中国专利(见申请号 01240882. 4,申请日 2001 03 27, 公开号 CN2471971 , 公开日 2002 01 16), 都给出了机械运动转换成流体介 质运动的装置, 这种机械运动转换成流体介质运动, 或将流体介质运动转换成 机械运动的装置, 都属于变容式机械。
《机械工程师手册》给出的 《滑阀式真空泵》, 如图 1所示, 该真空泵包 括有定子、 转子、 隔板、 摆轴, 摆轴卧在定子内。 隔板一端插进摆轴, 可与摆 轴滑动, 隔板另一端固定在转子外缘上, 隔板有通道, 使吸气口与定子、 转子 间的腔体相通。 《滑阀式真空泵》 不足之处是:
隔板与摆轴间存在滑动摩擦, 当工作瞬间超负荷状态时易发生楔紧卡死故 障; 隔板的一端固定在动辊外缘, 由于工作时隔板长期处于摆动状态, 固定的 端部存在摆动应变的作用, 易造成隔板端部断裂损伤; 另外, 隔板上下运动长 期摩擦下, 磨损严重, 易造成泄漏, 影响密封。
《凸轮泵》专利其结构装置也包括有定子(兼机座)、 转子(即动辊)、 隔 板、 曲轴, 定子为柱形腔体部件, 转子外径小于定子腔体内径, 转子装于定子 腔体内, 定子上设置两个开口, 作为流体介质的输入口和输出口, 隔板设置定 子和转子之间, 定子、 转子、 隔板三件配合, 将定子、 转子之间的剩余腔体分 割成两个互不相通的动态子腔体。 工作时, 使高压工作流体介质从一个开口进 入, 从另一个开口流出, 带动转子运动, 从曲轴的运动获得机械旋转运动输出; 或曲轴在外界机械动力的带动下, 带动转子运动, 迫使流体介质从一个开口进 入, 从另一个开口流出, 获得流体介质运动, 或贮压储能。 实现了机械运动与 流体运动的互转换。
这种方案是隔板一端压在转子外缘, 另一端与定子联接。 由于隔板端部 与转子外缘受运动摩擦作用, 易造成隔板外缘端磨损, 导致双腔泄漏, 降低工 作效率, 磨损严重时, 甚至不能工作; 发明内容
本发明的目的是延长变容式机械装置隔板的使用寿命, 减轻维修负担, 提 高装置的运行效率, 提出一种新的机械运动与流体运动的互转换装置。
本发明的机械运动与流体运动的互转换装置是采用下述方案实现的, 它包 括基座、 定子、 转子、 隔板、 曲轴、 端盖; 定子内腔为柱形腔体, 转子位于定 子腔体内;定子体内下部开有流体介质输入槽孔通道和流体介质输出槽孔通道, 定子固定座在基座上, 转子直径小于定子的定子腔体内直径, 转子的轴线上有 转子轴孔, 曲轴由转子轴和及其两侧的边轴构成, 两边轴共轴线, 转子轴的圆 柱面与两侧的边轴每个圆柱面上都有一条柱面线三线共线,, 该三轴为一体件, 两边轴直径相等, 且边轴小于转子轴直径, 转子轴直径与边轴直径之差等于定 子腔体内直径与转子直径之差的二分之一, 端盖有两个, 端盖有边轴轴孔, 每 个端盖开有一个流体介质通道孔, 流体介质输入槽孔通道和流体介质输出槽孔 通道各与端盖的流体介质通道孔相通; 所述的隔板为矩形板, 隔板由两导向轴 和基板构成两导向轴位于隔板长边两侧, 且为一体件, 一导向轴柱面与基板一 侧的板面相切, 另一导向轴的柱面与基板另一侧的板面相切, 导向轴直径大于 基板的板厚, 隔板与定子、 转子轴向方向同长, 隔板板宽大于定子腔直径与转 子直径之差; 所述的定子腔内柱面轴向方向开有圆柱形的导向轴槽, 该向轴槽 位于流体介质输入槽孔通道和流体介质输出槽孔通道之间, 该导向轴槽的横截 面线为大于半圆的圆弧,其缺弧的弦长大于隔板的板厚,而小于导向轴的直径; 所述的转子柱面轴向方向也开有圆柱形的导向轴槽, 该导向轴槽横截面弧线也 为大于半圆的圆弧, 其缺弧的弦长大于隔板的板厚, 而小于导向轴的直径。 装 配时, 转子位于定子腔体内, 隔板位于定子、 转子之间, 隔板的一导向轴卧入 定子的导向轴槽, 隔板的另一导向轴卧入转子的导向轴槽。
本发明机械运动与流体运动的互转换装置具有如下优点:
① 隔板没有固定端, 避免了应力应变影响;
② 隔板没有与定子、 转子尖部接触端, 避免了摩擦损耗。 ③ 去掉了摆轴机构, 改进了隔板机构, 隔板与转子、 定子采用铰链连接, 使其不存在摆轴与隔板间的滑动摩擦副, 有效的避免了瞬间超负荷状态时易发 生楔紧卡死故障楔紧现象;
④ 隔板使得隔板所受的动力矩远大于阻力矩, 使得机构运动更加流畅。 附图说明
图 1 现有的滑阀式真空泵轴向横截面示意图;
图 2 本发明机械运动与流体运动的互转换装置轴向横截面示意图; 图 3 本发明机械运动与流体运动的互转换装置转子示意图;
图 4 本发明机械运动与流体运动的互转换装置曲轴示意图;
图 5 本发明图 2定子 A局部放大示意图;
图 6 本发明机械运动与流体运动的互转换装置端盖示意图;
图 7 本发明机械运动与流体运动的互转换装置隔板示意图;
图 8 本发明机械运动与流体运动的互转换装置外观立体状态示图; 图 9 本发明机械运动与流体运动的互转换装置转子运动位置四象限示意 图;
图 10 本发明机械运动与流体运动的互转换装置第二实施例示意图; 图 11 本发明机械运动与流体运动的互转换装置第二实施例隔板示意图。 具体实施方式
下面结合实施例和附图对本发明的机械运动与流体运动的互转换装置做进 一歩说明。 图 2给出了本发明机械运动与流体运动的互转换装置的轴向横截面 示意图。 它包括基座 1、 定子 2、 转子 3、 隔板 4、 曲轴、 端盖 5; 定子 2内腔 为柱形腔体, 转子 3位于定子 2腔体内, 定子 2体内下部开有流体介质输入槽 孔通道 6和流体介质输出槽孔通道 7, 固定座在基座 1上, 基座 1和定子 2也 可为一体件; 转子 3的转子直径 Φ 1小于定子 2的定子腔体内直径 Φ 2 , 转子 3 的轴线上有转子轴孔 8 (见图 3 ) ; 曲轴(见图 4) 由第一边轴 9、 转子轴 10和第 二边轴 11构成, 第一边轴 9和第二边轴 11共轴线, 位于转子轴 10两端, 转子 轴 10的圆柱面与第一边轴 9和第二边轴 11的每个圆柱面上都有一条柱面线三 线共线, 该三轴为一体件, 第一边轴 9和第二边轴 11的两边轴直径 Φ 3相等, 且边轴直径 Φ 3小于转子轴 10的转子轴直径 Φ 4,转子轴直径 Φ 4与边轴直径 Φ 3之差等于定子腔体内直径 Φ 2与转子直径 Φ 1之差的二分之一;端盖 5有两个, 端盖 5有边轴轴孔 12 (见图 6), 每个端盖开有一个流体介质通道孔 13, 流体介 质输入槽孔通道 6和流体介质输出槽孔通道 7各与端盖的流体介质通道孔 13 相通;
所述的隔板 4为矩形板 (见图 7), 隔板 4由第一导向轴 14、 基板 15、 第二 导向轴 16构成, 且为一体件, 第一导向轴 14和第二导向轴 16分别位于基板 15长边两侧, 第一导向轴 14的柱面与基板 15—侧的板面相连接, 第二导向轴 16的柱面与基板 15另一侧的板面相连接,第一导向轴 14的直径和第二导向轴 16的直径 Φ 5大于基板 15的板厚 h, 隔板 4与定子 2、 转子 3轴向方向同长, 隔板 4板宽 L满足定子腔体内直径 Φ 2 -转子直径 Φ 1 <隔板 4板宽 L;
所述的定子 2腔内柱面轴向方向开有圆柱形的第一导向轴槽 17 (见图 5 ), 第一导向轴槽 17位于流体介质输入槽孔通道 6和流体介质输出槽孔通道 7之 间, 第一导向轴槽 17的横截面线为大于半圆的圆弧, 其缺弧的弦长大于隔板 4 的板厚 h, 而小于第一导向轴 14的直径 Φ 5 , 第一导向轴槽 17直径 Φ6—第一 导向轴 14的直径 Φ 5= (0· 05〜0· 3) mm;
所述的转子 3柱面轴向方向开有圆柱形的第二导向轴槽 18,第二导向轴槽 18的横截面弧线为大于半圆的圆弧, 其缺弧的弦长大于隔板 4的板厚 h, 而小 于第二导向轴 16的直径 Φ 5 ,第二导向轴槽 18直径 Φ6—第二导向轴 16的直径 Φ 5= (0. 05〜0· 3) mm;
装配时, 转子 3位于定子 2腔体内, 隔板 4位于定子 2、 转子 3之间, 隔 板 4的第一导向轴 14卧入定子二的第一导向轴槽 17, 隔板 4的第二导向轴 16 卧入转子 3的第二导向轴槽 18, 形成隔板 4一侧与转子 3铰链, 另一侧与定子 2铰链, 隔板 4将转子 3与定子 2间形成的腔体分割成左右两个互不相通的空 腔; 曲轴插进转子轴孔 8, 转子轴孔 8直径大于转子轴直径 Φ 4 0. 05〜0. 3mm, 允许转子轴 10在转子轴孔 8中无约束转动,两个端盖 5扣在定子 2两侧,第一 边轴 9和第二边轴 11分别插进端盖 5的边轴轴孔 12, 同样, 允许第一边轴 9 和第二边轴 11在边轴轴孔 12中无约束转动, 用螺栓将端盖 5与定子 2扣紧, 图 8给出了本发明机械运动与流体运动的互转换装置外观立体状态示图。
本发明的机械运动与流体运动的互转换装置各零部件的用材为钢, 或镍铬 合金钢、 或工程塑料。
下面以本发明机械运动与流体运动的互转换装置作为扬水的升压泵为例描 述其工作过程。 图 9给出了本发明机械运动与流体运动的互转换装置转子运动 位置四象限示意图, 第一边轴 9作为输入轴与拖动马达耦连, 马达启动由于第 一边轴 9、 转子轴 10、 第二边轴 11为一体构件,, 第一边轴 9和第二边轴 11 自转, 又由于转子轴直径 Φ 4大于边轴直径 Φ 3 , 则第一边轴 9和第二边轴 11 自转时, 转子轴 10的轴线绕第一边轴 9和第二边轴 11的轴线公转, 公转角速 度与自转角速度相同。 设马达启动时转子轴 10初始相位为零, 转子 3与定子 2 相接触柱面线处于象限 I零位置, 转子 3 由象限 I起向象限 II运动, 左腔 19 增大, 水经流体介质输入槽孔通道 6被吸入, 进入左腔 19, 与此同时右腔 20 减小, 右腔 20中水被压缩, 迫使水从流体介质输出槽孔通道 7流出, 随着转子 3继续转向象限 III、 象限 IV, 左腔 19继续增大, 右腔 20继续减小, 当转子 3 与定子 2相接触柱面线移动到象限 IV结束时, 转子 3柱面将流体介质输出槽孔 通道 7封堵, 限制了水的倒流, 转子 3继续移动, 新的左腔 19生成, 原左腔 19转换成新的右腔 20, 由于左腔 19和腔 20周而复始的转换,使得水从流体介 质被吸入输入槽孔通道 6进入, 从流体介质输出槽孔通道 7排出, 实现升压扬 水功能。
本发明的机械运动与流体运动的互转换装置的第一个实施例为扬水用的升 压泵, 所述的隔板 4为平直隔板, 其它部件与上述相同, 不再重述。下面对升 压泵进行说明。
一、 尺寸:
1. 定子 2内径 124mm;
2. 转子 3外径 : 112mm;
3. 转子轴 10偏心 6mm;
4. 转子 3长度 p: 168mm;
5. 端盖 124mm;
6. 转速: 750转 /分
二、 单位体积:
V = ni^-f p― ρ = ψ[ 2 - 2] = 373.67m/
三、 参数 实例: (由测量定)
1. 扬水量: 15t;
2. 扬程: 250米;
3. 电机马力: llKw 本发明的机械运动与流体运动的互转换装置的第二个实施例与第一个实施 例除隔板 4不同外, 其它部件完全相同, 本实施例机械运动与流体运动的互转 换装置的隔板板体为弧形隔板 21 (见图 10、 图 11), 板体的内弧面曲率接近于 转子 3柱面曲率, 板体的外弧面曲率接近于定子 2腔体柱面曲率。
本实施例机械运动与流体运动的互转换装置的优点:由于弧形隔板 21基板 面上下面为弧形, 使得弧形隔板 21与定子 2内腔面、转子 3外柱面吻和好, 有 利于转子 3移动到第四象限结束时对流体介质输出槽孔通道 7的封堵。
本发明的机械运动与流体运动的互转换装置的第二个实施例为输出动力的 液压马达。
下面对液压马达进行说明
一、 尺寸:
7. 定子内径^ =2xR2 =155 ;
8. 转子外径 λ = xR! = \45mm .
9. 凸轮轴偏心 5mm;
10. 转子长度 p: 40mm;
11. 端盖 7 =155x30mm;
12. 转速: 1000转 /分
二、 单位体积:
V = R2 2 p- Rx 2 p = ^[R2 2 -Rx 2] = [(1.15)2— (7·25)2] = 94.24 / 式中 2分别是定子内圆半径和转子外圆半径
减去进出口的角度的容积取值 90ml, 双边马达: 每转 180ml。
三、 参数
输出功率 llKw。

Claims

权利要求书
1. 一种机械运动与流体运动的互转换装置, 适用于泵、 发动机、 压缩机、 及液压传动, 该装置包括基座(1)、 定子 (2)、 转子 (3)、 隔板 (4)、 曲轴、 端盖 (5);定子 (2)内腔为柱形腔体,定子 (2)体内下部开有流体介质输入槽孔通道 (6) 和流体介质输出槽孔通道 (7), 定子 (2)位于基座(1)上, 转子 (3)位于定子 (2) 腔体内, 转子 (3)的转子直径(Φ 1)小于定子 (2)的定子腔体内直径(Φ 2), 转子 (3)的轴线上有转子轴孔 (8), 曲轴由第一边轴 (9)、转子轴(10)和第二边轴(11) 构成, 第一边轴 (9)和第二边轴(11)共轴线, 位于转子轴(10)两端, 转子轴(10) 的圆柱面与第一边轴(9)和第二边轴(11)的每个圆柱面上都有一条柱面线三线 共线,该三轴为一体件,第一边轴(9)和第二边轴(11)的两边轴直径(Φ 3)相等, 且边轴直径( Φ 3)小于转子轴(10)的转子轴直径( Φ 4),转子轴直径( Φ 4)与边轴 直径( Φ 3)之差等于定子腔体内直径( Φ 2)与转子直径( Φ 1)之差的二分之一,端 盖 (5)有两个, 端盖(5)有边轴轴孔(12), 每个端盖开有一个流体介质通道孔 (13), 流体介质输入槽孔通道 (6)和流体介质输出槽孔通道 (7)各与端盖的流体 介质通道孔(13)相通, 其特征是:
所述的隔板 (4)为矩形板, 隔板 (4)由第一导向轴(14)、基板(15)、第二导 向轴(16)构成, 且为一体件, 第一导向轴(14)和第二导向轴(16)分别位于基板 (15)长边两侧, 第一导向轴(14)的柱面与基板(15)—侧的板面相切, 第二导向 轴(16)的柱面与基板(15)另一侧的板面相切, 第一导向轴(14)的直径和第二导 向轴(16)的直径(Φ 5) 大于基板(15)的板厚 (h), 隔板 (4)与定子 (2)、 转子 (3) 轴向方向同长,隔板 (4)板宽 (L)满足定子腔体内直径( Φ 2) -转子直径( Φ 1) < 隔板 ( 4) 板宽 L;
所述的定子 (2)腔内柱面轴向方向开有圆柱形的第一导向轴槽(17),第一导 向轴槽(17)位于流体介质输入槽孔通道(6)和流体介质输出槽孔通道(7 )之间, 第一导向轴槽(17)的横截面弧线为大于半圆的圆弧,其缺弧的弦长大于隔板 (4) 的板厚 h, 而小于第一导向轴(14)的直径 Φ 5 ;
所述的转子 (3)柱面轴向方向开有圆柱形的第二导向轴槽(18),第二导向轴 槽(18)的横截面弧线为大于半圆的圆弧, 其缺弧的弦长大于隔板 (4)的板厚 h, 而小于第二导向轴(16)的直径 Φ 5 ;
装配时,转子 (3)位于定子 (2)腔体内,隔板 (4)位于定子 (2)、转子 (3)之间, 隔板 (4)的第一导向轴(14)卧入定子 (2)的第一导向轴槽(17),隔板 (4)的第二导 向轴(16)卧入转子 (3)的第二导向轴槽(18)。
2. 根据权利要求 1所述的机械运动与流体运动的互转换装置, 其特征是: 所述的隔板 (4)为平直隔板。
3. 根据权利要求 1所述的机械运动与流体运动的互转换装置, 其特征是: 所述的隔板 (4)为弧形隔板。
PCT/CN2010/075628 2009-08-04 2010-08-02 机械运动与流体运动的互转换装置 WO2011015122A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101624143A CN101639064B (zh) 2009-08-04 2009-08-04 机械运动与流体运动的互转换装置
CN200910162414.3 2009-08-04

Publications (1)

Publication Number Publication Date
WO2011015122A1 true WO2011015122A1 (zh) 2011-02-10

Family

ID=41614196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075628 WO2011015122A1 (zh) 2009-08-04 2010-08-02 机械运动与流体运动的互转换装置

Country Status (2)

Country Link
CN (1) CN101639064B (zh)
WO (1) WO2011015122A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639064B (zh) * 2009-08-04 2010-09-15 王德良 机械运动与流体运动的互转换装置
CN102828950B (zh) * 2012-09-21 2016-01-13 浙江东海瑞普科技有限公司 一种芯隔泵
CN112112799B (zh) * 2020-09-08 2023-01-10 青岛大学 一种用作泵或马达的内转子摆动刮板装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2295267A1 (fr) * 1974-12-20 1976-07-16 Cam Gears Ltd Pompe a fluide
EP0592119A1 (en) * 1992-09-21 1994-04-13 Sanden Corporation Rotary piston fluid displacement apparatus
DE19645586A1 (de) * 1996-11-05 1998-05-07 Zunhammer Sebastian Rotationskolbenmaschine
CN2326754Y (zh) * 1998-05-21 1999-06-30 朱建业 一种新型的动叶回转式压缩机结构
CN1482362A (zh) * 2003-02-12 2004-03-17 一种转子泵
CN1707110A (zh) * 2004-06-11 2005-12-14 云晓璎 转子泵
CN101639064A (zh) * 2009-08-04 2010-02-03 王海军 机械运动与流体运动的互转换装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU193123B (en) * 1985-08-01 1987-08-28 Magyar Vagon Es Gepgyar Eccentric pump of cut-off slide-valve particularly for flowing lubricant of drives
CN2471971Y (zh) * 2001-03-27 2002-01-16 孙青� 凸轮泵
DE10308831B3 (de) * 2003-02-27 2004-09-09 Levitin, Lev, Prof. Dr., Brookline Rotationskolbenmaschine mit einem in einer ovalen Kammer geführten ovalen Rotationskolben

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2295267A1 (fr) * 1974-12-20 1976-07-16 Cam Gears Ltd Pompe a fluide
EP0592119A1 (en) * 1992-09-21 1994-04-13 Sanden Corporation Rotary piston fluid displacement apparatus
DE19645586A1 (de) * 1996-11-05 1998-05-07 Zunhammer Sebastian Rotationskolbenmaschine
CN2326754Y (zh) * 1998-05-21 1999-06-30 朱建业 一种新型的动叶回转式压缩机结构
CN1482362A (zh) * 2003-02-12 2004-03-17 一种转子泵
CN1707110A (zh) * 2004-06-11 2005-12-14 云晓璎 转子泵
CN101639064A (zh) * 2009-08-04 2010-02-03 王海军 机械运动与流体运动的互转换装置

Also Published As

Publication number Publication date
CN101639064A (zh) 2010-02-03
CN101639064B (zh) 2010-09-15

Similar Documents

Publication Publication Date Title
JP5583658B2 (ja) コンプレッサ、ポンプ、真空ポンプ、タービン、及び、モータとして、並びに、他の駆動及び被駆動油圧−空圧機械として使用し得る回転式ピストンを備える装置
CN201568303U (zh) 对称平衡式同步旋转压缩机械
JP5265705B2 (ja) 回転式圧縮機
EA013630B1 (ru) Лопастная машина с неподвижными и вращающимися частями цилиндра
EP2472115A1 (en) Spherical expansion compressor adapted to variable working conditions
WO2011015122A1 (zh) 机械运动与流体运动的互转换装置
WO2010045767A1 (zh) 静止叶片式压缩机
CN103821715B (zh) 平动旋转式压缩机械
CN201568302U (zh) 带有旋转进排气口和排气阀的同步回转压缩机械
WO2008019575A1 (fr) Mécanisme rotatif d&#39;expansion compression placé dans une cavité de circulation de fluides et muni de pales traversant un arbre.
CN214145579U (zh) 一种气动发电机
CN215762230U (zh) 一种高能效比电动涡旋压缩机结构
CN115875260A (zh) 单双级可调伺服电机直驱对称式涡旋压缩机
CN101235818A (zh) 同步旋转流体压缩装置
CN103062612A (zh) 可变排量机油泵
CN211370537U (zh) 双流道涡轮增压器的泄气阀结构及双流道涡流增压器
WO2009105957A1 (zh) 容积式流体机械联动变容机构
CN101907092B (zh) 共轭套筒泵
CN201090434Y (zh) 一种旋转活塞泵
CN201288661Y (zh) 静止叶片式压缩机
CN112761731A (zh) 一种用于高压天然气井口降压的三角转子气动发电机
WO2012034480A1 (zh) 同步回转多相混输泵
CN203099277U (zh) 可变排量机油泵
CN112431736A (zh) 一种液压离心力压缩机
CN101769246B (zh) 一种半封闭活塞式压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806026

Country of ref document: EP

Kind code of ref document: A1