WO2009104671A1 - Granulation die, granulator, and method for producing foamable thermoplastic resin particle - Google Patents

Granulation die, granulator, and method for producing foamable thermoplastic resin particle Download PDF

Info

Publication number
WO2009104671A1
WO2009104671A1 PCT/JP2009/052867 JP2009052867W WO2009104671A1 WO 2009104671 A1 WO2009104671 A1 WO 2009104671A1 JP 2009052867 W JP2009052867 W JP 2009052867W WO 2009104671 A1 WO2009104671 A1 WO 2009104671A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
thermoplastic resin
die
particles
granulation die
Prior art date
Application number
PCT/JP2009/052867
Other languages
French (fr)
Japanese (ja)
Inventor
泰正 浅野
昌利 山下
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to CN2009801054491A priority Critical patent/CN101945742B/en
Priority to JP2009554365A priority patent/JP5048793B2/en
Publication of WO2009104671A1 publication Critical patent/WO2009104671A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/582Component parts, details or accessories; Auxiliary operations for discharging, e.g. doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2055/00Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
    • B29K2055/02ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/048Expandable particles, beads or granules

Definitions

  • the present invention relates to a granulation die for forming thermoplastic resin particles by a hot cut method, a granulating apparatus, and a method for producing foamable thermoplastic resin particles.
  • This application claims priority based on Japanese Patent Application No. 2008-39116 for which it applied to Japan on February 20, 2008, and uses the content here.
  • thermoplastic resin pellets As an apparatus for molding thermoplastic resin pellets (referred to as a pelletizer), an extruder, a die attached to the tip of the extruder, and a cutter are configured. 2. Description of the Related Art Generally, an apparatus is known that extrudes a melt-kneaded resin material from a die and cuts it with a cutter to produce pellets of a desired size.
  • This hot-cut method is a method in which a high-temperature resin immediately after being pushed into the water stream is cut with a cutter by bringing it into contact with the water stream circulating through the tip end face of the die where a plurality of nozzles are open. Granulation by the hot cut method is advantageous in that the resin is cut in a state where the resin is not sufficiently cured, so that the resin is not powdered and spherical particles are obtained.
  • the resin discharge surface of the die since the resin discharge surface of the die is in contact with the water flow, heat is taken away from the water flow side, and the inside of the die may be partially lowered to a temperature below the melting point of the resin. As a result, the nozzle is clogged and productivity is lowered. In addition, the clogging may cause unevenness in the particle size of the particles, which may deteriorate the quality. Furthermore, when clogging increases, the extrusion pressure of the resin from the die becomes abnormally high, and the pressure limit of the die may be exceeded, making extrusion impossible.
  • Patent Document 1 discloses a granulating die in which a bar heater is disposed at the center position of a circularly arranged nozzle in the same direction as the resin flow path of the nozzle. By disposing the rod heater, the heater and each nozzle are equidistant, and each nozzle is heated uniformly. Therefore, clogging of the nozzle is less likely to occur, low pressure loss and start of extrusion in water are possible, and high quality pellets can be obtained.
  • Patent Document 2 discloses a structure in which a heat insulating material is provided on the surface of a die in a method for producing thermoplastic resin particles obtained by cutting molten resin extruded from a die with a rotary cutter into resin particles.
  • both patent documents 1 and 2 are granulated without containing a foaming agent.
  • Patent Documents 1 and 2 have the following problems. That is, when mixing foaming agents in an extruder to obtain expandable resin particles, it is necessary to suppress foaming of the foaming agent-containing resin composition discharged from the die. Therefore, the water temperature of the circulating water (cooling water) into the cutting chamber (chamber) must be lower (30 to 40 ° C.) than that of non-foamed resin particles (80 to 90 ° C.). Further, since the melt viscosity of the resin is lowered by the foaming agent, it is difficult to perform granulation without contacting (pressing) the cutter blade to the die surface. In the prior art disclosed in Patent Document 1, the rod heater is arranged so that the tip of the rod heater is close to the resin discharge surface of the die.
  • the rod heater has a nichrome wire installed to the tip due to its structure. Because it is not possible, the heater tip does not generate heat. For this reason, when foaming resin particles are granulated, it is difficult to sufficiently heat the resin discharge surface at the tip end of the die that requires the most heating in this die structure, and clogging cannot be prevented.
  • Patent Document 2 describes the production of simple resin pellets in which no foaming agent is mixed.
  • the temperature of the circulating water may be 40 ° C. or lower because it is necessary to suppress foaming of the particles. desirable. For this reason, the difference between the resin temperature and the circulating water temperature becomes large, and the heat removal from the die tip portion due to the water flow cannot be suppressed with the heat insulating material alone, and nozzle clogging is likely to occur.
  • the present invention has been made in view of the above-described problems, and prevents granulation of nozzles in a granulation die by a hot cut method, and enables efficient production of particles having a uniform particle diameter.
  • An object of the present invention is to provide a granulating apparatus and a method for producing expandable thermoplastic resin particles.
  • the granulation die employs the following configuration. That is, the granulation die includes a resin discharge surface provided in contact with the cooling medium, a plurality of resin flow paths communicating with the resin supply device, and a nozzle communicating with the resin flow path and opening on the resin discharge surface. And a plurality of cartridge heaters provided in the vicinity of the resin discharge surface. Further, the resin flow path is arranged along the circumference of the virtual circle on the resin discharge surface, and the cartridge heater is arranged on both sides of the circumference of the circumference of the resin flow path, and the longitudinal direction is the radial direction of the circumference. It is arranged across the circumference toward
  • the granulation die according to the present invention it is preferable that eight or more cartridge heaters are provided, and the respective central angles are 45 ° or less.
  • the cartridge heater is preferably provided at a position 10 to 50 mm from the resin discharge surface.
  • the cross-sectional shape of the resin flow path has a straight portion on its outer periphery, and the straight portion is arranged substantially parallel to the longitudinal direction of the cartridge heater.
  • a plurality of nozzles are provided in the resin flow path along the cross-sectional shape.
  • temperature sensors are provided at least on the upstream side and the downstream side in the water flow direction of the cooling medium, and the cartridge heaters are individually controlled to be turned on and off based on the temperature measured by the temperature sensor. It is preferable to be configured.
  • the granulation apparatus contains the granulation die described above, a resin supply device with the granulation die attached to the tip, and a cutter for cutting the resin discharged from the nozzle of the granulation die. And a chamber in which a cooling medium is brought into contact with the resin discharge surface of the granulation die.
  • the method for producing expandable thermoplastic resin particles according to the present invention includes a step of supplying a thermoplastic resin to a resin supply apparatus equipped with the above-described granulation die and melt-kneading the thermoplastic resin, and a thermoplastic resin for granulation.
  • a process of injecting a foaming agent into the thermoplastic resin while moving it toward the die to form a foaming agent-containing resin, and a foaming agent-containing resin discharged from the nozzle of the granulating die are cut in a cooling medium by a cutter. And obtaining a foamable thermoplastic resin particle.
  • At least the upstream and downstream die temperatures in the water flow direction of the cooling medium are measured, and each cartridge heater is adjusted so that the respective measured values are equal. It is preferable to perform on / off control individually.
  • the method for producing the expanded thermoplastic resin particles according to the present invention includes a step of supplying a thermoplastic resin to a resin supply apparatus having the above-mentioned granulation die attached thereto, and melt-kneading the thermoplastic resin, and a thermoplastic resin into the granulation die.
  • the process of forming a foaming agent-containing resin by injecting a foaming agent into the thermoplastic resin while moving toward the surface of the thermoplastic resin, and cutting the foaming agent-containing resin discharged from the nozzle of the granulation die in a cooling medium with a cutter A step of obtaining expandable thermoplastic resin particles, and a step of prefoaming the expandable thermoplastic resin particles to obtain the expanded thermoplastic resin particles.
  • the method for producing a thermoplastic resin foam molded article comprises a step of supplying a thermoplastic resin to a resin supply apparatus equipped with the above-mentioned granulation die and melt-kneading the thermoplastic resin, and a thermoplastic resin for granulation.
  • the process of forming a foaming agent-containing resin by injecting a foaming agent into a thermoplastic resin while moving toward the die, and the foaming agent-containing resin discharged from the nozzle of the granulation die in a cooling medium
  • foamable thermoplastic resin particles to heat foamable thermoplastic resin particles to pre-foam and obtain thermoplastic resin foam particles, and to mold thermoplastic resin foam particles in-mold and thermoplastic And obtaining a resin foam molded body.
  • the expandable thermoplastic resin particles according to the present invention are expandable thermoplastic resin particles obtained by the above-described method for producing expandable thermoplastic resin particles.
  • thermoplastic resin expanded particles according to the present invention are thermoplastic resin expanded particles obtained by pre-expanding the above-described expandable thermoplastic resin particles.
  • thermoplastic resin foam molded article according to the present invention is a thermoplastic resin foam molded article obtained by in-mold foam molding of the thermoplastic resin foam particles described above.
  • the resin flow path and the nozzle are heated while being sandwiched from both sides by the cartridge heater. Therefore, only one side of the resin flow path is not heated, and it can be heated evenly from both sides at equal distances. As a result, nozzle clogging can be suppressed, reduction in production efficiency due to clogging can be improved, and high-quality particles having a uniform particle diameter can be produced.
  • FIG. 6 is a cross-sectional view of a die used in Comparative Example 1.
  • FIG. 6 is a cross-sectional view of a die used in Comparative Example 1.
  • FIG. 6 is a side view which shows the resin discharge surface of the die
  • FIG. 6 is a cross-sectional view of a die used in Comparative Example 2.
  • FIG. It is a side view which shows the resin discharge surface of the die
  • FIG. 6 is a cross-sectional view of a die used in Comparative Example 3.
  • FIG. It is a side view which shows the resin discharge surface of the die
  • FIGS. 1 is a configuration diagram of a granulating apparatus according to an embodiment of the present invention
  • FIG. 2 is a side sectional view showing a schematic configuration of a granulating die according to an embodiment of the present invention
  • FIG. 3 is a resin of the die body of FIG.
  • FIG. 4 is a side view showing the discharge surface
  • the granulating apparatus T is a granulating apparatus that performs granulation by an underwater hot cut method, and employs the granulating die 1 according to the embodiment of the present invention.
  • the granulating apparatus T includes an extruder 2 (resin feeding apparatus) having a granulating die 1 attached to the tip thereof, and a resin (in this embodiment, containing a foaming agent) discharged from the nozzle 15 of the granulating die 1.
  • the cutter 3 for cutting the resin 20 is accommodated, and the chamber 4 for bringing the water flow into contact with the resin discharge surface 13 of the granulation die 1 is provided.
  • a pipe 5 for flowing circulating water is connected to the chamber 4, and one end (upstream side of the chamber 4) of the pipe 5 is connected to a water tank 7 via a water pump 6.
  • the other end (downstream side of the chamber 4) of the pipe 5 is provided with a dehydration processing unit 8 that separates foamed thermoplastic resin particles from the circulating water and dehydrates and dries them.
  • the expandable thermoplastic resin particles separated by the dehydration processing unit 8 and dehydrated and dried are sent to the container 9.
  • Reference numeral 21 is a hopper, 22 is a blowing agent supply port, and 23 is a high-pressure pump.
  • the side from which the resin is discharged is referred to as “front” and “front end”, and the opposite side is defined as “rear” and “rear end” in the following description. Use.
  • the granulation die 1 includes a die body 10 and a die holder 11 fixed to the tip side (right side in the drawing) of the extruder 2, and the die body 10 is the die holder 11. It is being fixed to the front end side with a plurality of bolts 12, 12,.
  • the die holder 11 is provided in communication with the cylinder of the extruder 2, and a rear end side flow path 11 a and a front end side flow path 11 b are formed in that order from the rear end side toward the front end side.
  • the die main body 10 is formed with a conical convex portion 10a that protrudes rearward at the central portion of the rear end surface, and the die main body 10 and the die holder 11 are connected to each other in the front end side flow passage 11b of the die holder 11.
  • the conical convex part 10a is inserted with a predetermined gap. That is, the foaming agent-containing resin 20 that has passed through the rear end side flow passage 11a of the die holder 11 flows along the circumferential surface of the conical convex portion 10a in the front end side flow passage 11a, and a plurality of openings that are opened on the rear end face of the die body 10 are opened. It flows into the resin flow paths 14, 14,.
  • the die main body 10 has a resin discharge surface 13 that comes into contact with the water flow at its front end surface, and a plurality of resin flow paths 14 for transferring the foaming agent-containing resin 20 extruded from the extruder 2 toward the resin discharge surface 13; , And a plurality of nozzles 15, 15,... That are provided at the tips of the plurality of resin flow paths 14, 14,.
  • Schematic configuration including a material 16, a cartridge heater 17 for heating the resin discharge surface 13 and the resin flow path 14 at a position closer to the extruder 2 than the resin discharge surface 13, and a short heater 18 for heating the die body 10.
  • the cartridge heater 17 and the short heater 18 can be appropriately selected and used from conventionally known cartridge heaters according to the size and shape of the die body 10.
  • the cartridge heater 17 and the short heater 18 for example, a heating wire (nichrome wire) wound around a rod-shaped ceramic is inserted into a pipe (heat-resistant stainless steel), and a gap between the heating wire and the pipe is made high in heat conductivity and high.
  • a bar heater having a high power density and encapsulated with a material having excellent insulating properties (MgO) can be used.
  • the cartridge heater 17 and the short heater 18 may be a cartridge heater with two lead wires on one side or a cartridge heater (seeds heater) with one lead wire on each side, but two lead wires on one side.
  • a cartridge heater is preferred because it has a higher power density.
  • a heat insulating material 16 having a circular cross section is disposed at the center of the resin discharge surface 13 of the die body 10, and discharge ports of a plurality of nozzles 15, 15,... Are provided along concentric circles outside the heat insulating material 16 in the radial direction. ing. And the center part of the resin discharge surface 13 in which the heat insulating material 16 and the nozzles 15, 15,... Are arranged is in contact with water inside the chamber 4.
  • the resin flow paths 14, 14,... Have a circular cross section, extend in a direction orthogonal to the resin discharge surface 13, and have a circumference centered on the central axis of the die body 10 (on the resin discharge surface 13 Along the circumference of the virtual circle in FIG.
  • eight resin flow paths 14, 14,... Are provided, and the central angle between the resin flow paths 14, 14 adjacent in the circumferential direction of the circumference is 45 °.
  • each resin flow path 14 communicates with the front end side flow path 11 b of the die holder 11.
  • the nozzles 15, 15,... are arranged at predetermined intervals along the circumference of a virtual circle on the resin discharge surface 13.
  • one nozzle 15 is a nozzle unit in which a plurality of single nozzles 15a, 15b, 15c,... Then, this is called “nozzle”).
  • nozzle a nozzle unit in which a plurality of single nozzles 15a, 15b, 15c,... Then, this is called “nozzle”).
  • nozzle As the arrangement method of each single nozzle 15a, 15b, 15c,..., For example, a method in which a large number of small nozzles are arranged on a plurality of small circles can be adopted. However, the arrangement is not limited to such an arrangement form.
  • the heat insulating material 16 is provided on the resin discharge surface 13 on the inner side of the circumference where the plurality of nozzles 15, 15,... Are arranged, so that the heat of the die main body 10 does not escape to the water in the chamber 4. 10 temperature drop is suppressed.
  • the heat insulating material 16 it is preferable to use a heat insulating material having water resistance and a structure having a high surface hardness.
  • a heat insulating material excellent in heat resistance and heat insulating performance that does not cause deformation or the like even when in contact with the high-temperature die body 10 is disposed, and this is covered with a waterproof resin such as a fluororesin excellent in heat insulating performance,
  • a laminated heat insulating material 16 in which materials having high surface hardness such as stainless steel and ceramics are sequentially laminated can be used.
  • Each of the cartridge heater 17 and the short heater 18 is a rod heater, and the cartridge heater 17 is positioned closer to the resin discharge surface 13 than the short heater 18 in the direction of the rear end of the granulation die 1.
  • the cartridge heaters 17, 17,... are disposed on both sides of the circumferential direction of the resin flow path 14, and are disposed in a state of crossing the circumference with the longitudinal direction thereof directed in the radial direction of the circumference. In the vicinity of the discharge surface 13, the resin discharge surface 13, the nozzle 15, and the resin flow path 14 are heated.
  • eight cartridge heaters 17, 17,... Are provided in the circumferential direction with a predetermined center angle (here, an angle of 45 °). That is, the individual nozzles 15 are arranged so as to be sandwiched by the two cartridge heaters 17 and 17 from the circumferential direction of the circumference.
  • the cartridge heater 17 is provided in the vicinity of the resin discharge surface 13, that is, within a predetermined heater depth range from the resin discharge surface 13 toward the extruder 2 side.
  • the heater depth is the distance from the resin discharge surface 13 to the center of the surface heating cartridge heater 17 (L in FIG. 2), and indicates the position of the cartridge heater 17 from the resin discharge surface 13. ing.
  • the heater depth is within a range that does not hinder the processing surface and durability of the die, and a smaller distance is preferable because the effect of suppressing nozzle clogging is increased. That is, the heater depth is preferably in the range of 10 to 50 mm.
  • a more preferable range is 15 to 30 mm.
  • the diameter of the cartridge heater 17 is small as long as the heat generation capacity can be secured because the cross-sectional area of the resin flow path can be increased and the number of nozzles can be increased. That is, the diameter of the cartridge heater 17 is preferably 15 mm or less, but if it is less than 10 mm, the required heat generation capacity cannot be secured and the heater becomes expensive, and the diameter is preferably 10 mm to 15 mm, more preferably 10 mm to 12 mm.
  • the length of the cartridge heater 17 extends from the position extending in the radial direction of the die body 10 to the center side from the arranged nozzle 15 (that is, the position where at least the tip of the cartridge heater 17 is at the center side from the nozzle 15). It is a position up to substantially the outer periphery of the die body 10.
  • the short heaters 18, 18,... are arranged on the rear side with a predetermined interval with respect to each cartridge heater 17, the same number (eight) as the number of cartridge heaters 17 is arranged, and the rear end side of the resin flow path 14 is heated. It has a function to do.
  • the short heater 18 is shorter than the cartridge heater 17.
  • the die body 10 is provided with temperature measuring elements 19 (19A, 19B, 19C, 19D) (temperature sensors) such as thermocouples at four positions on the top, bottom, left and right at a position close to the resin discharge surface 13. That is, the cartridge heaters 17 are individually controlled to be turned on / off based on the measured temperatures of the temperature measuring elements 19 so that the temperature of the die body 10 can be adjusted. Further, the installation position of the temperature measuring element 19 is preferably behind the resin discharge surface 13 and ahead of the cartridge heater 17. The installation location is not limited to four locations on the top, bottom, left, and right, and may be two locations on the top and bottom. Further, it is desirable to provide another temperature measuring element 19 ′ (see FIG. 2) near the short heater 18 for temperature control of the short heater 18.
  • temperature measuring elements 19 (19A, 19B, 19C, 19D) (temperature sensors) such as thermocouples at four positions on the top, bottom, left and right at a position close to the resin discharge surface 13. That is, the cartridge heaters 17 are individually controlled to be turned
  • the extruder 2 (resin supply device) used in the granulating apparatus T shown in FIG. 1 can be appropriately selected and used according to the type of resin to be granulated from various conventionally known extruders, for example, using a screw. Either an extruder or an extruder that does not use a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder.
  • extruder examples include a plunger type extruder and a gear pump type extruder.
  • any extruder can use a static mixer.
  • an extruder using a screw is preferable from the viewpoint of productivity.
  • the chamber 4 which accommodated the cutter 3 can also use the conventionally well-known thing used in the hot cut method.
  • thermoplastic resin is not limited.
  • a polystyrene resin a polyethylene resin, a polypropylene resin, a polyester resin, a vinyl chloride resin, an ABS resin, an AS resin, or the like can be used alone or in combination. Can be used.
  • a recovered resin of a thermoplastic resin obtained after being used once as a resin product it is possible to use a recovered resin of a thermoplastic resin obtained after being used once as a resin product.
  • polystyrene resins such as polystyrene (GPPS) and high impact polystyrene (HIPS) are preferably used.
  • polystyrene resins include homopolymers of styrene monomers such as styrene, ⁇ -methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, and copolymers thereof.
  • a polystyrene-based resin containing 50% by mass or more of styrene is preferable, and polystyrene is more preferable.
  • polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer.
  • alkyl (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl
  • bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified. If a polystyrene resin is the main component, other resins may be added.
  • Examples of the resin to be added include polybutadiene, styrene-butadiene copolymer to improve the impact resistance of the foamed molded article.
  • a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.
  • the expandable polystyrene resin particles using a polystyrene resin as the thermoplastic resin are commercially available ordinary polystyrene resins, suspensions
  • virgin polystyrene polystyrene resins that are not recycled materials
  • the used polystyrene resin foam moldings can be reprocessed.
  • the recycled material obtained can be used.
  • used polystyrene-based resin foam moldings for example, fish boxes, household appliance cushioning materials, food packaging trays, etc.
  • Recyclable raw materials that can be used include home appliances (eg, TVs, refrigerators, washing machines, air conditioners) and office work, in addition to those obtained by reprocessing used polystyrene-based resin foam moldings.
  • a non-foamed polystyrene resin molded product that has been separated and collected from an industrial machine (for example, a copying machine, a facsimile machine, a printer, etc.), pulverized, melt-kneaded, and repelletized can be used.
  • the thermoplastic resin is placed in an extruder 2 having a granulation die 1 attached to the tip. Is supplied from the hopper 21 and melted and kneaded. Next, while moving the thermoplastic resin toward the granulation die 1, the foaming agent is pressed into the thermoplastic resin from the foaming agent supply port 22 by the high-pressure pump 23, and the foaming agent and the thermoplastic resin are mixed. Thus, the foaming agent-containing resin 20 is formed.
  • the foaming agent-containing resin 20 is sent from the tip of the extruder 2 through the die holder 11 to the resin flow path 14 of the die body 10 of the granulating die 1.
  • the foaming agent-containing resin 20 sent through the resin flow path 14 is discharged from each nozzle 15 of the die body 10 and immediately cut by the rotary blade of the cutter 3 in the water flow (in the cooling medium) of the chamber 4.
  • the foaming agent-containing resin 20 cut into particles in the chamber 4 becomes substantially spherical foaming thermoplastic resin particles.
  • the foamable thermoplastic resin particles are transported in the pipeline 5 according to the water flow and reach the dehydration processing unit 8 where the foamable thermoplastic resin particles are separated from the circulating water, dehydrated and dried, and separated water. Is sent to the water tank 7.
  • the foamable thermoplastic resin particles separated by the dehydration processing unit 8, dehydrated and dried are sent to the container 9 and accommodated in the container.
  • the said foaming agent is not limited,
  • normal pentane, isopentane, cyclopentane, cyclopentadiene etc. can be used individually or in mixture of 2 or more types.
  • normal butane, isobutane, propane, etc. can also be mixed and used for the said pentane as a main component.
  • pentanes are preferably used because they tend to suppress foaming of particles when discharged from a nozzle into a water stream.
  • the foamable thermoplastic resin particles mean resin particles formed into a granular shape, preferably a small spherical shape, by adding a foaming agent to a thermoplastic resin.
  • the foamable thermoplastic resin particles are heated in a free space to be pre-foamed.
  • the pre-foamed particles are placed in a cavity of a mold having a cavity having a desired shape, and the pre-foamed particles are melted by steam heating. After being attached, it can be used for producing a foamed resin molded article having a desired shape by releasing the mold.
  • the temperature adjusting method of the granulation die 1 As shown in FIG. 3, in the temperature adjusting method of the granulation die 1, two die bodies 10 corresponding to the temperature measuring bodies 19 ⁇ / b> A, 19 ⁇ / b> B, 19 ⁇ / b> C, 19 ⁇ / b> D provided on the top, bottom, left and right in the vicinity of the resin discharge surface 13 are used.
  • the die body 10 is controlled at a predetermined temperature by dividing into four areas and performing temperature adjustment for individually turning on and off the cartridge heaters 17 in the areas so that the measured values measured by the temperature measuring elements 19 are equal. Can be held constant.
  • the cartridge heaters in the area are the two cartridge heaters 17 and 17 that are close to the temperature measuring body 19 in the case of four areas.
  • the die body 10 is divided into two areas, for example, when the measured temperature of the temperature measuring body 19B located on the upstream side of the cooling water is lower than a predetermined temperature set in advance, the cartridge located on the upstream side Four heaters 17 are turned on to raise the temperature by heating.
  • the measured temperature of the temperature measuring element 19A located on the downstream side is higher than a predetermined temperature set in advance, four of the cartridge heaters 17 located on the downstream side are turned off to cancel the heating state and Control to lower.
  • the resin flow path 14 and the nozzle 15 are heated while being sandwiched from both sides by the cartridge heater 17. . Therefore, only one side of the resin flow path is not heated, it can be heated evenly from both sides, and clogging of the nozzle 15 can be suppressed. As a result, it is possible to improve the reduction in production efficiency due to clogging and to produce high quality particles having a uniform particle size.
  • FIG. 5 is a diagram illustrating a nozzle arrangement state according to a modification of the present embodiment, and corresponds to FIG.
  • the resin flow path 14A according to the modification shown in FIG. 5 has a trapezoidal cross section, and a nozzle 15 in which a plurality of single nozzles 15a, 15b, 15c,... Are arbitrarily arranged within the trapezoidal range is provided. It has been.
  • the slopes 14 a and 14 b (straight line portions) that form the outline of the resin flow path 14 ⁇ / b> A are arranged substantially parallel to the longitudinal direction of the cartridge heater 17.
  • the slopes 14a and 14b of the resin flow path 14A having a trapezoidal cross section are equidistant from the cartridge heater 17, so that the area heated evenly by the cartridge heater 17 increases, and the circular cross section Compared with the resin flow path, the nozzle is heated more uniformly, and the clogging of the nozzle can be further reduced.
  • Example 1 expandable polystyrene resin particles were produced by attaching the granulation die 1 shown in FIGS. 2 and 3 to the granulator T shown in FIG. However, the temperature of the dice 1 was adjusted by controlling on / off all the cartridge heaters 17 using only the temperature measuring element 19A.
  • a single-screw extruder having a diameter of 90 mm (L / D 35) and a granulation die having the structure shown in FIG.
  • an eye plate nozzle having 15 nozzles having a diameter of 0.6 mm and a land length of 3.0 mm
  • 8 cartridge heaters (diameter 12 mm) are arranged on the circumference of the resin discharge surface, and the resin flow channels leading to the nozzle unit are sandwiched from both sides on the resin discharge surface side.
  • a distance from the discharge surface (corresponding to the symbol L in FIG.
  • polystyrene resin manufactured by Toyo Styrene Co., Ltd., (Product name “HRM10N”) 100 parts by mass and 0.3 parts by mass of finely powdered talc previously mixed uniformly by a tumbler mixer were fed into the extruder at a rate of 130 kg per hour. After the maximum temperature in the extruder is set to 220 ° C.
  • a high-speed rotary cutter having 10 blades in the circumferential direction is closely attached to the die, cut at 3300 revolutions per minute, dehydrated and dried to form a spherical foam.
  • Polystyrene resin particles were obtained. At this time, the discharge amount of the expandable styrene resin particles was 138 kg / h.
  • the pressure of the resin introduction part to the die at the first hour of extrusion was 17.0 MPa
  • the mass of 100 resin particles after drying was 0.0724 g
  • the die opening rate was 80.2. % And good.
  • the pressure of the resin introduction part to the die 48 hours after the start of extrusion is 17.3 MPa
  • the mass of 100 grains is 0.0741 g
  • the die opening rate is 78.4%, and it can be stably extruded for 48 hours or more. I was able to confirm.
  • pre-expanded particles having a bulk expansion ratio of 50 times were prepared by the method described later, and foamed using the pre-expanded particles.
  • a foam molded article having a multiple of 50 times was produced. The obtained foamed molded product was visually observed to evaluate the filling property of the pre-expanded particles into the molding die.
  • Opening ratio opening ratio during extrusion of the discharge nozzle on the die surface
  • ⁇ Evaluation criteria for hole area ratio The hole area ratio (E) was evaluated according to the following criteria (see Table 1 described later). A: 50% ⁇ E, ⁇ : 40% ⁇ E ⁇ 50%, ⁇ : 30% ⁇ E ⁇ 40% X: E ⁇ 30%.
  • ⁇ Manufacture of foam molding> The expandable styrene resin particles obtained at 48 hours after extrusion as described above were left at 20 ° C. for 1 day.
  • Molding conditions (ACE-3SP QS molding mode) Molding vapor pressure 0.08MPa (gauge pressure) Mold heating 3 seconds One-side heating (pressure setting) 0.03 MPa (gauge pressure) Reverse one heating 2 seconds Double-sided heating 12 seconds Water cooling 10 seconds Set extraction surface pressure 0.02 MPa ⁇ Evaluation criteria for mold filling properties of pre-expanded particles> The foamed molded product was visually observed, and the mold filling property was evaluated as follows. (Double-circle): It fills up to the partition part 5mm thick. ⁇ : Filling of the partition part with a thickness of 5 mm is sweet and excessive foam particles are observed, but the partition part is formed.
  • deletion by poor filling is seen in the partition part with thickness 5mm, and the partition part is not formed completely.
  • X The partition part with a thickness of 5 mm is poorly filled, and no partition part is formed at all.
  • a value obtained by multiplying the above range by the specific gravity of the resin is a range of the total mass of 100 preferable particles.
  • ⁇ Method for measuring bulk expansion ratio of pre-expanded particles After sufficiently drying the pre-expanded particles in a graduated cylinder (eg 500 ml capacity) using a funnel, tap the bottom of the graduated cylinder until the volume of the pre-expanded particles is constant. Filled. The volume and mass of the pre-expanded particles at that time were measured and calculated by the following formula. The volume was read in units of 1 ml, and the mass was measured with an electronic balance having a minimum scale of 0.01 g.
  • the resin specific gravity of the styrene resin was calculated as 1.0, and the bulk expansion factor was rounded off to the first decimal place.
  • Bulk expansion ratio (times) volume of pre-expanded particles (ml) / mass of pre-expanded particles (g) ⁇ resin specific gravity ⁇ Measurement method of expansion ratio of foam molded article>
  • a test specimen for measurement (example 300 ⁇ 400 ⁇ 30 mm) was cut out from the foamed product that had been sufficiently dried, the dimensions and mass of the test specimen were measured, and the volume of the test specimen was calculated based on the measured dimensions. It was calculated by the following formula.
  • the specific gravity of the styrene resin was 1.0.
  • Foaming factor (times) test piece volume (cm 3 ) / test piece mass (g) ⁇ resin specific gravity
  • Example 2 the resin flow path communicating with the nozzle unit of the die used in Example 1 is expanded (increase in cross-sectional area), and the dice with the number of nozzles per nozzle unit increased from 15 to 25 are attached. Except that, spherical foamable styrene resin particles were obtained in the same manner as in Example 1 at a discharge rate of 138 kg / h. In Example 2, the pressure of the resin introduction part to the die at the first hour after extrusion was 14.0 MPa, the mass of 100 resin particles after drying was 0.0465 g, and the die opening rate was 75.0. % And good.
  • the pressure of the resin introduction part to the die 48 hours after the start of extrusion is 14.0 MPa
  • the mass of 100 grains is 0.0465 g
  • the die opening rate is 75.0%, and can be stably extruded for 48 hours or more.
  • I was able to confirm.
  • pre-expanded particles having a bulk expansion ratio of 50 times (bulk density 0.02 g / cm 3 ) were prepared in the same manner as in Example 1, and the pre-expanded particles were used.
  • a foamed molded article having a foaming ratio of 50 times density 0.02 g / cm 3 ) was produced.
  • the obtained foamed molded product was visually observed to evaluate the filling property of the pre-expanded particles into the molding die.
  • Example 3 In Example 3, two dice temperature measuring sensors (19B (inflow side) and 19A (outflow side) arranged at the upper and lower positions of the temperature measuring element 19 shown in FIG. 3) are used as the dice used in Example 2. ) To divide the area into 4 heaters on the circulating water inflow side (lower side, reference numeral 4a side in FIG. 2) and 4 heaters on the circulating water outflow side (upper side, reference numeral 4b side in FIG. 2). Thus, spherical expandable styrene resin particles were obtained at a discharge rate of 138 kg / h in the same manner as in Example 2 except that the die was kept at 280 ° C.
  • Example 3 the pressure of the resin introduction part to the die at the first hour after extrusion was 13.3 MPa, the mass of 100 resin particles after drying was 0.0425 g, and the die opening rate was 82. It was as good as 0%.
  • the pressure of the resin introduction part to the die 48 hours after the start of extrusion is 13.3 MPa, the mass of 100 grains is 0.0425 g, the die opening rate is 82.0%, and stable extrusion is possible for 48 hours or more. I was able to confirm.
  • pre-expanded particles having a bulk expansion ratio of 50 times were prepared in the same manner as in Example 1, and the pre-expanded particles were used.
  • a foamed molded article having a foaming ratio of 50 times was produced.
  • the obtained foamed molded product was visually observed to evaluate the filling property of the pre-expanded particles into the molding die.
  • Example 4 a spherical foamable styrene resin with a discharge amount of 138 kg / h was used in the same manner as in Example 2 except that the die used in Example 2 was changed from 15 mm to 30 mm in heater depth. Particles were obtained.
  • the pressure of the resin introduction portion to the die at the first hour after extrusion was 16.1 MPa
  • the mass of 100 resin particles after drying was 0.0524 g
  • the die opening rate was 66.5. % And good.
  • the pressure of the resin introduction part to the die 48 hours after the start of extrusion is 16.8 MPa
  • the mass of 100 grains is 0.0581 g
  • the opening rate of the die is 60.0%, which can be stably extruded for 48 hours or more.
  • I was able to confirm.
  • pre-expanded particles having a bulk expansion ratio of 50 times (bulk density 0.02 g / cm 3 ) were prepared in the same manner as in Example 1, and the pre-expanded particles were used.
  • a foamed molded article having a foaming ratio of 50 times density 0.02 g / cm 3 ) was produced.
  • the obtained foamed molded product was visually observed to evaluate the filling property of the pre-expanded particles into the molding die.
  • Example 5 a spherical foamable styrene resin with a discharge amount of 138 kg / h was used in the same manner as in Example 2 except that the die used in Example 2 was changed from 15 mm to 45 mm in heater depth. Particles were obtained.
  • the pressure of the resin introduction part to the die 1 hour after the extrusion was 16.9 MPa
  • the mass of 100 resin particles after drying was 0.0670 g
  • the die opening rate was 52.0. % And good.
  • the pressure of the resin introduction part to the die 48 hours after the start of extrusion is 18.1 MPa
  • the mass of 100 grains is 0.0871 g
  • the opening rate of the die is 40.0%, which can be stably extruded for 48 hours or more.
  • I was able to confirm.
  • pre-expanded particles having a bulk expansion ratio of 50 times (bulk density 0.02 g / cm 3 ) were prepared in the same manner as in Example 1, and the pre-expanded particles were used.
  • a foamed molded article having a foaming ratio of 50 times density 0.02 g / cm 3 ) was produced.
  • Example 6 spherical expandable styrene resin particles were obtained at a discharge rate of 138 kg / h in the same manner as in Example 2 except that only isopentane was used as the foaming agent.
  • the pressure of the resin introduction part to the die at the first hour after extrusion was 15.1 MPa
  • the mass of 100 resin particles after drying was 0.0458 g
  • the die opening rate was 76. It was as good as 1%.
  • the pressure of the resin introduction part to the die 48 hours after the start of extrusion is 15.0 MPa
  • the mass of 100 grains is 0.0461 g
  • the opening rate of the die is 75.6%, which can be stably extruded for 48 hours or more.
  • I was able to confirm.
  • pre-expanded particles having a bulk expansion ratio of 50 times (bulk density 0.02 g / cm 3 ) were prepared in the same manner as in Example 1, and the pre-expanded particles were used.
  • a foamed molded article having a foaming ratio of 50 times density 0.02 g / cm 3 ) was produced.
  • the obtained foamed molded product was visually observed to evaluate the filling property of the pre-expanded particles into the molding die.
  • FIG. 6A is a cross-sectional view of a die used in Comparative Example 1
  • FIG. 6B is a side view showing a resin discharge surface of the die.
  • a die 20 having a known structure shown in FIGS. 6A and 6B that is, 16 nozzle units (symbol 15) having 15 nozzles having a diameter of 0.6 mm and a land length of 3.0 mm are arranged on the circumference.
  • Spherical foaming with a discharge amount of 138 kg / h is performed in the same manner as in Example 1 except that the die is disposed on the resin discharge surface 13 side and is changed to a die having no cartridge heater (that is, only the short heater 18 is disposed).
  • Styrene resin particles were obtained.
  • the pressure of the resin introduction portion into the die at the first hour after extrusion was as high as 21.7 MPa, the mass of 100 grains was 0.1322 g, and the opening rate of the die was 22.0%.
  • the pressure limit value (25 MPa) of the die was reached 6 hours after the start of extrusion, so the extrusion was terminated in 6 hours.
  • FIG. 7A is a sectional view of a die used in Comparative Example 2
  • FIG. 7B is a side view showing a resin discharge surface of the die.
  • a die 30 having the structure shown in FIGS. 7A and 7B, that is, four cartridge heaters 17, 17,... (Diameter 12 mm) on the resin discharge surface 13 side, and a nozzle unit at a heater depth of 15 mm.
  • Spherical expandable styrene resin particles were discharged at a discharge rate of 138 kg / h in the same manner as in Example 1 except that they were arranged in a cross across the circumference of the line and changed to a die having a heat insulating material 16 attached to the center of the surface. Obtained.
  • FIG. 8A is a cross-sectional view of a die used in Comparative Example 3, and FIG. 8B is a side view showing a resin discharge surface of the die.
  • a die 40 having a known structure shown in FIGS. 8A and 6B, that is, there is no heat insulating material, an oil flow path 41 is provided in the die, and high-temperature oil flows from the upper and lower dies 41a and 41a.
  • Example 1 except that the dies are maintained at 280 ° C. by indirect heating using oil as a heat medium instead of dice having a structure that flows out to the left and right 41b, 41b through the central annular channel and returns to the oil heater.
  • spherical expandable styrene resin particles were obtained at a discharge rate of 138 kg / h.
  • the pressure of the resin introduction part to the die 1 hour after the start of extrusion was 18.0 MPa
  • the mass of 100 grains was 0.0907 g
  • the opening rate of the die was 32.0%.
  • the pressure of the resin introduction part to the die 48 hours after the start of extrusion was 21.8 MPa
  • the mass of 100 grains was 0.0994 g
  • the die opening rate was 29.2%.
  • pre-expanded particles having a bulk expansion ratio of 50 times were prepared in the same manner as in Example 1, and the pre-expanded particles were used.
  • a foamed molded article having a foaming ratio of 50 times was produced.
  • the obtained foamed molded product was visually observed to evaluate the filling property of the pre-expanded particles into the molding die.
  • Table 1 summarizes the results of Examples 1 to 6 and Comparative Examples 1 to 3 described above.
  • the die pressure at 1 hour from the start of granulation is 13.3 to 17.0 MPa, and the die pressure at 48 hours is 13.3 to 18
  • the pressure was lower than that of Comparative Examples 1 to 3, and continuous operation was possible.
  • the nozzle opening rate was 52% or more after 1 hour and 40% or more after 48 hours, and in Examples 1 to 3, and 6, 75% or more after 1 hour and 75% after 48 hours.
  • the open area ratio (E) hardly changed with time.
  • the heater depth is preferably 10 to 50 mm, and 15 to 30 mm. Is more preferable.
  • Comparative Examples 1 and 2 the increase in the die pressure due to nozzle clogging was noticeable, and reached the upper limit of the die withstand pressure after about 6 to 10 hours of operation.
  • the aperture ratio of the nozzle was already as low as 22.0 to 32.0% after 1 hour.
  • the comparative example 3 has a complicated structure of the die because the annular oil flow path is provided in the die, and requires an oil heater and a circulation pump. Installation costs are high due to the need for heat insulation.
  • the heating balance is lost and the temperature of the die cannot be maintained uniformly.
  • the present invention is not limited to the above embodiment, Changes can be made as appropriate without departing from the spirit of the invention.
  • the present embodiment there are eight resin flow paths 14 and eight cartridge heaters 17 and eight short heaters 18 respectively, but the number is not limited to this number, and the size of the granulation die 1,
  • the optimum quantity can be set according to conditions such as the molding amount of the thermoplastic resin particles.
  • the four temperature measuring elements 19 are set as this, it is not limited to this, For example, the two temperature measuring elements 19 may exist in the up-and-down position.
  • the shape, size, and other configurations of the extruder 2, the cutter 3, the chamber 4, the die holder 11, the die body 10, and the like are not particularly limited and can be arbitrarily set.
  • an extruder is employed as the resin supply device in the present embodiment, a static mixer, a gear pump, or the like can also be used.
  • the granulation die, the granulation apparatus, and the foaming thermoplasticity capable of preventing the nozzle clogging in the granulation die by the hot cut method and efficiently producing particles having a uniform particle diameter.
  • a method for producing resin particles can be provided.

Abstract

A granulation die (1) used in a granulator (T) for performing granulation with use of underwater hot-cutting system comprises a resin discharge surface (13) provided in contact with a cooling medium, a plurality of resin channels (14, 14, ...) communicating with an extruder (2), nozzles (15, 15, ...) communicating with the resin channels (14) and opening to the resin discharge surface (13), and a plurality of cartridge heaters (17) and short heaters (18) provided near the resin discharge surface (13). The resin channels (14) are arranged along the circumference of a virtual circle on the resin discharge surface (13), and the cartridge heaters (17) and short heaters (18) are arranged on the opposite sides in the circumferential direction of circumference of the resin channel (14) so as to traverse the circumference while directing the longitudinal direction thereof toward the radial direction of the circumference. In this granulation die with use of hot-cutting method, clogging of nozzle can be prevented, and particles having uniform diameter can be efficiently produced.

Description

造粒用ダイス、造粒装置、及び発泡性熱可塑性樹脂粒子の製造方法Granulation die, granulation apparatus, and method for producing expandable thermoplastic resin particles
 本発明は、ホットカット法により熱可塑性樹脂の粒子を成形するための造粒用ダイス、造粒装置、及び発泡性熱可塑性樹脂粒子の製造方法に関する。
 本願は、2008年2月20日に日本に出願された特願2008-39116号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a granulation die for forming thermoplastic resin particles by a hot cut method, a granulating apparatus, and a method for producing foamable thermoplastic resin particles.
This application claims priority based on Japanese Patent Application No. 2008-39116 for which it applied to Japan on February 20, 2008, and uses the content here.
 従来、熱可塑性樹脂のペレットを成形するための装置(ペレタイザーと称される。)として、押出機と、この押出機の先端に取り付けられているダイスと、カッターとを備えて構成され、押出機により溶融混練された樹脂材料をダイスから押し出し、それをカッターで切断し、所望の大きさのペレットを製造する装置が一般的に知られている。 2. Description of the Related Art Conventionally, as an apparatus for molding thermoplastic resin pellets (referred to as a pelletizer), an extruder, a die attached to the tip of the extruder, and a cutter are configured. 2. Description of the Related Art Generally, an apparatus is known that extrudes a melt-kneaded resin material from a die and cuts it with a cutter to produce pellets of a desired size.
 ダイスのノズルから押し出される樹脂材料のカット法として、ホットカット法がある。
 このホットカット法は、複数個のノズルが開口しているダイス先端面を循環する水流と接触させ、水流中に押し出された直後の高温の樹脂をカッターで切断する方法である。ホットカット法による造粒では、樹脂が十分に硬化していない状態で切断されるので、樹脂の粉体化が生じないうえ、球状の粒子が得られるなどの利点がある。
As a method for cutting a resin material extruded from a die nozzle, there is a hot cut method.
This hot-cut method is a method in which a high-temperature resin immediately after being pushed into the water stream is cut with a cutter by bringing it into contact with the water stream circulating through the tip end face of the die where a plurality of nozzles are open. Granulation by the hot cut method is advantageous in that the resin is cut in a state where the resin is not sufficiently cured, so that the resin is not powdered and spherical particles are obtained.
 しかし、ホットカット法ではダイスの樹脂吐出面が水流と接触しているので、ここから熱が水流側に奪われ、ダイスの内部が部分的に樹脂の融点以下の温度に下がることがある。その結果、ノズルに目詰まりが生じ、生産性が低下する。また、目詰まりによって、粒子の粒径に不揃いが生じ、品質を落とすこともある。さらには、目詰まりが多くなると、ダイスからの樹脂の押出圧力が異常に高くなり、ダイスの耐圧限界を超え押し出しが不可能になることもある。 However, in the hot cut method, since the resin discharge surface of the die is in contact with the water flow, heat is taken away from the water flow side, and the inside of the die may be partially lowered to a temperature below the melting point of the resin. As a result, the nozzle is clogged and productivity is lowered. In addition, the clogging may cause unevenness in the particle size of the particles, which may deteriorate the quality. Furthermore, when clogging increases, the extrusion pressure of the resin from the die becomes abnormally high, and the pressure limit of the die may be exceeded, making extrusion impossible.
 従来、ホットカット法による造粒に用いられる造粒用ダイスにおいて、ノズルの目詰まりを防ぐための技術として、例えば特許文献1、2に開示された技術が提案されている。
 特許文献1には、円状に配置されたノズルの中心位置に、ノズルの樹脂流路と同方向に棒状ヒーターを配置した造粒用ダイスが開示されている。棒状ヒーターを配置することにより、ヒーターと各ノズルが等距離となり、各ノズルが均一に加熱される。そのため、ノズルの目詰まりが生じにくくなって、低圧力損失、並びに水中での押出スタートを可能とし、良質のペレットを得ることができる。
 特許文献2には、ダイスより押し出した溶融樹脂を回転カッターにより切断して樹脂粒子とする熱可塑性樹脂粒子の製造方法において、ダイス表面に断熱材を設けた構造について開示されている。
 なお、特許文献1、2ともに発泡剤を含有しない造粒を行なっている。
特開平7-178726号公報 特開平5-301218号公報
Conventionally, for example, techniques disclosed in Patent Documents 1 and 2 have been proposed as techniques for preventing clogging of nozzles in a granulation die used for granulation by a hot cut method.
Patent Document 1 discloses a granulating die in which a bar heater is disposed at the center position of a circularly arranged nozzle in the same direction as the resin flow path of the nozzle. By disposing the rod heater, the heater and each nozzle are equidistant, and each nozzle is heated uniformly. Therefore, clogging of the nozzle is less likely to occur, low pressure loss and start of extrusion in water are possible, and high quality pellets can be obtained.
Patent Document 2 discloses a structure in which a heat insulating material is provided on the surface of a die in a method for producing thermoplastic resin particles obtained by cutting molten resin extruded from a die with a rotary cutter into resin particles.
In addition, both patent documents 1 and 2 are granulated without containing a foaming agent.
JP-A-7-178726 JP-A-5-301218
 しかしながら、特許文献1、2に開示された従来技術には、次のような問題がある。
 すなわち、押出機中で発泡剤を混合して、発泡性樹脂粒子を得ようとする場合、ダイスから吐出される発泡剤含有樹脂組成物の発泡を抑制する必要がある。そのため、カッティング室(チャンバー)内への循環水(冷却水)の水温は、非発泡樹脂粒子の場合(80~90℃)より低くしなければならない(30~40℃)。また、発泡剤により樹脂の溶融粘度が低下するため、ダイス表面にカッター刃を接触(押し付け)させないで造粒することは困難となっている。
 特許文献1に開示された従来技術は、棒状ヒーターの先端がダイスの樹脂吐出面に近接するように棒状ヒーターを配置しているが、棒状ヒーターは、その構造上、ニクロム線を先端部まで設置できないため、ヒーター先端部は発熱しない。そのため、発泡性樹脂粒子を造粒する場合、このダイス構造では、最も加温が必要なダイス先端部の樹脂吐出面を十分に加温することが難しく、目詰まりを防止できない。
However, the conventional techniques disclosed in Patent Documents 1 and 2 have the following problems.
That is, when mixing foaming agents in an extruder to obtain expandable resin particles, it is necessary to suppress foaming of the foaming agent-containing resin composition discharged from the die. Therefore, the water temperature of the circulating water (cooling water) into the cutting chamber (chamber) must be lower (30 to 40 ° C.) than that of non-foamed resin particles (80 to 90 ° C.). Further, since the melt viscosity of the resin is lowered by the foaming agent, it is difficult to perform granulation without contacting (pressing) the cutter blade to the die surface.
In the prior art disclosed in Patent Document 1, the rod heater is arranged so that the tip of the rod heater is close to the resin discharge surface of the die. However, the rod heater has a nichrome wire installed to the tip due to its structure. Because it is not possible, the heater tip does not generate heat. For this reason, when foaming resin particles are granulated, it is difficult to sufficiently heat the resin discharge surface at the tip end of the die that requires the most heating in this die structure, and clogging cannot be prevented.
 また、特許文献2に開示された従来技術では、発泡剤を混合していない単なる樹脂ペレットの製造について記載したものである。一方、上述の通り、発泡性熱可塑性樹脂粒子を造粒する場合には、単なる樹脂ペレットの場合とは異なり、粒子の発泡を抑制する必要から、循環水の温度を40℃以下とすることが望ましい。そのため、樹脂温度と循環水温度の差が大きくなり、断熱材だけでは水流によるダイス先端部の奪熱を抑制しきれず、ノズルの目詰まりが生じ易くなる。また、上述の通り、発泡性熱可塑性樹脂粒子の製造においては、発泡剤により樹脂が軟化するため、ダイス表面にカッター刃を接触させて(押し付けて)吐出された樹脂を切断する必要がある。特許文献2に開示されたような、表面を断熱材で覆ったダイス構造では、カッター刃により断熱材が短時間で摩耗してしまい、ダイスの耐久性に問題がある。 In addition, the prior art disclosed in Patent Document 2 describes the production of simple resin pellets in which no foaming agent is mixed. On the other hand, as described above, when foaming thermoplastic resin particles are granulated, unlike the case of simple resin pellets, the temperature of the circulating water may be 40 ° C. or lower because it is necessary to suppress foaming of the particles. desirable. For this reason, the difference between the resin temperature and the circulating water temperature becomes large, and the heat removal from the die tip portion due to the water flow cannot be suppressed with the heat insulating material alone, and nozzle clogging is likely to occur. Further, as described above, in the production of expandable thermoplastic resin particles, since the resin is softened by the foaming agent, it is necessary to cut the discharged resin by contacting (pressing) the cutter surface with the die surface. In the die structure whose surface is covered with a heat insulating material as disclosed in Patent Document 2, the heat insulating material is worn by the cutter blade in a short time, and there is a problem in the durability of the die.
 本発明は、上述する問題点に鑑みてなされたもので、ホットカット法による造粒用ダイスにおけるノズルの目詰まりを防ぎ、均一な粒径の粒子を効率よく生産できるようにした造粒用ダイス、造粒装置、及び発泡性熱可塑性樹脂粒子の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and prevents granulation of nozzles in a granulation die by a hot cut method, and enables efficient production of particles having a uniform particle diameter. An object of the present invention is to provide a granulating apparatus and a method for producing expandable thermoplastic resin particles.
 上記目的を達成するため、本発明に係る造粒用ダイスでは、以下の構成を採用する。すなわち、この造粒用ダイスは、冷却媒体に接触して設けられた樹脂吐出面と、樹脂供給装置に連通する複数の樹脂流路と、樹脂流路と連通して樹脂吐出面に開口するノズルと、樹脂吐出面の近傍に設けられた複数のカートリッジヒーターとを備える。また、樹脂流路が樹脂吐出面上における仮想円の円周に沿って配置され、カートリッジヒーターは、樹脂流路の円周の周方向両側に配置されるとともに、長手方向を円周の径方向に向けて円周を横切った状態で配置されている。 In order to achieve the above object, the granulation die according to the present invention employs the following configuration. That is, the granulation die includes a resin discharge surface provided in contact with the cooling medium, a plurality of resin flow paths communicating with the resin supply device, and a nozzle communicating with the resin flow path and opening on the resin discharge surface. And a plurality of cartridge heaters provided in the vicinity of the resin discharge surface. Further, the resin flow path is arranged along the circumference of the virtual circle on the resin discharge surface, and the cartridge heater is arranged on both sides of the circumference of the circumference of the resin flow path, and the longitudinal direction is the radial direction of the circumference. It is arranged across the circumference toward
 また、本発明に係る造粒用ダイスでは、カートリッジヒーターは、8本以上設けられており、それぞれの中心角が45°以下であることが好ましい。 Also, in the granulation die according to the present invention, it is preferable that eight or more cartridge heaters are provided, and the respective central angles are 45 ° or less.
 また、本発明に係る造粒用ダイスでは、カートリッジヒーターは、樹脂吐出面から10~50mmの位置に設けられていることが好ましい。 In the granulation die according to the present invention, the cartridge heater is preferably provided at a position 10 to 50 mm from the resin discharge surface.
 また、本発明に係る造粒用ダイスでは、樹脂流路の断面形状は、その外郭に直線部を有し、直線部がカートリッジヒーターの長手方向と略平行に配置されていることが好ましい。 Further, in the granulation die according to the present invention, it is preferable that the cross-sectional shape of the resin flow path has a straight portion on its outer periphery, and the straight portion is arranged substantially parallel to the longitudinal direction of the cartridge heater.
 また、本発明に係る造粒用ダイスでは、樹脂流路には、その前記断面形状に沿って複数個のノズルが設けられていることが好ましい。 In the granulation die according to the present invention, it is preferable that a plurality of nozzles are provided in the resin flow path along the cross-sectional shape.
 また、本発明に係る造粒用ダイスでは、少なくとも冷却媒体の水流方向の上流側と下流側に温度センサーが設けられ、温度センサーの測定温度に基づいて、カートリッジヒーターを個別にオンオフ制御するように構成されていることが好ましい。 In the granulation die according to the present invention, temperature sensors are provided at least on the upstream side and the downstream side in the water flow direction of the cooling medium, and the cartridge heaters are individually controlled to be turned on and off based on the temperature measured by the temperature sensor. It is preferable to be configured.
 また、本発明に係る造粒装置は、上述した造粒用ダイスと、造粒用ダイスを先端に取り付けた樹脂供給装置と、造粒用ダイスのノズルから吐出される樹脂を切断するカッターが収容されるとともに、造粒用ダイスの樹脂吐出面に冷却媒体を接触させるチャンバーと、を具備する。 Moreover, the granulation apparatus according to the present invention contains the granulation die described above, a resin supply device with the granulation die attached to the tip, and a cutter for cutting the resin discharged from the nozzle of the granulation die. And a chamber in which a cooling medium is brought into contact with the resin discharge surface of the granulation die.
 また、本発明に係る発泡性熱可塑性樹脂粒子の製造方法は、上述した造粒用ダイスを取り付けた樹脂供給装置に熱可塑性樹脂を供給して溶融混練させる工程と、熱可塑性樹脂を造粒用ダイスに向けて移動させながら熱可塑性樹脂に発泡剤を注入して発泡剤含有樹脂を形成する工程と、造粒用ダイスのノズルから吐出される発泡剤含有樹脂をカッターにより冷却媒体中で切断して発泡性熱可塑性樹脂粒子を得る工程とを有する。 In addition, the method for producing expandable thermoplastic resin particles according to the present invention includes a step of supplying a thermoplastic resin to a resin supply apparatus equipped with the above-described granulation die and melt-kneading the thermoplastic resin, and a thermoplastic resin for granulation. A process of injecting a foaming agent into the thermoplastic resin while moving it toward the die to form a foaming agent-containing resin, and a foaming agent-containing resin discharged from the nozzle of the granulating die are cut in a cooling medium by a cutter. And obtaining a foamable thermoplastic resin particle.
 また、本発明に係る発泡性熱可塑性樹脂粒子の製造方法では、少なくとも冷却媒体の水流方向の上流側と下流側のダイス温度を測定し、それぞれの測定値が等しくなるように、各カートリッジヒーターを個別にオンオフ制御することが好ましい。 Further, in the method for producing expandable thermoplastic resin particles according to the present invention, at least the upstream and downstream die temperatures in the water flow direction of the cooling medium are measured, and each cartridge heater is adjusted so that the respective measured values are equal. It is preferable to perform on / off control individually.
 また、本発明に係る熱可塑性樹脂発泡粒子の製造方法は、上述した造粒用ダイスを取り付けた樹脂供給装置に熱可塑性樹脂を供給して溶融混練させる工程と、熱可塑性樹脂を造粒用ダイスに向けて移動させながら、熱可塑性樹脂に発泡剤を注入して発泡剤含有樹脂を形成する工程と、造粒用ダイスのノズルから吐出される発泡剤含有樹脂をカッターにより冷却媒体中で切断して発泡性熱可塑性樹脂粒子を得る工程と、発泡性熱可塑性樹脂粒子を予備発泡して熱可塑性樹脂発泡粒子を得る工程とを有する。 Further, the method for producing the expanded thermoplastic resin particles according to the present invention includes a step of supplying a thermoplastic resin to a resin supply apparatus having the above-mentioned granulation die attached thereto, and melt-kneading the thermoplastic resin, and a thermoplastic resin into the granulation die. The process of forming a foaming agent-containing resin by injecting a foaming agent into the thermoplastic resin while moving toward the surface of the thermoplastic resin, and cutting the foaming agent-containing resin discharged from the nozzle of the granulation die in a cooling medium with a cutter A step of obtaining expandable thermoplastic resin particles, and a step of prefoaming the expandable thermoplastic resin particles to obtain the expanded thermoplastic resin particles.
 また、本発明に係る熱可塑性樹脂発泡成形体の製造方法は、上述した造粒用ダイスを取り付けた樹脂供給装置に熱可塑性樹脂を供給して溶融混練させる工程と、熱可塑性樹脂を造粒用ダイスに向けて移動させながら、熱可塑性樹脂に発泡剤を注入して発泡剤含有樹脂を形成する工程と、造粒用ダイスのノズルから吐出される発泡剤含有樹脂をカッターにより冷却媒体中で切断して発泡性熱可塑性樹脂粒子を得る工程と、発泡性熱可塑性樹脂粒子を加熱して予備発泡させ熱可塑性樹脂発泡粒子を得る工程と、熱可塑性樹脂発泡粒子を型内発泡成形して熱可塑性樹脂発泡成形体を得る工程とを有する。 Further, the method for producing a thermoplastic resin foam molded article according to the present invention comprises a step of supplying a thermoplastic resin to a resin supply apparatus equipped with the above-mentioned granulation die and melt-kneading the thermoplastic resin, and a thermoplastic resin for granulation. The process of forming a foaming agent-containing resin by injecting a foaming agent into a thermoplastic resin while moving toward the die, and the foaming agent-containing resin discharged from the nozzle of the granulation die in a cooling medium To obtain foamable thermoplastic resin particles, to heat foamable thermoplastic resin particles to pre-foam and obtain thermoplastic resin foam particles, and to mold thermoplastic resin foam particles in-mold and thermoplastic And obtaining a resin foam molded body.
 また、本発明に係る発泡性熱可塑性樹脂粒子は、上述した発泡性熱可塑性樹脂粒子の製造方法により得られた発泡性熱可塑性樹脂粒子である。 The expandable thermoplastic resin particles according to the present invention are expandable thermoplastic resin particles obtained by the above-described method for producing expandable thermoplastic resin particles.
 また、本発明に係る熱可塑性樹脂発泡粒子は、上述した発泡性熱可塑性樹脂粒子を予備発泡して得られた熱可塑性樹脂発泡粒子である。 The thermoplastic resin expanded particles according to the present invention are thermoplastic resin expanded particles obtained by pre-expanding the above-described expandable thermoplastic resin particles.
 また、本発明に係る熱可塑性樹脂発泡成形体は、上述した熱可塑性樹脂発泡粒子を型内発泡成形して得られた熱可塑性樹脂発泡成形体である。 Further, the thermoplastic resin foam molded article according to the present invention is a thermoplastic resin foam molded article obtained by in-mold foam molding of the thermoplastic resin foam particles described above.
 本発明の造粒用ダイス、造粒装置、及び発泡性熱可塑性樹脂粒子の製造方法によれば、樹脂流路およびノズルがカートリッジヒーターによって両側から挟み込まれた状態で加熱される。そのため、樹脂流路の片側だけが加熱されることがなく、両側から等距離で均等に加熱することができる。その結果、ノズルの目詰まりを抑制することができ、目詰まりによる生産効率の低下を改善し、均一な粒径の高品質な粒子を製造することが可能となる。 According to the granulating die, the granulating apparatus, and the foaming thermoplastic resin particle manufacturing method of the present invention, the resin flow path and the nozzle are heated while being sandwiched from both sides by the cartridge heater. Therefore, only one side of the resin flow path is not heated, and it can be heated evenly from both sides at equal distances. As a result, nozzle clogging can be suppressed, reduction in production efficiency due to clogging can be improved, and high-quality particles having a uniform particle diameter can be produced.
本発明の実施の形態による造粒装置の構成図である。It is a block diagram of the granulation apparatus by embodiment of this invention. 本発明の実施の形態による造粒用ダイスの概略構成を示す側断面図である。It is a sectional side view which shows schematic structure of the dice | dies for granulation by embodiment of this invention. 図2のダイス本体の樹脂吐出面を示す側面図である。It is a side view which shows the resin discharge surface of the die main body of FIG. ノズルの配置状態の一例を示す図である。It is a figure which shows an example of the arrangement | positioning state of a nozzle. 本実施の形態の変形例によるノズルの配置状態の一例を示す図であって、図4に対応する図である。It is a figure which shows an example of the arrangement state of the nozzle by the modification of this Embodiment, Comprising: It is a figure corresponding to FIG. 比較例1で用いたダイスの断面図である。6 is a cross-sectional view of a die used in Comparative Example 1. FIG. 比較例1で用いたダイスの樹脂吐出面を示す側面図である。It is a side view which shows the resin discharge surface of the die | dye used in the comparative example 1. FIG. 比較例2で用いたダイスの断面図である。6 is a cross-sectional view of a die used in Comparative Example 2. FIG. 比較例2で用いたダイスの樹脂吐出面を示す側面図である。It is a side view which shows the resin discharge surface of the die | dye used in the comparative example 2. FIG. 比較例3で用いたダイスの断面図である。6 is a cross-sectional view of a die used in Comparative Example 3. FIG. 比較例3で用いたダイスの樹脂吐出面を示す側面図である。It is a side view which shows the resin discharge surface of the die | dye used in the comparative example 3.
符号の説明Explanation of symbols
 1 造粒用ダイス 2 押出機(樹脂供給装置) 3 カッター 4 チャンバー 6 発泡剤含有樹脂 10 ダイス本体 11 ダイホルダ 13 樹脂吐出面 14、14A 樹脂流路 14a、14b 斜面(直線部) 15 ノズル 16 断熱材 17 カートリッジヒーター 18 短ヒーター 19 測温体 L ヒーター深さ(樹脂吐出面からのカートリッジヒーターの位置) T 造粒装置 1 Die for granulation 2 Extruder (resin feeding device) 3 Cutter 4 Chamber 6 Foaming agent-containing resin 10 Die body 11 Die holder 13 Resin discharge surface 14, 14A Resin flow path 14a, 14b Slope (straight portion) 15 Nozzle 16 Insulation 17 Cartridge heater 18 Short heater 19 Temperature detector L Heater depth (position of cartridge heater from resin discharge surface) T granulator
 以下、本発明の実施の形態による造粒用ダイス、造粒装置、及び発泡性熱可塑性樹脂粒子の製造方法について、図1乃至図4に基づいて説明する。
 図1は本発明の実施の形態による造粒装置の構成図、図2は本発明の実施の形態による造粒用ダイスの概略構成を示す側断面図、図3は図2のダイス本体の樹脂吐出面を示す側面図、図4はノズルの配置状態を示す図である。
Hereinafter, a granulating die, a granulating apparatus, and a method for producing foamable thermoplastic resin particles according to an embodiment of the present invention will be described with reference to FIGS.
1 is a configuration diagram of a granulating apparatus according to an embodiment of the present invention, FIG. 2 is a side sectional view showing a schematic configuration of a granulating die according to an embodiment of the present invention, and FIG. 3 is a resin of the die body of FIG. FIG. 4 is a side view showing the discharge surface, and FIG.
 図1および図2に示すように、本実施の形態による造粒装置Tは、水中ホットカット方式によって造粒する造粒装置であり、本発明の実施の形態による造粒用ダイス1を採用したものである。
 本造粒装置Tは、造粒用ダイス1が先端に取り付けられた押出機2(樹脂供給装置)と、造粒用ダイス1のノズル15から吐出される樹脂(本実施の形態では発泡剤含有樹脂20)を切断するカッター3が収容されるとともに、造粒用ダイス1の樹脂吐出面13に水流を接触させるためのチャンバー4とを備えている。チャンバー4には、循環水を流すための管路5が接続され、この管路5の一端(チャンバー4より上流側)が、送水ポンプ6を介して水槽7に接続されている。また、管路5の他端(チャンバー4より下流側)には、循環水から発泡性熱可塑性樹脂粒子を分離し、脱水・乾燥する脱水処理部8が設けられている。この脱水処理部8で分離され、脱水・乾燥した発泡性熱可塑性樹脂粒子は、容器9に送られる。そして、符号21はホッパー、22は発泡剤供給口、23は高圧ポンプである。
 なお、造粒装置Tおよび造粒用ダイス1において、樹脂が吐出される側を「先方」、「先端」とし、その反対側を「後方」、「後端」として以下の説明では統一して用いる。
As shown in FIGS. 1 and 2, the granulating apparatus T according to the present embodiment is a granulating apparatus that performs granulation by an underwater hot cut method, and employs the granulating die 1 according to the embodiment of the present invention. Is.
The granulating apparatus T includes an extruder 2 (resin feeding apparatus) having a granulating die 1 attached to the tip thereof, and a resin (in this embodiment, containing a foaming agent) discharged from the nozzle 15 of the granulating die 1. The cutter 3 for cutting the resin 20) is accommodated, and the chamber 4 for bringing the water flow into contact with the resin discharge surface 13 of the granulation die 1 is provided. A pipe 5 for flowing circulating water is connected to the chamber 4, and one end (upstream side of the chamber 4) of the pipe 5 is connected to a water tank 7 via a water pump 6. The other end (downstream side of the chamber 4) of the pipe 5 is provided with a dehydration processing unit 8 that separates foamed thermoplastic resin particles from the circulating water and dehydrates and dries them. The expandable thermoplastic resin particles separated by the dehydration processing unit 8 and dehydrated and dried are sent to the container 9. Reference numeral 21 is a hopper, 22 is a blowing agent supply port, and 23 is a high-pressure pump.
In the granulation apparatus T and the granulation die 1, the side from which the resin is discharged is referred to as “front” and “front end”, and the opposite side is defined as “rear” and “rear end” in the following description. Use.
 図2および図3に示すように、造粒用ダイス1は、ダイス本体10と、押出機2の先端側(図中右側)に固定されたダイホルダ11とからなり、ダイス本体10がダイホルダ11の先端側に複数のボルト12、12、…によって固定されている。
 ダイホルダ11は、押出機2のシリンダに連通して設けられ、後端側から先端側に向けて後端側流路11a、先端側流路11bがその順で形成されている。ダイス本体10は、後端面中央部において、後方側に突出してなる円錐状凸部10aが形成され、ダイス本体10とダイホルダ11とが接続した状態で、ダイホルダ11の先端側流路11b内に、所定隙間をもって円錐状凸部10aが挿入されている。すなわち、ダイホルダ11の後端側流路11aを通過した発泡剤含有樹脂20は先端側流路11aにおいて円錐状凸部10aの周面に沿って流れ、ダイス本体10の後端面に開口する複数の樹脂流路14、14、…(後述する)に流入する。
As shown in FIGS. 2 and 3, the granulation die 1 includes a die body 10 and a die holder 11 fixed to the tip side (right side in the drawing) of the extruder 2, and the die body 10 is the die holder 11. It is being fixed to the front end side with a plurality of bolts 12, 12,.
The die holder 11 is provided in communication with the cylinder of the extruder 2, and a rear end side flow path 11 a and a front end side flow path 11 b are formed in that order from the rear end side toward the front end side. The die main body 10 is formed with a conical convex portion 10a that protrudes rearward at the central portion of the rear end surface, and the die main body 10 and the die holder 11 are connected to each other in the front end side flow passage 11b of the die holder 11. The conical convex part 10a is inserted with a predetermined gap. That is, the foaming agent-containing resin 20 that has passed through the rear end side flow passage 11a of the die holder 11 flows along the circumferential surface of the conical convex portion 10a in the front end side flow passage 11a, and a plurality of openings that are opened on the rear end face of the die body 10 are opened. It flows into the resin flow paths 14, 14,.
 ダイス本体10は、その先端面で水流に接触する樹脂吐出面13と、押出機2から押出された発泡剤含有樹脂20を樹脂吐出面13に向けて移送するための複数の樹脂流路14、14、…と、複数の樹脂流路14、14、…の先端に設けられると共に樹脂吐出面13に開口する複数のノズル15、15、…と、樹脂吐出面13の中心位置に設けられた断熱材16と、樹脂吐出面13よりも押出機2側の位置で樹脂吐出面13や樹脂流路14を温めるためのカートリッジヒーター17、ダイス本体10を温めるための短ヒーター18とを備えて概略構成されている。
 カートリッジヒーター17および短ヒーター18は、従来周知のカートリッジヒーターの中からダイス本体10の大きさや形状に応じて適宜選択して使用できる。つまり、カートリッジヒーター17および短ヒーター18としては、例えば棒状のセラミックに巻き付けた発熱線(ニクロム線)をパイプ(耐熱ステンレス鋼)の中に挿入し、発熱線とパイプの隙間を高熱伝導性と高絶縁性に優れた材料(MgO)で封じ込めた、電力密度の高い棒状ヒーターを用いることができる。   
 カートリッジヒーター17及び短ヒーター18は、片側にリード線が2本付いたカートリッジヒーターでも、両側にリード線が1本づつ付いたカートリッジヒーター(シーズヒーター)でもよいが、片側にリード線が2本付いたカートリッジヒーターの方が電力密度がより高いので好ましい。
The die main body 10 has a resin discharge surface 13 that comes into contact with the water flow at its front end surface, and a plurality of resin flow paths 14 for transferring the foaming agent-containing resin 20 extruded from the extruder 2 toward the resin discharge surface 13; , And a plurality of nozzles 15, 15,... That are provided at the tips of the plurality of resin flow paths 14, 14,. Schematic configuration including a material 16, a cartridge heater 17 for heating the resin discharge surface 13 and the resin flow path 14 at a position closer to the extruder 2 than the resin discharge surface 13, and a short heater 18 for heating the die body 10. Has been.
The cartridge heater 17 and the short heater 18 can be appropriately selected and used from conventionally known cartridge heaters according to the size and shape of the die body 10. That is, as the cartridge heater 17 and the short heater 18, for example, a heating wire (nichrome wire) wound around a rod-shaped ceramic is inserted into a pipe (heat-resistant stainless steel), and a gap between the heating wire and the pipe is made high in heat conductivity and high. A bar heater having a high power density and encapsulated with a material having excellent insulating properties (MgO) can be used.
The cartridge heater 17 and the short heater 18 may be a cartridge heater with two lead wires on one side or a cartridge heater (seeds heater) with one lead wire on each side, but two lead wires on one side. A cartridge heater is preferred because it has a higher power density.
 ダイス本体10の樹脂吐出面13の中心部には、円形断面の断熱材16が配置され、その断熱材16の径方向外側に複数のノズル15、15、…の吐出口を同心円に沿って設けている。そして、断熱材16及びノズル15、15、…が配置された樹脂吐出面13の中央部分は、チャンバー4内部で水と接触する。 A heat insulating material 16 having a circular cross section is disposed at the center of the resin discharge surface 13 of the die body 10, and discharge ports of a plurality of nozzles 15, 15,... Are provided along concentric circles outside the heat insulating material 16 in the radial direction. ing. And the center part of the resin discharge surface 13 in which the heat insulating material 16 and the nozzles 15, 15,... Are arranged is in contact with water inside the chamber 4.
 樹脂流路14、14、…は、円形断面をなし、樹脂吐出面13に対して直交する方向に延在されるとともに、ダイス本体10の中心軸線を中心とした円周(樹脂吐出面13上における仮想円の円周)に沿って一定の間隔をもって配置されている。本実施の形態では、樹脂流路14、14、…は、8箇所設けられており、前記円周の周方向に隣り合う樹脂流路14、14どうしの中心角が45°になっている。そして、上述したように各樹脂流路14は、ダイホルダ11の先端側流路11bに連通している。 The resin flow paths 14, 14,... Have a circular cross section, extend in a direction orthogonal to the resin discharge surface 13, and have a circumference centered on the central axis of the die body 10 (on the resin discharge surface 13 Along the circumference of the virtual circle in FIG. In this embodiment, eight resin flow paths 14, 14,... Are provided, and the central angle between the resin flow paths 14, 14 adjacent in the circumferential direction of the circumference is 45 °. As described above, each resin flow path 14 communicates with the front end side flow path 11 b of the die holder 11.
 ノズル15、15、…は、樹脂吐出面13上における仮想円の円周に沿って所定間隔をもって配置されている。図4に示すように、具体的に1箇所のノズル15は、樹脂流路14の断面形状の範囲内に複数の単体ノズル15a、15b、15c、…が任意に配置されたノズルユニット(本発明では、これを称して「ノズル」と呼ぶ)をなしている。各単体ノズル15a、15b、15c、…の配置方法は、例えば複数の小円周上に多数を並べたものなどを採用することができるが、このような配置形態に限定されることはない。 The nozzles 15, 15,... Are arranged at predetermined intervals along the circumference of a virtual circle on the resin discharge surface 13. As shown in FIG. 4, specifically, one nozzle 15 is a nozzle unit in which a plurality of single nozzles 15a, 15b, 15c,... Then, this is called “nozzle”). As the arrangement method of each single nozzle 15a, 15b, 15c,..., For example, a method in which a large number of small nozzles are arranged on a plurality of small circles can be adopted. However, the arrangement is not limited to such an arrangement form.
 そして、断熱材16は、複数のノズル15、15、…を配置した円周の内側の樹脂吐出面13に設けられ、チャンバー4内の水にダイス本体10の熱が逃げないようにしてダイス本体10の温度低下を抑制する。この断熱材16としては、耐水性があり、表面硬度の高い構造の断熱材を用いることが好ましい。例えば、高温のダイス本体10と接触しても変形等を起こさない耐熱性能と断熱性能に優れた断熱材を配し、これを断熱性能に優れたフッ素樹脂等の防水性樹脂で被覆し、さらに樹脂吐出面13側には、ステンレス鋼、セラミックスなどの表面硬度の高い材料を順に積層した積層タイプの断熱材16を用いることができる。 The heat insulating material 16 is provided on the resin discharge surface 13 on the inner side of the circumference where the plurality of nozzles 15, 15,... Are arranged, so that the heat of the die main body 10 does not escape to the water in the chamber 4. 10 temperature drop is suppressed. As the heat insulating material 16, it is preferable to use a heat insulating material having water resistance and a structure having a high surface hardness. For example, a heat insulating material excellent in heat resistance and heat insulating performance that does not cause deformation or the like even when in contact with the high-temperature die body 10 is disposed, and this is covered with a waterproof resin such as a fluororesin excellent in heat insulating performance, On the resin discharge surface 13 side, a laminated heat insulating material 16 in which materials having high surface hardness such as stainless steel and ceramics are sequentially laminated can be used.
 カートリッジヒーター17および短ヒーター18は、それぞれ棒状ヒーターをなし、カートリッジヒーター17が短ヒーター18よりも造粒用ダイス1の先端後端方向で樹脂吐出面13側に位置している。
 カートリッジヒーター17、17、…は、樹脂流路14の前記円周の周方向両側に配置されるとともに、長手方向を円周の径方向に向けてその円周を横切った状態で配置され、樹脂吐出面13の近傍において、樹脂吐出面13、ノズル15、及び樹脂流路14を加熱する機能を有している。本実施の形態のカートリッジヒーター17、17、…は、それぞれが円周方向に所定の中心角(ここでは、45°の角度)をもって8本設けられている。
 つまり、個々のノズル15は、2本のカートリッジヒーター17、17によって前記円周の周方向から挟み込まれるようにして配置されている。
Each of the cartridge heater 17 and the short heater 18 is a rod heater, and the cartridge heater 17 is positioned closer to the resin discharge surface 13 than the short heater 18 in the direction of the rear end of the granulation die 1.
The cartridge heaters 17, 17,... Are disposed on both sides of the circumferential direction of the resin flow path 14, and are disposed in a state of crossing the circumference with the longitudinal direction thereof directed in the radial direction of the circumference. In the vicinity of the discharge surface 13, the resin discharge surface 13, the nozzle 15, and the resin flow path 14 are heated. In this embodiment, eight cartridge heaters 17, 17,... Are provided in the circumferential direction with a predetermined center angle (here, an angle of 45 °).
That is, the individual nozzles 15 are arranged so as to be sandwiched by the two cartridge heaters 17 and 17 from the circumferential direction of the circumference.
 また、カートリッジヒーター17は、樹脂吐出面13の近傍、すなわち樹脂吐出面13から押出機2側に向かって所定のヒーター深さの範囲内に設けられている。ここで、ヒーター深さとは、樹脂吐出面13から表面加熱用のカートリッジヒーター17の中心部までの距離(図2に示す符号L)であり、樹脂吐出面13からのカートリッジヒーター17の位置を示している。ヒーター深さは、ダイスの加工面や耐久性に支障がでない範囲で、その距離が小さい方がノズルの閉塞抑制効果が大きくなり好ましい。つまり、ヒーター深さとしては、10~50mmの範囲が好ましい。10mm未満ではダイスの加工面や耐久性に支障がでる可能性があり、50mmを超えるとノズルの閉塞抑制効果が低下する可能性がある。より好ましい範囲は、15~30mmである。 The cartridge heater 17 is provided in the vicinity of the resin discharge surface 13, that is, within a predetermined heater depth range from the resin discharge surface 13 toward the extruder 2 side. Here, the heater depth is the distance from the resin discharge surface 13 to the center of the surface heating cartridge heater 17 (L in FIG. 2), and indicates the position of the cartridge heater 17 from the resin discharge surface 13. ing. The heater depth is within a range that does not hinder the processing surface and durability of the die, and a smaller distance is preferable because the effect of suppressing nozzle clogging is increased. That is, the heater depth is preferably in the range of 10 to 50 mm. If it is less than 10 mm, there is a possibility that the processed surface of the die and the durability may be hindered, and if it exceeds 50 mm, the nozzle clogging suppression effect may be reduced. A more preferable range is 15 to 30 mm.
 さらに、カートリッジヒーター17の直径は、発熱容量が確保できる範囲で小さい方が樹脂流路の断面積が大きくとれるとともに、ノズル数が多くなるため好ましい。つまり、カートリッジヒーター17の直径としては、15mm以下が好ましいが、10mm未満では必要な発熱容量が確保できにくくヒーターも高価となるため、10mm~15mmが好ましく、10mm~12mmがより好ましい。
 そして、カートリッジヒーター17の長さは、ダイス本体10の半径方向で、配置されるノズル15より中心側に延びる位置(すなわち、少なくともカートリッジヒーター17の先端部がノズル15より中心側となる位置)からダイス本体10の略外周までの位置とされる。
Furthermore, it is preferable that the diameter of the cartridge heater 17 is small as long as the heat generation capacity can be secured because the cross-sectional area of the resin flow path can be increased and the number of nozzles can be increased. That is, the diameter of the cartridge heater 17 is preferably 15 mm or less, but if it is less than 10 mm, the required heat generation capacity cannot be secured and the heater becomes expensive, and the diameter is preferably 10 mm to 15 mm, more preferably 10 mm to 12 mm.
The length of the cartridge heater 17 extends from the position extending in the radial direction of the die body 10 to the center side from the arranged nozzle 15 (that is, the position where at least the tip of the cartridge heater 17 is at the center side from the nozzle 15). It is a position up to substantially the outer periphery of the die body 10.
 短ヒーター18、18、…は、各カートリッジヒーター17に対して所定間隔をもって後方側に配置され、カートリッジヒーター17の本数と同数(8本)が配置され、樹脂流路14の後端側を加熱する機能を有している。短ヒーター18の長さは、カートリッジヒーター17より短い。 The short heaters 18, 18,... Are arranged on the rear side with a predetermined interval with respect to each cartridge heater 17, the same number (eight) as the number of cartridge heaters 17 is arranged, and the rear end side of the resin flow path 14 is heated. It has a function to do. The short heater 18 is shorter than the cartridge heater 17.
 また、ダイス本体10には、樹脂吐出面13に近い位置において上下左右の4箇所に熱電対などの測温体19(19A、19B、19C、19D)(温度センサー)が設けられている。すなわち、これら測温体19の測定温度に基づいてカートリッジヒーター17を個々にオンオフ制御し、ダイス本体10を温度調整することができるように構成されている。また、測温体19の設置位置は、樹脂吐出面13より後方であり、カートリッジヒーター17より前方であることが好ましい。設置場所は、上下左右の4箇所に限定されず、上下の2箇所であってもよい。さらに、短ヒーター18の近くに、短ヒーター18の温度制御用に別の測温体19´(図2参照)を設けることが望ましい。 Also, the die body 10 is provided with temperature measuring elements 19 (19A, 19B, 19C, 19D) (temperature sensors) such as thermocouples at four positions on the top, bottom, left and right at a position close to the resin discharge surface 13. That is, the cartridge heaters 17 are individually controlled to be turned on / off based on the measured temperatures of the temperature measuring elements 19 so that the temperature of the die body 10 can be adjusted. Further, the installation position of the temperature measuring element 19 is preferably behind the resin discharge surface 13 and ahead of the cartridge heater 17. The installation location is not limited to four locations on the top, bottom, left, and right, and may be two locations on the top and bottom. Further, it is desirable to provide another temperature measuring element 19 ′ (see FIG. 2) near the short heater 18 for temperature control of the short heater 18.
 次に、上述した造粒用ダイス1を取り付けた造粒装置Tを用いた発泡性熱可塑性樹脂粒子、熱可塑性樹脂発泡粒子、および熱可塑性樹脂発泡成形体の製造方法について説明する。
 図1に示す造粒装置Tに用いる押出機2(樹脂供給装置)は、従来周知の各種押出機の中から造粒する樹脂の種類等に応じて適宜選択して使用でき、例えばスクリュを用いる押出機またはスクリュを用いない押出機のいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター3を収容したチャンバー4も、ホットカット法において用いられている従来周知のものを用いることができる。
Next, a method for producing expandable thermoplastic resin particles, thermoplastic resin expanded particles, and a thermoplastic resin foam molded article using the granulating apparatus T to which the above-described granulation die 1 is attached will be described.
The extruder 2 (resin supply device) used in the granulating apparatus T shown in FIG. 1 can be appropriately selected and used according to the type of resin to be granulated from various conventionally known extruders, for example, using a screw. Either an extruder or an extruder that does not use a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Moreover, any extruder can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the chamber 4 which accommodated the cutter 3 can also use the conventionally well-known thing used in the hot cut method.
 本発明において、熱可塑性樹脂の種類は限定されないが、例えばポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、ABS樹脂、AS樹脂等を単独もしくは2種類以上混合して使用することができる。さらに樹脂製品として一旦使用されてから回収して得られた熱可塑性樹脂の回収樹脂を使用することもできる。特にポリスチレン(GPPS)、ハイインパクトポリスチレン(HIPS)などのポリスチレン系樹脂が好適に用いられる。
 ポリスチレン系樹脂としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i-プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられ、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、ポリスチレンがより好ましい。
 また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。
 また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよく、添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン-ブタジエン共重合体、エチレン-プロピレン-非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンが挙げられる。あるいは、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体などが挙げられる。
 本発明の発泡性熱可塑性樹脂粒子において、熱可塑性樹脂としてポリスチレン系樹脂を用いた発泡性ポリスチレン系樹脂粒子は、原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、リサイクル原料でないポリスチレン系樹脂(以下、バージンポリスチレンと記す。)を使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたリサイクル原料を使用することができる。このリサイクル原料としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したリサイクル原料を用いることができる。また、使用することができるリサイクル原料は、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたもの以外にも、家電製品(例えば、テレビ、冷蔵庫、洗濯機、エアコンなど)や事務用機器(例えば、複写機、ファクシミリ、プリンターなど)から分別回収された非発泡のポリスチレン系樹脂成形体を粉砕し、溶融混練してリペレットしたものを用いることができる。
In the present invention, the type of thermoplastic resin is not limited. For example, a polystyrene resin, a polyethylene resin, a polypropylene resin, a polyester resin, a vinyl chloride resin, an ABS resin, an AS resin, or the like can be used alone or in combination. Can be used. Furthermore, it is possible to use a recovered resin of a thermoplastic resin obtained after being used once as a resin product. In particular, polystyrene resins such as polystyrene (GPPS) and high impact polystyrene (HIPS) are preferably used.
Examples of polystyrene resins include homopolymers of styrene monomers such as styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, and copolymers thereof. A polystyrene-based resin containing 50% by mass or more of styrene is preferable, and polystyrene is more preferable.
Further, the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer. As, for example, alkyl (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl In addition to fumarate and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.
If a polystyrene resin is the main component, other resins may be added. Examples of the resin to be added include polybutadiene, styrene-butadiene copolymer to improve the impact resistance of the foamed molded article. A rubber-modified polystyrene resin to which a diene rubber-like polymer such as a polymer, ethylene-propylene-nonconjugated diene three-dimensional copolymer is added, so-called high-impact polystyrene is exemplified. Alternatively, a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.
In the expandable thermoplastic resin particles of the present invention, the expandable polystyrene resin particles using a polystyrene resin as the thermoplastic resin are commercially available ordinary polystyrene resins, suspensions In addition to the use of polystyrene resins that are not recycled materials (hereinafter referred to as virgin polystyrene), such as polystyrene resins newly produced by polymerization methods, etc., the used polystyrene resin foam moldings can be reprocessed. The recycled material obtained can be used. As this recycled material, used polystyrene-based resin foam moldings, for example, fish boxes, household appliance cushioning materials, food packaging trays, etc., are collected and recycled using the limonene dissolution method or heating volume reduction method. Can do. Recyclable raw materials that can be used include home appliances (eg, TVs, refrigerators, washing machines, air conditioners) and office work, in addition to those obtained by reprocessing used polystyrene-based resin foam moldings. A non-foamed polystyrene resin molded product that has been separated and collected from an industrial machine (for example, a copying machine, a facsimile machine, a printer, etc.), pulverized, melt-kneaded, and repelletized can be used.
 図1および図2に示すように、上述した造粒装置Tを用いて、発泡性熱可塑性樹脂粒子を製造する場合には、造粒用ダイス1を先端に取り付けた押出機2に熱可塑性樹脂をホッパー21から供給し、それを溶融して混練する。次に、造粒用ダイス1に向けて熱可塑性樹脂を移動させながら、この熱可塑性樹脂に発泡剤供給口22から高圧ポンプ23によって発泡剤を圧入し、発泡剤と熱可塑性樹脂とを混合して発泡剤含有樹脂20を形成する。
 発泡剤含有樹脂20は、押出機2の先端からダイホルダ11を経て、造粒用ダイス1のダイス本体10の樹脂流路14に送られる。樹脂流路14を通って送られた発泡剤含有樹脂20は、ダイス本体10の各ノズル15から吐出され、カッター3の回転刃によりチャンバー4の水流中(冷却媒体中)で直ちに切断される。
As shown in FIG. 1 and FIG. 2, when producing expandable thermoplastic resin particles using the granulator T described above, the thermoplastic resin is placed in an extruder 2 having a granulation die 1 attached to the tip. Is supplied from the hopper 21 and melted and kneaded. Next, while moving the thermoplastic resin toward the granulation die 1, the foaming agent is pressed into the thermoplastic resin from the foaming agent supply port 22 by the high-pressure pump 23, and the foaming agent and the thermoplastic resin are mixed. Thus, the foaming agent-containing resin 20 is formed.
The foaming agent-containing resin 20 is sent from the tip of the extruder 2 through the die holder 11 to the resin flow path 14 of the die body 10 of the granulating die 1. The foaming agent-containing resin 20 sent through the resin flow path 14 is discharged from each nozzle 15 of the die body 10 and immediately cut by the rotary blade of the cutter 3 in the water flow (in the cooling medium) of the chamber 4.
 このようにチャンバー4内で粒状に切断された発泡剤含有樹脂20は、ほぼ球形の発泡性熱可塑性樹脂粒子となる。この発泡性熱可塑性樹脂粒子は、水流に従って管路5内を搬送され、脱水処理部8に達し、ここで循環水から発泡性熱可塑性樹脂粒子を分離し、脱水・乾燥すると共に、分離した水は水槽7に送られる。この脱水処理部8で分離され、脱水・乾燥した発泡性熱可塑性樹脂粒子は、容器9に送られ、この容器内に収容される。 Thus, the foaming agent-containing resin 20 cut into particles in the chamber 4 becomes substantially spherical foaming thermoplastic resin particles. The foamable thermoplastic resin particles are transported in the pipeline 5 according to the water flow and reach the dehydration processing unit 8 where the foamable thermoplastic resin particles are separated from the circulating water, dehydrated and dried, and separated water. Is sent to the water tank 7. The foamable thermoplastic resin particles separated by the dehydration processing unit 8, dehydrated and dried are sent to the container 9 and accommodated in the container.
 なお、前記発泡剤は限定されないが、例えばノルマルペンタン、イソペンタン、シクロペンタン、シクロペンタジエン等を単独もしくは2種類以上混合して使用することができる。また、上記ペンタン類を主成分として、ノルマルブタン、イソブタン、プロパン等を混合して使用することもできる。特にペンタン類は、ノズルから水流中に吐出される際の粒子の発泡を抑制しやすいので好適に用いられる。 In addition, although the said foaming agent is not limited, For example, normal pentane, isopentane, cyclopentane, cyclopentadiene etc. can be used individually or in mixture of 2 or more types. Moreover, normal butane, isobutane, propane, etc. can also be mixed and used for the said pentane as a main component. In particular, pentanes are preferably used because they tend to suppress foaming of particles when discharged from a nozzle into a water stream.
 また、発泡性熱可塑性樹脂粒子とは、熱可塑性樹脂に発泡剤を含有させて粒状、好ましくは小球状に成形された樹脂粒子を言う。この発泡性熱可塑性樹脂粒子は、自由空間内で加熱して予備発泡し、この予備発泡粒子を所望の形状のキャビティを有する成形型のキャビティ内に入れ、蒸気加熱して予備発泡粒子同士を融着させた後、離型して所望形状の発泡樹脂成形品を製造するのに用いることができる。 The foamable thermoplastic resin particles mean resin particles formed into a granular shape, preferably a small spherical shape, by adding a foaming agent to a thermoplastic resin. The foamable thermoplastic resin particles are heated in a free space to be pre-foamed. The pre-foamed particles are placed in a cavity of a mold having a cavity having a desired shape, and the pre-foamed particles are melted by steam heating. After being attached, it can be used for producing a foamed resin molded article having a desired shape by releasing the mold.
  次に、上述した造粒用ダイス1の温度調整方法について説明する。
  図3に示すように、造粒用ダイス1の温度調整方法では、ダイス本体10を樹脂吐出面13付近の上下左右に設けられた測温体19A、19B、19C、19Dに対応する2つまたは4つのエリアに分割し、各測温体19で測定された測定値が等しくなるように、エリア内のカートリッジヒーター17を個別にオンオフ制御する温度調整を行うことで、ダイス本体10を所定温度で一定に保持することができる。ここで、エリア内のカートリッジヒーターとは、4つのエリアの場合は、測温体19に接近している2本のカートリッジヒーター17、17である。
 ダイス本体10を2つのエリアに分割した場合は、例えば冷却水の上流側に位置する測温体19Bの測定温度が、予め設定されている所定温度より低い場合には、上流側に位置するカートリッジヒーター17の4本をオンにして加熱状態として温度を上げる。或いは下流側に位置する測温体19Aの測定温度が、予め設定されている所定温度より高い場合には、下流側に位置するカートリッジヒーター17の4本をオフにして加熱状態を解除して温度を下げるように制御する。
 このような温度調整を行うことで、チャンバー4内でカッター3の回転による循環水の当たり具合によって生じる温度差を小さくすることができ、ダイス本体10(樹脂吐出面13)において温度が一様となり、より均一な粒径の粒子を成形することができる。
Next, a method for adjusting the temperature of the granulation die 1 described above will be described.
As shown in FIG. 3, in the temperature adjusting method of the granulation die 1, two die bodies 10 corresponding to the temperature measuring bodies 19 </ b> A, 19 </ b> B, 19 </ b> C, 19 </ b> D provided on the top, bottom, left and right in the vicinity of the resin discharge surface 13 are used. The die body 10 is controlled at a predetermined temperature by dividing into four areas and performing temperature adjustment for individually turning on and off the cartridge heaters 17 in the areas so that the measured values measured by the temperature measuring elements 19 are equal. Can be held constant. Here, the cartridge heaters in the area are the two cartridge heaters 17 and 17 that are close to the temperature measuring body 19 in the case of four areas.
When the die body 10 is divided into two areas, for example, when the measured temperature of the temperature measuring body 19B located on the upstream side of the cooling water is lower than a predetermined temperature set in advance, the cartridge located on the upstream side Four heaters 17 are turned on to raise the temperature by heating. Alternatively, if the measured temperature of the temperature measuring element 19A located on the downstream side is higher than a predetermined temperature set in advance, four of the cartridge heaters 17 located on the downstream side are turned off to cancel the heating state and Control to lower.
By performing such temperature adjustment, it is possible to reduce a temperature difference caused by contact of circulating water by rotation of the cutter 3 in the chamber 4, and the temperature becomes uniform in the die body 10 (resin discharge surface 13). , Particles with a more uniform particle size can be formed.
 上述した本実施の形態による造粒用ダイス、造粒装置、及び発泡性熱可塑性樹脂粒子の製造方法では、樹脂流路14およびノズル15がカートリッジヒーター17によって両側から挟み込まれた状態で加熱される。そのため、樹脂流路の片側だけが加熱されることがなく、両側から等距離で均等に加熱することができ、ノズル15の目詰まりを抑制することができる。その結果、目詰まりによる生産効率の低下を改善し、均一な粒径の高品質な粒子を製造することが可能となる。 In the granulating die, the granulating device, and the foaming thermoplastic resin particle manufacturing method according to the present embodiment described above, the resin flow path 14 and the nozzle 15 are heated while being sandwiched from both sides by the cartridge heater 17. . Therefore, only one side of the resin flow path is not heated, it can be heated evenly from both sides, and clogging of the nozzle 15 can be suppressed. As a result, it is possible to improve the reduction in production efficiency due to clogging and to produce high quality particles having a uniform particle size.
 次に、本発明の実施の形態の変形例について、図面に基づいて説明するが、上述の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、実施の形態と異なる構成について説明する。
 図5は本実施の形態の変形例によるノズルの配置状態を示す図であって、図4に対応する図である。
 図5に示す変形例による樹脂流路14Aは、その断面形状が台形状をなし、その台形状の範囲内に複数の単体ノズル15a、15b、15c、…が任意に配置されたノズル15が設けられている。そして、樹脂流路14Aの外郭をなす斜面14a、14b(直線部)がカートリッジヒーター17の長手方向と略平行に配置された構成となっている。本変形例では、台形状をなす断面の樹脂流路14Aの斜面14a、14bがカートリッジヒーター17に対して等距離となっているので、カートリッジヒーター17によって均等に加熱される面積が増え、円形断面の樹脂流路と比べて均等に加熱され、ノズルの詰まりをより低減させることができる。
Next, modifications of the embodiment of the present invention will be described with reference to the drawings. However, the same or similar members and parts as those of the above-described embodiment are denoted by the same reference numerals, and the description is omitted. A configuration different from the form will be described.
FIG. 5 is a diagram illustrating a nozzle arrangement state according to a modification of the present embodiment, and corresponds to FIG.
The resin flow path 14A according to the modification shown in FIG. 5 has a trapezoidal cross section, and a nozzle 15 in which a plurality of single nozzles 15a, 15b, 15c,... Are arbitrarily arranged within the trapezoidal range is provided. It has been. The slopes 14 a and 14 b (straight line portions) that form the outline of the resin flow path 14 </ b> A are arranged substantially parallel to the longitudinal direction of the cartridge heater 17. In this modification, the slopes 14a and 14b of the resin flow path 14A having a trapezoidal cross section are equidistant from the cartridge heater 17, so that the area heated evenly by the cartridge heater 17 increases, and the circular cross section Compared with the resin flow path, the nozzle is heated more uniformly, and the clogging of the nozzle can be further reduced.
 本実施の形態による造粒用ダイス、造粒装置、及び発泡性熱可塑性樹脂粒子の製造方法の効果を裏付けるため、実施例について以下説明する。 Examples In order to support the effects of the granulation die, the granulator, and the method for producing foamable thermoplastic resin particles according to the present embodiment, examples will be described below.
[実施例1]
 実施例1では、図1に示した造粒装置Tに、図2および図3に示した造粒用ダイス1を取り付けて、発泡性ポリスチレン系樹脂粒子を製造した。ただし、測温体19Aのみを用いて、全てのカートリッジヒーター17をオンオフ制御して、ダイス1の温度調整を行った。
 口径90mm(L/D=35)の単軸押出機に、図2に示す構造の造粒用ダイス、すなわち、直径0.6mm、ランド長さ3.0mmのノズルを15個もつ目皿(ノズルユニット)が8個樹脂吐出面の円周上に配置され、樹脂吐出面側にノズルユニットに通じる各樹脂流路を両側から挟むように8本のカートリッジヒーター(直径12mm)がヒーター深さ(樹脂吐出面からの距離、図2の符号Lに相当)15mmの位置に前記円周を横切って放射状に配置され、表面中央部に断熱材を装着したダイスを取り付け、ポリスチレン樹脂(東洋スチレン社製、商品名「HRM10N」)100質量部に微粉末タルク0.3質量部を予めタンブラーミキサーにて均一に混合したものを、毎時130kgの割合で押出機内へ供給した。押出機内の最高温度を220℃に設定し、樹脂を溶融させた後、発泡剤として樹脂100質量部に対して6質量部のペンタン(イソペンタン/ノルマルペンタン=20/80混合物)を押出機途中より圧入した。
 そして、押出機内で樹脂と発泡剤を混練しつつ、押出機先端部での樹脂温度が170℃となるように冷却しながら、押出機の先端に取り付けた280℃に保持した前記ダイスを通して、30℃の冷却水が循環するチャンバー内に押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターをダイスに密着させて、毎分3300回転で切断し、脱水乾燥して球形の発泡性ポリスチレン樹脂粒子を得た。この時の発泡性スチレン樹脂粒子の吐出量は138kg/hであった。
 この実施例1では、押出開始1時間目のダイスへの樹脂導入部の圧力は17.0MPa、乾燥後の樹脂粒子100粒の質量は0.0724gであり、ダイスの開孔率は80.2%と良好であった。
 押出開始48時間目のダイスへの樹脂導入部の圧力は17.3MPa、100粒の質量は0.0741g、ダイスの開孔率は78.4%であり、48時間以上安定して押出可能なことが確認できた。
 押出48時間目に採取した発泡性スチレン樹脂粒子について、後述する方法にて嵩発泡倍数50倍(嵩密度0.02g/cm)の予備発泡粒子を作製し、この予備発泡粒子を用いて発泡倍数50倍(密度0.02g/cm)の発泡成形体を製造した。得られた発泡成形体を目視により観察して、予備発泡粒子の成形金型への充填性を評価した。
[Example 1]
In Example 1, expandable polystyrene resin particles were produced by attaching the granulation die 1 shown in FIGS. 2 and 3 to the granulator T shown in FIG. However, the temperature of the dice 1 was adjusted by controlling on / off all the cartridge heaters 17 using only the temperature measuring element 19A.
A single-screw extruder having a diameter of 90 mm (L / D = 35) and a granulation die having the structure shown in FIG. 2, that is, an eye plate (nozzle having 15 nozzles having a diameter of 0.6 mm and a land length of 3.0 mm) 8 cartridge heaters (diameter 12 mm) are arranged on the circumference of the resin discharge surface, and the resin flow channels leading to the nozzle unit are sandwiched from both sides on the resin discharge surface side. A distance from the discharge surface (corresponding to the symbol L in FIG. 2) is 15 mm, arranged radially across the circumference, and attached with a die with a heat insulating material in the center of the surface, polystyrene resin (manufactured by Toyo Styrene Co., Ltd., (Product name “HRM10N”) 100 parts by mass and 0.3 parts by mass of finely powdered talc previously mixed uniformly by a tumbler mixer were fed into the extruder at a rate of 130 kg per hour. After the maximum temperature in the extruder is set to 220 ° C. and the resin is melted, 6 parts by weight of pentane (isopentane / normal pentane = 20/80 mixture) is added from the middle of the extruder as a foaming agent to 100 parts by weight of the resin. Press-fitted.
Then, while kneading the resin and the foaming agent in the extruder, while cooling so that the resin temperature at the tip of the extruder is 170 ° C., through the die held at 280 ° C. attached to the tip of the extruder, 30 A high-speed rotary cutter having 10 blades in the circumferential direction is closely attached to the die, cut at 3300 revolutions per minute, dehydrated and dried to form a spherical foam. Polystyrene resin particles were obtained. At this time, the discharge amount of the expandable styrene resin particles was 138 kg / h.
In Example 1, the pressure of the resin introduction part to the die at the first hour of extrusion was 17.0 MPa, the mass of 100 resin particles after drying was 0.0724 g, and the die opening rate was 80.2. % And good.
The pressure of the resin introduction part to the die 48 hours after the start of extrusion is 17.3 MPa, the mass of 100 grains is 0.0741 g, the die opening rate is 78.4%, and it can be stably extruded for 48 hours or more. I was able to confirm.
About expandable styrene resin particles collected at 48 hours of extrusion, pre-expanded particles having a bulk expansion ratio of 50 times (bulk density: 0.02 g / cm 3 ) were prepared by the method described later, and foamed using the pre-expanded particles. A foam molded article having a multiple of 50 times (density 0.02 g / cm 3 ) was produced. The obtained foamed molded product was visually observed to evaluate the filling property of the pre-expanded particles into the molding die.
<ダイスの開孔率>
 開孔率(ダイス表面の吐出ノズルの押出時開孔率)=開孔数/ダイス全ノズル数×100(%)。
 吐出量(kg/h)=1hあたり、カッターで切り出される全発泡性粒子の総質量
 =開孔数×切り出し個数×1粒質量
 =開孔数×カッター刃数×カッター回転数×1粒質量。
 開孔数=吐出量(kg/h)/〔カッター刃数×カッター回転数(rph) ×1粒質量(kg/個)〕となるため、開孔率は次式で算出できる。
 開孔率(E)= 開孔数/全吐出ノズル数×100(%)
 =〔Q/(N×R×60×(M/100)/1000)〕/H×100(%)
 (式中、Qは吐出量(kg/h)、Nはカッター刃の枚数、Rはカッター回転数(rpm)、Mは100粒質量(g)(発泡性粒子から任意の100粒を選び、最小目盛0.0001gの電子天秤で計量した値を100粒質量とした)、Hはダイスの全ノズル数をそれぞれ表す。)
<Die opening rate>
Opening ratio (opening ratio during extrusion of the discharge nozzle on the die surface) = number of openings / total number of nozzles of the die × 100 (%).
Discharge rate (kg / h) = total mass of all expandable particles cut out by a cutter per 1 h = number of apertures × number of cuts × 1 particle mass = number of apertures × number of cutter blades × number of cutter rotations × 1 particle mass.
Since the number of holes = discharge amount (kg / h) / [number of cutter blades × cutter rotation speed (rph) × 1 grain mass (kg / piece)], the hole area ratio can be calculated by the following equation.
Opening ratio (E) = number of openings / total number of discharge nozzles x 100 (%)
= [Q / (N × R × 60 × (M / 100) / 1000)] / H × 100 (%)
(In the formula, Q is the discharge amount (kg / h), N is the number of cutter blades, R is the number of revolutions of the cutter (rpm), M is 100 particles mass (g) (select any 100 particles from the expandable particles, (The value weighed with an electronic balance with a minimum scale of 0.0001 g was taken as 100 masses), and H represents the total number of nozzles in the die.)
<開孔率の評価基準>
 開孔率(E)は、以下の基準で評価した(後述する表1参照)。
 ◎:50%≦E、
 ○:40%≦E<50%、
 △:30%≦E<40%、
 ×:E<30%。
<発泡成形体の製造>
  前述の様にして押出48時間目に得られた発泡性スチレン樹脂粒子を20℃で1日放置した。その後、発泡性スチレン樹脂粒子100質量部に対して、ステアリン酸亜鉛0.1質量部、ヒドロキシステアリン酸トリグリセライド0.05質量部、ステアリン酸モノグリセライド0.05質量部を添加、混合して樹脂粒子表面に被覆した後、小型バッチ式予備発泡機(内容積40L)に投入して、撹拌しながら、吹込み圧0.05MPa(ゲージ圧)の水蒸気により加熱して、嵩発泡倍数50倍(嵩密度0.02g/cm)の予備発泡粒子を作製した。
  続いて、得られた予備発泡粒子を23℃で1日熟成させた後、外形寸法300×400×100mm(肉厚30mm)で内部に肉厚5mm、10mm、25mmの中仕切部を有する金型を取り付けた自動成形機(積水工機製作所製、ACE-3SP型)を用いて、下記成形条件で成形して発泡倍数50倍(密度0.02g/cm)の発泡成形体を得た。
  成形条件(ACE-3SP QS成形モード)
  成形蒸気圧 0.08MPa(ゲージ圧)
  金型加熱 3秒
  一方加熱(圧力設定) 0.03MPa(ゲージ圧)
  逆一方加熱 2秒
  両面加熱 12秒
  水冷 10秒
  設定取出し面圧 0.02MPa
<予備発泡粒子の金型充填性の評価基準>
 上記発泡成形体を目視により観察し、下記により金型充填性を評価した。
 ◎:肉厚5mm中仕切部分まできっちり充填されている。
 ○:肉厚5mm中仕切部分の充填が甘く過大発泡粒が認められるが、 中仕切部は形成されている。
 △:肉厚5mm中仕切部分に、充填不良による粒子欠損が見られ、中仕切部が完全には形成されていない。
 ×:肉厚5mm中仕切部分は充填不良であり、中仕切部が全く形成されていない。
 <粒子100粒の合計質量>
  発泡性ポリスチレン系樹脂粒子においては、任意に選んだ粒子100粒の合計質量が0.02~0.09gの範囲であることが好ましい。0.09gを超えると、成形金型細部への充填が困難となり、成形可能な金型が単純形状のものに限定される可能性がある。また、0.02g未満では粒子の生産性が劣る可能性がある。より好ましい範囲は0.04~0.06gである。なお、ポリスチレン系樹脂以外の樹脂では、上記範囲に樹脂の比重を乗じた値が好ましい粒子100粒の合計質量の範囲となる。
 <予備発泡粒子の嵩発泡倍数の測定方法>
  十分乾燥した予備発泡粒子をメスシリンダー(例500ml容量)内に、漏斗を用いて自然落下させた後、予備発泡粒子の容積が一定となるまで、メスシリンダーの底をたたいて予備発泡粒子を充填した。そのときの予備発泡粒子の容積と質量を測定し次式により算出した。なお容積は1ml単位で読みとり、質量は最小目盛0.01gの電子天秤にて測定した。スチレン系樹脂の樹脂比重は1.0として計算し、嵩発泡倍数は小数点以下1桁目を四捨五入した。
  嵩発泡倍数(倍)=予備発泡粒子の容積(ml)/予備発泡粒子の質量(g)×樹脂比重
 <発泡成形体の発泡倍数の測定方法>
  十分に乾燥させた発泡成形体から、測定用試験片(例300×400×30mm)を切出し、この試験片の寸法と質量を測定し、測定した寸法を基に試験片の体積を算出し、次式により算出した。なお、スチレン系樹脂の樹脂比重は1.0とした。
  発泡倍数(倍)=試験片体積(cm)/試験片質量(g)×樹脂比重
<Evaluation criteria for hole area ratio>
The hole area ratio (E) was evaluated according to the following criteria (see Table 1 described later).
A: 50% ≦ E,
○: 40% ≦ E <50%,
Δ: 30% ≦ E <40%
X: E <30%.
<Manufacture of foam molding>
The expandable styrene resin particles obtained at 48 hours after extrusion as described above were left at 20 ° C. for 1 day. Thereafter, with respect to 100 parts by mass of expandable styrene resin particles, 0.1 parts by mass of zinc stearate, 0.05 parts by mass of hydroxystearic acid triglyceride, and 0.05 parts by mass of monoglyceride stearate were added and mixed to obtain resin particle surfaces. After coating, the mixture is put into a small batch type pre-foaming machine (internal volume 40L) and heated with water vapor with a blowing pressure of 0.05 MPa (gauge pressure) while stirring to give a bulk foaming factor of 50 times (bulk density). 0.02 g / cm 3 ) pre-expanded particles were prepared.
Subsequently, the pre-expanded particles obtained were aged at 23 ° C. for 1 day, and then a mold having an outer dimension of 300 × 400 × 100 mm (thickness 30 mm) and an inner partition portion of thickness 5 mm, 10 mm, and 25 mm. Was molded under the following molding conditions using an automatic molding machine (Sekisui Koki Seisakusho, ACE-3SP type) to which a foam was attached to obtain a foamed molded product having a foaming ratio of 50 times (density 0.02 g / cm 3 ).
Molding conditions (ACE-3SP QS molding mode)
Molding vapor pressure 0.08MPa (gauge pressure)
Mold heating 3 seconds One-side heating (pressure setting) 0.03 MPa (gauge pressure)
Reverse one heating 2 seconds Double-sided heating 12 seconds Water cooling 10 seconds Set extraction surface pressure 0.02 MPa
<Evaluation criteria for mold filling properties of pre-expanded particles>
The foamed molded product was visually observed, and the mold filling property was evaluated as follows.
(Double-circle): It fills up to the partition part 5mm thick.
○: Filling of the partition part with a thickness of 5 mm is sweet and excessive foam particles are observed, but the partition part is formed.
(Triangle | delta): The particle | grain defect | deletion by poor filling is seen in the partition part with thickness 5mm, and the partition part is not formed completely.
X: The partition part with a thickness of 5 mm is poorly filled, and no partition part is formed at all.
<Total mass of 100 particles>
In the expandable polystyrene resin particles, the total mass of 100 arbitrarily selected particles is preferably in the range of 0.02 to 0.09 g. If it exceeds 0.09 g, it is difficult to fill the details of the mold, and the moldable mold may be limited to a simple shape. If it is less than 0.02 g, the productivity of the particles may be inferior. A more preferable range is 0.04 to 0.06 g. For resins other than polystyrene-based resins, a value obtained by multiplying the above range by the specific gravity of the resin is a range of the total mass of 100 preferable particles.
<Method for measuring bulk expansion ratio of pre-expanded particles>
After sufficiently drying the pre-expanded particles in a graduated cylinder (eg 500 ml capacity) using a funnel, tap the bottom of the graduated cylinder until the volume of the pre-expanded particles is constant. Filled. The volume and mass of the pre-expanded particles at that time were measured and calculated by the following formula. The volume was read in units of 1 ml, and the mass was measured with an electronic balance having a minimum scale of 0.01 g. The resin specific gravity of the styrene resin was calculated as 1.0, and the bulk expansion factor was rounded off to the first decimal place.
Bulk expansion ratio (times) = volume of pre-expanded particles (ml) / mass of pre-expanded particles (g) × resin specific gravity <Measurement method of expansion ratio of foam molded article>
A test specimen for measurement (example 300 × 400 × 30 mm) was cut out from the foamed product that had been sufficiently dried, the dimensions and mass of the test specimen were measured, and the volume of the test specimen was calculated based on the measured dimensions. It was calculated by the following formula. The specific gravity of the styrene resin was 1.0.
Foaming factor (times) = test piece volume (cm 3 ) / test piece mass (g) × resin specific gravity
 [実施例2]
  実施例2では、実施例1で用いたダイスのノズルユニットへ連通する樹脂流路を拡張(断面積が増加)し、ノズルユニットあたりのノズル数を15個から25個に増加させたダイスを取り付けた以外は、実施例1と同様にして、吐出量138kg/hで球形の発泡性スチレン樹脂粒子を得た。
  この実施例2では、押出開始1時間目のダイスへの樹脂導入部の圧力は14.0MPa、乾燥後の樹脂粒子100粒の質量は0.0465gであり、ダイスの開孔率は75.0%と良好であった。
  押出開始48時間目のダイスへの樹脂導入部の圧力は14.0MPa、100粒の質量は0.0465g、ダイスの開孔率は75.0%であり、48時間以上安定して押出可能なことが確認できた。
  押出48時間目に採取した発泡性スチレン樹脂粒子について、実施例1と同様にして嵩発泡倍数50倍(嵩密度0.02g/cm)の予備発泡粒子を作製し、この予備発泡粒子を用いて発泡倍数50倍(密度0.02g/cm)の発泡成形体を製造した。得られた発泡成形体を目視により観察して、予備発泡粒子の成形金型への充填性を評価した。
[Example 2]
In Example 2, the resin flow path communicating with the nozzle unit of the die used in Example 1 is expanded (increase in cross-sectional area), and the dice with the number of nozzles per nozzle unit increased from 15 to 25 are attached. Except that, spherical foamable styrene resin particles were obtained in the same manner as in Example 1 at a discharge rate of 138 kg / h.
In Example 2, the pressure of the resin introduction part to the die at the first hour after extrusion was 14.0 MPa, the mass of 100 resin particles after drying was 0.0465 g, and the die opening rate was 75.0. % And good.
The pressure of the resin introduction part to the die 48 hours after the start of extrusion is 14.0 MPa, the mass of 100 grains is 0.0465 g, the die opening rate is 75.0%, and can be stably extruded for 48 hours or more. I was able to confirm.
For the expandable styrene resin particles collected at 48 hours of extrusion, pre-expanded particles having a bulk expansion ratio of 50 times (bulk density 0.02 g / cm 3 ) were prepared in the same manner as in Example 1, and the pre-expanded particles were used. Thus, a foamed molded article having a foaming ratio of 50 times (density 0.02 g / cm 3 ) was produced. The obtained foamed molded product was visually observed to evaluate the filling property of the pre-expanded particles into the molding die.
 [実施例3]
  実施例3では、実施例2で用いたダイスに、ダイス温度測定用センサー(図3に示す測温体19のうち上下位置に配置される19B(流入側)と19A(流出側)の2本)を用いて、ダイスの循環水流入側(下側、図2の符号4a側)のヒーター4本と循環水流出側(上側、図2の符号4b側)のヒーター4本にエリアを2分割して制御して、ダイスを280℃に保持した以外は、実施例2と同様にして、吐出量138kg/hで球形の発泡性スチレン樹脂粒子を得た。
  この実施例3では、押出開始1時間目のダイスへの樹脂導入部の圧力は、13.3MPa、乾燥後の樹脂粒子100粒の質量は0.0425gであり、ダイスの開孔率は82.0%と良好であった。
  押出開始48時間目のダイスへの樹脂導入部の圧力は13.3MPa、100粒の質量は0.0425g、ダイスの開孔率は82.0%であり、48時間以上安定して押出可能なことが確認できた。
  押出48時間目に採取した発泡性スチレン樹脂粒子について、実施例1と同様にして嵩発泡倍数50倍(嵩密度0.02g/cm)の予備発泡粒子を作製し、この予備発泡粒子を用いて発泡倍数50倍(密度0.02g/cm)の発泡成形体を製造した。得られた発泡成形体を目視により観察して、予備発泡粒子の成形金型への充填性を評価した。
[Example 3]
In Example 3, two dice temperature measuring sensors (19B (inflow side) and 19A (outflow side) arranged at the upper and lower positions of the temperature measuring element 19 shown in FIG. 3) are used as the dice used in Example 2. ) To divide the area into 4 heaters on the circulating water inflow side (lower side, reference numeral 4a side in FIG. 2) and 4 heaters on the circulating water outflow side (upper side, reference numeral 4b side in FIG. 2). Thus, spherical expandable styrene resin particles were obtained at a discharge rate of 138 kg / h in the same manner as in Example 2 except that the die was kept at 280 ° C.
In Example 3, the pressure of the resin introduction part to the die at the first hour after extrusion was 13.3 MPa, the mass of 100 resin particles after drying was 0.0425 g, and the die opening rate was 82. It was as good as 0%.
The pressure of the resin introduction part to the die 48 hours after the start of extrusion is 13.3 MPa, the mass of 100 grains is 0.0425 g, the die opening rate is 82.0%, and stable extrusion is possible for 48 hours or more. I was able to confirm.
For the expandable styrene resin particles collected at 48 hours of extrusion, pre-expanded particles having a bulk expansion ratio of 50 times (bulk density 0.02 g / cm 3 ) were prepared in the same manner as in Example 1, and the pre-expanded particles were used. Thus, a foamed molded article having a foaming ratio of 50 times (density 0.02 g / cm 3 ) was produced. The obtained foamed molded product was visually observed to evaluate the filling property of the pre-expanded particles into the molding die.
[実施例4]
 実施例4では、実施例2で用いたダイスのヒーター深さを15mmから30mmに変更したダイスを用いた以外は、実施例2と同様にして、吐出量138kg/hで球形の発泡性スチレン樹脂粒子を得た。
 この実施例4では、押出開始1時間目のダイスへの樹脂導入部の圧力は16.1MPa、乾燥後の樹脂粒子100粒の質量は0.0524gであり、ダイスの開孔率は66.5%と良好であった。
 押出開始48時間目のダイスへの樹脂導入部の圧力は16.8MPa、100粒の質量は0.0581g、ダイスの開孔率は60.0%であり、48時間以上安定して押出可能なことが確認できた。
 押出48時間目に採取した発泡性スチレン樹脂粒子について、実施例1と同様にして嵩発泡倍数50倍(嵩密度0.02g/cm)の予備発泡粒子を作製し、この予備発泡粒子を用いて発泡倍数50倍(密度0.02g/cm)の発泡成形体を製造した。得られた発泡成形体を目視により観察して、予備発泡粒子の成形金型への充填性を評価した。
[Example 4]
In Example 4, a spherical foamable styrene resin with a discharge amount of 138 kg / h was used in the same manner as in Example 2 except that the die used in Example 2 was changed from 15 mm to 30 mm in heater depth. Particles were obtained.
In Example 4, the pressure of the resin introduction portion to the die at the first hour after extrusion was 16.1 MPa, the mass of 100 resin particles after drying was 0.0524 g, and the die opening rate was 66.5. % And good.
The pressure of the resin introduction part to the die 48 hours after the start of extrusion is 16.8 MPa, the mass of 100 grains is 0.0581 g, and the opening rate of the die is 60.0%, which can be stably extruded for 48 hours or more. I was able to confirm.
For the expandable styrene resin particles collected at 48 hours of extrusion, pre-expanded particles having a bulk expansion ratio of 50 times (bulk density 0.02 g / cm 3 ) were prepared in the same manner as in Example 1, and the pre-expanded particles were used. Thus, a foamed molded article having a foaming ratio of 50 times (density 0.02 g / cm 3 ) was produced. The obtained foamed molded product was visually observed to evaluate the filling property of the pre-expanded particles into the molding die.
[実施例5]
 実施例5では、実施例2で用いたダイスのヒーター深さを15mmから45mmに変更したダイスを用いた以外は、実施例2と同様にして、吐出量138kg/hで球形の発泡性スチレン樹脂粒子を得た。 
 この実施例5では、押出開始1時間目のダイスへの樹脂導入部の圧力は16.9MPa、乾燥後の樹脂粒子100粒の質量は0.0670gであり、ダイスの開孔率は52.0%と良好であった。
 押出開始48時間目のダイスへの樹脂導入部の圧力は18.1MPa、100粒の質量は0.0871g、ダイスの開孔率は40.0%であり、48時間以上安定して押出可能なことが確認できた。
 押出48時間目に採取した発泡性スチレン樹脂粒子について、実施例1と同様にして嵩発泡倍数50倍(嵩密度0.02g/cm)の予備発泡粒子を作製し、この予備発泡粒子を用いて発泡倍数50倍(密度0.02g/cm)の発泡成形体を製造した。得られた発泡成形体を目視により観察して、予備発泡粒子の成形金型への充填性を評価した。
[実施例6]
 実施例6では、発泡剤としてイソペンタンのみを用いた以外は、実施例2と同様にして、吐出量138kg/hで球形の発泡性スチレン樹脂粒子を得た。
 この実施例6では、押出開始1時間目のダイスへの樹脂導入部の圧力は、15.1MPa、乾燥後の樹脂粒子100粒の質量は0.0458gであり、ダイスの開孔率は76.1%と良好であった。
 押出開始48時間目のダイスへの樹脂導入部の圧力は15.0MPa、100粒の質量は0.0461g、ダイスの開孔率は75.6%であり、48時間以上安定して押出可能なことが確認できた。
 押出48時間目に採取した発泡性スチレン樹脂粒子について、実施例1と同様にして嵩発泡倍数50倍(嵩密度0.02g/cm)の予備発泡粒子を作製し、この予備発泡粒子を用いて発泡倍数50倍(密度0.02g/cm)の発泡成形体を製造した。得られた発泡成形体を目視により観察して、予備発泡粒子の成形金型への充填性を評価した。
[Example 5]
In Example 5, a spherical foamable styrene resin with a discharge amount of 138 kg / h was used in the same manner as in Example 2 except that the die used in Example 2 was changed from 15 mm to 45 mm in heater depth. Particles were obtained.
In this Example 5, the pressure of the resin introduction part to the die 1 hour after the extrusion was 16.9 MPa, the mass of 100 resin particles after drying was 0.0670 g, and the die opening rate was 52.0. % And good.
The pressure of the resin introduction part to the die 48 hours after the start of extrusion is 18.1 MPa, the mass of 100 grains is 0.0871 g, and the opening rate of the die is 40.0%, which can be stably extruded for 48 hours or more. I was able to confirm.
For the expandable styrene resin particles collected at 48 hours of extrusion, pre-expanded particles having a bulk expansion ratio of 50 times (bulk density 0.02 g / cm 3 ) were prepared in the same manner as in Example 1, and the pre-expanded particles were used. Thus, a foamed molded article having a foaming ratio of 50 times (density 0.02 g / cm 3 ) was produced. The obtained foamed molded product was visually observed to evaluate the filling property of the pre-expanded particles into the molding die.
[Example 6]
In Example 6, spherical expandable styrene resin particles were obtained at a discharge rate of 138 kg / h in the same manner as in Example 2 except that only isopentane was used as the foaming agent.
In Example 6, the pressure of the resin introduction part to the die at the first hour after extrusion was 15.1 MPa, the mass of 100 resin particles after drying was 0.0458 g, and the die opening rate was 76. It was as good as 1%.
The pressure of the resin introduction part to the die 48 hours after the start of extrusion is 15.0 MPa, the mass of 100 grains is 0.0461 g, and the opening rate of the die is 75.6%, which can be stably extruded for 48 hours or more. I was able to confirm.
For the expandable styrene resin particles collected at 48 hours of extrusion, pre-expanded particles having a bulk expansion ratio of 50 times (bulk density 0.02 g / cm 3 ) were prepared in the same manner as in Example 1, and the pre-expanded particles were used. Thus, a foamed molded article having a foaming ratio of 50 times (density 0.02 g / cm 3 ) was produced. The obtained foamed molded product was visually observed to evaluate the filling property of the pre-expanded particles into the molding die.
[比較例1]
 図6Aは比較例1で用いたダイスの断面図、図6Bはダイスの樹脂吐出面を示す側面図である。
 比較例1では、図6A及び図6Bに示す公知の構造のダイス20、すなわち、直径0.6mm、ランド長さ3.0mmのノズルを15個もつ16個のノズルユニット(符号15)が円周上に配置され、樹脂吐出面13側にカートリッジヒーターが無い(つまり短ヒーター18のみが配置された)ダイスに変えた以外は、実施例1と同様にして、吐出量138kg/hで球形の発泡性スチレン樹脂粒子を得た。
 この比較例1では、押出開始1時間目のダイスへの樹脂導入部の圧力が21.7MPaと高く、100粒の質量は0.1322g、ダイスの開孔率は22.0%であった。
 経時に伴って樹脂導入部の圧力上昇が認められ、押出開始6時間目にダイスの耐圧上限値(25MPa)に到達したため、6時間で押出を打ち切った。
[Comparative Example 1]
6A is a cross-sectional view of a die used in Comparative Example 1, and FIG. 6B is a side view showing a resin discharge surface of the die.
In Comparative Example 1, a die 20 having a known structure shown in FIGS. 6A and 6B, that is, 16 nozzle units (symbol 15) having 15 nozzles having a diameter of 0.6 mm and a land length of 3.0 mm are arranged on the circumference. Spherical foaming with a discharge amount of 138 kg / h is performed in the same manner as in Example 1 except that the die is disposed on the resin discharge surface 13 side and is changed to a die having no cartridge heater (that is, only the short heater 18 is disposed). Styrene resin particles were obtained.
In Comparative Example 1, the pressure of the resin introduction portion into the die at the first hour after extrusion was as high as 21.7 MPa, the mass of 100 grains was 0.1322 g, and the opening rate of the die was 22.0%.
With the passage of time, a pressure increase in the resin introduction portion was observed, and the pressure limit value (25 MPa) of the die was reached 6 hours after the start of extrusion, so the extrusion was terminated in 6 hours.
[比較例2]
 図7Aは比較例2で用いたダイスの断面図、図7Bはダイスの樹脂吐出面を示す側面図である。
 比較例2では、図7A及び図7Bに示す構造のダイス30、すなわち、樹脂吐出面13側にカートリッジヒーター17、17、…(直径12mm)を4本、ヒーター深さ15mmの位置にノズルユニットが並ぶ円周を横切って十字に配置し、表面中央部に断熱材16を装着したダイスに変えた以外は、実施例1と同様にして、吐出量138kg/hで球形の発泡性スチレン樹脂粒子を得た。
 この比較例2では、押出開始1時間目のダイスへの樹脂導入部の圧力が20.0MPaとやや高く、100粒の質量は0.1030g、ダイスの開孔率は28.2%であった。
 経時に伴って樹脂導入部の圧力上昇が認められ、押出開始10時間目にダイスの耐圧上限値(25MPa)に到達したため、10時間で押出を打ち切った。
[Comparative Example 2]
7A is a sectional view of a die used in Comparative Example 2, and FIG. 7B is a side view showing a resin discharge surface of the die.
In Comparative Example 2, a die 30 having the structure shown in FIGS. 7A and 7B, that is, four cartridge heaters 17, 17,... (Diameter 12 mm) on the resin discharge surface 13 side, and a nozzle unit at a heater depth of 15 mm. Spherical expandable styrene resin particles were discharged at a discharge rate of 138 kg / h in the same manner as in Example 1 except that they were arranged in a cross across the circumference of the line and changed to a die having a heat insulating material 16 attached to the center of the surface. Obtained.
In Comparative Example 2, the pressure of the resin introduction portion into the die at the first hour after extrusion was slightly high, 20.0 MPa, the mass of 100 grains was 0.1030 g, and the die opening rate was 28.2%. .
With the passage of time, an increase in pressure in the resin introduction portion was observed, and the pressure limit value (25 MPa) of the die was reached 10 hours after the start of extrusion, so the extrusion was terminated in 10 hours.
[比較例3]
 図8Aは比較例3で用いたダイスの断面図、図8Bはダイスの樹脂吐出面を示す側面図である。
 比較例3では、図8A及び図6Bに示す公知の構造のダイス40、すなわち、断熱材がなく、ダイスにオイルの流路41が設けられており、ダイス上下41a、41aから高温のオイルを流入させ、中央の環状流路を通して左右41b、41bに流出させオイル加熱器に戻す構造のダイスに変えて、オイルを熱媒体とした間接加熱によりダイスを280℃に保持した以外は、実施例1と同様にして、吐出量138kg/hで球形の発泡性スチレン樹脂粒子を得た。
 この比較例3では、押出開始1時間目のダイスへの樹脂導入部の圧力が18.0MPa、100粒の質量は0.0907g、ダイスの開孔率は32.0%であった。
 押出開始48時間目のダイスへの樹脂導入部の圧力は21.8MPa、100粒の質量は0.0994g、ダイスの開孔率は29.2%となった。
 押出48時間目に採取した発泡性スチレン樹脂粒子について、実施例1と同様にして嵩発泡倍数50倍(嵩密度0.02g/cm)の予備発泡粒子を作製し、この予備発泡粒子を用いて発泡倍数50倍(密度0.02g/cm)の発泡成形体を製造した。得られた発泡成形体を目視により観察して、予備発泡粒子の成形金型への充填性を評価した。
[Comparative Example 3]
8A is a cross-sectional view of a die used in Comparative Example 3, and FIG. 8B is a side view showing a resin discharge surface of the die.
In Comparative Example 3, a die 40 having a known structure shown in FIGS. 8A and 6B, that is, there is no heat insulating material, an oil flow path 41 is provided in the die, and high-temperature oil flows from the upper and lower dies 41a and 41a. Example 1 except that the dies are maintained at 280 ° C. by indirect heating using oil as a heat medium instead of dice having a structure that flows out to the left and right 41b, 41b through the central annular channel and returns to the oil heater. Similarly, spherical expandable styrene resin particles were obtained at a discharge rate of 138 kg / h.
In Comparative Example 3, the pressure of the resin introduction part to the die 1 hour after the start of extrusion was 18.0 MPa, the mass of 100 grains was 0.0907 g, and the opening rate of the die was 32.0%.
The pressure of the resin introduction part to the die 48 hours after the start of extrusion was 21.8 MPa, the mass of 100 grains was 0.0994 g, and the die opening rate was 29.2%.
For the expandable styrene resin particles collected at 48 hours of extrusion, pre-expanded particles having a bulk expansion ratio of 50 times (bulk density 0.02 g / cm 3 ) were prepared in the same manner as in Example 1, and the pre-expanded particles were used. Thus, a foamed molded article having a foaming ratio of 50 times (density 0.02 g / cm 3 ) was produced. The obtained foamed molded product was visually observed to evaluate the filling property of the pre-expanded particles into the molding die.
 上述した実施例1~6、及び比較例1~3の結果を、表1にまとめて記す。 Table 1 summarizes the results of Examples 1 to 6 and Comparative Examples 1 to 3 described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、本発明に係る実施例1~6では、造粒開始から1時間目のダイス圧力が13.3~17.0MPaであり、48時間目のダイス圧力が13.3~18.1MPaであり、比較例1~3よりも低くなり、連続運転が可能であった。また、ノズルの開孔率も1時間経過時に52%以上で48時間経過時に40%以上であり、とくに実施例1~3、および6では1時間経過時に75%以上で48時間経過時に75%以上であり、経時に伴って開孔率(E)がほとんど変化していないことが確認された。
 そして、ヒーター深さが45mmの実施例5では、ヒーター深さが30mmの実施例4と比べて開孔率が落ちていることから、ヒーター深さとしては、10~50mmが好ましく、15~30mmがより好ましいことがいえる。
From the results of Table 1, in Examples 1 to 6 according to the present invention, the die pressure at 1 hour from the start of granulation is 13.3 to 17.0 MPa, and the die pressure at 48 hours is 13.3 to 18 The pressure was lower than that of Comparative Examples 1 to 3, and continuous operation was possible. Also, the nozzle opening rate was 52% or more after 1 hour and 40% or more after 48 hours, and in Examples 1 to 3, and 6, 75% or more after 1 hour and 75% after 48 hours. As described above, it was confirmed that the open area ratio (E) hardly changed with time.
In Example 5 where the heater depth is 45 mm, the hole area ratio is lower than in Example 4 where the heater depth is 30 mm. Therefore, the heater depth is preferably 10 to 50 mm, and 15 to 30 mm. Is more preferable.
 一方、比較例1、2では、ノズル閉塞によるダイス圧力の上昇が顕著に見られ、6~10時間程度の運転でダイス耐圧上限まで達した。ノズルの開孔率は、1時間経過時で既に22.0~32.0%と低率であった。
 比較例3は、実施例1~6に比べると、ダイス内に環状オイル流路を設ける分、ダイスの構造が複雑となり、オイルの加熱器及び循環ポンプが必要で、オイルを循環させる配管には保温が必要等、設置コストが高い。また、劣化したオイルや異物により流路が詰まったり、流れ難くなると加熱バランスがくずれ、ダイスの温度を均一に保持できなくなる等の欠点を有している。
On the other hand, in Comparative Examples 1 and 2, the increase in the die pressure due to nozzle clogging was noticeable, and reached the upper limit of the die withstand pressure after about 6 to 10 hours of operation. The aperture ratio of the nozzle was already as low as 22.0 to 32.0% after 1 hour.
Compared with Examples 1 to 6, the comparative example 3 has a complicated structure of the die because the annular oil flow path is provided in the die, and requires an oil heater and a circulation pump. Installation costs are high due to the need for heat insulation. In addition, when the flow path is clogged or deteriorated due to deteriorated oil or foreign matter, the heating balance is lost and the temperature of the die cannot be maintained uniformly.
 以上、本発明による造粒用ダイス、造粒装置、及び発泡性熱可塑性樹脂粒子の製造方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
 例えば、本実施の形態では樹脂流路14が8箇所とし、カートリッジヒーター17、短ヒーター18をそれぞれ8本としているが、この数量に限定されることはなく、造粒用ダイス1の大きさ、熱可塑性樹脂の粒子の成形量などの条件に応じて最適な数量に設定することができる。要は、樹脂流路14の円周の周方向両側にカートリッジヒーターが配置される構成となっていればよい。
 そして、測温体19を4つとしているが、これに限定されることはなく、例えば測温体19が上下の位置に2つあってもよい。
 また、押出機2、カッター3、チャンバー4、ダイホルダ11、ダイス本体10などの形状、大きさ、その他の構成については特に制限されることはなく、任意に設定することができる。例えば、本実施の形態では樹脂供給装置として、押出機を採用しているが、この他に、スタティックミキサー、ギアポンプなどを使用することができる。
As described above, the embodiment of the granulation die, the granulation apparatus, and the method for producing the foamable thermoplastic resin particles according to the present invention has been described, but the present invention is not limited to the above embodiment, Changes can be made as appropriate without departing from the spirit of the invention.
For example, in the present embodiment, there are eight resin flow paths 14 and eight cartridge heaters 17 and eight short heaters 18 respectively, but the number is not limited to this number, and the size of the granulation die 1, The optimum quantity can be set according to conditions such as the molding amount of the thermoplastic resin particles. In short, it is only necessary that the cartridge heaters are arranged on both sides of the circumference of the resin flow path 14 in the circumferential direction.
And although the four temperature measuring elements 19 are set as this, it is not limited to this, For example, the two temperature measuring elements 19 may exist in the up-and-down position.
Further, the shape, size, and other configurations of the extruder 2, the cutter 3, the chamber 4, the die holder 11, the die body 10, and the like are not particularly limited and can be arbitrarily set. For example, although an extruder is employed as the resin supply device in the present embodiment, a static mixer, a gear pump, or the like can also be used.
 本発明によれば、ホットカット法による造粒用ダイスにおけるノズルの目詰まりを防ぎ、均一な粒径の粒子を効率よく生産できるようにした造粒用ダイス、造粒装置、及び発泡性熱可塑性樹脂粒子の製造方法を提供することができる。 According to the present invention, the granulation die, the granulation apparatus, and the foaming thermoplasticity capable of preventing the nozzle clogging in the granulation die by the hot cut method and efficiently producing particles having a uniform particle diameter. A method for producing resin particles can be provided.

Claims (14)

  1.  冷却媒体に接触して設けられた樹脂吐出面と、
     樹脂供給装置に連通する複数の樹脂流路と、
     前記樹脂流路と連通して前記樹脂吐出面に開口するノズルと、
     前記樹脂吐出面の近傍に設けられた複数のカートリッジヒーターと、
     を備え、
     前記樹脂流路が前記樹脂吐出面上における仮想円の円周に沿って配置され、
     前記カートリッジヒーターは、前記樹脂流路の前記円周の周方向両側に配置されるとともに、長手方向を前記円周の径方向に向けて前記円周を横切った状態で配置されている造粒用ダイス。
    A resin discharge surface provided in contact with the cooling medium;
    A plurality of resin flow paths communicating with the resin supply device;
    A nozzle communicating with the resin flow path and opening in the resin discharge surface;
    A plurality of cartridge heaters provided in the vicinity of the resin discharge surface;
    With
    The resin flow path is disposed along the circumference of a virtual circle on the resin discharge surface,
    The cartridge heater is arranged on both sides of the circumference of the circumference of the resin flow path, and is arranged in a state where the longitudinal direction is directed to the radial direction of the circumference and across the circumference. dice.
  2.  前記カートリッジヒーターは、8本以上設けられており、
     それぞれの中心角が45°以下である請求項1に記載の造粒用ダイス。
    Eight or more cartridge heaters are provided,
    The granulation die according to claim 1, wherein each central angle is 45 ° or less.
  3.  前記カートリッジヒーターは、前記樹脂吐出面から10~50mmの位置に設けられている請求項1記載の造粒用ダイス。 The granulation die according to claim 1, wherein the cartridge heater is provided at a position of 10 to 50 mm from the resin discharge surface.
  4.  前記樹脂流路の断面形状は、その外郭に直線部を有し、
     前記直線部が前記カートリッジヒーターの長手方向と略平行に配置されている請求項1に記載の造粒用ダイス。
    The cross-sectional shape of the resin flow path has a linear portion on its outer shell,
    The granulation die according to claim 1, wherein the linear portion is disposed substantially parallel to a longitudinal direction of the cartridge heater.
  5.  前記樹脂流路には、その前記断面形状に沿って複数個のノズルが設けられている請求項1に記載の造粒用ダイス。 The granulation die according to claim 1, wherein the resin flow path is provided with a plurality of nozzles along the cross-sectional shape thereof.
  6.  少なくとも前記冷却媒体の水流方向の上流側と下流側に温度センサーが設けられ、
     前記温度センサーの測定温度に基づいて、前記カートリッジヒーターを個別にオンオフ制御するように構成されている請求項1に記載の造粒用ダイス。
    Temperature sensors are provided at least upstream and downstream in the water flow direction of the cooling medium,
    The granulation die according to claim 1, wherein the cartridge heater is individually controlled to be turned on / off based on a temperature measured by the temperature sensor.
  7.  請求項1乃至6のいずれかに記載の造粒用ダイスと、
     前記造粒用ダイスを先端に取り付けた樹脂供給装置と、
     前記造粒用ダイスのノズルから吐出される樹脂を切断するカッターが収容されるとともに、前記造粒用ダイスの樹脂吐出面に冷却媒体を接触させるチャンバーと、を具備する造粒装置。
    A granulation die according to any one of claims 1 to 6,
    A resin supply device with the granulation die attached to the tip;
    A granulating apparatus comprising: a chamber that houses a cutter that cuts the resin discharged from the nozzle of the granulation die, and a chamber that contacts a cooling medium with the resin discharge surface of the granulation die.
  8.  請求項1乃至6のいずれかに記載の造粒用ダイスを取り付けた樹脂供給装置に熱可塑性樹脂を供給して溶融混練させる工程と、
     前記熱可塑性樹脂を前記造粒用ダイスに向けて移動させながら前記熱可塑性樹脂に発泡剤を注入して発泡剤含有樹脂を形成する工程と、
     前記造粒用ダイスのノズルから吐出される前記発泡剤含有樹脂をカッターにより冷却媒体中で切断して発泡性熱可塑性樹脂粒子を得る工程と、
     を有する発泡性熱可塑性樹脂粒子の製造方法。
    Supplying a thermoplastic resin to a resin supply apparatus equipped with the granulation die according to any one of claims 1 to 6 and melt-kneading;
    A step of injecting a foaming agent into the thermoplastic resin while moving the thermoplastic resin toward the granulation die to form a foaming agent-containing resin;
    Cutting the foaming agent-containing resin discharged from the nozzle of the granulation die in a cooling medium with a cutter to obtain expandable thermoplastic resin particles;
    A process for producing expandable thermoplastic resin particles.
  9.  少なくとも冷却媒体の水流方向の上流側と下流側のダイス温度を測定し、それぞれの測定値が等しくなるように、各カートリッジヒーターを個別にオンオフ制御する請求項8に記載の発泡性熱可塑性樹脂粒子の製造方法。 The foamable thermoplastic resin particles according to claim 8, wherein at least upstream and downstream die temperatures in the water flow direction of the cooling medium are measured, and each cartridge heater is individually controlled to be turned on and off so that the respective measured values are equal. Manufacturing method.
  10.  請求項1乃至6のいずれかに記載の造粒用ダイスを取り付けた樹脂供給装置に熱可塑性樹脂を供給して溶融混練させる工程と、
     前記熱可塑性樹脂を前記造粒用ダイスに向けて移動させながら、前記熱可塑性樹脂に発泡剤を注入して発泡剤含有樹脂を形成する工程と、
     前記造粒用ダイスのノズルから吐出される前記発泡剤含有樹脂をカッターにより冷却媒体中で切断して発泡性熱可塑性樹脂粒子を得る工程と、
     前記発泡性熱可塑性樹脂粒子を予備発泡して熱可塑性樹脂発泡粒子を得る工程と、
     を有する熱可塑性樹脂発泡粒子の製造方法。
    Supplying a thermoplastic resin to a resin supply apparatus equipped with the granulation die according to any one of claims 1 to 6 and melt-kneading;
    A step of injecting a foaming agent into the thermoplastic resin to form a foaming agent-containing resin while moving the thermoplastic resin toward the granulation die;
    Cutting the foaming agent-containing resin discharged from the nozzle of the granulation die in a cooling medium with a cutter to obtain expandable thermoplastic resin particles;
    Pre-foaming the foamable thermoplastic resin particles to obtain thermoplastic resin foam particles;
    A method for producing foamed thermoplastic resin particles.
  11.  請求項1乃至6のいずれかに記載の造粒用ダイスを取り付けた樹脂供給装置に熱可塑性樹脂を供給して溶融混練させる工程と、
     前記熱可塑性樹脂を前記造粒用ダイスに向けて移動させながら、前記熱可塑性樹脂に発泡剤を注入して発泡剤含有樹脂を形成する工程と、
     前記造粒用ダイスのノズルから吐出される前記発泡剤含有樹脂をカッターにより冷却媒体中で切断して発泡性熱可塑性樹脂粒子を得る工程と、
     前記発泡性熱可塑性樹脂粒子を加熱して予備発泡させ熱可塑性樹脂発泡粒子を得る工程と、
     前記熱可塑性樹脂発泡粒子を型内発泡成形して熱可塑性樹脂発泡成形体を得る工程と、
     を有する熱可塑性樹脂発泡成形体の製造方法。
    Supplying a thermoplastic resin to a resin supply apparatus equipped with the granulation die according to any one of claims 1 to 6 and melt-kneading;
    A step of injecting a foaming agent into the thermoplastic resin to form a foaming agent-containing resin while moving the thermoplastic resin toward the granulation die;
    Cutting the foaming agent-containing resin discharged from the nozzle of the granulation die in a cooling medium with a cutter to obtain expandable thermoplastic resin particles;
    Heating the foamable thermoplastic resin particles and pre-foaming to obtain thermoplastic resin foam particles;
    A step of foam-molding the thermoplastic resin foam particles to obtain a thermoplastic resin foam-molded article;
    The manufacturing method of the thermoplastic resin foaming molding which has this.
  12.  請求項8に記載の発泡性熱可塑性樹脂粒子の製造方法により得られた発泡性熱可塑性樹脂粒子。 Expandable thermoplastic resin particles obtained by the method for producing expandable thermoplastic resin particles according to claim 8.
  13.  請求項12に記載の発泡性熱可塑性樹脂粒子を予備発泡して得られた熱可塑性樹脂発泡粒子。 Thermoplastic resin expanded particles obtained by pre-expanding the expandable thermoplastic resin particles according to claim 12.
  14.  請求項13に記載の熱可塑性樹脂発泡粒子を型内発泡成形して得られた熱可塑性樹脂発泡成形体。 A thermoplastic resin foam molded article obtained by in-mold foam molding of the thermoplastic resin foam particles according to claim 13.
PCT/JP2009/052867 2008-02-20 2009-02-19 Granulation die, granulator, and method for producing foamable thermoplastic resin particle WO2009104671A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801054491A CN101945742B (en) 2008-02-20 2009-02-19 Granulation die, granulator, and method for producing foamable thermoplastic resin particle
JP2009554365A JP5048793B2 (en) 2008-02-20 2009-02-19 Granulation die, granulation apparatus, and method for producing expandable thermoplastic resin particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008039116 2008-02-20
JP2008-039116 2008-02-20

Publications (1)

Publication Number Publication Date
WO2009104671A1 true WO2009104671A1 (en) 2009-08-27

Family

ID=40985549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052867 WO2009104671A1 (en) 2008-02-20 2009-02-19 Granulation die, granulator, and method for producing foamable thermoplastic resin particle

Country Status (5)

Country Link
JP (1) JP5048793B2 (en)
KR (1) KR101210768B1 (en)
CN (1) CN101945742B (en)
TW (1) TWI359068B (en)
WO (1) WO2009104671A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101093337B1 (en) 2011-07-04 2011-12-14 염용태 Forming dies of waste extruder with heater draw out hole
KR101093274B1 (en) 2011-07-04 2011-12-14 염용태 Forming dies of waste extruder with heater draw out hole
JP2019151067A (en) * 2018-03-06 2019-09-12 株式会社日本製鋼所 Die plate, granulator, and method for manufacturing pellets
CN110625840A (en) * 2019-08-12 2019-12-31 扬州中欣高分子材料有限公司 Granulation device is used in production of environment-friendly polymer plastic granules
CN112372874A (en) * 2020-10-19 2021-02-19 山东华德隆建材科技有限公司 High-performance colorful granulator based on pressure control
JPWO2021079413A1 (en) * 2019-10-21 2021-04-29
WO2021106795A1 (en) 2019-11-27 2021-06-03 株式会社カネカ Manufacturing device and manufacturing method for thermoplastic resin foam particles
WO2023127914A1 (en) * 2021-12-28 2023-07-06 株式会社カネカ Method for producing polypropylene resin extruded foam particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190248059A1 (en) * 2016-07-27 2019-08-15 Moresco Corporation Method for manufacturing thermoplastic adhesive product and apparatus for manufacturing thermoplastic adhesive product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126705A (en) * 1986-11-18 1988-05-30 Plast Kogaku Kenkyusho:Kk Granulation device
JPH01110911A (en) * 1987-09-04 1989-04-27 General Electric Co <Ge> One-stage manufacture of expandable foam bead
JP2003220606A (en) * 2002-01-30 2003-08-05 Japan Steel Works Ltd:The Granulating die in resin water
WO2004080678A1 (en) * 2003-03-12 2004-09-23 Sekisui Plastics Co., Ltd. Granulation die, granulation apparatus and process for producing expandable thermoplastic resin granule
WO2005028173A1 (en) * 2003-09-17 2005-03-31 Sekisui Plastics Co., Ltd. Method of manufacturing thermoplastic resin foam particle
WO2008102874A1 (en) * 2007-02-23 2008-08-28 Sekisui Plastics Co., Ltd. Granulating die, granulating apparatus, and process for producing expandable thermoplastic resin grain

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080678A (en) * 2002-08-22 2004-03-11 Sharp Corp Portable telephone
US7226553B2 (en) * 2003-07-30 2007-06-05 E. I. Du Pont De Nemours And Company Polymer underwater pelletizer apparatus and process incorporating same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126705A (en) * 1986-11-18 1988-05-30 Plast Kogaku Kenkyusho:Kk Granulation device
JPH01110911A (en) * 1987-09-04 1989-04-27 General Electric Co <Ge> One-stage manufacture of expandable foam bead
JP2003220606A (en) * 2002-01-30 2003-08-05 Japan Steel Works Ltd:The Granulating die in resin water
WO2004080678A1 (en) * 2003-03-12 2004-09-23 Sekisui Plastics Co., Ltd. Granulation die, granulation apparatus and process for producing expandable thermoplastic resin granule
WO2005028173A1 (en) * 2003-09-17 2005-03-31 Sekisui Plastics Co., Ltd. Method of manufacturing thermoplastic resin foam particle
WO2008102874A1 (en) * 2007-02-23 2008-08-28 Sekisui Plastics Co., Ltd. Granulating die, granulating apparatus, and process for producing expandable thermoplastic resin grain

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101093337B1 (en) 2011-07-04 2011-12-14 염용태 Forming dies of waste extruder with heater draw out hole
KR101093274B1 (en) 2011-07-04 2011-12-14 염용태 Forming dies of waste extruder with heater draw out hole
JP2019151067A (en) * 2018-03-06 2019-09-12 株式会社日本製鋼所 Die plate, granulator, and method for manufacturing pellets
CN110625840A (en) * 2019-08-12 2019-12-31 扬州中欣高分子材料有限公司 Granulation device is used in production of environment-friendly polymer plastic granules
JPWO2021079413A1 (en) * 2019-10-21 2021-04-29
WO2021079413A1 (en) * 2019-10-21 2021-04-29 株式会社日本製鋼所 Die, manufacturing method for die, extruder, and manufacturing method for pellet
JP7238151B2 (en) 2019-10-21 2023-03-13 株式会社日本製鋼所 Dies, die manufacturing methods, extruders and pellet manufacturing methods
WO2021106795A1 (en) 2019-11-27 2021-06-03 株式会社カネカ Manufacturing device and manufacturing method for thermoplastic resin foam particles
CN112372874A (en) * 2020-10-19 2021-02-19 山东华德隆建材科技有限公司 High-performance colorful granulator based on pressure control
CN112372874B (en) * 2020-10-19 2022-04-05 山东华德隆建材科技有限公司 High-performance colorful granulator based on pressure control
WO2023127914A1 (en) * 2021-12-28 2023-07-06 株式会社カネカ Method for producing polypropylene resin extruded foam particles

Also Published As

Publication number Publication date
JP5048793B2 (en) 2012-10-17
CN101945742B (en) 2013-05-29
KR101210768B1 (en) 2012-12-10
CN101945742A (en) 2011-01-12
KR20100101169A (en) 2010-09-16
JPWO2009104671A1 (en) 2011-06-23
TW200946310A (en) 2009-11-16
TWI359068B (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5048793B2 (en) Granulation die, granulation apparatus, and method for producing expandable thermoplastic resin particles
WO2010090046A1 (en) Method for manufacturing foamable thermoplastic resin particles, method for manufacturing thermoplastic resin foam particles, and method for manufacturing thermoplastic resin foam molded article
JP4799664B2 (en) Die for granulation, granulator, and method for producing expandable thermoplastic resin particles
JP4221408B2 (en) Method for producing thermoplastic resin foamable particles
TWI457379B (en) Expandable polystyrene type resin particle and production method thereof, and molded form
JP5086900B2 (en) Method for producing foamable thermoplastic resin particles, method for producing thermoplastic resin foamed particles, and method for producing thermoplastic resin foam molded article
CN102906170B (en) Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expand
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP5690629B2 (en) Method for producing polystyrene-based expandable resin particles
WO2011065561A1 (en) Foamable thermoplastic resin particles and method for producing same
JP2018145264A (en) Manufacturing method of expandable thermoplastic resin particle
JP5986410B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP6043562B2 (en) Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article
JP7231691B2 (en) Method for producing expandable thermoplastic resin particles
JP2012207186A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP7005158B2 (en) Method for manufacturing foamable thermoplastic resin particles
JP2012207156A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP6962694B2 (en) Method for manufacturing foamable thermoplastic resin particles
JP5734611B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP5710465B2 (en) Expandable polystyrene resin particles and method for producing expandable polystyrene resin particles
JP2012207157A (en) Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same
JP2012077115A (en) Heat insulator and method for producing the same
JP2013071995A (en) Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105449.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009554365

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107017424

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712783

Country of ref document: EP

Kind code of ref document: A1