WO2009104439A1 - Heat exchanger arranged in ceiling-buried air conditioner, and ceiling-buried air conditioner - Google Patents

Heat exchanger arranged in ceiling-buried air conditioner, and ceiling-buried air conditioner Download PDF

Info

Publication number
WO2009104439A1
WO2009104439A1 PCT/JP2009/050702 JP2009050702W WO2009104439A1 WO 2009104439 A1 WO2009104439 A1 WO 2009104439A1 JP 2009050702 W JP2009050702 W JP 2009050702W WO 2009104439 A1 WO2009104439 A1 WO 2009104439A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
heat exchanger
slit
plate
air conditioner
Prior art date
Application number
PCT/JP2009/050702
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 松田
石橋 晃
青木 正則
齊藤 信
相武 李
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP09712790.6A priority Critical patent/EP2219002A4/en
Priority to US12/738,942 priority patent/US20100205993A1/en
Priority to AU2009216419A priority patent/AU2009216419B2/en
Publication of WO2009104439A1 publication Critical patent/WO2009104439A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Definitions

  • the present invention relates to a heat exchanger and a ceiling-embedded air conditioner disposed in a ceiling-embedded air conditioner, and more particularly to a fin-tube-type ceiling-embedded air conditioner for exchanging heat between a refrigerant and a fluid such as a gas.
  • the present invention relates to a heat exchanger disposed in a machine, a ceiling-embedded air conditioner using a heat exchanger disposed in the ceiling-embedded air conditioner, and the like.
  • a conventional fin tube type heat exchanger is composed of a plurality of plate-like fins arranged parallel to each other at a predetermined interval, and a meandering heat transfer tube passing through the plate-like fins in the normal direction, Heat exchange is performed between the air flowing between the plate fins and the refrigerant flowing inside the heat transfer tube.
  • the gas passing wind speed is kept low from the viewpoint of suppressing noise increase, so that the heat transfer on the air side remains lower than the heat transfer coefficient inside the heat transfer tube. Therefore, the heat transfer on the air side is improved by increasing the heat transfer area on the air side.
  • the number of heat exchangers installed in the air flow direction can be increased, or the length of the heat transfer tube plate fins in the stacking direction (straight pipe)
  • the size of the heat exchanger is not increased by extending the heat exchanger area by extending the length of the same part) or by reducing the heat transfer tube diameter, reducing the fin pitch, or A method of increasing the heat transfer area of the heat exchanger by increasing the number of installed rows in the row direction is adopted.
  • heat exchanger tube diameter was about 10 mm
  • fin pitch was about 1.5 mm
  • heat exchangers with two rows were commercialized
  • the heat transfer tube diameter is about 7 mm.
  • the fin pitch is narrowed to about 1.1 mm, and heat exchangers with three or more rows have been commercialized.
  • the heat transfer tube outer diameter D is in the range of 3 mm ⁇ D ⁇ 7.5 mm, 1.2D ⁇ Lp ⁇ 1.8D 2.6D ⁇ Dp ⁇ 3.5D
  • Lp the row pitch in the gas passage direction of the heat transfer tube
  • Dp the heat transfer performance is improved by setting the step pitch in the direction perpendicular to the gas passage direction of the heat transfer tube (step direction).
  • the invention is intended to improve the heat transfer performance and promote gas mixing in the cut-and-raised part by forming a plurality of slit fins projecting on both sides of the metal plate in a direction perpendicular to the gas passage direction and in the step direction. Is disclosed (for example, see Patent Document 1).
  • Patent Document 1 does not mention the type of air conditioner in which the heat exchanger is installed.
  • the ratio of the pressure loss of the heat exchanger to the total pressure loss of the air flow is about 50%.
  • the design should place more importance on the heat transfer performance than the ventilation resistance of the heat exchanger.
  • the refrigerant pressure loss increases as the refrigerant flow rate in the heat transfer tube increases, so that the amount of heat exchange as an evaporator decreases.
  • the present invention has been made to solve such a problem, and has a high heat transfer performance "a heat exchanger disposed in a ceiling-embedded air conditioner", and such a "heat exchanger disposed in a ceiling-embedded air conditioner”
  • An object is to provide a “ceiling embedded air conditioner” using a “heat exchanger”.
  • the heat exchanger disposed in the ceiling-embedded air conditioner according to the present invention A plurality of plate-like fins that are stacked in parallel at a predetermined interval and through which gas passes, and a heat transfer tube that passes through the plate-like fins while meandering, and through which the working fluid passes.
  • the outer diameter (D) of the heat transfer tube the step pitch (Dp) which is the distance between the axial centers of the heat transfer tubes concentric in the step direction which is a direction perpendicular to the gas passage direction, and the transfer in the row direction which is the gas passage direction.
  • the relationship with the row pitch (Lp), which is the distance between the axes of the heat tubes, is 4mm ⁇ D ⁇ 6mm 14mm ⁇ Dp ⁇ 17mm 7mm ⁇ Lp ⁇ 10mm It is characterized by being.
  • the outer diameter (D) of the heat transfer tube is “4 mm ⁇ D ⁇ 6 mm”
  • the step pitch (Dp) of the heat transfer tube is “14 mm ⁇ Dp”.
  • ⁇ 17 mm ”and the row pitch (Lp) in the row direction of the heat transfer tubes is“ 7 mm ⁇ Lp ⁇ 10 mm ”, so that a“ heat exchanger arranged in a ceiling-embedded air conditioner ”having high heat transfer performance Obtainable.
  • the top view which shows the part explaining the heat exchanger arrange
  • Sectional drawing of the front view explaining the heat exchanger shown in FIG. Sectional drawing explaining the heat exchanger shown in FIG.
  • the correlation diagram which shows the influence of the heat exchanger tube diameter D which acts on the heat exchanger performance parameter
  • positioned at the ceiling embedded type air conditioner shown in FIG. The correlation diagram which shows the influence of row pitch Lp on the heat exchanger performance parameter
  • the top view which shows the part explaining the heat exchanger arrange
  • Sectional drawing explaining the heat exchanger shown in FIG. The correlation diagram explaining the effect of the slit fin in the heat exchanger shown in FIG.
  • the correlation diagram explaining the effect of the slit fin in the heat exchanger shown in FIG. The bottom view explaining the concept of the ceiling embedded type air conditioner which concerns on Embodiment 5 of this invention.
  • FIG. 1 and 2 illustrate a heat exchanger disposed in a ceiling-embedded air conditioner according to Embodiment 1 of the present invention.
  • FIG. 1 is a plan view showing the part
  • FIG. 2 is a front view.
  • 3A is a cross-sectional view taken along the line AA in FIG. 1
  • FIG. 3B is a cross-sectional view taken along the line BB in FIG. 1
  • FIG. 3D is a cross-sectional view taken along the line CC
  • FIG. 3D is a cross-sectional view taken along the line HH in FIG.
  • heat exchangers (hereinafter referred to as “heat exchangers”) 100 arranged in a ceiling-embedded air conditioner 100 are stacked in parallel with a predetermined interval therebetween, and the intervals are set as air.
  • the plate-like fins 1 pass through and the meandering heat transfer tubes 2 inserted perpendicularly to the plate-like fins 1, and slit fins 3 are cut and raised on the surface of the plate-like fins 1. Is formed.
  • the heat transfer tube 2 is formed of a plurality of straight tube portions 2 s and a plurality of curved tube portions 2 r that communicate the ends of the straight tube portions 2 s.
  • the straight pipe portions 21a and 21b which are a part of the straight pipe portion 2s, are arranged in a direction perpendicular to the air flow direction (hereinafter referred to as “stage direction”). (Not shown) is arranged.
  • straight pipe portions 22a... And straight pipe portions 23a, 23b... That are part of the straight pipe portion 2s are arranged in the step direction.
  • the heat exchanger 100 is provided with only three rows of straight pipe portions 2s.
  • the “step pitch Dp” which is the interval in the direction and the “row pitch Lp” which is the interval in the row direction are “4 mm ⁇ D ⁇ 6 mm, 14 mm ⁇ Dp ⁇ 17 mm, 7 mm with respect to the outer diameter D of the heat transfer tube 2.
  • the plate-like fin 1 is a rectangular plate material, and a plurality of through holes through which the straight pipe portion 2s of the heat transfer tube 2 passes are formed in a staggered manner. Further, between the straight pipe portion 21a and the straight pipe portion 21b, first slit fins 3a, 3c, 3e projecting on one surface side, and second slit fins 3b, 3d projecting on the other surface side, , Are formed.
  • the first slit fins 3a, 3c, and 3e are obtained by cutting and raising the plate-like fin 1 on one surface side.
  • 31c, 31e and first slit fin slopes 33a, 33c, 33e. Therefore, the first slit fin grooves 34a, 34c, 34e are formed in the plate-like fin 1 by such cutting and raising.
  • the second slit fins 3b and 3d are formed by cutting and raising the plate-like fin 1 on the other surface side, and the second slit fin planes 32b and 32d and the second slit fin slopes supporting the second slit fin planes. 31b, 31d and second slit fin slopes 33b, 33d. Therefore, second slit fin grooves 34b and 34d are formed in the plate-like fin 1 by such cutting and raising.
  • the first slit fin groove 34a and the second slit fin groove 34b are the second slit fin groove 34b and the first slit fin groove 34c, and the first slit fin groove 34c and the second slit fin groove 34d are The second slit fin groove 34d and the first slit fin groove 34e are continuous. Therefore, a large hole is formed in a range sandwiched between the straight pipe portion 21a and the straight pipe portion 21b of the plate-like fin 1.
  • the protruding height (H1) of the first slit fins 3a, 3c, 3e from one surface of the plate-like fin 1 and the protruding height of the second slit fins 3b, 3d from the other surface of the plate-like fin 1 are as follows.
  • FIG. 4 explains the concept of the ceiling-embedded air conditioner according to Embodiment 2 of the present invention, in which (a) is a perspective view and (b) is a cross-sectional view.
  • a heat exchanger 100 (see Embodiment 1) is arranged in a ceiling-embedded air conditioner (hereinafter referred to as “air conditioner”) 2000.
  • air conditioner ceiling-embedded air conditioner
  • a motor 6 for driving the fan 5 is provided on the central top surface side of the unit casing 4 of the air conditioner 2000, and the fan 5 is attached to the motor 6 with the lower side serving as a suction port.
  • a bell mouth 7 for introducing air into the fan 5 is disposed below the fan 5.
  • a heat exchanger 100 is arranged in a substantially annular shape surrounding the fan, and a drain pan 9 is arranged in the lower part of the heat exchanger 100.
  • Each side of the drain pan 9 is formed with an opening that connects the secondary side of the heat exchanger 100 and the room, and communicates with the opening 10 a of the decorative panel 10 to form the air outlet 8.
  • a vane 8v is attached to the blowout port 8, and the blowout direction can be adjusted.
  • a front panel 10 c and a filter 10 f are arranged at the lower part of the fan 5 so as to be fitted in the center of the decorative panel 10.
  • the air conditioner 200 configured as described above is generally called “four-way cassette type”, and the primary side of the fan faces downward, and sucks air from the room. The sucked air passes through the filter 10f, dust and the like are removed, and the air is blown to the heat exchanger 100. In the heat exchanger 100, heat is exchanged between the air and the refrigerant, and the air that has received heat or has been taken away is blown into the room through the air outlet 8.
  • step pitch Dp Influence of step pitch Dp
  • the “fin efficiency” defined by the distance from the outer periphery of the heat transfer tube 2 to the end of the plate-like fin 1 and the tube diameter of the heat transfer tube 2 is reduced. “Rate” decreases. Further, when the step pitch Dp is increased, the “ventilation resistance” decreases, so that “increase in air volume” can be achieved. On the other hand, when the step pitch Dp is reduced, the “fin efficiency” is increased and the “external heat transfer coefficient” is improved, but the “ventilation resistance” is increased.
  • the heat transfer coefficient ⁇ [W / m 2 K] between air and the plate fin is generally defined by the following equation.
  • Nu ⁇ ⁇ / De ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 1
  • Nu C1 * (Re * Pr * De / Lp / Ln) ⁇
  • C2 Formula 2
  • Re U ⁇ De / ⁇
  • Nu the Nusselt number
  • Re the Reynolds number
  • Pr the Prandtl number
  • the thermal conductivity of air
  • is the kinematic viscosity coefficient of air
  • C1 and C2 are constants.
  • Pr 0.72
  • 0.0261 [W / mK]
  • 0.000016 [m2 / s].
  • the representative length De [m] is defined by the following equation.
  • De 4 ⁇ (Lp ⁇ Dp ⁇ ⁇ D 2/4) ⁇ Fp / ⁇ 2 ⁇ (Lp ⁇ Dp ⁇ ⁇ D 2/4) + ⁇ ⁇ D ⁇ Fp ⁇ ⁇ ⁇ ⁇ ⁇ Formula 3
  • the wind speed U [m / s] based on the free passing volume between the plate fins 1 and the front wind speed Uf [m / s] of the heat exchanger are defined by the following equations.
  • U Uf ⁇ Lp ⁇ Dp ⁇ Fp / ⁇ (Lp ⁇ Dp ⁇ ⁇ D 2/4) ⁇ Fp ⁇ .
  • ⁇ f [w / m ⁇ k] is the thermal conductivity of the plate fin.
  • the ventilation resistance “ ⁇ P_hex [Pa]” between the air and the plate fin is defined by the following equation.
  • ⁇ P_hex 2 ⁇ F ⁇ Lp ⁇ Ln ⁇ ⁇ ⁇ U 2 / De...
  • F C3 * De / Lp / Ln + C4 * ReC5 * (De / Lp / Ln) 1 + C5 (8)
  • F is a friction loss coefficient
  • C3, C4, and C5 are constants.
  • is the density of air, and is about 1.2 [kg / m 3] in the case of normal temperature and normal pressure.
  • the fan operating force is determined by the following method. Is calculated.
  • Ao Ap + Af Equation 13
  • K [W / m2K] is the total heat transfer rate of the heat exchanger
  • Ao [m2] is the total heat transfer area on the air side of the heat exchanger
  • Ap [m2] is the heat transfer area of the air side pipe of the heat exchanger
  • Af [m2] is the air side fin heat transfer area of the heat exchanger
  • Ai [m2] is the refrigerant side heat transfer area of the heat exchanger
  • the energy consumption efficiency COP of an air conditioner is defined by the ratio of the heat exchange amount and the total input. By reducing the total input, the COP is improved, that is, energy saving is achieved.
  • the total input is the sum of the compressor input and the fan operating force Pf.
  • the compressor manpower decreases as AoK increases, and the blower operating force pf decreases as ⁇ P_hex decreases.
  • a heat exchanger performance index “AoK / ⁇ P ⁇ n” is defined as a constant n.
  • FIG. 6 to 9 show the influence on the heat exchanger performance index “AoK / ⁇ P ⁇ 0.59” in the heat exchanger arranged in the ceiling-embedded air conditioner according to Embodiment 1 of the present invention.
  • 6 is a heat transfer tube diameter D
  • FIG. 7 is a step pitch Dp
  • FIG. 8 is a row pitch Lp
  • FIG. 9 is a correlation diagram with a fin pitch Fp.
  • the row pitch Lp 8.67 mm
  • the front wind speed U 1 [m / s]
  • the heat transfer tube diameter D as a parameter. / ⁇ P ⁇ 0.59 ".
  • the work efficiency is significantly reduced in the step of inserting the tube expansion rod into the heat transfer tube and bringing it into close contact with the plate fin.
  • the heat transfer tube diameter is 6 mm or more, “AoK / ⁇ P ⁇ 0.59” is remarkably reduced.
  • D ⁇ 6 mm the heat transfer tube diameter D is 3 mm compared to the case of 4 mm. %, The heat exchanger with sufficiently high heat transfer performance can be supplied. Therefore, the heat exchanger 100 with sufficiently high heat transfer performance can be supplied without reducing the production efficiency in the range of “4 mm ⁇ D ⁇ 6 mm”.
  • the heat exchanger performance index “AoK / ⁇ P ⁇ 0.59” shows the maximum value, and “14 mm ⁇ ⁇ Dp ⁇ 17 mm” is a decrease of 10% or less from the maximum value.
  • the step pitch Dp is 14 mm or less, in the process of bending the heat transfer tube into a hairpin shape, since the bending pitch is small, there is a possibility that the heat transfer tube becomes flat and the appearance is deteriorated, or the pressure loss in the tube is increased. is there.
  • the step pitch Dp is 17 mm or more, it is necessary to reduce the number of paths between the heat transfer tubes when the arrangement volume of the heat exchanger is considered to be constant, but when the number of paths is reduced, the pressure loss in the pipe increases. Reduce the performance of the heat exchanger. In particular, as the heat transfer tube diameter decreases, the pressure loss inside the heat transfer tube tends to increase. Accordingly, it is desirable that the step pitch Dp is “14 mm ⁇ Dp ⁇ 17 mm”.
  • the row pitch Lp is 10 mm or more
  • the heat passage performance K decreases due to the decrease in fin efficiency, and in addition, the ventilation resistance ⁇ P increases, so that the heat exchanger performance index “AoK / ⁇ P ⁇ 0.59” Is significantly reduced. Therefore, the row pitch is preferably “7 mm ⁇ Lp ⁇ 10 mm”.
  • FIG. 9 shows a heat transfer tube diameter of 5 mm.
  • FIG. 10 and 11 illustrate a heat exchanger disposed in a ceiling-embedded air conditioner according to Embodiment 3 of the present invention.
  • FIG. 10 is a plan view showing the part
  • FIG. 11 is a front view.
  • FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, a part of the description is omitted, and the same subscripts “a, b, c... The description will be omitted.
  • the plate-like fin 301 is a rectangular plate material, and a plurality of through-holes through which the straight pipe portion 2s of the heat transfer tube 2 passes are formed in a staggered manner. Further, first slit fins 3a, 3c, and 3e are formed between the straight pipe portion 21a and the straight pipe portion 21b so as to protrude to one surface side. That is, the plate-like fin 301 is the same as the plate-like fin 1 (Embodiment 1) in which the second slit fins 3b and 3d are removed (not cut and raised).
  • a plate-shaped fin strip portion 35b which is a part of the plate-shaped fin 301 is provided between the first slit fin 3c and the first slit fin 3e.
  • the first slit fins 3a, 3c, and 3e have the same width in the air flow direction (referred to as “Wa” for convenience), and the plate fin strips 35b and 35d have the same width in the air flow direction (for convenience). , Referred to as “Wb”).
  • FIG. 12 and 13 illustrate a heat exchanger disposed in a ceiling-embedded air conditioner according to Embodiment 4 of the present invention.
  • FIG. 12 is a plan view showing the part
  • FIG. 13 is a cross-sectional view. It is.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, a part of the description is omitted, and the same subscripts “a, b, c... The description will be omitted.
  • the plate-like fin 401 is the same as the plate-like fin 301 (Embodiment 3) from which the first slit fin 3 c is removed (not cut and raised).
  • first slit fins 3a and 3e are formed between the straight pipe portion 21a and the straight pipe portion 21b in the row direction protruding to one surface side.
  • the plate-shaped fin strip part 35c which is a part of plate-shaped fin 301 exists.
  • the width of the first slit fins 3a and 3e in the air flow direction is the same (referred to as “Wa” for convenience), and the width of the plate-shaped fin strip portion 35c in the air flow direction is referred to as “Wb” for convenience.
  • [Effect of slit fins] 14 and 15 are correlation diagrams for explaining the effect of the slit fins in the heat exchangers shown in FIGS. 12 and 13.
  • the horizontal axis is the ratio “wa / wb” between the width wa in the row direction of the slit fins 3 a and the like and the width wb in the row direction of the plate-like fin strips 35 b existing between the slit fins.
  • the vertical axis represents the heat exchanger performance index “AoK / ⁇ P_hex ⁇ 0.59”, which is the result of calculation using the former as a parameter. From FIG.
  • the horizontal axis is “H2 / Fp” obtained by making the height H2 of the slit fins 3a and the like dimensionless with the fin pitch Fp
  • the vertical axis is the heat exchanger performance index “AoK / ⁇ P_hex ⁇ 0.59. It is a result calculated using the former as a parameter. From FIG. 15, when the slit fin height H2 is 1 ⁇ 2 of the fin pitch Fp, the heat exchanger performance index “AoK / ⁇ P_hex ⁇ 0.59” is a sufficiently large heat exchanger.
  • FIG. 16 and 17 illustrate the concept of a ceiling-embedded air conditioner according to Embodiment 5 of the present invention.
  • FIG. 16 is a bottom view
  • FIG. 17 is a partial cross-sectional view.
  • a heat exchanger 500 is included in a ceiling-embedded air conditioner (hereinafter referred to as “air conditioner”) 5000.
  • air conditioner ceiling-embedded air conditioner
  • FIG. 4 Embodiment 2
  • FIG. 1 Embodiment 1
  • the description of the subscripts “a, b...” Is omitted.
  • the fan 5 is attached to the central top surface side of the unit housing 4 of the air conditioner 5000 with the lower side as a suction port.
  • Two heat exchangers 500 bent in an L shape so as to surround the fan 5 are arranged in a substantially annular shape.
  • the refrigerant can be transferred to the heat transfer tube 2 as compared with the case where only one L-shaped heat exchanger is disposed in a substantially annular shape. Since the length passing through the inside can be reduced and the number of passes is doubled, the pressure loss of the refrigerant in the pipe can be reduced. This is an extremely effective means when the diameter of the heat transfer tube 2 is reduced.
  • the heat exchanger 500 when used as an evaporator, it flows in 16 passes from the evaporator refrigerant inlet direction shown in FIG. 16, and the T-shaped three-way between the second row and the third row with respect to the air flow direction.
  • the pipe distributes to 36 passes and exits to the outlet.
  • a refrigerant flows through the heat transfer tube of the heat exchanger of the evaporator, the state of the refrigerant changes in the order of the two-phase region and the superheated gas.
  • the pressure loss “ ⁇ P_ref” of the refrigerant is larger in the superheated gas than in the two-phase region.
  • the pressure loss “ ⁇ P_ref” of the refrigerant can be greatly reduced by the effect of increasing the number of passes from 16 passes to 36 passes between the second and third rows in the vicinity of the evaporator outlet. This is a very effective means for reducing the diameter of the heat transfer tube 2.
  • the heat exchanger 500 When the heat exchanger 500 is used as a condenser, it flows in 32 passes from the condenser refrigerant inlet direction shown in FIG. 16, and is a T-shaped three-way pipe with two rows and three rows in the air flow direction. As a result, it is merged into 16 passes and discharged to the exit.
  • the heat transfer performance is high, it can be widely used as various internal heat exchangers and various ceiling-embedded air conditioners equipped with the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Disclosed is a heat exchanger (100) comprising plate fins (1) laminated at an interval, and a heat transfer pipe (2) inserted vertically into the plate fins (1) and formed to have a plurality of straight pipe portion (2s) and bent pipe portions (2r) for causing the end portions of the straight pipe portion (2s) to communicate with each other. The plate fins (1) are cut and raised to form first slit fins (3a) protruding to the side of one face and second slit fins (3b) protruding to the side of the other face. The straight pipe portions (21a) are arranged zigzag and in parallel to each other such that the 'step pitch (Dp)' or the interval between the individual axes in the step direction and the 'row pitch (Lp)' or the interval in the row direction have relations of '4 mm ≤ D ≤ 6mm, 14 mm ≤ Dp ≤ 17 mm, and 7 mm ≤ Lp ≤ 10 mm' with respect to the external diameter (D) of the heat transfer pipe (2).

Description

天井埋め込み型空気調和機に配置される熱交換器及び天井埋め込み型空気調和機Heat exchanger and ceiling-embedded air conditioner installed in ceiling-embedded air conditioner
 この発明は、天井埋め込み型空気調和機に配置される熱交換器及び天井埋め込み型空気調和機、特に、冷媒と気体等の流体間で熱交換を行うためのフィンチューブ型の天井埋め込み型空気調和機に配置される熱交換器、及び該天井埋め込み型空気調和機に配置される熱交換器を用いた天井埋め込み型空気調和機等に関するものである。 The present invention relates to a heat exchanger and a ceiling-embedded air conditioner disposed in a ceiling-embedded air conditioner, and more particularly to a fin-tube-type ceiling-embedded air conditioner for exchanging heat between a refrigerant and a fluid such as a gas. The present invention relates to a heat exchanger disposed in a machine, a ceiling-embedded air conditioner using a heat exchanger disposed in the ceiling-embedded air conditioner, and the like.
 従来のフィンチューブ型の熱交換器は、互いに平行に一定間隔を空けて配置された複数枚の板状フィンと、板状フィンを法線方向に貫通する蛇行する伝熱管と、から構成され、板状フィンの間を流れる空気と伝熱管の内部を流れる冷媒との間で熱交換が実行されるものである。
 近年、地球温暖化防止の観点から空気調和機の消費エネルギーの低減や作動流体として使用する冷媒量の削減が強く求められ、当該装置に装備される熱交換器にも高性能化と内容積の小型化が要求されている。
 一方、快適性を確保するため騒音増加抑制の観点から気体の通過風速は低く抑えられているため、伝熱管内部の熱伝達率に対して空気側の熱伝達は低いままであった。そこで、空気側の伝熱面積を増加させることにより、空気側の伝熱向上が図られている。
A conventional fin tube type heat exchanger is composed of a plurality of plate-like fins arranged parallel to each other at a predetermined interval, and a meandering heat transfer tube passing through the plate-like fins in the normal direction, Heat exchange is performed between the air flowing between the plate fins and the refrigerant flowing inside the heat transfer tube.
In recent years, from the viewpoint of preventing global warming, reduction of energy consumption of air conditioners and reduction of the amount of refrigerant used as a working fluid have been strongly demanded. Miniaturization is required.
On the other hand, in order to ensure comfort, the gas passing wind speed is kept low from the viewpoint of suppressing noise increase, so that the heat transfer on the air side remains lower than the heat transfer coefficient inside the heat transfer tube. Therefore, the heat transfer on the air side is improved by increasing the heat transfer area on the air side.
 すなわち、熱交換器の小型化の要求や設置スペースの限界から、熱交換器の空気流れ方向(段方向)の設置数を増やしたり、伝熱管の板状フィンの積層方向の長さ(直管部の長さに同じ)を延長したりして熱交換器を大型化することによって、伝熱面積を増加させるのではなく、伝熱管径を小さくしたり、フィンピッチを狭めるか伝熱管の列方向の設置列数を増加させたりすることによって、熱交換器の伝熱面積を増加させる手法が採用される。例えば、以前は、伝熱管径は10mm程度、フィンピッチは1.5mm程度まで、また列数は2列の熱交換器が製品化されていたが、最近では伝熱管径は7mm程度まで、フィンピッチは1.1mm程度まで狭められており、また列数も3列以上の熱交換器が製品化されている。 In other words, due to demands for downsizing heat exchangers and installation space limitations, the number of heat exchangers installed in the air flow direction (stage direction) can be increased, or the length of the heat transfer tube plate fins in the stacking direction (straight pipe) The size of the heat exchanger is not increased by extending the heat exchanger area by extending the length of the same part) or by reducing the heat transfer tube diameter, reducing the fin pitch, or A method of increasing the heat transfer area of the heat exchanger by increasing the number of installed rows in the row direction is adopted. For example, before, heat exchanger tube diameter was about 10 mm, fin pitch was about 1.5 mm, and heat exchangers with two rows were commercialized, but recently the heat transfer tube diameter is about 7 mm. The fin pitch is narrowed to about 1.1 mm, and heat exchangers with three or more rows have been commercialized.
 そして、伝熱管外径Dが3mm≦D≦7.5mmの範囲であって、
     1.2D≦Lp≦1.8D
     2.6D≦Dp≦3.5D
このとき、Lp:伝熱管の気体通過方向の列ピッチ
     Dp:伝熱管の気体通過方向に対して直角方向(段方向)の段ピッチ
とすることによって伝熱性能を向上させ、さらに、板状フィンの両面に突出するスリットフィンを、気体通過方向に対して直角方向で、段方向に複数列「切り起こし」によって形成し、切り起こし部における伝熱性能の向上や気体の混合の促進を図る発明が開示されている(例えば、特許文献1参照)。
And the heat transfer tube outer diameter D is in the range of 3 mm ≦ D ≦ 7.5 mm,
1.2D ≦ Lp ≦ 1.8D
2.6D ≦ Dp ≦ 3.5D
At this time, Lp: the row pitch in the gas passage direction of the heat transfer tube Dp: the heat transfer performance is improved by setting the step pitch in the direction perpendicular to the gas passage direction of the heat transfer tube (step direction). The invention is intended to improve the heat transfer performance and promote gas mixing in the cut-and-raised part by forming a plurality of slit fins projecting on both sides of the metal plate in a direction perpendicular to the gas passage direction and in the step direction. Is disclosed (for example, see Patent Document 1).
特開昭63-3188号公報(第2-3頁、第4図)JP 63-3188 (page 2-3, FIG. 4)
 しかしながら、特許文献1は、当該熱交換器が設置される空気調和機の種類については言及していない。例えば、天井埋め込み型空気調和機では空気流の全圧力損失に対して熱交換器の圧力損失の割合が5割程度で、空気流の熱交換器の圧力損失が増大しても、あまり送風機稼動力の増加や騒音値の増大を招く問題が少ない。したがって、熱交換器を天井埋め込み型空気調和機に配置する場合は、熱交換器の通風抵抗よりも伝熱性能を重視した設計をすべきである。 However, Patent Document 1 does not mention the type of air conditioner in which the heat exchanger is installed. For example, in a ceiling-embedded air conditioner, the ratio of the pressure loss of the heat exchanger to the total pressure loss of the air flow is about 50%. There are few problems that cause an increase in power and noise level. Therefore, when the heat exchanger is arranged in the ceiling-embedded air conditioner, the design should place more importance on the heat transfer performance than the ventilation resistance of the heat exchanger.
 さらに、伝熱管径を小さくする場合は、伝熱管内の冷媒流速が増加するのに伴い冷媒圧損が増大するため、蒸発器としての熱交換量が低下するという問題があった。 Furthermore, when the diameter of the heat transfer tube is reduced, the refrigerant pressure loss increases as the refrigerant flow rate in the heat transfer tube increases, so that the amount of heat exchange as an evaporator decreases.
 この発明は、かかる問題を解決するためになされたものであり、伝熱性能が高い「天井埋め込み型空気調和機に配置される熱交換器」、また、かかる「天井埋め込み型空気調和機に配置される熱交換器」を用いた「天井埋め込み型空気調和機」を提供することを目的とする。 The present invention has been made to solve such a problem, and has a high heat transfer performance "a heat exchanger disposed in a ceiling-embedded air conditioner", and such a "heat exchanger disposed in a ceiling-embedded air conditioner" An object is to provide a “ceiling embedded air conditioner” using a “heat exchanger”.
 この発明に係る天井埋め込み型空気調和機に配置される熱交換器は、
 互いに所定の間隔を空けて平行に積層され、前記間隔を気体が通過する複数枚の板状フィンと、該板状フィンを蛇行しながら貫通し、内部を作動流体が通過する伝熱管と、を有し、
 前記伝熱管の外径(D)と、気体通過方向の直角方向である段方向における前記伝熱管同心の軸心間距離である段ピッチ(Dp)と、気体通過方向である列方向における前記伝熱管の軸心間距離である列ピッチ(Lp)との関係が、
   4mm≦D≦6mm
   14mm≦Dp≦17mm
   7mm≦Lp≦10mm
であることを特徴とする。
The heat exchanger disposed in the ceiling-embedded air conditioner according to the present invention,
A plurality of plate-like fins that are stacked in parallel at a predetermined interval and through which gas passes, and a heat transfer tube that passes through the plate-like fins while meandering, and through which the working fluid passes. Have
The outer diameter (D) of the heat transfer tube, the step pitch (Dp) which is the distance between the axial centers of the heat transfer tubes concentric in the step direction which is a direction perpendicular to the gas passage direction, and the transfer in the row direction which is the gas passage direction. The relationship with the row pitch (Lp), which is the distance between the axes of the heat tubes, is
4mm ≦ D ≦ 6mm
14mm ≦ Dp ≦ 17mm
7mm ≦ Lp ≦ 10mm
It is characterized by being.
 この発明に係る天井埋め込み型空気調和機に配置される熱交換器は、伝熱管の外径(D)を「4mm≦D≦6mm」とし、伝熱管の段ピッチ(Dp)を「14mm≦Dp≦17mm」とし、前記伝熱管の列方向の列ピッチ(Lp)を「7mm≦Lp≦10mm」としたので、伝熱性能が高い「天井埋め込み型空気調和機に配置される熱交換器」を得ることができる。 In the heat exchanger disposed in the ceiling-embedded air conditioner according to the present invention, the outer diameter (D) of the heat transfer tube is “4 mm ≦ D ≦ 6 mm”, and the step pitch (Dp) of the heat transfer tube is “14 mm ≦ Dp”. ≦ 17 mm ”and the row pitch (Lp) in the row direction of the heat transfer tubes is“ 7 mm ≦ Lp ≦ 10 mm ”, so that a“ heat exchanger arranged in a ceiling-embedded air conditioner ”having high heat transfer performance Obtainable.
本発明の実施の形態1に係る天井埋め込み型空気調和機に配置される熱交換器を説明する部分を示す平面図。The top view which shows the part explaining the heat exchanger arrange | positioned at the ceiling-embedded air conditioner which concerns on Embodiment 1 of this invention. 図1に示す熱交換器を説明する正面視の断面図。Sectional drawing of the front view explaining the heat exchanger shown in FIG. 図1に示す熱交換器を説明する断面図。Sectional drawing explaining the heat exchanger shown in FIG. 本発明の実施の形態2に係る天井埋め込み型空気調和機の概念を説明する斜視図。The perspective view explaining the concept of the ceiling embedded type air conditioner which concerns on Embodiment 2 of this invention. 図4に示す天井埋め込み型空気調和機の概念を説明する断面図。Sectional drawing explaining the concept of the ceiling-embedded air conditioner shown in FIG. 図1に示す天井埋め込み型空気調和機に配置される熱交換器における熱交換器性能指標に及ぼす伝熱管径Dの影響を示す相関図。The correlation diagram which shows the influence of the heat exchanger tube diameter D which acts on the heat exchanger performance parameter | index in the heat exchanger arrange | positioned at the ceiling embedded type air conditioner shown in FIG. 図1に示す天井埋め込み型空気調和機に配置される熱交換器における熱交換器性能指標に及ぼす段ピッチDpの影響を示す相関図。The correlation diagram which shows the influence of the stage pitch Dp which acts on the heat exchanger performance parameter | index in the heat exchanger arrange | positioned at the ceiling embedded type air conditioner shown in FIG. 図1に示す天井埋め込み型空気調和機に配置される熱交換器における熱交換器性能指標に及ぼす列ピッチLpの影響を示す相関図。The correlation diagram which shows the influence of row pitch Lp on the heat exchanger performance parameter | index in the heat exchanger arrange | positioned at the ceiling embedded type air conditioner shown in FIG. 図1に示す天井埋め込み型空気調和機に配置される熱交換器における熱交換器性能指標に及ぼすフィンピッチFpの影響を示す相関図。The correlation diagram which shows the influence of the fin pitch Fp which acts on the heat exchanger performance parameter | index in the heat exchanger arrange | positioned at the ceiling embedded type air conditioner shown in FIG. 本発明の実施の形態3に係る天井埋め込み型空気調和機に配置される熱交換器を説明する部分を示す平面図。The top view which shows the part explaining the heat exchanger arrange | positioned at the ceiling embedded type air conditioner concerning Embodiment 3 of this invention. 図10に示す熱交換器を説明する正面視の断面図。Sectional drawing of the front view explaining the heat exchanger shown in FIG. 本発明の実施の形態4に係る天井埋め込み型空気調和機に配置される熱交換器を説明する部分を示す平面図。The top view which shows the part explaining the heat exchanger arrange | positioned at the ceiling embedded type air conditioner which concerns on Embodiment 4 of this invention. 図12に示す熱交換器を説明する断面図。Sectional drawing explaining the heat exchanger shown in FIG. 図6等に示す熱交換器におけるスリットフィンの効果を説明する相関図。The correlation diagram explaining the effect of the slit fin in the heat exchanger shown in FIG. 図6等に示す熱交換器におけるスリットフィンの効果を説明する相関図。The correlation diagram explaining the effect of the slit fin in the heat exchanger shown in FIG. 本発明の実施の形態5に係る天井埋め込み型空気調和機の概念を説明する底面図。The bottom view explaining the concept of the ceiling embedded type air conditioner which concerns on Embodiment 5 of this invention. 図16に示す天井埋め込み型空気調和機の概念を説明する部分断面図。The fragmentary sectional view explaining the concept of the ceiling embedded type air conditioner shown in FIG.
 [実施の形態1]
 図1および図2は本発明の実施の形態1に係る天井埋め込み型空気調和機に配置される熱交換器を説明するものであって、図1は部分を示す平面図、図2は正面視の断面図、図3の(a)は図1のA-A断面の断面図、図3の(b)は図1のB-B断面の断面図、図3の(c)は図1のC-C断面の断面図、図3の(d)は図1のH-H断面の断面図である。なお、以下の説明において、共通の内容を示すものについては、符号の添え字「a、b、c・・・」の記載を省略する。
 図1および図2において、天井埋め込み型空気調和機に配置される熱交換器(以下、「熱交換器」と称す)100は、互いに所定の間隔を空けて平行に積層され、前記間隔を空気が通過する複数枚の板状フィン1と、板状フィン1に対して垂直に挿入された、蛇行する伝熱管2とを有し、板状フィン1面上にはスリットフィン3が切り起こしによって形成されている。
[Embodiment 1]
1 and 2 illustrate a heat exchanger disposed in a ceiling-embedded air conditioner according to Embodiment 1 of the present invention. FIG. 1 is a plan view showing the part, and FIG. 2 is a front view. 3A is a cross-sectional view taken along the line AA in FIG. 1, FIG. 3B is a cross-sectional view taken along the line BB in FIG. 1, and FIG. FIG. 3D is a cross-sectional view taken along the line CC, and FIG. 3D is a cross-sectional view taken along the line HH in FIG. In addition, in the following description, about the thing which shows a common content, description of the subscript "a, b, c ..." of a code | symbol is abbreviate | omitted.
1 and 2, heat exchangers (hereinafter referred to as “heat exchangers”) 100 arranged in a ceiling-embedded air conditioner 100 are stacked in parallel with a predetermined interval therebetween, and the intervals are set as air. The plate-like fins 1 pass through and the meandering heat transfer tubes 2 inserted perpendicularly to the plate-like fins 1, and slit fins 3 are cut and raised on the surface of the plate-like fins 1. Is formed.
 (伝熱管)
 図1において、伝熱管2は、複数の直管部2sと、直管部2sの端部同士を連通させる複数の曲管部2rと、から形成されている。直管部2sの一部である直管部21a、21bは、空気流れ方向に直角の方向(以下、「段方向」と称す)に配置され、実際は、段方向に直管部21c・・・(図示しない)が配置されている。同様に、直管部2sの一部である直管部22a・・・および直管部23a、23b・・・が、それぞれ段方向に配置されている。なお、空気流れ方向の方向を「列方向」と称するから、熱交換器100には、直管部2sが3列だけ配置されている。
 そして、直管部21a、21b・・・と、直管部22a・・・と、直管部23a、23b・・・とは、互いに平行で千鳥状に配置され、それぞれに軸心同士の段方向の間隔である「段ピッチDp」と、列方向の間隔である「列ピッチLp]とが、伝熱管2の外径Dに対して「4mm≦D≦6mm、14mm≦Dp≦17mm、7mm≦Lp≦10mm」の関係にあり、例えば、D=5mm、Dp=15.3mm、Lp=8.67mm、である。
(Heat transfer tube)
In FIG. 1, the heat transfer tube 2 is formed of a plurality of straight tube portions 2 s and a plurality of curved tube portions 2 r that communicate the ends of the straight tube portions 2 s. The straight pipe portions 21a and 21b, which are a part of the straight pipe portion 2s, are arranged in a direction perpendicular to the air flow direction (hereinafter referred to as “stage direction”). (Not shown) is arranged. Similarly, straight pipe portions 22a... And straight pipe portions 23a, 23b... That are part of the straight pipe portion 2s are arranged in the step direction. In addition, since the direction of the air flow direction is referred to as “row direction”, the heat exchanger 100 is provided with only three rows of straight pipe portions 2s.
The straight pipe portions 21a, 21b,..., The straight pipe portions 23a, 23b,... The “step pitch Dp” which is the interval in the direction and the “row pitch Lp” which is the interval in the row direction are “4 mm ≦ D ≦ 6 mm, 14 mm ≦ Dp ≦ 17 mm, 7 mm with respect to the outer diameter D of the heat transfer tube 2. ≦ Lp ≦ 10 mm ”, for example, D = 5 mm, Dp = 15.3 mm, Lp = 8.67 mm.
 (板状フィン)
 図1~図3において、板状フィン1は矩形の板材であって、伝熱管2の直管部2sが貫通する貫通孔が千鳥状に複数形成されている。
 さらに、直管部21aと直管部21bとの間には、一方の面側に突出する第1スリットフィン3a、3c、3eと、他方の面側に突出する第2スリットフィン3b、3dと、がそれぞれ形成されている。
(Plate fin)
1 to 3, the plate-like fin 1 is a rectangular plate material, and a plurality of through holes through which the straight pipe portion 2s of the heat transfer tube 2 passes are formed in a staggered manner.
Further, between the straight pipe portion 21a and the straight pipe portion 21b, first slit fins 3a, 3c, 3e projecting on one surface side, and second slit fins 3b, 3d projecting on the other surface side, , Are formed.
 第1スリットフィン3a、3c、3eは、板状フィン1を一方の面側に切り起こしたものであって、第1スリットフィン平面32a、32c、32eと、これを支える第1スリットフィン斜面31a、31c、31eおよび第1スリットフィン斜面33a、33c、33eと、を有している。したがって、かかる切り起こしによって、板状フィン1には、第1スリットフィン溝34a、34c、34eが形成されている。
 また、同様に、第2スリットフィン3b、3dが、板状フィン1を他方の面側に切り起こしたものであって、第2スリットフィン平面32b、32dと、これを支える第2スリットフィン斜面31b、31dおよび第2スリットフィン斜面33b、33dと、を有している。したがって、かかる切り起こしによって、板状フィン1には、第2スリットフィン溝34b、34dが形成されている。
The first slit fins 3a, 3c, and 3e are obtained by cutting and raising the plate-like fin 1 on one surface side. The first slit fin planes 32a, 32c, and 32e and the first slit fin inclined surface 31a that supports the first slit fin planes 32a, 32c, and 32e. , 31c, 31e and first slit fin slopes 33a, 33c, 33e. Therefore, the first slit fin grooves 34a, 34c, 34e are formed in the plate-like fin 1 by such cutting and raising.
Similarly, the second slit fins 3b and 3d are formed by cutting and raising the plate-like fin 1 on the other surface side, and the second slit fin planes 32b and 32d and the second slit fin slopes supporting the second slit fin planes. 31b, 31d and second slit fin slopes 33b, 33d. Therefore, second slit fin grooves 34b and 34d are formed in the plate-like fin 1 by such cutting and raising.
 そして、第1スリットフィン溝34aと第2スリットフィン溝34bとは、第2スリットフィン溝34bと第1スリットフィン溝34cとは、第1スリットフィン溝34cと第2スリットフィン溝34dとは、第2スリットフィン溝34dと第1スリットフィン溝34eとは、それぞれ連続している。したがって、板状フィン1の直管部21aと直管部21bとに挟まれた範囲には、大きな孔が形成されている。
 なお、第1スリットフィン3a、3c、3eの板状フィン1の一方の面からの突出高さ(H1)、および第2スリットフィン3b、3dの板状フィン1の他方の面からの突出高さ(H2)が、板状フィン1の面間隔であるフィンピッチ(Fp)の1/3、すなわち、「H1=Fp/3、H2=Fp/3」になっている。
The first slit fin groove 34a and the second slit fin groove 34b are the second slit fin groove 34b and the first slit fin groove 34c, and the first slit fin groove 34c and the second slit fin groove 34d are The second slit fin groove 34d and the first slit fin groove 34e are continuous. Therefore, a large hole is formed in a range sandwiched between the straight pipe portion 21a and the straight pipe portion 21b of the plate-like fin 1.
Note that the protruding height (H1) of the first slit fins 3a, 3c, 3e from one surface of the plate-like fin 1 and the protruding height of the second slit fins 3b, 3d from the other surface of the plate-like fin 1 are as follows. The height (H2) is 1/3 of the fin pitch (Fp) which is the surface interval of the plate-like fins 1, that is, “H1 = Fp / 3, H2 = Fp / 3”.
 [実施の形態2]
 図4は本発明の実施の形態2に係る天井埋め込み型空気調和機の概念を説明するものであって、(a)は斜視図、(b)は断面図である。
 図4において、天井埋め込み型空気調和機(以下、「空気調和機」と称す)2000には、熱交換器100(実施の形態1参照)が配置されている。空気調和機2000のユニット筐体4の中央天面側にはファン5を駆動するモーター6が設けられ、モーター6にはファン5が下側を吸込口として取り付けられている。
 また、ファン5の下部にはファン5へ空気を導入するベルマウス7が配置される。ファンを囲む略環状に熱交換器100が配置され、熱交換器100の下部にはドレンパン9が配置されている。ドレンパン9の各辺には熱交換器100の2次側と室内とをつなぐ開口部が形成され、化粧パネル10の開口部10aと連通して吹出口8を構成している。
 吹出口8にはベーン8vが取り付けられ、吹出方向の調整を可能としている。また、ファン5の下部には、正面パネル10c、フィルター10fが化粧パネル10の中央に嵌め込まれるように配置されている。
[Embodiment 2]
FIG. 4 explains the concept of the ceiling-embedded air conditioner according to Embodiment 2 of the present invention, in which (a) is a perspective view and (b) is a cross-sectional view.
In FIG. 4, a heat exchanger 100 (see Embodiment 1) is arranged in a ceiling-embedded air conditioner (hereinafter referred to as “air conditioner”) 2000. A motor 6 for driving the fan 5 is provided on the central top surface side of the unit casing 4 of the air conditioner 2000, and the fan 5 is attached to the motor 6 with the lower side serving as a suction port.
A bell mouth 7 for introducing air into the fan 5 is disposed below the fan 5. A heat exchanger 100 is arranged in a substantially annular shape surrounding the fan, and a drain pan 9 is arranged in the lower part of the heat exchanger 100. Each side of the drain pan 9 is formed with an opening that connects the secondary side of the heat exchanger 100 and the room, and communicates with the opening 10 a of the decorative panel 10 to form the air outlet 8.
A vane 8v is attached to the blowout port 8, and the blowout direction can be adjusted. Further, a front panel 10 c and a filter 10 f are arranged at the lower part of the fan 5 so as to be fitted in the center of the decorative panel 10.
 上記のように構成された空気調和機200は、一般に「4方向カセット形」と呼ばれ、ファンの1次側は下方を向いており、室内から空気を吸込む。吸込まれた空気はフィルター10fを通過し、塵埃等が取り除かれ、熱交換器100へと吹き付けられる。熱交換器100では空気と冷媒との熱交換が行われ、熱をもらう、あるいは奪われた空気は吹出口8より室内へ吹出される。 The air conditioner 200 configured as described above is generally called “four-way cassette type”, and the primary side of the fan faces downward, and sucks air from the room. The sucked air passes through the filter 10f, dust and the like are removed, and the air is blown to the heat exchanger 100. In the heat exchanger 100, heat is exchanged between the air and the refrigerant, and the air that has received heat or has been taken away is blown into the room through the air outlet 8.
 (伝熱性能および通風抵抗)
 次に、熱交換器100の伝熱性能と通風抵抗について、熱交換器100の形状パラメータの定性的傾向について以下に説明する。
(Heat transfer performance and ventilation resistance)
Next, the qualitative tendency of the shape parameters of the heat exchanger 100 will be described below with respect to the heat transfer performance and the ventilation resistance of the heat exchanger 100.
 (段ピッチDpの影響)
 段ピッチDpを拡大すると、伝熱管2の外周から板状フィン1の端部までの距離と伝熱管2との管径で定義される「フィン効率」が低下することによって、「管外熱伝達率」は低下する。また、段ピッチDpを拡大すると、「通風抵抗」は減少するため、「風量増加」を図ることができる。
 一方、段ピッチDpを縮小すると、「フィン効率」が上がり、「管外熱伝達率」は向上するが、「通風抵抗」が増大する。
(Influence of step pitch Dp)
When the step pitch Dp is increased, the “fin efficiency” defined by the distance from the outer periphery of the heat transfer tube 2 to the end of the plate-like fin 1 and the tube diameter of the heat transfer tube 2 is reduced. "Rate" decreases. Further, when the step pitch Dp is increased, the “ventilation resistance” decreases, so that “increase in air volume” can be achieved.
On the other hand, when the step pitch Dp is reduced, the “fin efficiency” is increased and the “external heat transfer coefficient” is improved, but the “ventilation resistance” is increased.
 (列ピッチLpの影響)
 列ピッチLpを拡大すると、「フィン効率」が下がり、「管外熱伝達率」は低下するが、伝熱面積は増大するので熱交換器の伝熱性能は向上する。また、「通風抵抗」は増大し、風量が低下する。
 一方、列ピッチLpを縮小すると、「フィン効率」は増大し、「管外熱伝達率」は向上するが、伝熱面積は低下するので、熱交換器の伝熱性能は低下する。また、「通風抵抗」は減少し、「風量増加」を図ることができる。
 以上のように、熱交換器の形状パラメータについては各々最適値があり、これを定量的に評価するため、以下に述べる手法にて熱交換器の伝熱特性と通風抵抗を算出する。
(Influence of row pitch Lp)
When the row pitch Lp is increased, the “fin efficiency” decreases and the “external heat transfer coefficient” decreases, but the heat transfer area increases, so the heat transfer performance of the heat exchanger improves. In addition, “ventilation resistance” increases and the air volume decreases.
On the other hand, when the row pitch Lp is reduced, the “fin efficiency” is increased and the “external heat transfer coefficient” is improved, but the heat transfer area is reduced, so that the heat transfer performance of the heat exchanger is reduced. In addition, “ventilation resistance” decreases, and “increase in air volume” can be achieved.
As described above, each shape parameter of the heat exchanger has an optimum value, and in order to quantitatively evaluate this, the heat transfer characteristics and the ventilation resistance of the heat exchanger are calculated by the method described below.
 空気と板状フィンの間の熱伝達率α[W/m2K]は一般に次式で定義される。
  α=Nu×λ/De  ・・・・・・・・・・・・・・・・・・式1
  Nu=C1×(Re×Pr×De/Lp/Ln)^C2 ・・・式2
  Re=U×De/ν
 ここで、Nuはヌセルト数、
     Reはレイノルズ数、
     Prはプラントル数、
     λは空気の熱伝導率、
     νは空気の動粘性係数、
     C1およびC2は定数である。
 なお、常温常圧の場合に、Pr=0.72、λ=0.0261[W/mK]、ν=0.000016[m2/s]である。
The heat transfer coefficient α [W / m 2 K] between air and the plate fin is generally defined by the following equation.
α = Nu × λ / De ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 1
Nu = C1 * (Re * Pr * De / Lp / Ln) ^ C2 Formula 2
Re = U × De / ν
Where Nu is the Nusselt number,
Re is the Reynolds number,
Pr is the Prandtl number,
λ is the thermal conductivity of air,
ν is the kinematic viscosity coefficient of air,
C1 and C2 are constants.
In the case of normal temperature and pressure, Pr = 0.72, λ = 0.0261 [W / mK], and ν = 0.000016 [m2 / s].
 ここで、代表長さDe[m]を次式にて定義する。
  De=4×(Lp×Dp-π×D2 /4)×Fp/{2×(Lp×Dp-π×D2 /4 )+π×D×Fp}  ・・・・・・・・・・・・・・・・・・式3
 板状フィン1間の自由通過体積基準の風速U[m/s]と、熱交換器の前面風速Uf[m/s]とは、以下の式で定義される。
  U=Uf× Lp×Dp×Fp/{(Lp×Dp-π×D2 /4 )×Fp}・・式4 
Here, the representative length De [m] is defined by the following equation.
De = 4 × (Lp × Dp−π × D 2/4) × Fp / {2 × (Lp × Dp−π × D 2/4) + π × D × Fp}・ ・ ・ ・ ・ ・ Formula 3
The wind speed U [m / s] based on the free passing volume between the plate fins 1 and the front wind speed Uf [m / s] of the heat exchanger are defined by the following equations.
U = Uf × Lp × Dp × Fp / {(Lp × Dp−π × D 2/4) × Fp}.
 また、フィン効率ηは次式で定義される。
  η=1/(1+ψ×α) ・・・・・・・・・・・・・・・・・・式5
  ψ={(4×Lp×Dp/π)/2 -D}2 ×(4×Lp×Dp/π)/2 /D/2 /6/Ft/λf      ・・・・・・・・・・・・・・・・・式6
 ここで、λf[w/m・ k]は板状フィンの熱伝導率である。
Further, the fin efficiency η is defined by the following equation.
η = 1 / (1 + ψ × α) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 5
ψ = {(4 × Lp × Dp / π) / 2−D} 2 × (4 × Lp × Dp / π) / 2 / D / 2/6 / Ft / λf・ ・ ・ ・ ・ ・ ・ Formula 6
Here, λf [w / m · k] is the thermal conductivity of the plate fin.
 一方、空気と板状フィンの間の通風抵抗「ΔP_hex[Pa]」は次式にて定義される。
  ΔP_hex=2×F× Lp×Ln×ρ × U2 / De  ・・・・・・・式7
  F=C3× De/Lp/Ln+C4× ReC5 ×(De/Lp/Ln)1+C5
                             ・・・・・・・・・式8 ここで、Fは摩擦損失係数で、C3、C4、C5は定数である。また、ρは空気の密度で、常温常圧の場合に1.2[kg/m3 ]程度となる。
On the other hand, the ventilation resistance “ΔP_hex [Pa]” between the air and the plate fin is defined by the following equation.
ΔP_hex = 2 × F × Lp × Ln × ρ × U 2 / De...
F = C3 * De / Lp / Ln + C4 * ReC5 * (De / Lp / Ln) 1 + C5
(8) where F is a friction loss coefficient, and C3, C4, and C5 are constants. Further, ρ is the density of air, and is about 1.2 [kg / m 3] in the case of normal temperature and normal pressure.
 (送風機稼動力)
 また、熱交換器100(実施の形態1)を空気調和機200(実施の形態2)に使用した場合の「送風機稼動力」について定量的に評価するために、以下に示す方法で送風機稼動力を算出する。送風機稼動力Pf[W]は次式にて定義される。
  Pf=ΔP_all×Q   ・・・・・・・・・・・・・式9の1
    =(△P_hex+△P_etc)×Q  ・・・・式9の2
(Blower operating force)
In addition, in order to quantitatively evaluate the “blower operating force” when the heat exchanger 100 (Embodiment 1) is used in the air conditioner 200 (Embodiment 2), the fan operating force is determined by the following method. Is calculated. The fan operating force Pf [W] is defined by the following equation.
Pf = ΔP_all × Q (1) in Equation 9
= (ΔP_hex + ΔP_etc) × Q (2 in Equation 9)
 以下、段ピッチDp、列ピッチLpをそれぞれパラメータとして「△P_hex」を算出した。また、熱交換器の熱通過率Kを以下の式で算出した。
  K=1/(1/αo+Ao/Ai/αi)  ・・・・・・・・・式11
  αo=1/(Ao/(Ap+η×Af)/α)  ・・・・・・式12
  Ao=Ap+Af       ・・・・・・・・・・・・・・式13
 ここで、K[W/m2K]は熱交換器の全熱通過率、
     Ao[m2]は熱交換器の空気側全伝熱面積、
     Ap[m2]は熱交換器の空気側パイプ伝熱面積、
     Af[m2]は熱交換器の空気側フィン伝熱面積、
     Ai[m2]は熱交換器の冷媒側伝熱面積であり、
 熱交換器の形状に依存する寸法、段ピッチDp、列ピッチLp、フィンピッチFp、伝熱管の外径Dが決まれば、算出できる値である。なお熱交換器の管内を流れる流体の熱伝達率αi[W/M2K]は一定とする。
Hereinafter, “ΔP_hex” was calculated using the step pitch Dp and the row pitch Lp as parameters. Moreover, the heat passage rate K of the heat exchanger was calculated by the following formula.
K = 1 / (1 / αo + Ao / Ai / αi)
αo = 1 / (Ao / (Ap + η × Af) / α) Equation 12
Ao = Ap + Af Equation 13
Here, K [W / m2K] is the total heat transfer rate of the heat exchanger,
Ao [m2] is the total heat transfer area on the air side of the heat exchanger,
Ap [m2] is the heat transfer area of the air side pipe of the heat exchanger,
Af [m2] is the air side fin heat transfer area of the heat exchanger,
Ai [m2] is the refrigerant side heat transfer area of the heat exchanger,
If the dimensions depending on the shape of the heat exchanger, the step pitch Dp, the row pitch Lp, the fin pitch Fp, and the outer diameter D of the heat transfer tube are determined, the values can be calculated. Note that the heat transfer coefficient αi [W / M2K] of the fluid flowing in the pipe of the heat exchanger is constant.
 一般的に空気調和機のエネルギー消費効率COPは熱交換量と全入力の比率で定義され、全入力を低減させることにより、COPが向上され、すなわち省エネルギー化につながる。
 次に、全入カは圧縮機入力と送風機稼働力Pfを足したものである。圧縮機人力はAoKが大きければ大きいほど低減され、送風機稼動力pfは、△P_hexが小さければ小さいほど低下する。
 ここで、定数nとして、熱交換器性能指標「AoK/△P^n」を定義する。定数nは通風抵抗「△P_hex」が全体の通風抵抗に占める割合が100%の場合を「n=1」として、空気調和機200の熱交換器100では、全体の通風抵抗に占める割合が約半分であるので、△P_hexが2倍、3倍、あるいは4倍になった場合は、全体の通風抵抗はそれぞれ1.5倍、2.0倍、あるいは2.5倍になり、「n=0.59」と近似できる。
 そこで、空気調和機200の熱交換器100では、前面風速U=1[m/s]時の熱交換器性能指標「AoK/△P^0.59」として、伝熱管径D、段ピッチDp、列ピッチLpの関係を評価した。他の空気調和機で、例えばルームエアコン室内機の場合では、△P_hexが全体の通風抵抗に占める割合が約80%であるので、「n≒0.85」となる。
 nの値が大きい空気調和機の形態ほど、△P_hexが熱交換器性能指標「AoK/△P^n」に及ぼす影響が大きくなり、空気調和機200の熱交換器100では他の空気調和機に比べて△P_hexの影響が小さいのが特徴である。
In general, the energy consumption efficiency COP of an air conditioner is defined by the ratio of the heat exchange amount and the total input. By reducing the total input, the COP is improved, that is, energy saving is achieved.
Next, the total input is the sum of the compressor input and the fan operating force Pf. The compressor manpower decreases as AoK increases, and the blower operating force pf decreases as ΔP_hex decreases.
Here, a heat exchanger performance index “AoK / ΔP ^ n” is defined as a constant n. The constant n is “n = 1” when the ratio of the ventilation resistance “ΔP_hex” to the total ventilation resistance is 100%. In the heat exchanger 100 of the air conditioner 200, the ratio to the total ventilation resistance is about Since ΔP_hex is doubled, tripled, or quadrupled, the overall ventilation resistance is 1.5 times, 2.0 times, or 2.5 times, respectively. 0.59 ".
Therefore, in the heat exchanger 100 of the air conditioner 200, the heat exchanger tube diameter D and the step pitch are set as the heat exchanger performance index “AoK / ΔP ^ 0.59” when the front wind speed U = 1 [m / s]. The relationship between Dp and row pitch Lp was evaluated. In the case of another air conditioner, for example, a room air conditioner indoor unit, the ratio of ΔP_hex to the total ventilation resistance is about 80%, so “n≈0.85”.
As the air conditioner has a larger value of n, the influence of ΔP_hex on the heat exchanger performance index “AoK / ΔP ^ n” becomes larger. In the heat exchanger 100 of the air conditioner 200, other air conditioners The effect of ΔP_hex is small compared to.
 図6~図9は、本発明の実施の形態1に係る天井埋め込み型空気調和機に配置される熱交換器における熱交換器性能指標「AoK/△P^0.59」に及ぼす影響を示すものであって、図6は伝熱管径D、図7は段ピッチDp、図8は列ピッチLp、図9はフィンピッチFpとの相関図である。
  図6は、段ピッチDp=15.3mm、列ピッチLp=8.67mm、前面風速U=1[m/s]と一定にして、伝熱管径Dをパラメータとして熱交換器性能指標「AoK/△P^0.59」を計算した結果である。
 製造技術的に伝熱管径が4mm以下の場合は、伝熱管に拡管棒を挿入して板状フィンに密着させる工程で作業効率が著しく低下する。一方、伝熱管経が6mm以上の場合は「AoK/△P^0.59」が著しく低下するが、D≦6mmの範囲であるならば、伝熱管径D=4mmの時と比べて3%以下の低下であるので十分に伝熱性能が高い熱交換器が供給できる。
 よって、「4mm≦D≦6mm」の範囲で製造効率を低下させないで十分に伝熱性能が高い熱交換器100を供給することができる。
6 to 9 show the influence on the heat exchanger performance index “AoK / ΔP ^ 0.59” in the heat exchanger arranged in the ceiling-embedded air conditioner according to Embodiment 1 of the present invention. 6 is a heat transfer tube diameter D, FIG. 7 is a step pitch Dp, FIG. 8 is a row pitch Lp, and FIG. 9 is a correlation diagram with a fin pitch Fp.
FIG. 6 shows the heat exchanger performance index “AoK” with the stage pitch Dp = 15.3 mm, the row pitch Lp = 8.67 mm, the front wind speed U = 1 [m / s], and the heat transfer tube diameter D as a parameter. /ΔP^0.59 ".
When the diameter of the heat transfer tube is 4 mm or less in terms of manufacturing technology, the work efficiency is significantly reduced in the step of inserting the tube expansion rod into the heat transfer tube and bringing it into close contact with the plate fin. On the other hand, when the heat transfer tube diameter is 6 mm or more, “AoK / ΔP ^ 0.59” is remarkably reduced. However, if D ≦ 6 mm, the heat transfer tube diameter D is 3 mm compared to the case of 4 mm. %, The heat exchanger with sufficiently high heat transfer performance can be supplied.
Therefore, the heat exchanger 100 with sufficiently high heat transfer performance can be supplied without reducing the production efficiency in the range of “4 mm ≦ D ≦ 6 mm”.
 図7は、伝熱管径5mm、列ピッチLp=8.67mm、前面風速U=1[m/s]と一定にして、段ピッチDpをパラメータとして熱交換器性能指標「AoK/△P^0.59」を計算した結果である。
 段ピッチDp=15mm付近で熱交換器性能指標「AoK/△P^0.59」は最大値を示し、「14mmm≦Dp≦17mm」で最大値より10%以下の低下である。段ピッチDpが14mm以下の場合は、伝熱管をヘアピン形状に曲げる工程で、曲げピッチが小さいので伝熱管が扁平形状になって外観性が低下したり、管内の圧力損失増大を誘発するおそれがある。
 一方、段ピッチDpが17mm以上の場合は熱交換器の配置容積を容積一定と考えたとき、伝熱管間のパス数を低下させる必要があるが、パス数を低下させると、管内圧損増大が熱交換器の性能を低下させる。特に、伝熱管径が小さくなるほど伝熱管の管内圧損が増大しやすい。従って、段ピッチDpは「14mm≦Dp≦17mm」であることが望ましい。
FIG. 7 shows the heat exchanger performance index “AoK / ΔP ^ with the stage pitch Dp as a parameter, with the heat transfer tube diameter 5 mm, the row pitch Lp = 8.67 mm, and the front wind speed U = 1 [m / s]. It is the result of calculating “0.59”.
In the vicinity of the step pitch Dp = 15 mm, the heat exchanger performance index “AoK / ΔP ^ 0.59” shows the maximum value, and “14 mm × ≦ Dp ≦ 17 mm” is a decrease of 10% or less from the maximum value. When the step pitch Dp is 14 mm or less, in the process of bending the heat transfer tube into a hairpin shape, since the bending pitch is small, there is a possibility that the heat transfer tube becomes flat and the appearance is deteriorated, or the pressure loss in the tube is increased. is there.
On the other hand, when the step pitch Dp is 17 mm or more, it is necessary to reduce the number of paths between the heat transfer tubes when the arrangement volume of the heat exchanger is considered to be constant, but when the number of paths is reduced, the pressure loss in the pipe increases. Reduce the performance of the heat exchanger. In particular, as the heat transfer tube diameter decreases, the pressure loss inside the heat transfer tube tends to increase. Accordingly, it is desirable that the step pitch Dp is “14 mm ≦ Dp ≦ 17 mm”.
 図8は、伝勲管径5mm、段ピッチ15.3mm、前面風速U=1[m/s]と一定にして、列ピッチLpをパラメータとして熱交換器性能指標「AoK/△P^0.59」を計算した結果である。
 列ピッチLp=8mm付近で熱交換器性能指標「AoK/△P^0.59」は最大値を示し、「7mm≦Lp≦10mm」で最大値より10%以下の低下であるので十分に伝熱性能が高い熱交換器100となる。
 列ピッチLp7mm以下に小さくなると、製造技術的に板状フィンにフィンカラー(伝熱管を挿入する穴とカラー)を形成することが難しい。
 一方、列ピッチLp10mm以上の場合、フィン効率が低下することによる熱通過率Kが低下、それに加えて通風抵抗△Pが増大することで熱交換器性能指標「AoK/△P^0.59」が著しく低下する。従って、列ピッチは「7mm≦Lp≦10mm」であることが望ましい。
FIG. 8 shows the heat exchanger performance index “AoK / ΔP ^ 0.0 with the pipe diameter 5 mm, the step pitch 15.3 mm, the front wind speed U = 1 [m / s], and the row pitch Lp as a parameter. 59 "is calculated.
Near the line pitch Lp = 8 mm, the heat exchanger performance index “AoK / ΔP ^ 0.59” shows the maximum value, and “7 mm ≦ Lp ≦ 10 mm” is 10% or less lower than the maximum value. It becomes the heat exchanger 100 with high thermal performance.
If the row pitch Lp is smaller than 7 mm, it is difficult to form fin collars (holes and collars for inserting heat transfer tubes) on the plate-like fins in terms of manufacturing technology.
On the other hand, when the row pitch Lp is 10 mm or more, the heat passage performance K decreases due to the decrease in fin efficiency, and in addition, the ventilation resistance ΔP increases, so that the heat exchanger performance index “AoK / ΔP ^ 0.59” Is significantly reduced. Therefore, the row pitch is preferably “7 mm ≦ Lp ≦ 10 mm”.
 図9は、伝熱管径5mm.段ピッチ15.3mm、列ピッチLP8.67mm、前面風速U=1m[m/s]と一定にして、切り起こしの高さHlとフィンピッチFpの比率「Hl/Fp」をパラメータとして熱交換器性能指標「AoK/△P^0.59」を計算した結果である。
 切り起こしの高さHlとフィンピッチFpの比率「Hl/Fp=1/3」付近で板状フィンの基盤部と切り起こし間で等間隔に空気の流路ができ、最も高効率に伝熱向上することができるので、熱交換器性能指標「AoK/△P^0.59」は最大値を示し、十分に伝熱性能が高い熱交換器100となる。
FIG. 9 shows a heat transfer tube diameter of 5 mm. Heat exchanger with a step height of 15.3 mm, row pitch LP of 8.67 mm, front wind speed U = 1 m [m / s], and the ratio “Hl / Fp” between the height Hl of the cut and raised and the fin pitch Fp as a parameter This is a result of calculating the performance index “AoK / ΔP ^ 0.59”.
The ratio of the height H1 of the cut and raised to the pitch of the fin pitch Fp “Hl / Fp = 1/3” allows air flow at equal intervals between the base of the plate-like fin and the cut and raised, and the most efficient heat transfer Since the heat exchanger performance index “AoK / ΔP ^ 0.59” shows the maximum value, the heat exchanger 100 having sufficiently high heat transfer performance can be obtained.
 [実施の形態3]
 図10および図11は本発明の実施の形態3に係る天井埋め込み型空気調和機に配置される熱交換器を説明するものであって、図10は部分を示す平面図、図11は正面視の断面図である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、一部の説明を省略し、共通の内容を示すものについては、符号の添え字「a、b、c・・・」の記載を省略して説明する。
[Embodiment 3]
10 and 11 illustrate a heat exchanger disposed in a ceiling-embedded air conditioner according to Embodiment 3 of the present invention. FIG. 10 is a plan view showing the part, and FIG. 11 is a front view. FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, a part of the description is omitted, and the same subscripts “a, b, c... The description will be omitted.
 (板状フィン)
 図10および図11において、板状フィン301は矩形の板材であって、伝熱管2の直管部2sが貫通する貫通孔が千鳥状に複数形成されている。
 さらに、直管部21aと直管部21bとの間には、一方の面側に突出する第1スリットフィン3a、3c、3eがそれぞれ形成されている。すなわち、板状フィン301は板状フィン1(実施の形態1)において第2スリットフィン3b、3dを撤去したもの(切り起こしをしなかったもの)に同じである。
(Plate fin)
10 and 11, the plate-like fin 301 is a rectangular plate material, and a plurality of through-holes through which the straight pipe portion 2s of the heat transfer tube 2 passes are formed in a staggered manner.
Further, first slit fins 3a, 3c, and 3e are formed between the straight pipe portion 21a and the straight pipe portion 21b so as to protrude to one surface side. That is, the plate-like fin 301 is the same as the plate-like fin 1 (Embodiment 1) in which the second slit fins 3b and 3d are removed (not cut and raised).
 したがって、第1スリットフィン3aと第1スリットフィン3cとの間には板状フィン301の一部である板状フィン短冊部35bが、第1スリットフィン3cと第1スリットフィン3eとの間には板状フィン301の一部である板状フィン短冊部35dが、それぞれ存在している。
 なお、第1スリットフィン3a、3c、3eの空気流れ方向の幅は同一で(便宜上、「Wa」と称す)、板状フィン短冊部35b、35dの空気流れ方向の幅は同一である(便宜上、「Wb」と称す)。
 このように、列方向に3個の第1スリットフィン3a、3c、3eを、切り起こした場合でも、実施の形態1と同様に、本発明の効果を得られる。
Therefore, between the first slit fin 3a and the first slit fin 3c, a plate-shaped fin strip portion 35b which is a part of the plate-shaped fin 301 is provided between the first slit fin 3c and the first slit fin 3e. There are plate-like fin strips 35d, which are part of the plate-like fins 301, respectively.
The first slit fins 3a, 3c, and 3e have the same width in the air flow direction (referred to as “Wa” for convenience), and the plate fin strips 35b and 35d have the same width in the air flow direction (for convenience). , Referred to as “Wb”).
Thus, even when the three first slit fins 3a, 3c, 3e are cut and raised in the row direction, the effect of the present invention can be obtained as in the first embodiment.
 [実施の形態4]
 図12および図13は本発明の実施の形態4に係る天井埋め込み型空気調和機に配置される熱交換器を説明するものであって、図12は部分を示す平面図、図13は断面図である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、一部の説明を省略し、共通の内容を示すものについては、符号の添え字「a、b、c・・・」の記載を省略して説明する。
[Embodiment 4]
12 and 13 illustrate a heat exchanger disposed in a ceiling-embedded air conditioner according to Embodiment 4 of the present invention. FIG. 12 is a plan view showing the part, and FIG. 13 is a cross-sectional view. It is. The same parts as those in the first embodiment are denoted by the same reference numerals, a part of the description is omitted, and the same subscripts “a, b, c... The description will be omitted.
 (板状フィン)
 図12および図13において、板状フィン401は、板状フィン301(実施の形態3)において第1スリットフィン3cを撤去したもの(切り起こしをしなかったもの)に同じである。
(Plate fin)
12 and 13, the plate-like fin 401 is the same as the plate-like fin 301 (Embodiment 3) from which the first slit fin 3 c is removed (not cut and raised).
 したがって、直管部21aと直管部21bとの間には、一方の面側に突出する列方向に2個の第1スリットフィン3a、3eが形成されている。そして、第1スリットフィン3aと第1スリットフィン3eとの間には板状フィン301の一部である板状フィン短冊部35cが存在している。
 なお、第1スリットフィン3a、3eの空気流れ方向の幅は同一で(便宜上、「Wa」と称す)、板状フィン短冊部35cの空気流れ方向の幅を、便宜上、「Wb」と称す。
 このように、列方向に2個の第1スリットフィン3a、3eを、切り起こした場合でも、実施の形態1と同様に、本発明の効果を得られる。
Therefore, two first slit fins 3a and 3e are formed between the straight pipe portion 21a and the straight pipe portion 21b in the row direction protruding to one surface side. And between the 1st slit fin 3a and the 1st slit fin 3e, the plate-shaped fin strip part 35c which is a part of plate-shaped fin 301 exists.
The width of the first slit fins 3a and 3e in the air flow direction is the same (referred to as “Wa” for convenience), and the width of the plate-shaped fin strip portion 35c in the air flow direction is referred to as “Wb” for convenience.
Thus, even when the two first slit fins 3a and 3e are cut and raised in the row direction, the effect of the present invention can be obtained as in the first embodiment.
 [スリットフィンの効果]
 図14および図15は、図12および図13に示す熱交換器におけるスリットフィンの効果を説明する相関図である。
 図14において、横軸はスリットフィン3a等の列方向の幅waと、スリットフィンの間に存在する板状フィン短冊部35b等の列方向の幅wbとの比率「wa/wb」であり、縦軸は熱交換器性能指標「AoK/△P_hex^0.59」であって、前者をパラメータにして算出した結果である。
 図14より、比率「wa/wb」が1のとき、すなわち、「Wa:Wb=1:1、Wa=Wb」のとき熱交換器性能指標「AoK/△P_hex^0.59」が十分に大きい熱交換器となる。
[Effect of slit fins]
14 and 15 are correlation diagrams for explaining the effect of the slit fins in the heat exchangers shown in FIGS. 12 and 13.
In FIG. 14, the horizontal axis is the ratio “wa / wb” between the width wa in the row direction of the slit fins 3 a and the like and the width wb in the row direction of the plate-like fin strips 35 b existing between the slit fins. The vertical axis represents the heat exchanger performance index “AoK / ΔP_hex ^ 0.59”, which is the result of calculation using the former as a parameter.
From FIG. 14, when the ratio “wa / wb” is 1, that is, when “Wa: Wb = 1: 1, Wa = Wb”, the heat exchanger performance index “AoK / ΔP_hex ^ 0.59” is sufficiently It becomes a big heat exchanger.
 図15において、横軸はスリットフィン3a等の高さH2をフィンピッチFpで無次元化したもの「H2/Fp」であり、縦軸は熱交換器性能指標「AoK/△P_hex^0.59」であって、前者をパラメータにして算出した結果である。図15より、スリットフィン高さH2はフィンピッチFpの1/2のとき、熱交換器性能指標「AoK/△P_hex^0.59」が十分に大きい熱交換器となる。 In FIG. 15, the horizontal axis is “H2 / Fp” obtained by making the height H2 of the slit fins 3a and the like dimensionless with the fin pitch Fp, and the vertical axis is the heat exchanger performance index “AoK / ΔP_hex ^ 0.59. It is a result calculated using the former as a parameter. From FIG. 15, when the slit fin height H2 is ½ of the fin pitch Fp, the heat exchanger performance index “AoK / ΔP_hex ^ 0.59” is a sufficiently large heat exchanger.
 [実施の形態5]
 図16および図17は本発明の実施の形態5に係る天井埋め込み型空気調和機の概念を説明するものであって、図16は底面図、図17は部分断面図である。
 図16および図17において、天井埋め込み型空気調和機(以下、「空気調和機」と称す)5000には、熱交換器500。なお、図4(実施の形態2)および図1(実施の形態1)と同じ部分にはこれと同じ符号を付し、一部の説明を省略し、共通の内容を示すものについては、符号の添え字「a、b・・・」の記載を省略して説明する。
 図16において、空気調和機5000のユニット筐体4の中央天面側にはファン5が下側を吸込口として取り付けられている。そして、ファン5を取り囲むようにL字型に折り曲げられた熱交換器500が、略環状に2枚配置されている。
 このように、L字型の熱交換器500を略環状に2枚配置することによって、ロ字型の熱交換器が1枚だけ略環状に配置される場合に比べて、冷媒が伝熱管2内を通過する長さが低減できパス数が2倍に増えるので、冷媒の管内圧力損失が低減できる。これは、伝熱管2の径を小さくする場合において極めて有効な手段である。
[Embodiment 5]
16 and 17 illustrate the concept of a ceiling-embedded air conditioner according to Embodiment 5 of the present invention. FIG. 16 is a bottom view, and FIG. 17 is a partial cross-sectional view.
16 and 17, a heat exchanger 500 is included in a ceiling-embedded air conditioner (hereinafter referred to as “air conditioner”) 5000. The same parts as those in FIG. 4 (Embodiment 2) and FIG. 1 (Embodiment 1) are denoted by the same reference numerals, a part of the description is omitted, and the same contents are designated by reference numerals. The description of the subscripts “a, b...” Is omitted.
In FIG. 16, the fan 5 is attached to the central top surface side of the unit housing 4 of the air conditioner 5000 with the lower side as a suction port. Two heat exchangers 500 bent in an L shape so as to surround the fan 5 are arranged in a substantially annular shape.
In this way, by arranging two L-shaped heat exchangers 500 in a substantially annular shape, the refrigerant can be transferred to the heat transfer tube 2 as compared with the case where only one L-shaped heat exchanger is disposed in a substantially annular shape. Since the length passing through the inside can be reduced and the number of passes is doubled, the pressure loss of the refrigerant in the pipe can be reduced. This is an extremely effective means when the diameter of the heat transfer tube 2 is reduced.
 したがって、熱交換器500を蒸発器として使用する場合、図16に示す蒸発器冷媒入り口方向から16パスで流入し、空気の流れ方向に対して2列、3列目間のT字型の三方管によって、36パスに分配され、出口に流出される。
 一般に蒸発器の熱交換器の伝熱管内を冷媒が流れる場合、冷媒の状態は二相域、過熱ガスの順番で変化する。その際の冷媒の圧力損失「△P_ref」は二相域よりも過熱ガスの方が大きい。本発明では蒸発器出口付近である2列目―3列目間で16パスから36パスにパス数が増えた効果によって、冷媒の圧力損失「△P_ref」を大幅に低減することができる。これは、伝熱管2の径を小さくする場合に極めて有効な手段である。
Therefore, when the heat exchanger 500 is used as an evaporator, it flows in 16 passes from the evaporator refrigerant inlet direction shown in FIG. 16, and the T-shaped three-way between the second row and the third row with respect to the air flow direction. The pipe distributes to 36 passes and exits to the outlet.
Generally, when a refrigerant flows through the heat transfer tube of the heat exchanger of the evaporator, the state of the refrigerant changes in the order of the two-phase region and the superheated gas. At that time, the pressure loss “ΔP_ref” of the refrigerant is larger in the superheated gas than in the two-phase region. In the present invention, the pressure loss “ΔP_ref” of the refrigerant can be greatly reduced by the effect of increasing the number of passes from 16 passes to 36 passes between the second and third rows in the vicinity of the evaporator outlet. This is a very effective means for reducing the diameter of the heat transfer tube 2.
 、熱交換器500を凝縮器として使用する場合、図16に示す凝縮器冷媒入り口方向から32パスで流入し、空気の流れ方向に対して2列、3列目管のT字型の三方管によって、16パスに合流され、出口に流出される。 When the heat exchanger 500 is used as a condenser, it flows in 32 passes from the condenser refrigerant inlet direction shown in FIG. 16, and is a T-shaped three-way pipe with two rows and three rows in the air flow direction. As a result, it is merged into 16 passes and discharged to the exit.
 本発明によれば、伝熱性能が高いから、各種庫内熱交換器およびこれを装備する各種天井埋込型空気調和機として広く利用することができる。 According to the present invention, since the heat transfer performance is high, it can be widely used as various internal heat exchangers and various ceiling-embedded air conditioners equipped with the same.
符号の説明Explanation of symbols
 1:板状フィン、2:伝熱管、2r:曲管部、2s:直管部、3:スリットフィン、3a:第1スリットフィン、3b:第2スリットフィン、3c:第1スリットフィン、3d:第2スリットフィン、3e:第1スリットフィン、4:ユニット筐体、5:ファン、6:モーター、7:ベルマウス、8:吹出口、8v:ベーン、9:ドレンパン、10:化粧パネル、10a:開口部、10c:正面パネル、10f:フィルター、21a:直管部、21b:直管部、21c:直管部、22a:直管部、23a:直管部、31a:第1スリットフィン斜面、31b:第2スリットフィン斜面、32a:第1スリットフィン平面、32b:第2スリットフィン平面、33a:第1スリットフィン斜面、33b:第2スリットフィン斜面、34a:第1スリットフィン溝、34b:第2スリットフィン溝、34c:第1スリットフィン溝、34d:第2スリットフィン溝、34e:第1スリットフィン溝、35b:板状フィン短冊部、35c:板状フィン短冊部、35d:板状フィン短冊部、100:熱交換器、200:空気調和機、2000:天井埋込型空気調和機、301:板状フィン、401:板状フィン、500:熱交換器、5000:天井埋込型空気調和機、ΔP:通風抵抗、α:熱伝達率、αi:熱伝達率、η:フィン効率、Ao:空気側全伝熱面積、AoK/△P_hex^0.59:熱交換器性能指標、D:外径、De:代表長さ、Dn:段数、Dp:段ピッチ、Fp:フィンピッチ、H1:高さ、H2:高さ、K:熱通過率、Lp:列ピッチ、Pf:ファン稼動力、Pf:送風機稼動力、Q:空気流量、Rp:列ピッチ、U:風速、Uf:前面風速、wa:幅(スリットフィンの列方向幅)、wb:幅(板状フィン短冊部の列方向幅)。 1: plate fin, 2: heat transfer tube, 2r: bent tube portion, 2s: straight tube portion, 3: slit fin, 3a: first slit fin, 3b: second slit fin, 3c: first slit fin, 3d : Second slit fin, 3e: first slit fin, 4: unit housing, 5: fan, 6: motor, 7: bell mouth, 8: air outlet, 8v: vane, 9: drain pan, 10: decorative panel, 10a: Opening part, 10c: Front panel, 10f: Filter, 21a: Straight pipe part, 21b: Straight pipe part, 21c: Straight pipe part, 22a: Straight pipe part, 23a: Straight pipe part, 31a: First slit fin Slope, 31b: second slit fin slope, 32a: first slit fin plane, 32b: second slit fin plane, 33a: first slit fin slope, 33b: second slit fin slope, 34a: first Slit fin groove, 34b: second slit fin groove, 34c: first slit fin groove, 34d: second slit fin groove, 34e: first slit fin groove, 35b: plate fin strip, 35c: plate fin strip Part, 35d: plate fin strip, 100: heat exchanger, 200: air conditioner, 2000: ceiling-embedded air conditioner, 301: plate fin, 401: plate fin, 500: heat exchanger, 5000: Embedded ceiling air conditioner, ΔP: Ventilation resistance, α: Heat transfer coefficient, αi: Heat transfer coefficient, η: Fin efficiency, Ao: Total heat transfer area on the air side, AoK / ΔP_hex ^ 0.59: Heat exchanger performance index, D: outer diameter, De: representative length, Dn: number of steps, Dp: step pitch, Fp: fin pitch, H1: height, H2: height, K: heat passage rate, Lp: row Pitch, Pf: Fan operating force, Pf: Feed Machine activation force, Q: air flow rate, Rp: row pitch, U: wind velocity, Uf: face velocity, wa: width (column direction width of the slit fin), wb: width (column direction width of the plate-like fin strip portion).

Claims (10)

  1.  互いに所定の間隔を空けて平行に積層され、前記間隔を気体が通過する複数枚の板状フィンと、該板状フィンを蛇行しながら貫通し、内部を作動流体が通過する伝熱管と、を有し、
     前記伝熱管の外径(D)と、気体通過方向の直角方向である段方向における前記伝熱管同心の軸心間距離である段ピッチ(Dp)と、気体通過方向である列方向における前記伝熱管の軸心間距離である列ピッチ(Lp)との関係が、
       4mm≦D≦6mm
       14mm≦Dp≦17mm
       7mm≦Lp≦10mm
    であることを特徴とする天井埋め込み型空気調和機に配置される熱交換器。
    A plurality of plate-like fins that are stacked in parallel at a predetermined interval and through which gas passes, and a heat transfer tube that passes through the plate-like fins while meandering, and through which the working fluid passes. Have
    The outer diameter (D) of the heat transfer tube, the step pitch (Dp) which is the distance between the axial centers of the heat transfer tubes concentric in the step direction which is a direction perpendicular to the gas passage direction, and the transfer in the row direction which is the gas passage direction. The relationship with the row pitch (Lp), which is the distance between the axes of the heat tubes, is
    4mm ≦ D ≦ 6mm
    14mm ≦ Dp ≦ 17mm
    7mm ≦ Lp ≦ 10mm
    A heat exchanger disposed in a ceiling-embedded air conditioner characterized by being:
  2.  互いに所定の間隔を空けて平行に積層され、前記間隔を気体が通過する複数枚の板状フィンと、該板状フィンを蛇行しながら貫通し、内部を作動流体が通過する伝熱管と、
     気体通過方向の直角方向と平行に切り起こされた、前記板状フィンの一方の面側に突出する第1スリットフィンと、
     該第1スリットフィンに平行に切り起こされた、前記板状フィンの他方の面側に突出する第2スリットフィンと、を有し、
     前記第1スリットフィンが切り起こされた跡である第1スリット溝と、前記第2スリットフィンが切り起こされた跡である第2スリット溝とが、繋がっていることを特徴とする天井埋め込み型空気調和機に配置される熱交換器。
    A plurality of plate-like fins stacked in parallel with a predetermined interval from each other, through which gas passes, a heat transfer tube that passes through the plate-like fins while meandering, and through which the working fluid passes;
    A first slit fin that is cut and raised parallel to the direction perpendicular to the gas passage direction and protrudes to one surface side of the plate fin;
    A second slit fin that is cut and raised in parallel to the first slit fin and protrudes to the other surface side of the plate fin;
    A ceiling-embedded type characterized in that a first slit groove that is a trace of the first slit fin and a second slit groove that is a trace of the second slit fin are connected to each other A heat exchanger placed in an air conditioner.
  3.  前記第1スリットフィンの前記板状フィンの一方の面からの突出高さ(H1)、および前記第2スリットフィンの前記板状フィンの他方の面からの突出高さ(H2)、が前記板状フィンの面間隔であるフィンピッチ(Fp)の1/3になる(H1=Fp/3、H2=Fp/3)ことを特徴とする請求項2記載の天井埋め込み型空気調和機に配置される熱交換器。 The protruding height (H1) of the first slit fin from one surface of the plate-shaped fin and the protruding height (H2) of the second slit fin from the other surface of the plate-shaped fin are the plate. It is set to 1/3 of the fin pitch (Fp) which is a surface space of the fins (H1 = Fp / 3, H2 = Fp / 3). Heat exchanger.
  4.  互いに所定の間隔を空けて平行に積層され、前記間隔を気体が通過する複数枚の板状フィンと、該板状フィンを蛇行しながら貫通し、内部を作動流体が通過する伝熱管と、
     気体通過方向の直角方向と平行に切り起こされた、前記板状フィンの一方の面側に突出する複数のスリットフィンと、を有し、
     前記スリットフィンの気体通過方向の幅(Wa)が、前記スリットフィンが切り起こされた跡であるスリット溝同士の気体通過方向の間隔(Wb)とが、等しいことを特徴とする天井埋め込み型空気調和機に配置される熱交換器。
    A plurality of plate-like fins stacked in parallel with a predetermined interval from each other, through which gas passes, a heat transfer tube that passes through the plate-like fins while meandering, and through which the working fluid passes;
    A plurality of slit fins that are cut and raised parallel to the direction perpendicular to the gas passage direction and project to one surface side of the plate fin,
    The width (Wa) in the gas passage direction of the slit fin is equal to the gap (Wb) in the gas passage direction between the slit grooves, which is the trace of the slit fin being cut and raised. A heat exchanger placed in a harmony machine.
  5.  前記スリットフィンの前記板状フィンの一方の面からの突出高さ(H)が前記板状フィンの面間隔であるフィンピッチ(Fp)の1/2になる(H=Fp/2)ことを特徴とする請求項4記載の天井埋め込み型空気調和機に配置される熱交換器。 The protruding height (H) of the slit fin from one surface of the plate fin is ½ of the fin pitch (Fp) which is the surface interval of the plate fin (H = Fp / 2). The heat exchanger arrange | positioned at the ceiling-embedded air conditioner of Claim 4 characterized by the above-mentioned.
  6.  前記伝熱管が複数の直管部と、該直管部を連通する複数の曲管部と、から形成され、
     前記直管部が、気体通過方向に対して3列になるように千鳥状に配置されていることを特徴とする請求項1乃至5の何れかに記載の天井埋め込み型空気調和機に配置される熱交換器。
    The heat transfer tube is formed from a plurality of straight tube portions and a plurality of bent tube portions communicating with the straight tube portions,
    6. The straight pipe portion is arranged in a staggered manner so as to form three rows in the gas passage direction. 6. The straight pipe portion is arranged in a ceiling-embedded air conditioner according to claim 1. Heat exchanger.
  7.  筐体と、
     該筐体の中央に配置され、筐体可能から吸引した空気を側方に排出するファンと、該ファンを囲むように配置された請求項1乃至6の何れかに記載の2台の熱交換器と、を有し、
     前記熱交換器を構成する伝熱管の直管部がL字状に折り曲げられていることを特徴とする天井埋め込み型空気調和機。
    A housing,
    A fan that is disposed in the center of the casing and that discharges air sucked from the casing possible to the side, and two heat exchange units according to any one of claims 1 to 6 disposed so as to surround the fan. And having
    A ceiling-embedded air conditioner, wherein a straight pipe portion of a heat transfer tube constituting the heat exchanger is bent in an L shape.
  8.  熱交換器が蒸発器として使用される場合、16パスで流入した後にT字型の三方管を用いることで冷媒を32パスで流出させる配管経路を備えたことを特徴とする請求項7記載の天井埋め込み型空気調和機。 8. When the heat exchanger is used as an evaporator, a piping path is provided for allowing the refrigerant to flow out in 32 passes by using a T-shaped three-way pipe after flowing in 16 passes. A ceiling-embedded air conditioner.
  9.  冷媒を作動流体とし、圧縮機、絞り装置、凝縮熱交換器、蒸発熱交換器を備えた天井埋め込み型空気調和機において、
     前記凝縮熱交換器または前記蒸発熱交換器の一方または両方が、請求項1乃至6の何れかに記載の熱交換器を用いたことを特徴とする天井埋め込み型空気調和機。
    In a ceiling-embedded air conditioner that uses a refrigerant as a working fluid and includes a compressor, a throttle device, a condensing heat exchanger, and an evaporating heat exchanger,
    A ceiling-embedded air conditioner in which one or both of the condensation heat exchanger and the evaporative heat exchanger uses the heat exchanger according to any one of claims 1 to 6.
  10.  前記冷媒として、R407C、R410A、R32、イソブタン、炭酸ガス、アンモニアのいずれかを用いたことを特徴とする請求項9記載の天井埋め込み型空気調和機。 10. The ceiling-embedded air conditioner according to claim 9, wherein any one of R407C, R410A, R32, isobutane, carbon dioxide, and ammonia is used as the refrigerant.
PCT/JP2009/050702 2008-02-20 2009-01-20 Heat exchanger arranged in ceiling-buried air conditioner, and ceiling-buried air conditioner WO2009104439A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09712790.6A EP2219002A4 (en) 2008-02-20 2009-01-20 Heat exchanger arranged in ceiling-buried air conditioner, and ceiling-buried air conditioner
US12/738,942 US20100205993A1 (en) 2008-02-20 2009-01-20 Heat exchanger arranged in ceiling-buried air conditioner and ceiling-buried air conditioner
AU2009216419A AU2009216419B2 (en) 2008-02-20 2009-01-20 Heat exchanger arranged in ceiling-buried air conditioner, and ceiling-buried air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008038972A JP4610626B2 (en) 2008-02-20 2008-02-20 Heat exchanger and ceiling-embedded air conditioner installed in ceiling-embedded air conditioner
JP2008-038972 2008-02-20

Publications (1)

Publication Number Publication Date
WO2009104439A1 true WO2009104439A1 (en) 2009-08-27

Family

ID=40985326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050702 WO2009104439A1 (en) 2008-02-20 2009-01-20 Heat exchanger arranged in ceiling-buried air conditioner, and ceiling-buried air conditioner

Country Status (5)

Country Link
US (1) US20100205993A1 (en)
EP (1) EP2219002A4 (en)
JP (1) JP4610626B2 (en)
AU (1) AU2009216419B2 (en)
WO (1) WO2009104439A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152343A1 (en) * 2010-05-31 2011-12-08 サンデン株式会社 Heat exchanger and heat pump that uses same
US20120145364A1 (en) * 2009-11-04 2012-06-14 Yoshio Oritani Heat exchanger and indoor unit provided with the same
JP2015506450A (en) * 2012-02-17 2015-03-02 三菱電機株式会社 Air conditioner and installation configuration of air conditioner
JP2015140990A (en) * 2014-01-29 2015-08-03 日立アプライアンス株式会社 air conditioner
JP2017203620A (en) * 2017-07-18 2017-11-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554741B2 (en) * 2010-09-28 2014-07-23 日立アプライアンス株式会社 Finned tube heat exchanger and air conditioner equipped with the same
CN102506522A (en) * 2011-09-26 2012-06-20 王永刚 Fin type heat exchanger and assembly method thereof
EP2851641B1 (en) * 2012-04-26 2019-09-11 Mitsubishi Electric Corporation Heat exchanger, indoor unit, and refrigeration cycle device
KR101882020B1 (en) * 2012-08-01 2018-07-25 엘지전자 주식회사 A heat exchanger
KR20140017835A (en) * 2012-08-01 2014-02-12 엘지전자 주식회사 A heat exchanger
JP6400378B2 (en) * 2014-08-07 2018-10-03 東芝ライフスタイル株式会社 Air conditioner
JP2017166757A (en) 2016-03-16 2017-09-21 三星電子株式会社Samsung Electronics Co.,Ltd. Heat exchanger and air conditioner
US11774187B2 (en) * 2018-04-19 2023-10-03 Kyungdong Navien Co., Ltd. Heat transfer fin of fin-tube type heat exchanger
JP6698196B2 (en) * 2019-05-14 2020-05-27 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN110207530B (en) * 2019-05-24 2020-06-12 西安交通大学 High-strength heat exchange fin adopting bidirectional discrete protrusions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633188A (en) 1986-06-23 1988-01-08 Matsushita Refrig Co Fin tube type heat exchanger
JP2000274982A (en) * 1999-03-23 2000-10-06 Mitsubishi Electric Corp Heat exchanger and air-conditioning refrigerating device using the same
JP2001194084A (en) * 1999-12-15 2001-07-17 Lg Electronics Inc Fin tube type heat exchanger
JP2004003716A (en) * 2002-05-31 2004-01-08 Mitsubishi Electric Corp Air conditioner

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3759320A (en) * 1971-02-03 1973-09-18 Singer Co Coil as mount for associated equipment
JPS5737696A (en) * 1980-08-15 1982-03-02 Hitachi Ltd Heat exchanger
JP2730908B2 (en) * 1988-06-09 1998-03-25 三洋電機株式会社 Heat exchanger and air conditioner incorporating this heat exchanger
CA1270811A (en) * 1985-05-10 1990-06-26 Shoichi Yokoyama Heat exchanger
JPH0670555B2 (en) * 1987-01-23 1994-09-07 松下冷機株式会社 Fin tube heat exchanger
JPH07107480B2 (en) * 1987-10-30 1995-11-15 松下電器産業株式会社 Heat exchanger
JP2524812B2 (en) * 1988-06-29 1996-08-14 三菱電機株式会社 Heat exchanger
JPH07109353B2 (en) * 1989-02-01 1995-11-22 松下電器産業株式会社 Heat exchanger with fins
DE3938842A1 (en) * 1989-06-06 1991-05-29 Thermal Waerme Kaelte Klima CONDENSER FOR A VEHICLE AIR CONDITIONING REFRIGERANT
JP2628570B2 (en) * 1994-01-31 1997-07-09 松下冷機株式会社 Fin tube type heat exchanger
CN1095065C (en) * 1994-12-27 2002-11-27 Lg电子株式会社 Structure of heat exchanger
KR0179540B1 (en) * 1995-01-23 1999-04-15 구자홍 Plate fin for fin tube type heat exchanger
KR100290761B1 (en) * 1995-01-23 2001-06-01 구자홍 Fin tube type heat exchanger
JPH09133488A (en) * 1995-11-09 1997-05-20 Matsushita Electric Ind Co Ltd Heat exchanger with fin
KR970047747A (en) * 1995-12-28 1997-07-26 배순훈 Heat exchanger fin structure for air conditioner
JP3593418B2 (en) * 1996-07-03 2004-11-24 東芝キヤリア株式会社 Ceiling cassette type air conditioner
KR19980085720A (en) * 1997-05-30 1998-12-05 윤종용 heat transmitter
KR100503407B1 (en) * 1999-03-09 2005-07-25 학교법인 포항공과대학교 Fin Tube Heat Exchanger
KR100347944B1 (en) * 1999-06-03 2002-08-09 엘지전자주식회사 Fin of evaporator in air conditioner
JP2001091183A (en) * 1999-07-21 2001-04-06 Matsushita Refrig Co Ltd Fin tube type heat exchanger
KR100347894B1 (en) * 2000-07-06 2002-08-09 엘지전자주식회사 Heat exchanger
WO2004031660A1 (en) * 2002-10-02 2004-04-15 Mitsubishi Denki Kabushiki Kaisha Method for reducing noise of air conditioner, fan unit and apparatus, pressure pulsation reducer of refrigeration cycle unit, pressure pulsation reducer of pump unit and pressure pulsation reducing method of apparatus
US6857288B2 (en) * 2002-02-28 2005-02-22 Lg Electronics Inc. Heat exchanger for refrigerator
JP2003269881A (en) * 2002-03-15 2003-09-25 Toshiba Kyaria Kk Fin tube type heat exchanger
EP1640685B1 (en) * 2003-05-23 2009-11-11 Mitsubishi Denki Kabushiki Kaisha Plate fin tube-type heat exchanger
JP2005106425A (en) * 2003-10-01 2005-04-21 Matsushita Electric Ind Co Ltd Air conditioner
JP2005188769A (en) * 2003-12-24 2005-07-14 Mitsubishi Electric Corp Heat exchanger
WO2005088201A1 (en) * 2004-03-12 2005-09-22 Mitsubishi Denki Kabushiki Kaisha Indoor unit of air conditioner
US20070151716A1 (en) * 2005-12-30 2007-07-05 Lg Electronics Inc. Heat exchanger and fin of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633188A (en) 1986-06-23 1988-01-08 Matsushita Refrig Co Fin tube type heat exchanger
JP2000274982A (en) * 1999-03-23 2000-10-06 Mitsubishi Electric Corp Heat exchanger and air-conditioning refrigerating device using the same
JP2001194084A (en) * 1999-12-15 2001-07-17 Lg Electronics Inc Fin tube type heat exchanger
JP2004003716A (en) * 2002-05-31 2004-01-08 Mitsubishi Electric Corp Air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2219002A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120145364A1 (en) * 2009-11-04 2012-06-14 Yoshio Oritani Heat exchanger and indoor unit provided with the same
US9360259B2 (en) * 2009-11-04 2016-06-07 Daikin Industries, Ltd. Heat exchanger and indoor unit provided with the same
WO2011152343A1 (en) * 2010-05-31 2011-12-08 サンデン株式会社 Heat exchanger and heat pump that uses same
CN102918348A (en) * 2010-05-31 2013-02-06 三电有限公司 Heat exchanger and heat pump that uses same
US9127868B2 (en) 2010-05-31 2015-09-08 Sanden Corporation Heat exchanger and a heat pump using same
JP5777612B2 (en) * 2010-05-31 2015-09-09 サンデンホールディングス株式会社 Heat exchanger and heat pump device using the same
JP2015506450A (en) * 2012-02-17 2015-03-02 三菱電機株式会社 Air conditioner and installation configuration of air conditioner
US9322561B2 (en) 2012-02-17 2016-04-26 Mitsubishi Electric Corporation Air-conditioning apparatus and configuration of installation of same
JP2015140990A (en) * 2014-01-29 2015-08-03 日立アプライアンス株式会社 air conditioner
JP2017203620A (en) * 2017-07-18 2017-11-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner

Also Published As

Publication number Publication date
EP2219002A4 (en) 2013-07-24
EP2219002A1 (en) 2010-08-18
AU2009216419A1 (en) 2009-08-27
JP2009198055A (en) 2009-09-03
JP4610626B2 (en) 2011-01-12
AU2009216419B2 (en) 2011-04-21
US20100205993A1 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP4610626B2 (en) Heat exchanger and ceiling-embedded air conditioner installed in ceiling-embedded air conditioner
US8205470B2 (en) Indoor unit for air conditioner
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
JP4055449B2 (en) Heat exchanger and air conditioner using the same
JP4749373B2 (en) Air conditioner
EP1659344B1 (en) Indoor unit of air conditioner
JP2010078289A (en) Heat exchanger and air conditioner equipped with the same
JP5554741B2 (en) Finned tube heat exchanger and air conditioner equipped with the same
US20100071868A1 (en) Hvac units, heat exchangers, buildings, and methods having slanted fins to shed condensation or for improved air flow
JP4081688B2 (en) Air conditioner indoor unit
WO2015004720A1 (en) Heat exchanger, and air conditioner
WO2018154806A1 (en) Heat exchanger and air conditioner
WO2016067957A1 (en) Heat exchanger
JP2008232600A (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP6157593B2 (en) Heat exchanger and refrigeration cycle air conditioner using the same
CN105823271B (en) Heat exchanger
CN102435085A (en) Fin-tube type heat exchanger and air conditioner equipped therewith
JP2014081150A (en) Air conditioner
JP2019095073A (en) Heat exchanger and heat pump device using the same
JP6316458B2 (en) Air conditioner
JP2006275376A (en) Heat exchanger and outdoor unit of air conditioner
JP2001165586A (en) Heat exchanger and air-conditioning refrigerating device equipped with the heat exchanger
JP2008051352A (en) Heat exchanger, indoor unit of air conditioner and manufacturing method of heat exchanger
WO2018142567A1 (en) Air conditioner device
JP2023168987A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009216419

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2009712790

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009712790

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009216419

Country of ref document: AU

Date of ref document: 20090120

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12738942

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE