WO2009104296A1 - 細胞培養モジュール - Google Patents

細胞培養モジュール Download PDF

Info

Publication number
WO2009104296A1
WO2009104296A1 PCT/JP2008/067703 JP2008067703W WO2009104296A1 WO 2009104296 A1 WO2009104296 A1 WO 2009104296A1 JP 2008067703 W JP2008067703 W JP 2008067703W WO 2009104296 A1 WO2009104296 A1 WO 2009104296A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
internal space
culture
cell
water pressure
Prior art date
Application number
PCT/JP2008/067703
Other languages
English (en)
French (fr)
Inventor
今泉 幸文
文彦 北川
まどか 伊藤
Original Assignee
コバレントマテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コバレントマテリアル株式会社 filed Critical コバレントマテリアル株式会社
Priority to US12/438,172 priority Critical patent/US20100178694A1/en
Priority to JP2009523091A priority patent/JP5666131B2/ja
Priority to EP08828063.1A priority patent/EP2128242B1/en
Publication of WO2009104296A1 publication Critical patent/WO2009104296A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/12Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by pressure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/14Pressurized fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/40Means for regulation, monitoring, measurement or control, e.g. flow regulation of pressure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass

Definitions

  • the present invention relates to a cell culture module.
  • a cell culture device that includes a culture container that stores a culture solution containing a cell culture carrier and cells, and a magnetic field generator that generates a magnetic field for moving the cell culture carrier in the culture solution (for example, Patent Document 2).
  • JP 2005-27598 A Japanese Patent Laid-Open No. 2004-313007
  • the cell culture techniques as shown in Patent Documents 1 and 2 described above require peeling work from the cell culture chip and the cell culture carrier after cells are cultured. This peeling operation is usually performed using an enzyme treatment such as trypsin treatment. However, when such an enzyme treatment is carried out for a long time, the cultured cells deteriorate to some extent, and in the worst case, the cells themselves may die. In addition, enzyme treatment such as trypsin treatment has a problem that the operation is very complicated. Accordingly, the present invention has been made in view of the above-described problems, and a cell that can be easily detached from a cell culture carrier without culturing an enzyme treatment such as trypsin treatment. An object is to provide a culture module.
  • the cell culture module includes a sealed system member that holds a cell culture support comprising a porous body provided with a recess for culturing cells in an internal space so that the internal space can be sealed, and the internal space is filled with a culture solution Then, a water pressure supply unit that supplies water pressure to the second surface that faces the first surface of the cell culture carrier that is held in the internal space is provided with the concave portion, and the water pressure on the second surface from the concave portion. And a cell collection unit for collecting the detached cells from the internal space. With such a configuration, cells cultured on a cell culture carrier can be easily detached from the cell culture carrier without performing an enzyme treatment such as trypsin treatment.
  • the cell culture module according to the present invention includes a closed system member that holds a cell culture support comprising a porous body provided with a recess for culturing cells in an internal space so that the internal space can be sealed, and the internal space is filled with a culture solution.
  • a water pressure supply unit for supplying water pressure to the second surface facing the first surface provided with the concave portion and the concave portion of the cell culture carrier held in the internal space, and with respect to the second surface
  • a cell recovery unit for recovering cells detached from the recess by water pressure from the internal space.
  • the cell culture module according to the present invention includes a closed system member that holds a cell culture support made of a porous body provided with a concave portion for culturing cells in an internal space so that the internal space can be sealed, and the internal space is filled with a culture solution. Circulates the filled culture solution and supplies water pressure to the concave portion of the cell culture carrier held in the internal space by the circulation and the second surface facing the first surface provided with the concave portion. And a cell recovery unit for recovering from the internal space cells detached from the recess by water pressure on the second surface.
  • cells resistant to pressure such as chondrocytes can be cultured, and cells cultured on a cell culture carrier without performing enzyme treatment such as trypsin treatment can be used. Can be easily peeled off.
  • the cell culture module according to the present invention includes a closed system member that holds a cell culture support made of a porous body provided with a concave portion for culturing cells in an internal space so that the internal space can be sealed, and the internal space is filled with a culture solution.
  • a water pressure supply unit that supplies water pressure to the second surface opposite to the first surface provided with the recess of the cell culture carrier held in the internal space, and the water pressure with respect to the second surface
  • a cell recovery unit for recovering cells detached from the recess from the internal space.
  • the apparatus further includes a second water pressure supply unit that supplies water pressure from the horizontal direction of the cell culture carrier held in the internal space.
  • a second water pressure supply unit that supplies water pressure from the horizontal direction of the cell culture carrier held in the internal space.
  • the pores of the porous body constituting the cell culture carrier have an average pore diameter of 10 nm or more and 10 ⁇ m or less, and the pores are provided in communication from the surface of the recess of the cell culture carrier to the second surface. Is preferred. With this configuration, the water pressure supplied to the second surface of the cell culture carrier can be transmitted to the surface of the concave portion of the cell culture carrier. It can be easily detached from the culture carrier.
  • the present invention provides a cell culture module that allows cells cultured on a cell culture carrier to be easily detached from the cell culture carrier without performing an enzyme treatment such as trypsin treatment.
  • FIG. 1 is a conceptual diagram showing a cross-sectional configuration of the cell culture module according to the first embodiment.
  • the cell culture module 1 according to the present embodiment includes a closed system member 10, a culture fluid water pressure supply unit 20, and a cell recovery unit 30.
  • the sealing system member 10 includes a lower lid 10A, an upper lid 10B provided on the lower lid 10A, and a fixing member 15 that fixes the lower lid 10A and the upper lid 10B. ing.
  • the lower lid 10 ⁇ / b> A is configured to have a concave shape including a concave portion 10 ⁇ / b> Aa for holding the cell culture carrier S and accommodating the culture solution.
  • the upper lid 10B is provided on the lower lid 10A, forms an inner space 12 with the lower lid 10A, and a recess 10Aa of the lower lid 10A in order to hold the inner space 12 in a sealable manner. Is provided with a convex portion 10Ba that can be sealed.
  • the cell culture carrier S is held by placing an O-ring 17a on the bottom 10Aa1 of the recess 10Aa of the lower lid 10A and placing the cell culture carrier S on the O-ring 17a.
  • the O-ring 17b is arranged on the culture carrier S, and the lower lid 10A and the upper lid 10B are fixed integrally with the O-ring 17a, the cell culture carrier S and the O-ring 17b, the convex portion 10Ba of the upper lid 10B.
  • the cell culture carrier S is held in the recess 10Aa of the lower lid 10A by pressurizing the O-ring 17b.
  • the lower lid 10A and the upper lid 10B are made of, for example, acrylic resin.
  • the fixing member 15 is made of, for example, SUS304.
  • the O-rings 17a, 17b, and 17c are made of, for example, fluorine rubber.
  • the closed system member 10 is described as having a configuration in which the lower lid 10A and the upper lid 10B are integrally fixed by the fixing member 15 as described above.
  • the carrier S is not limited to the above-described configuration as long as the carrier S can be sealed in the internal space 12.
  • the cell culture carrier S that is hermetically held in the internal space 12 is composed of a porous body provided with a recess S1 for culturing cells on the surface (first surface) Sa.
  • the cell culture carrier S is composed of at least one ceramic or glass of zirconia, yttria, titania, alumina, silica, hydroxyapatite, and ⁇ -tricalcium phosphate. These ceramics or glass are suitable because of high biostability.
  • the culture fluid water pressure supply unit 20 is provided integrally or detachably on the bottom 10 ⁇ / b> Aa ⁇ b> 1 of the lower lid 10 ⁇ / b> A and supplies the culture fluid to the internal space 12.
  • the culture fluid hydraulic pressure supply unit 20 includes a culture fluid storage portion 22 that stores a culture fluid, one end attached to the bottom 10 ⁇ / b> Aa ⁇ b> 1, and the other end attached to the storage portion 22.
  • the culture solution storage unit 22 is composed of, for example, a resin storage container.
  • the culture solution supply tube 24 is configured by, for example, a resin tube.
  • the supply amount control unit 26 includes, for example, an electromagnetic valve that controls the supply amount of the culture solution. The opening / closing operation and the opening / closing amount of the electromagnetic valve are controlled by a control unit (not shown), and the supply amount of the culture solution is controlled by the opening / closing amount.
  • the supply pressure control unit 28 includes, for example, a high-pressure gas supply device that supplies high-pressure gas from the culture solution storage unit 22 to the culture solution supply pipe 24.
  • the culture fluid water pressure supply unit 20 is provided on the back surface side Sb of the cell culture carrier S held in the internal space 12 (a surface facing the surface (first surface) Sa provided with the recess S1 of the cell culture carrier S (Water pressure is supplied to the second surface Sb by applying hydraulic pressure in the direction of the second surface)).
  • the method for applying the water pressure is to control the supply amount control unit 26 and the supply pressure control unit 28 so as to supply the culture solution to the internal space 12 in a state where the sealed internal space 12 is filled with the culture solution. Do. In other words, with the internal space 12 filled with the culture solution, the supply amount control unit 26 is opened, and the supply pressure control unit 28 increases the supply pressure of the culture solution, thereby increasing the water pressure and reducing the supply pressure. Thus, a small water pressure is supplied to the second surface Sb of the cell culture carrier S.
  • the cells cultured in the recess S1 of the cell culture carrier S are peeled off from the cell culture carrier S and put into the culture solution filled in the internal space 12. Float.
  • the cell culture carrier S is composed of a porous body (porous body). It is necessary to be.
  • the pores of the porous body constituting the cell culture carrier S have an average pore diameter of 10 nm or more and 10 ⁇ m or less, and the pores extend from the surface of the recess S1 of the cell culture carrier S to the second surface Sb. It is preferable to be provided in communication. With such a configuration, the water pressure supplied to the second surface Sb of the cell culture support S can be transmitted to the surface of the recess S1 of the cell culture support S. The cultured cells can be easily detached from the cell culture carrier S.
  • the cell recovery unit 30 is provided integrally or detachably on the upper portion 10Ba1 of the upper lid 10B, and is cultured in the concave portion S1 of the cell culture carrier S, and is supplied to the second surface Sb of the cell culture carrier S by the water pressure.
  • the cells detached from S are collected from the internal space 12 of the closed system member 10 together with the culture solution.
  • the cell recovery unit 30 includes a cell storage unit 32 that stores cultured cells together with a culture solution, one end attached to the upper portion 10Ba1, and the other end attached to the storage unit 32.
  • the cell accommodating part 32 is comprised by the resin-type accommodation container, for example.
  • the cell discharge tube 34 is composed of, for example, a resin tube.
  • the discharge amount control unit 36 is configured by, for example, an electromagnetic valve that controls the discharge amount.
  • the opening / closing operation and opening / closing amount of the solenoid valve are controlled by a control unit (not shown), and the discharge amount is controlled by the opening / closing amount.
  • FIGS. 2 and 3 are conceptual diagrams for explaining an example of a cell culture method using the cell culture module according to the present embodiment.
  • feeder cells Feeder cells
  • FIGS. 2 and 3 are conceptual diagrams for explaining an example of a cell culture method using the cell culture module according to the present embodiment.
  • a concave lower lid 10A is prepared, and a cell culture carrier S in which an O-ring 17a, feeder cells (Feeder cells) are installed, and an O-ring 17b are laminated in this order on the bottom 10Aa1 of the lower lid 10A.
  • a cell culture carrier S in which an O-ring 17a, feeder cells (Feeder cells) are installed, and an O-ring 17b are laminated in this order on the bottom 10Aa1 of the lower lid 10A.
  • the cells to be cultured are placed in the recess S1 of the cell culture carrier S placed in the recess 10Aa of the lower lid 10A.
  • the installed cell is attached and held on the surface of the cell culture support S.
  • the O-ring 17c is inserted into the recess of the convex portion 10Ba of the upper lid 10B, and the concave portion 10Aa of the lower lid 10A and the convex portion 10Ba of the upper lid 10B are fitted to each other, and the lower lid 10A is fixed by the fixing member 15.
  • the upper lid 10B are integrally fixed to form the sealed system member 10 according to the present embodiment in which the internal space 12 is formed.
  • the culture liquid supply pipe 24 of the culture liquid hydraulic pressure supply unit 20 is attached to the bottom 10Aa1 of the lower lid 10A, and the cell discharge pipe 34 of the cell recovery unit 30 is attached to the upper part 10Ba1 of the upper lid 10B.
  • the cell culture module 1 is configured.
  • the discharge amount control unit 36 of the cell recovery unit 30 is set to the “open” state (in this embodiment, the electromagnetic valve of the discharge amount control unit 36 is set to the “open” state), and the supply amount control of the culture fluid water pressure supply unit 20 is performed.
  • the unit 26 is set to the “open” state (in this embodiment, the solenoid valve of the supply amount control unit 26 is set to the “open” state), and further, the supply pressure is supplied from the supply pressure control unit 28 to culture in the internal space 12.
  • the culture solution is supplied from the culture solution storage unit 22 until the solution is completely filled.
  • the supply pressure from the supply pressure control unit 28 is stopped, and the supply amount control unit 26 is set to the “closed” state (in this embodiment, the electromagnetic amount of the supply amount control unit 26).
  • the discharge amount control unit 36 of the cell recovery unit 30 is set to the “closed” state (in this embodiment, the electromagnetic valve of the discharge amount control unit 36 is set to the “closed” state).
  • the discharge amount control unit 36 of the cell recovery unit 30 is set to the “open” state to start the discharge of the culture solution in the internal space 12 and the supply amount control unit 26 of the culture solution water pressure supply unit 20 is “open”.
  • a supply pressure is supplied from the supply pressure control unit 28 to start supplying a new culture solution to the internal space 12.
  • the fluid pressure P 1 is supplied from the culture fluid water pressure supply unit 20 in the direction of the second surface Sb of the cell culture carrier S. Since the hydraulic pressure P 1 supplies water pressure to the second surface Sb of the cell culture carrier S, the cells cultured in the concave portion S1 of the cell culture carrier S are detached from the surface of the concave portion S1 of the cell culture carrier S. Then, it floats in the culture solution in the internal space 12 and is recovered as it is together with the culture solution into the cell storage unit 32 through the cell discharge pipe 34 of the cell recovery unit 30 (FIG. 3).
  • the cell culture module according to the present embodiment since the cell culture module according to the present embodiment has the above-described configuration, cells cultured on the cell culture carrier can be easily removed from the cell culture carrier without performing enzyme treatment such as trypsin treatment. Can be peeled off.
  • recovery part 30 demonstrated by this embodiment demonstrated in FIG. 1 by the structure provided in upper part 10Ba1 of the upper cover 10B, ie, the upper direction (vertical direction) of the recessed part S1 of the cell culture support S The present invention is not limited to this. For example, as shown in FIG. 4, a horizontal direction perpendicular to the vertical direction of the cell culture carrier S held in the recess 10Aa of the lower lid 10A (in FIG.
  • the cell discharge pipe 34 of the cell recovery unit 30 may be installed in the direction of the paper surface.
  • the control units 26 and 36 have been described as examples using electromagnetic valves. However, the control units 26 and 36 may be controlled by, for example, a cylinder or a simple manual valve.
  • FIG. 5 is a conceptual diagram showing a cross-sectional configuration of the cell culture module according to the second embodiment.
  • the culture fluid / water pressure supply unit 20 shown in FIG. 1 described in the first embodiment is arranged in the horizontal direction of the cell culture carrier S (the paper surface direction in FIG. 5). 1 in that an air pressure supply unit 40 is provided at the position of the culture fluid water pressure supply unit 20 shown in FIG. Since others are the same as that of 1st Embodiment, description is abbreviate
  • the air pressure supply unit 40 is provided integrally or detachably on the bottom portion 10Aa1 of the lower lid 10A, and supplies air pressure to the culture solution filled in the internal space 12, so that the second surface Sb of the cell culture carrier S is supplied. Supply water pressure.
  • the air pressure supply unit 40 is, for example, provided integrally or detachably on the air pressure generating device 42 for generating air pressure and the bottom portion 10Aa1 of the lower lid 10A, and the air pressure generated by the air pressure generating device 42 is the internal space 12.
  • an air pressure supply pipe 44 for supplying to the air.
  • the air pressure generating device 42 is constituted by an air cylinder, for example.
  • the air pressure supply pipe 44 is made of, for example, a resin tube.
  • FIG. 6 is a conceptual diagram for explaining an example of a cell culture method using the cell culture module according to the present embodiment.
  • the closed system member 10 according to the present embodiment is configured. After that, the air pressure supply pipe 44 of the air pressure supply section 40 is attached to the bottom 10Aa1 of the lower lid 10A, the culture medium supply pipe 24 of the culture liquid pressure supply section 20 is attached in the horizontal direction of the cell culture carrier S, and the upper part of the upper lid 10B.
  • the cell culture module 2 according to this embodiment is configured by attaching the cell discharge pipe 34 of the cell recovery unit 30 to 10Ba1.
  • the discharge amount control unit 36 of the cell recovery unit 30 is set to the “open” state
  • the supply amount control unit 26 of the culture fluid water pressure supply unit 20 is set to the “open” state
  • the supply pressure is further supplied from the supply pressure control unit 28.
  • the culture solution is supplied from the culture solution storage unit 22 until the culture solution is completely filled in the internal space 12.
  • the supply pressure is stopped from the supply pressure control unit 28 and the supply amount control unit 26 is set to the “closed” state, and at the same time, the discharge amount control unit of the cell recovery unit 30 36 is set to the “closed” state.
  • the environment in which the cells held in the recess S1 of the cell culture carrier S are cultured is prepared.
  • the air pressure P 2 is supplied from the air pressure generator 42 to the culture solution filled in the second surface Sb direction of the cell culture carrier S held in the internal space 12. Thereby, water pressure is supplied to the second surface Sb of the cell culture carrier S. Due to this water pressure, the cells cultured in the recess S1 of the cell culture carrier S are detached from the cell culture carrier S and float in the culture medium in the internal space 12 (FIG. 6).
  • the supply amount control unit 26 of the culture solution water pressure supply unit 20 is set to the “open” state, and supply of the culture solution to the internal space 12 is newly started by applying supply pressure from the supply pressure control unit 28, and the cells
  • discharge of the culture medium in the internal space 12 is started by setting the discharge amount control unit 36 of the recovery unit 30 to the “open” state, the cultured cells suspended in the internal space 12 together with the culture medium are cell recovery unit 30.
  • the cells are collected in the cell storage section 32 through the cell discharge pipe 34.
  • the culture fluid hydraulic pressure supply unit 20 is arranged in the horizontal direction of the cell culture carrier S and supplies the culture fluid to the internal space 12 from the horizontal direction.
  • a liquid pressure may be applied to the internal space 12 and the water pressure may be supplied from the horizontal direction. Since the method of applying the hydraulic pressure is the same as that described in the first embodiment, the description thereof is omitted. In this way, by applying a water pressure to the internal space 12 from the horizontal direction, the flow of the culture solution in the internal space 12 can be controlled, so that perfusion culture is also possible.
  • FIG. 7 is a conceptual diagram showing a cross-sectional configuration of the cell culture module according to the third embodiment.
  • the cell culture module 3 according to the present embodiment is a second culture solution that newly supplies a culture solution to the internal space 12 to the upper portion 10Ba1 of the cell culture module shown in FIG. 4 described in the first embodiment.
  • the difference is that the water pressure supply unit 50 is provided. Since others are the same as that of 1st Embodiment, description is abbreviate
  • the second culture fluid water pressure supply unit 50 is provided integrally or detachably on the upper portion 10Ba1 of the upper lid 10B, and supplies the culture fluid to the internal space 12.
  • the second culture fluid hydraulic pressure supply unit 50 includes a culture solution storage unit 52 that stores a culture solution, one end attached to the upper portion 10Ba1 and the other end attached to the storage unit 52.
  • a culture solution supply pipe 54 for supplying the culture solution contained in the unit 52 to the internal space 12, and a supply amount control unit 56 for controlling the supply amount of the culture solution attached to the supply tube 54 and supplied to the internal space 12.
  • a supply pressure control unit 58 that is attached to the storage unit 52 and controls the supply pressure when the culture solution is supplied.
  • the culture solution storage unit 52 is formed of, for example, a resin storage container.
  • the culture solution supply pipe 54 is constituted by, for example, a resin tube.
  • the supply amount control unit 56 includes, for example, an electromagnetic valve that controls the supply amount of the culture solution.
  • the solenoid valve is controlled in its opening / closing operation and opening / closing amount by a control unit (not shown), and the supply amount of the culture solution is controlled by the opening / closing amount.
  • the supply pressure control unit 58 is cultivated from the culture solution storage unit 52.
  • the high-pressure gas supply device supplies high-pressure gas to the liquid supply pipe 54.
  • the second culture fluid / water pressure supply unit 50 supplies water pressure to the recess S ⁇ b> 1 by applying a fluid pressure in the direction of the recess S ⁇ b> 1 of the cell culture carrier S held in the internal space 12.
  • the method for applying the water pressure is to control the supply amount control unit 56 and the supply pressure control unit 58 so as to supply the culture solution to the internal space 12 in a state where the sealed internal space 12 is filled with the culture solution. Do. That is, in a state in which the culture solution is filled in the internal space 12, the supply amount control unit 56 is set to the “open” state, and the supply pressure of the culture solution is increased by the supply pressure control unit 58, so that a large water pressure is supplied.
  • a small water pressure is supplied to the recess S1 of the cell culture carrier S.
  • cells are cultured in the recess S1 while applying a fluid pressure in the direction of the recess S1 of the cell culture carrier S by the second culture fluid water supply unit 50, cells resistant to pressure such as chondrocytes can be cultured.
  • FIGS. 8 to 10 are conceptual diagrams for explaining an example of a cell culture method using the cell culture module 3 according to the present embodiment.
  • description of the part which overlaps with the part demonstrated in 1st Embodiment is abbreviate
  • the cell culture module 3 according to the present embodiment is configured.
  • the discharge amount control unit 36 of the cell recovery unit 30 is set to the “open” state
  • the supply amount control unit 26 of the culture fluid water pressure supply unit 20 is set to the “open” state
  • the supply pressure is further supplied from the supply pressure control unit 28.
  • the culture solution is supplied until the culture solution is completely filled in the internal space 12.
  • the culture medium may be supplied by controlling the supply amount control unit 56 and the supply pressure control unit 58 in the second culture solution water pressure supply unit 50 as well.
  • the culture solution may be supplied only by the second culture solution water pressure supply unit 50.
  • the supply pressure from the supply pressure control unit 28 is stopped, the supply amount control unit 26 is set to the “closed” state, and the culture solution in the culture solution water pressure supply unit 20 is supplied. Stop supplying. At this time, similarly, the discharge amount control unit 36 of the cell collection unit 30 is also in the “closed” state (FIG. 8).
  • the supply amount control unit 56 of the second culture fluid water pressure supply unit 50 is set to the “open” state, the supply pressure is applied from the supply pressure control unit 58, and the fluid pressure P 3 is set in the direction of the recess S 1 of the cell culture carrier S.
  • the cells are cultured while feeding (FIG. 9).
  • the supply pressure from the supply pressure control unit 58 is stopped, the supply amount control unit 56 is set to the “closed” state, and the supply of the hydraulic pressure P 3 in the direction of the recess S1 of the cell culture carrier S is stopped.
  • the discharge amount control unit 36 of the cell recovery unit 30 is set to the “open” state, and the discharge of the culture medium in the internal space 12 is started, and the supply amount control unit 26 of the culture solution hydraulic pressure supply unit 20 is set to the “open” state. Then, supply pressure is supplied from the supply pressure control unit 28 and supply of the culture medium to the internal space 12 is newly started.
  • the fluid pressure P 1 is supplied from the culture fluid water pressure supply unit 20 in the direction of the second surface Sb of the cell culture carrier S. Since the hydraulic pressure P 1 supplies water pressure to the second surface Sb of the cell culture carrier S, the cells cultured in the concave portion S1 of the cell culture carrier S are separated from the surface of the concave portion S1 of the cell culture carrier S. It is peeled off, floats in the culture solution in the internal space 12, and is recovered as it is together with the culture solution into the cell storage unit 32 through the cell discharge pipe 34 of the cell recovery unit 30 (FIG. 10).
  • the cell culture module according to the present embodiment has the above-described configuration, cells that are resistant to pressure such as chondrocytes can be cultured, and enzyme treatment such as trypsin treatment can be performed.
  • the cells cultured on the cell culture carrier can be easily detached from the cell culture carrier.
  • the air pressure can be supplied to the concave portion S1 of the cell culture carrier S by supplying air pressure to the culture solution filled in the internal space 12 by the air pressure supply unit 40, this embodiment has been described. An effect similar to the effect can be obtained.
  • FIG. 11 is a conceptual diagram showing a cross-sectional configuration of the cell culture module according to the fourth embodiment.
  • the culture fluid / water pressure supply unit 20 and the second culture fluid / water pressure supply unit 50 shown in FIG. 7 described in the third embodiment have the air pressure described in the second embodiment.
  • each is replaced with a supply unit 40 and a culture fluid pressure supply unit 20 is newly provided in a direction opposite to the cell recovery unit 30 provided in the horizontal direction of the cell culture carrier S. Since others are the same as that of 3rd Embodiment, description is abbreviate
  • the air pressure supply unit 40 attached to the bottom 10Aa1 of the lower lid 10A has the same configuration and operation as those of the second embodiment described above, description thereof is omitted. Also, the air pressure supply unit 40 attached to the upper portion Ba1 of the upper lid 10B has the same configuration and operation as those of the above-described third embodiment, and thus description thereof is omitted.
  • the cell culture module 4 according to the present embodiment is configured.
  • the discharge amount control unit 36 of the cell recovery unit 30 is set to the “open” state
  • the supply amount control unit 26 of the culture fluid water pressure supply unit 20 is set to the “open” state
  • the supply pressure is supplied from the supply pressure control unit 28.
  • the culture solution is supplied from the culture solution storage unit 22 until the culture solution is completely filled in the internal space 12.
  • the supply pressure from the supply pressure control unit 28 is stopped and the supply amount control of the discharge amount control unit 36 of the cell recovery unit 30 and the culture solution water pressure supply unit 20.
  • the unit 26 is set to the “closed” state.
  • the culture is performed while supplying water pressure onto the recess S1 of the cell culture carrier S by the air pressure supply unit 40 attached to the upper part Ba1 of the upper lid 10B.
  • cells resistant to pressure such as chondrocytes can be cultured.
  • fluid pressure may be applied in the horizontal direction of the cell culture carrier S from the culture fluid water pressure supply unit 20 into the internal space 12. With such a configuration, the flow of the culture solution in the internal space 12 can be controlled, and perfusion culture is also possible.
  • water pressure is supplied to the second surface Sb of the cell culture carrier S by the air pressure supply unit 40 attached to the bottom 10Aa1 of the lower lid 10A, so that the cells cultured in the recess S1 of the cell culture carrier S It is peeled off from the culture carrier S and suspended in the culture medium in the internal space 12.
  • the supply amount control unit 26 of the culture solution supply unit 20 is set to the “open” state, the supply pressure is supplied from the supply pressure control unit 28, and the supply of the culture solution to the internal space 12 is newly started.
  • the discharge amount control unit 36 When the discharge amount control unit 36 is set to the “open” state and the discharge of the culture solution in the internal space 12 is started, the cultured cells floating in the internal space 12 are transferred to the cells of the cell recovery unit 30 together with the culture solution. It is collected in the cell accommodating part 32 through the discharge pipe 34.
  • the cell culture module according to the present embodiment has the above-described configuration, cells that are resistant to pressure such as chondrocytes can be cultured, and enzyme treatment such as trypsin treatment can be performed.
  • the cells cultured on the cell culture carrier can be easily detached from the cell culture carrier.
  • the culture fluid water pressure supply unit 20 is provided in a direction opposite to the cell recovery unit 30 provided in the horizontal direction of the cell culture carrier S, the speed of recovering the cultured cells to the cell recovery unit 32 is improved. It also has the effect.
  • FIG. 12 is a conceptual diagram showing a cross-sectional configuration of the cell culture module according to the fifth embodiment.
  • the cell culture module 5 according to the present embodiment is replaced with the culture fluid / water pressure supply unit 20 shown in FIG. 4 described in the first embodiment, and a culture fluid circulation system 100 that circulates the culture fluid in the internal space 12 is newly provided. Different points are provided. Since others are the same as that of 1st Embodiment, description is abbreviate
  • the culture medium circulation system 100 includes a circulation unit 110 that circulates the culture solution filled in the internal space 12, and a variable unit that varies the circulation direction (Dn or Up) of the circulation unit 110. 120.
  • the circulation unit 110 holds the culture solution in advance and also supplies the culture solution storage unit 112 that temporarily stores the circulated culture solution and the culture solution stored in the storage unit 112 into the internal space 12.
  • ON / OFF of circulation of the circulation unit 110 attached to the supply device 114, the pipes 116a, 116b, and 116c, and the pipes 116a and 116c that connect the sealing system member 10, the housing portion 112, and the supply device 114.
  • circulation amount control units 118a and 118b for controlling the circulation amount.
  • the variable section 120 includes an air pressure generator 122 that supplies air pressure to the pipe 116 a of the circulation section 110, and a pipe 124 that has one end integrally or detachably connected to the pipe 116 a and the other end connected to the generator 122. And an air pressure control unit 126 that prevents the culture medium from entering the generator 122 from the pipe 116a and controls ON / OFF of the air pressure.
  • the culture solution storage unit 112 is constituted by, for example, a resinous storage container.
  • the supply device 114 is configured by a pump, for example.
  • the pipes 116a, 116b, and 116c are made of, for example, resin tubes.
  • the circulation amount control units 118a and 118b are configured by, for example, electromagnetic valves as described in the first embodiment.
  • the air pressure generator 122 is constituted by, for example, an air cylinder.
  • the pipe 124 is made of, for example, a resin tube.
  • the air pressure control unit 126 is configured by, for example, an electromagnetic valve as described in the first embodiment.
  • the circulation direction (Dn, Up) between the closed system member 10 and the circulation unit 110 is controlled by making full use of the opening / closing operations of the control units 118a, 118b, 126 described above.
  • the opening / closing operation of the control units 118a, 118b, 126 is controlled so that the circulation direction becomes Dn, the culture solution circulates between the closed system member 10 and the circulation unit 110, and the hydraulic pressure is increased in the circulation direction (Dn). Therefore, water pressure is supplied to the concave portion S1 of the cell culture carrier S.
  • the opening / closing operation of the control units 118a, 118b, 126 is controlled so that the circulation direction becomes Up, the culture solution circulates between the closed system member 10 and the circulation unit 110, and the liquid is circulated in the circulation direction (Up). Since pressure is applied, water pressure is supplied to the second surface Sb of the cell culture carrier S. Control of the opening / closing operation of the control units 118a, 118b, and 126 will be described later.
  • FIGS. 13 and 14 are conceptual diagrams for explaining an example of a cell culture method using the cell culture module according to the present embodiment.
  • description of the part which overlaps with the part demonstrated in 1st Embodiment is abbreviate
  • the cell culture module 5 according to the present embodiment is configured.
  • the circulation amount control units 118a and 118b are set to the “open” state
  • the discharge amount control unit 36 is set to the “closed” state
  • the supply device 114 is used from the culture solution storage unit 112 that stores the culture solution in advance.
  • the culture solution is supplied into the internal space 12 of the closed system member 10 until it is completely filled.
  • the direction in which the culture solution is supplied can be controlled by opening / closing operation of the air pressure control unit 126. That is, the supply direction can be controlled to Dn by setting the air pressure control unit 126 to the “open” state, and the supply direction can be controlled to Up by setting the air pressure control unit 126 to the “closed” state.
  • Dn be the direction in which the culture solution is supplied while the culture solution is completely filled in the internal space 12.
  • Dn the direction at the time of supplying a culture solution in the internal space 12
  • this direction is Up
  • the culture solution is circulated between the internal space 12 of the closed system member 10 and the circulation unit 110.
  • the culture solution is circulated between the closed system member 10 and the circulation unit 110, and the fluid pressure P 4 is applied in the direction of the recess S1 of the cell culture support S. Is supplied (FIG. 13). Therefore, cells resistant to pressure such as bone cells can also be cultured.
  • the supply direction is set to Up by setting the air pressure control unit 126 to the “closed” state.
  • the fluid pressure P 5 is supplied to the second surface Sb of the cell culture carrier S by setting the direction in which the culture solution is supplied to Up. Due to this fluid pressure, the cells cultured in the recess S1 of the cell culture support S are detached from the recess S1 of the cell culture support S and float in the culture solution in the internal space 12 (FIG. 14).
  • the discharged amount control unit 36 is set to the “open” state, and the control unit 118b is set to the “closed” state, so that the cultured cells together with the culture solution pass through the cell discharge pipe 34 of the cell recovery unit 30, It is collected in the cell storage unit 32.
  • the cell culture module according to the present embodiment has the above-described configuration, cells that are resistant to pressure such as chondrocytes can be cultured, and enzyme treatment such as trypsin treatment can be performed.
  • the cells cultured on the cell culture carrier can be easily detached from the cell culture carrier. Further, since the culture solution can be circulated, perfusion culture is also possible.
  • FIG. 15 is a conceptual diagram showing a cross-sectional configuration of the cell culture module according to the sixth embodiment.
  • the cell culture module 6 according to this embodiment includes a feeder cell (Feeder cell) supply unit 130 that supplies feeder cells (Feeder cells) to the culture solution supply pipe 24 of the culture solution supply unit 20 described in the first embodiment.
  • the point which is newly prepared is different. Since others are the same as that of 1st Embodiment, description is abbreviate
  • the feeder cell (Feeder cell) supply unit 130 is provided integrally or detachably in the culture solution supply pipe 24 and supplies feeder cells (Feeder cells) to the internal space 12 together with the culture solution.
  • the feeder cell (Feeder cell) supply unit 130 includes a cell storage unit 132 for storing feeder cells (Feeder cells) and a culture solution, one end in the culture solution supply tube 24, and the other end in the storage unit.
  • a cell supply pipe 134 that is attached to the section 132 and feeds feeder cells (Feeder cells) and culture medium accommodated in the accommodation section 132 to the internal space 12, and is attached to the supply pipe 134.
  • a supply amount control unit 136 that controls the supply amount of feeder cells (Feeder cells) and culture solution to be supplied, and a supply pressure when supplying feeder cells (Feeder cells) and culture solution that are attached to the storage unit 132 are controlled. And a supply pressure control unit 138.
  • the cell accommodating part 132 is comprised by the resin-type accommodation container, for example.
  • the cell supply tube 134 is made of, for example, a resin tube.
  • the supply amount control unit 136 is configured by an electromagnetic valve, for example, as in the first embodiment.
  • the supply pressure control unit 138 includes, for example, a high pressure gas supply device that supplies high pressure gas from the cell storage unit 132 to the cell supply pipe 134.
  • the method of supplying feeder cells (Feeder cells) to the internal space 12 is, for example, when the culture fluid is supplied from the culture fluid water pressure supply unit 20 to the internal space 12, the supply amount control unit 136 is set to the “open” state.
  • the supply pressure is supplied from the supply pressure control unit 138, and the feeder cells (Feeder cells) and the culture solution in the cell storage unit 132 are supplied simultaneously.
  • the feeder cells (Feeder cells) flow together with the culture solution in the culture solution supply tube 24 and adhere to the second surface Sb of the cell culture support S.
  • the cell culture module according to the present embodiment having such a configuration, it is not necessary to separately install feeder cells (Feeder cells) on the second surface Sb of the cell culture carrier S, and the work is efficiently performed. Become.
  • the feeder cells (Feeder cells) can be directly attached to the second surface Sb of the cell culture carrier S in the cell culture module, contamination during cell culture can be prevented.
  • the feeder cell (Feeder cell) supply unit 130 described in the present embodiment may be applied to the other embodiments described above.
  • FIG. 17 is a conceptual diagram showing a cross-sectional configuration of the cell culture module according to the seventh embodiment.
  • the cell culture module 7 according to this embodiment is different in that the culture fluid circulation system 100 described in the fifth embodiment is replaced with a culture fluid circulation system 100a. Since others are the same as that of 5th Embodiment, description is abbreviate
  • the culture fluid circulation system 100a circulates the culture fluid filled in the internal space 12, and supplies air pressure to the culture fluid filled in the internal space 12.
  • the air pressure supply unit 140 supplies water pressure to the second surface Sb of the cell culture carrier S.
  • the circulation unit 110 a holds the culture solution in advance, and temporarily circulates the culture solution stored in the storage unit 112 in the internal space 12, and the culture solution storage unit 112 that temporarily stores the circulated culture solution.
  • a supply device 114a supplied from the direction Dn, pipes 116a, 116b, and 116c that connect the sealed system member 10, the accommodating portion 112, and the supply device 114a, and pipes 116a and 116c are connected to the circulation portion 110a.
  • Circulation amount control units 118a and 118b for controlling ON / OFF of the rotation amount and the circulation amount thereof.
  • the air pressure supply unit 140 includes, for example, an air pressure generating device 142 that generates air pressure, a pipe 144 having one end integrally or detachably connected to the pipe 116a and the other end connected to the air pressure generating apparatus 142, and a pipe 144. And an air pressure control unit 146 that controls the ON / OFF of the air pressure while preventing the culture medium from entering the air pressure generating device 142 from the pipe 116a.
  • the culture solution storage unit 112 is constituted by, for example, a resinous storage container.
  • the supply device 114a is constituted by a pump, for example.
  • the pipes 116a, 116b, and 116c are made of, for example, resin tubes.
  • the circulation amount control units 118a and 118b are configured by, for example, electromagnetic valves as described in the first embodiment.
  • the air pressure generator 142 is constituted by, for example, an air cylinder.
  • the piping 144 is made of, for example, a resin tube.
  • the air pressure control unit 146 is configured by, for example, an electromagnetic valve as described in the first embodiment.
  • the culture medium is filled into the internal space 12 by the supply device 114a that supplies the culture liquid into the internal space 12 from the circulation direction Dn, and the filled culture liquid is used. Circulate from the circulation direction Dn. By this circulation, water pressure is supplied to the concave portion S1 of the cell culture carrier S held in the internal space 12. Further, the air pressure is supplied to the second surface Sb of the cell culture carrier S by supplying air pressure to the culture solution filled in the internal space 12 by the air pressure supply unit 140.
  • FIGS. 18 and 19 are conceptual diagrams for explaining an example of a cell culture method using the cell culture module according to the present embodiment.
  • description of the part which overlaps with the part demonstrated in 1st Embodiment is abbreviate
  • the cell culture module 7 according to the present embodiment is configured.
  • the circulation amount control units 118a and 118b are set to the “open” state
  • the discharge amount control unit 36 is set to the “closed” state
  • the air pressure control unit 146 is set to the “closed” state.
  • the culture solution is supplied from the accommodating portion 112 into the internal space 12 of the closed system member 10 from the circulation direction Dn using the supply device 114a.
  • the internal volume 12 is filled by setting the circulation amount control units 118a and 118b to the “closed” state, the discharge amount control unit 36 to the “closed” state, and the air pressure control unit 146 to the “open” state.
  • the hydraulic pressure P 7 is supplied to the second surface Sb of the cell culture carrier S. Due to this fluid pressure, the cells cultured in the recess S1 of the cell culture carrier S are detached from the recess S1 of the cell culture carrier S and float in the culture solution in the internal space 12 (FIG. 19).
  • the discharge amount control unit 36 is set to the “open” state, the cultured cells are collected in the cell storage unit 32 via the cell discharge pipe 34 of the cell collection unit 30.
  • the cell culture module according to the present embodiment has the above-described configuration, it is possible to culture cells resistant to pressure such as chondrocytes, as in the fifth embodiment, and The cells cultured on the cell culture carrier can be easily detached from the cell culture carrier without performing an enzyme treatment such as trypsin treatment. Furthermore, compared to the fifth embodiment, it is possible to control the fluid pressure supplied P 7 on the second surface Sb of the carrier for cell culture S more precisely, of the pressure P 7 for each cell to be cultured High-precision control is possible.
  • the culture medium circulation system 100 described in the fifth embodiment may be further provided in the cell culture modules 1 and 2 described in the first and second embodiments.
  • the culture fluid circulation system 100 may be configured to supply hydraulic pressure (water pressure) to both the concave portion S1 and the second surface Sb as described in the fifth embodiment, and simply the internal space 12.
  • the cell culture carrier S may be disposed so as to face the horizontal direction only in order to circulate the culture medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

細胞を培養する凹部S1が設けられた多孔体からなる細胞培養担体Sを内部空間12に密閉可能に保持する密閉系部材10と、内部空間12に培養液が充填された状態で、内部空間12に保持された細胞培養担体Sの凹部S1が設けられた第1面Saに対向する第2面Sbに対して水圧を供給する水圧供給部20と、前記第2面Sbに対する水圧により前記凹部S1から剥離された細胞を内部空間12から回収する細胞回収部30と、を備える。

Description

細胞培養モジュール
 本発明は、細胞培養モジュールに関する。
 近年、ヒト骨髄液からの幹細胞の分離、目的とする組織細胞への分化・誘導、3次元培養技術、足場材料の開発等の進歩に伴い、細胞培養によって幹細胞から皮膚、骨、軟骨、血管、心臓弁、靭帯等の組織を作製することが可能となり、一部では、既に臨床応用が開始されている。
 なお、このような細胞の培養にあっては、基板表面上にアレイ状やハニカム状等に規則配列され、種細胞を凝集させて保持する細胞培養セルを備えた細胞培養チップを用いる技術が知られている(例えば、特許文献1)。
 また、細胞培養担体と細胞とを含む培養液を収納する培養容器と、培養液中で細胞培養担体を移動させるための磁場を発生する磁場発生装置とを備える細胞培養装置が知られている(例えば、特許文献2)。
特開2005-27598号公報 特開2004-313007号公報
 上述した特許文献1、2に示すような細胞培養技術は、細胞を培養させた後、前記細胞培養チップや前記細胞培養担体からの剥離作業が必要となる。この剥離作業は、通常、トリプシン処理等の酵素処理を用いて行う。
 しかしながら、このような酵素処理を長時間行うと培養した細胞はある程度劣化してしまい、最悪、細胞自体が死滅する場合がある。また、トリプシン処理等の酵素処理は、非常に作業が煩雑という問題もある。
 そこで、本発明は、上記課題を鑑みてなされたものであり、トリプシン処理等の酵素処理を行う事無く、細胞培養担体で培養した細胞を、該細胞培養担体から容易に剥離させることができる細胞培養モジュールを提供することを目的とする。
 本発明に係る細胞培養モジュールは、細胞を培養する凹部が設けられた多孔体からなる細胞培養担体を内部空間に密閉可能に保持する密閉系部材と、前記内部空間に培養液が充填された状態で、前記内部空間に保持された細胞培養担体の前記凹部が設けられた第1面に対向する第2面に対して水圧を供給する水圧供給部と、前記第2面に対する水圧により前記凹部から剥離された細胞を前記内部空間から回収する細胞回収部と、を備えることを特徴とする。
 このような構成とすることで、トリプシン処理等の酵素処理を行う事無く、細胞培養担体で培養した細胞を、該細胞培養担体から容易に剥離させることができる。
 また、本発明に係る細胞培養モジュールは、細胞を培養する凹部が設けられた多孔体からなる細胞培養担体を内部空間に密閉可能に保持する密閉系部材と、前記内部空間に培養液が充填された状態で、前記内部空間に保持された細胞培養担体の前記凹部及び前記凹部が設けられた第1面に対向する第2面に対して水圧を供給する水圧供給部と、前記第2面に対する水圧により前記凹部から剥離された細胞を前記内部空間から回収する細胞回収部と、を備えることを特徴とする。
 このような構成とすることで、軟骨細胞等の圧力に強い細胞を培養することができ、かつ、トリプシン処理等の酵素処理を行う事無く、細胞培養担体で培養した細胞を、該細胞培養担体から容易に剥離させることができる。
 また、本発明に係る細胞培養モジュールは、細胞を培養する凹部が設けられた多孔体からなる細胞培養担体を内部空間に密閉可能に保持する密閉系部材と、前記内部空間に培養液を充填し、前記充填させた培養液を循環させると共に、前記循環により前記内部空間に保持された細胞培養担体の前記凹部及び前記凹部が設けられた第1面に対向する第2面に対して水圧を供給する培養液循環系と、前記第2面に対する水圧により前記凹部から剥離された細胞を前記内部空間から回収する細胞回収部と、を備えることを特徴とする。
 このような構成とすることで、軟骨細胞等の圧力に強い細胞を培養することができ、かつ、トリプシン処理等の酵素処理を行う事無く、細胞培養担体で培養した細胞を、該細胞培養担体から容易に剥離させることができる。
 また、本発明に係る細胞培養モジュールは、細胞を培養する凹部が設けられた多孔体からなる細胞培養担体を内部空間に密閉可能に保持する密閉系部材と、前記内部空間に培養液を充填し、前記充填させた培養液を循環させると共に、前記循環により前記内部空間に保持された細胞培養担体の前記凹部に対して水圧を供給する培養液循環系と、前記内部空間に培養液が充填された状態で、前記内部空間に保持された細胞培養担体の前記凹部が設けられた第1面に対向する第2面に対して水圧を供給する水圧供給部と、前記第2面に対する水圧により前記凹部から剥離された細胞を前記内部空間から回収する細胞回収部と、を備えることを特徴とする。
 このような構成とすることで、軟骨細胞等の圧力に強い細胞を培養することができ、かつ、トリプシン処理等の酵素処理を行う事無く、細胞培養担体で培養した細胞を、該細胞培養担体から容易に剥離させることができる。
 前記内部空間に保持された細胞培養担体の水平方向から水圧を供給する第2の水圧供給部を更に備えたことが好ましい。
 このような構成とすることで、本発明に係る細胞培養モジュールは灌流培養も可能となる。
 前記細胞培養担体を構成する多孔体の気孔の平均気孔径が10nm以上10μm以下であり、前記気孔は前記細胞培養担体の前記凹部の表面から、前記第2面まで連通して設けられていることが好ましい。
 このような構成とすることで、細胞培養担体の第2面に供給した水圧を、該細胞培養担体の凹部の表面まで伝達することができるため、細胞培養担体の凹部で培養した細胞を、細胞培養担体から容易に剥離させることができる。
 本発明は、トリプシン処理等の酵素処理を行う事無く、細胞培養担体で培養した細胞を、該細胞培養担体から容易に剥離させることができる細胞培養モジュールが提供される。
第1の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。 第1の実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。 第1の実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。 第1の実施形態の変形例に係る細胞培養モジュールの断面構成を示す概念図である。 第2の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。 第2の実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。 第3の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。 第3の実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。 第3の実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。 第3の実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。 第4の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。 第5の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。 第5の実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。 第5の実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。 第6の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。 第6の実施形態の変形例に係る細胞培養モジュールの断面構成を示す概念図である。 第7の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。 第7の実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。 第7の実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。
符号の説明
1   細胞培養モジュール
10  密閉系部材
20  培養液水圧供給部
30  細胞回収部
40  空気圧供給部
50  第2の培養液供給部
100 培養液循環系
130 フィーダー細胞(Feeder細胞)供給部
 以下、本発明について、図面を参照して、詳細に説明する。
(第1の実施形態)
 図1は、第1の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。
 本実施形態に係る細胞培養モジュール1は、図1に示すように、密閉系部材10と、培養液水圧供給部20と、細胞回収部30とで構成されている。
 密閉系部材10は、例えば、図1に示すように、下蓋10Aと、下蓋10A上に設けられた上蓋10Bと、下蓋10Aと上蓋10Bとを固定する固定部材15と、で構成されている。
 下蓋10Aは、図1に示すように、細胞培養担体Sを保持し、かつ、培養液を収容するための凹部10Aaを備える凹形状で構成されている。
 上蓋10Bは、図1に示すように、下蓋10A上に設けられ、下蓋10Aと内部空間12を形成し、該内部空間12を密閉可能に保持するために、該下蓋10Aの凹部10Aaに密閉可能に契合する凸部10Baを備えている。
 細胞培養担体Sの保持は、例えば、図1に示すように、下蓋10Aの凹部10Aaの底部10Aa1にO-リング17aを配置し、O-リング17a上に細胞培養担体Sを配置し、細胞培養担体S上にO-リング17bを配置し、O-リング17a、細胞培養担体S及びO-リング17bを、下蓋10Aと上蓋10Bとを一体に固定する際に、上蓋10Bの凸部10Baで、O-リング17bを加圧することで、下蓋10Aの凹部10Aa内に細胞培養担体Sを保持する。
 なお、下蓋10Aの凹部10Aaに、上蓋10Bの凸部10Baを契合させる際には、内部空間12が密閉可能に保持されるように、上蓋10Bの凸部10Baに設けられた窪みにO-リング17cを取り付けてから行う。
 下蓋10A及び上蓋10Bは、例えば、アクリル樹脂で構成されている。
 固定部材15は、例えば、SUS304で構成されている。
 O-リング17a、17b、17cは、例えば、フッ素系ゴムで構成されている。
 なお、前記密閉系部材10は、本実施形態では、前述したように、下蓋10Aと上蓋10Bとが固定部材15により一体に固定された構成で説明しているが、本発明は、細胞培養担体Sを内部空間12に密閉可能に保持することができれば、上述した構成に限定されない。
 内部空間12に密閉可能に保持される細胞培養担体Sは、その表面(第1面)Saに細胞を培養するための凹部S1が設けられた多孔体で構成されている。
 前記細胞培養担体Sは、ジルコニア、イットリア、チタニア、アルミナ、シリカ、ハイドロキシアパタイトおよびβ-リン酸三カルシウムのうちの少なくともいずれか1種のセラミックスまたはガラスにより構成される。これらのセラミックスまたはガラスは、生体安定性が高いため、好適である。
 培養液水圧供給部20は、下蓋10Aの底部10Aa1に一体に又は着脱可能に設けられ、該内部空間12に培養液を供給する。
 培養液水圧供給部20は、例えば、図1に示すように、培養液を収容する培養液収容部22と、一端が該底部10Aa1に他端が該収容部22に取り付けられ、該収容部22に収容された培養液を該内部空間12に供給する培養液供給管24と、該供給管24に取り付けられ、該内部空間12に供給する培養液の供給量を制御する供給量制御部26と、該収容部22に取り付けられ培養液供給の際の供給圧を制御する供給圧制御部28とを備える。
 培養液収容部22は、例えば、樹脂性の収容容器で構成されている。
 培養液供給管24は、例えば、樹脂性のチューブで構成されている。
 供給量制御部26は、例えば、該培養液の供給量を制御する電磁弁で構成されている。電磁弁は図示しない制御部により、その開閉動作及び開閉量が制御され、その開閉量によって、該培養液の供給量が制御される。
 供給圧制御部28は、例えば、培養液収容部22から培養液供給管24に対して高圧ガスを供給する高圧ガス供給装置で構成されている。
 更に、培養液水圧供給部20は、該内部空間12に保持された細胞培養担体Sの裏面側Sb(細胞培養担体Sの凹部S1が設けられた面(第1面)Saに対向する面(第2面))方向に液圧を与えることで、前記第2面Sbに水圧を供給する。
 水圧を与える方法は、密閉された内部空間12に培養液が充填された状態で、該内部空間12に培養液を供給するように供給量制御部26及び供給圧制御部28を制御することで行う。
 すなわち、内部空間12に培養液が充填された状態で、供給量制御部26を開状態として、供給圧制御部28により培養液の供給圧を大きくすることで大きい水圧が、供給圧を小さくすることで小さい水圧が細胞培養担体Sの第2面Sbに供給される。
 前記水圧を細胞培養担体Sの第2面Sbに与えることにより、細胞培養担体Sの凹部S1で培養された細胞は、細胞培養担体Sから剥離され、内部空間12に充填された培養液内に浮遊する。
 なお、細胞培養担体Sの第2面Sbに供給した水圧を、該細胞培養担体Sの凹部S1の表面まで伝達させるためには、該細胞培養担体Sは多孔質体(多孔体)で構成されていることが必要である。
 より好ましくは、前記細胞培養担体Sを構成する多孔体の気孔の平均気孔径が10nm以上10μm以下であり、前記気孔は前記細胞培養担体Sの前記凹部S1の表面から、前記第2面Sbまで連通して設けられていることが好ましい。
 このような構成とすることで、細胞培養担体Sの第2面Sbに供給した水圧を、該細胞培養担体Sの凹部S1の表面まで伝達することができるため、細胞培養担体Sの凹部S1で培養した細胞を、細胞培養担体Sから容易に剥離させることができる。
 細胞回収部30は、上蓋10Bの上部10Ba1に一体に又は着脱可能に設けられ、細胞培養担体Sの凹部S1で培養され、細胞培養担体Sの第2面Sbに供給した水圧により、細胞培養担体Sから剥離された細胞を培養液ごと密閉系部材10の内部空間12から回収する。
 細胞回収部30は、例えば、図1に示すように、培養した細胞を培養液ごと収容する細胞収容部32と、一端が該上部10Ba1に、他端が該収容部32に取り付けられ、該内部空間12内で培養された細胞を培養液ごと該内部空間12から排出する細胞排出管34と、該排出管34に取り付けられ、該内部空間12から排出される培養液の排出量を制御する排出量制御部36とで構成されている。
 細胞収容部32は、例えば、樹脂性の収容容器で構成されている。
 細胞排出管34は、例えば、樹脂性のチューブで構成されている。
 排出量制御部36は、例えば、該排出量を制御する電磁弁で構成されている。電磁弁は図示しない制御部により、その開閉動作及び開閉量が制御され、その開閉量によって、該排出量を制御する。
 次に、図1に示す細胞培養モジュールを用いた細胞培養方法の一例を、図2、3を用いて説明する。
 図2、3は、本実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。
 最初に細胞培養担体Sの第2面Sbに、フィーダー細胞(Feeder細胞)を設置する。
 次に、凹形状の下蓋10Aを用意し、下蓋10Aの底部10Aa1にO-リング17a、フィーダー細胞(Feeder細胞)が設置された細胞培養担体S及びO-リング17bをこの順で積層して下蓋10Aの凹部10Aa内に設置する。その後、下蓋10Aの凹部10Aa内に設置した細胞培養担体Sの凹部S1に培養する細胞を設置する。なお、培養する細胞が細胞培養担体Sの凹部S1に設置されると、前記設置した細胞は、細胞培養担体Sの表面に付着され、保持される。
 その後、上蓋10Bの凸部10Baの窪みにO-リング17cを挿入し、下蓋10Aの凹部10Aaと、上蓋10Bの凸部10Baとをそれぞれ契合させるように嵌め合わせ、固定部材15により下蓋10Aと上蓋10Bとを一体に固定して、内部空間12が形成された本実施形態に係る密閉系部材10を構成する。
 その後、下蓋10Aの底部10Aa1に培養液水圧供給部20の培養液供給管24を取り付けると共に、上蓋10Bの上部10Ba1に細胞回収部30の細胞排出管34を取り付けることで、本実施形態に係る細胞培養モジュール1を構成する。
 次に、細胞回収部30の排出量制御部36を「開」状態とし(本実施形態では排出量制御部36の電磁弁を「開」状態として)、培養液水圧供給部20の供給量制御部26を「開」状態とし(本実施形態では供給量制御部26の電磁弁を「開」状態として)、更に、供給圧制御部28から供給圧を与えることで該内部空間12内に培養液が完全に満たされるまで、培養液収容部22から培養液を供給する。
 内部空間12に培養液が完全に満たされた時点で供給圧制御部28からの供給圧を止めて、供給量制御部26を「閉」状態とし(本実施形態では供給量制御部26の電磁弁を「閉」状態とし)、同時に、細胞回収部30の排出量制御部36を「閉」状態(本実施形態では排出量制御部36の電磁弁を「閉」状態)とする。これによって、細胞培養担体Sの凹部S1に保持された細胞が培養される環境が整う(図2)。
 細胞培養後、細胞回収部30の排出量制御部36を「開」状態として内部空間12内の培養液の排出を開始すると共に、培養液水圧供給部20の供給量制御部26を「開」状態とし、更に、供給圧制御部28から供給圧を与えて内部空間12に新たに培養液の供給を開始する。この操作により、細胞培養担体Sの第2面Sb方向に、培養液水圧供給部20から液圧P1が供給される。この液圧P1により、細胞培養担体Sの第2面Sbには水圧が供給されるため、細胞培養担体Sの凹部S1で培養された細胞は、細胞培養担体Sの凹部S1の表面から剥離され、内部空間12内の培養液内に浮遊し、そのまま、培養液と共に、細胞回収部30の細胞排出管34を経て、細胞収容部32に回収される(図3)。
 以上より、本実施形態に係る細胞培養モジュールは、上述したような構成を備えているため、トリプシン処理等の酵素処理を行う事無く、細胞培養担体で培養した細胞を、該細胞培養担体から容易に剥離させることができる。
 なお、本実施形態で説明した細胞回収部30は、図1では、上蓋10Bの上部10Ba1に、すなわち、細胞培養担体Sの凹部S1の上方(垂直方向)に設けられた構成で説明したが、本願発明はこれに限定されるものではなく、例えば、図4に示すように、下蓋10Aの凹部10Aaに保持された細胞培養担体Sの前記垂直方向と垂直に交差する水平方向(図4では紙面方向)に前記細胞回収部30の細胞排出管34を設置してもよい。
 また、本実施形態では、該制御部26、36について電磁弁を用いた例で説明したが、例えば、シリンダー等で制御してもよく、単なる手動式の弁で構成してもよい。
(第2の実施形態)
 図5は、第2の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。
 本実施形態に係る細胞培養モジュール2は、第1の実施形態で説明した図1に示す培養液水圧供給部20が、細胞培養担体Sの水平方向(図5では紙面方向)に配置され、図1に示す培養液水圧供給部20の位置に空気圧供給部40が設けられた点が異なる。その他は、第1の実施形態と同様なため説明を省略する。
 空気圧供給部40は、下蓋10Aの底部10Aa1に一体に又は着脱可能に設けられ、該内部空間12に充填された培養液に空気圧を供給することで、細胞培養担体Sの第2面Sbに水圧を供給する。
 空気圧供給部40は、例えば、空気圧を発生させる空気圧発生装置42と、前記下蓋10Aの底部10Aa1に一体に又は着脱可能に設けられ、前記空気圧発生装置42で発生させた空気圧を該内部空間12に供給する空気圧供給管44とで構成されている。
 空気圧発生装置42は、例えば、エアーシリンダーで構成されている。
 空気圧供給管44は、例えば、樹脂性のチューブで構成されている。
 次に、図5に示す細胞培養モジュールを用いた細胞培養方法の一例を、図6を用いて説明する。なお、第1の実施形態で説明した部分と重複する部分の説明は省略する。
 図6は、本実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。
 最初に、本実施形態に係る密閉系部材10を構成する。その後、下蓋10Aの底部10Aa1に空気圧供給部40の空気圧供給管44を取り付け、細胞培養担体Sの水平方向に培養液水圧供給部20の培養液供給管24を取り付け、更に、上蓋10Bの上部10Ba1に細胞回収部30の細胞排出管34を取り付けることで、本実施形態に係る細胞培養モジュール2を構成する。
 次に、細胞回収部30の排出量制御部36を「開」状態とし、培養液水圧供給部20の供給量制御部26を「開」状態とし、更に、供給圧制御部28から供給圧を与え、該内部空間12に培養液が完全に満たされるまで、培養液収容部22から培養液を供給する。
 内部空間12内に培養液が完全に満たされた時点で供給圧制御部28から供給圧を止めて、供給量制御部26を「閉」状態とし、同時に、細胞回収部30の排出量制御部36を「閉」状態とする。これによって、細胞培養担体Sの凹部S1に保持された細胞が培養される環境が整う。
 細胞培養後、空気圧発生装置42により空気圧P2を該内部空間12内に保持された細胞培養担体Sの第2面Sb方向に充填された培養液に供給する。これによって、細胞培養担体Sの第2面Sbには水圧が供給される。この水圧により、細胞培養担体Sの凹部S1で培養された細胞は、細胞培養担体Sから剥離され、内部空間12内の培養液内に浮遊する(図6)。
 その後、培養液水圧供給部20の供給量制御部26を「開」状態とし、更に、供給圧制御部28から供給圧を与えて内部空間12に新たに培養液の供給を開始すると共に、細胞回収部30の排出量制御部36を「開」状態として内部空間12内の培養液の排出を開始すると、該内部空間12内に浮遊した培養された細胞は該培養液と共に、細胞回収部30の細胞排出管34を経て、細胞収容部32に回収される。
 以上より、本実施形態に係る細胞培養モジュールは、上述したような構成を備えているため、トリプシン処理等の酵素処理を行う事無く、細胞培養担体で培養した細胞を、細胞培養担体から容易に剥離させることができる。
 なお、本実施形態に係る細胞培養モジュール2では、培養液水圧供給部20が、細胞培養担体Sの水平方向に配置され、該水平方向から該内部空間12に培養液を供給するが、該培養液の供給と共に、該内部空間12に培養液が充填された状態で、該内部空間12に液圧を与えて、該水平方向から水圧を供給してもよい。
 この液圧を与える方法は、第1の実施形態で説明したのと同様であるため、説明を省略する。
 このように、水平方向から該内部空間12に水圧を与えることで、該内部空間12内の培養液の流れを制御することができるため、灌流培養も可能となる。
(第3の実施形態)
 図7は、第3の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。
 本実施形態に係る細胞培養モジュール3は、第1の実施形態で説明した図4に示す細胞培養モジュールの該上部10Ba1に、新たに、該内部空間12に培養液を供給する第2の培養液水圧供給部50が設けられた点が異なる。その他は、第1の実施形態と同様なため、説明を省略する。
 第2の培養液水圧供給部50は、上蓋10Bの上部10Ba1に一体に又は着脱可能に設けられ、該内部空間12に培養液を供給する。
 第2の培養液水圧供給部50は、図7に示すように、培養液を収容する培養液収容部52と、一端が該上部10Ba1に、他端が該収容部52に取り付けられ、該収容部52に収容された培養液を該内部空間12に供給する培養液供給管54と、該供給管54に取り付けられ該内部空間12に供給する培養液の供給量を制御する供給量制御部56と、該収容部52に取り付けられ培養液供給の際の供給圧を制御する供給圧制御部58とを備える。
 培養液収容部52は、例えば、樹脂性の収容容器で構成されている。
 培養液供給管54は、例えば、樹脂性のチューブで構成されている。
 供給量制御部56は、例えば、該培養液の供給量を制御する電磁弁で構成されている。電磁弁は図示しない制御部により、その開閉動作及び開閉量が制御され、その開閉量によって、該培養液の供給量を制御される
 供給圧制御部58は、例えば、培養液収容部52から培養液供給管54に対して高圧ガスを供給する高圧ガス供給装置で構成されている。
 また、前記第2の培養液水圧供給部50は、該内部空間12に保持された細胞培養担体Sの凹部S1方向に液圧を与えることで、該凹部S1に水圧を供給する。
 水圧を与える方法は、密閉された内部空間12に培養液が充填された状態で、該内部空間12に培養液を供給するように供給量制御部56及び供給圧制御部58を制御することで行う。
 すなわち、内部空間12に培養液が充填された状態で、供給量制御部56を「開」状態として、供給圧制御部58により培養液の供給圧を大きくすることで大きい水圧が、供給圧を小さくすることで小さい水圧が細胞培養担体Sの凹部S1に供給される。
 第2の培養液水圧供給部50により液圧を細胞培養担体Sの凹部S1方向に与えながら、凹部S1内で細胞を培養すると、軟骨細胞等の圧力に強い細胞を培養することができる。
 次に、図7に示す細胞培養モジュールを用いた細胞培養方法を、図8から10を用いて説明する。
 図8から10は、本実施形態に係る細胞培養モジュール3を用いた細胞培養方法の一例を説明するための概念図である。なお、第1の実施形態で説明した部分と重複する部分の説明は省略する。
 最初に、本実施形態に係る細胞培養モジュール3を構成する。
 次に、細胞回収部30の排出量制御部36を「開」状態とし、培養液水圧供給部20の供給量制御部26を「開」状態とし、更に、供給圧制御部28から供給圧を与え、該内部空間12に培養液が完全に満たされるまで培養液を供給する。
 この際、第2の培養液水圧供給部50においても同様に供給量制御部56及び供給圧制御部58を制御して培養液を供給してもよい。または、第2の培養液水圧供給部50のみで培養液を供給してもよい。
 内部空間12内に培養液が完全に満たされた時点で供給圧制御部28からの供給圧を止めて、供給量制御部26を「閉」状態として、培養液水圧供給部20における培養液の供給を停止する。この際、同様に、細胞回収部30の排出量制御部36も「閉」状態とする(図8)。
 次に、第2の培養液水圧供給部50の供給量制御部56を「開」状態とし、供給圧制御部58から供給圧を与え、細胞培養担体Sの凹部S1方向に液圧P3を供給しながら細胞を培養する(図9)。
 細胞培養後、供給圧制御部58からの供給圧を止めて、供給量制御部56を「閉」状態とし、細胞培養担体Sの凹部S1方向に対する液圧P3の供給を停止し、その後、細胞回収部30の排出量制御部36を「開」状態として内部空間12内の培養液の排出を開始すると共に、培養液水圧供給部20の供給量制御部26を「開」状態とし、更に、供給圧制御部28から供給圧を与えて内部空間12に新たに培養液の供給を開始する。この操作により、細胞培養担体Sの第2面Sb方向に、培養液水圧供給部20から液圧P1が供給される。この液圧P1により、細胞培養担体Sの第2面Sbには水圧が供給されるため、該細胞培養担体Sの凹部S1で培養された細胞は、細胞培養担体Sの凹部S1の表面から剥離され、内部空間12内の培養液内に浮遊し、そのまま、培養液と共に、細胞回収部30の細胞排出管34を経て、細胞収容部32に回収される(図10)。
 以上より、本実施形態に係る細胞培養モジュールは、上述したような構成を備えているため、軟骨細胞等の圧力に強い細胞を培養することができ、かつ、トリプシン処理等の酵素処理を行う事無く、細胞培養担体で培養した細胞を、該細胞培養担体から容易に剥離させることができる。
 なお、本実施形態で説明した第2の培養液水圧供給部50は、第2の実施形態で説明したような図5に示す空気圧供給部40で構成してもよい。この場合、空気圧供給部40により、該内部空間12に充填された培養液に空気圧を供給することで、細胞培養担体Sの凹部S1に水圧を供給することができるため、本実施形態で説明した効果と同様な効果を得ることができる。
(第4の実施形態)
 図11は、第4の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。
 本実施形態に係る細胞培養モジュール4は、第3の実施形態で説明した図7に示す培養液水圧供給部20、第2の培養液水圧供給部50が、第2の実施形態で説明した空気圧供給部40に各々置き換えられ、また、細胞培養担体Sの水平方向に設けられた細胞回収部30に対向する方向に培養液水圧供給部20が新たに設けられた点が異なる。その他は、第3の実施形態と同様なため、説明を省略する。
 下蓋10Aの底部10Aa1に取り付けられた空気圧供給部40は、前述した第2の実施形態と構成及び作用が同様であるため説明を省略する。また、上蓋10Bの上部Ba1に取り付けられた空気圧供給部40においても、前述した第3の実施形態と構成及び作用が同様であるため説明を省略する。
 次に、図11に示す細胞培養モジュールを用いた細胞培養方法の一例を説明する。
 なお、第1から第3の実施形態で説明した部分と重複する部分の説明は省略する。
 最初に、本実施形態に係る細胞培養モジュール4を構成する。
 次に、細胞回収部30の排出量制御部36を「開」状態とし、更に、培養液水圧供給部20の供給量制御部26を「開」状態とし、供給圧制御部28から供給圧を与え、該内部空間12に培養液が完全に満たされるまで、培養液収容部22から培養液を供給する。内部空間12内に培養液が完全に満たされた時点で、供給圧制御部28からの供給圧を止めて、細胞回収部30の排出量制御部36及び培養液水圧供給部20の供給量制御部26を「閉」状態とする。
 細胞培養の際には、上蓋10Bの上部Ba1に取り付けられた空気圧供給部40により、細胞培養担体Sの凹部S1上に水圧を供給しながら培養を行う。これによって、軟骨細胞等の圧力に強い細胞を培養することができる。
 また、細胞培養中に、培養液水圧供給部20から該内部空間12内に細胞培養担体Sの水平方向に液圧を与えてもよい。このような構成とすることで内部空間12内の培養液の流れを制御することができ、灌流培養も可能となる。
 細胞培養後、下蓋10Aの底部10Aa1に取り付けられた空気圧供給部40により、細胞培養担体Sの第2面Sbに水圧を供給して、細胞培養担体Sの凹部S1で培養された細胞を細胞培養担体Sから剥離させて、内部空間12内の培養液内に浮遊させる。
 その後、培養液供給部20の供給量制御部26を「開」状態とし、供給圧制御部28から供給圧を与え、内部空間12に新たに培養液の供給を開始すると共に、細胞回収部30の排出量制御部36を「開」状態とし、内部空間12内の培養液の排出を開始すると、該内部空間12内に浮遊した培養された細胞は該培養液と共に、細胞回収部30の細胞排出管34を経て、細胞収容部32に回収される。
 以上より、本実施形態に係る細胞培養モジュールは、上述したような構成を備えているため、軟骨細胞等の圧力に強い細胞を培養することができ、かつ、トリプシン処理等の酵素処理を行う事無く、細胞培養担体で培養した細胞を、該細胞培養担体から容易に剥離させることができる。更に、細胞培養担体Sの水平方向に設けられた細胞回収部30と対向する方向に培養液水圧供給部20が設けられているため、培養した細胞を細胞回収部32に回収するスピードが向上するという効果も有する。
(第5の実施形態)
 図12は、第5の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。
 本実施形態に係る細胞培養モジュール5は、第1の実施形態で説明した図4に示す培養液水圧供給部20に変え、内部空間12内の培養液を循環させる培養液循環系100が新たに設けられた点が異なる。その他は、第1の実施形態と同様なため、説明を省略する。
 培養液循環系100は、例えば、図12に示すように、内部空間12内に充填された培養液を循環させる循環部110と、循環部110の循環方向(Dn or Up)を可変させる可変部120とで構成されている。
 循環部110は、培養液を事前に保持すると共に、循環された培養液を一時的に収容する培養液収容部112と、該収容部112に収容された培養液を該内部空間12内に供給する供給装置114と、該密閉系部材10、該収容部112及び供給装置114間を連結する配管116a、116b、116cと、配管116a、116cに取り付けられ、該循環部110の循環のON/OFF及びその循環量を制御する循環量制御部118a、118bとを備える。
 可変部120は、循環部110の配管116aに空気圧を供給する空気圧発生装置122と、一端が該配管116aに一体に又は着脱可能に連結され、他端が該発生装置122に接続された配管124と、配管124に取り付けられ、配管116aからの培養液の該発生装置122への侵入を防止すると共に、空気圧のON/OFFを制御する空気圧制御部126とで構成されている。
 培養液収容部112は、例えば、樹脂性の収容容器で構成されている。
 供給装置114は、例えば、ポンプで構成されている。
 配管116a、116b、116cは、例えば、樹脂性のチューブで構成されている。
 循環量制御部118a、118bは、例えば、第1の実施形態で説明したような電磁弁で構成されている。
 空気圧発生装置122は、例えば、エアーシリンダーで構成されている。
 配管124は、例えば、樹脂性のチューブで構成されている。
 空気圧制御部126は、例えば、第1の実施形態で説明したような電磁弁で構成されている。
 本実施形態に示す細胞培養モジュール5では、前述した制御部118a、118b、126の開閉動作を駆使して、密閉系部材10と循環部110との間の循環方向(Dn、Up)を制御する。循環方向がDnとなるように制御部118a、118b、126の開閉動作を制御すると、培養液が密閉系部材10と循環部110との間を循環し、その循環方向(Dn)に液圧が加わるため、細胞培養担体Sの凹部S1に水圧が供給される。また、循環方向がUpとなるように制御部118a、118b、126の開閉動作を制御すると、培養液が密閉系部材10と循環部110との間を循環し、その循環方向(Up)に液圧が加わるため、細胞培養担体Sの第2面Sbに水圧が供給される。制御部118a、118b、126の開閉動作の制御は後述する。
 次に、図12に示す細胞培養モジュールを用いた細胞培養方法を、図13、図14を用いて説明する。
 図13、14は、本実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。なお、第1の実施形態で説明した部分と重複する部分の説明は省略する。
 最初に、本実施形態に係る細胞培養モジュール5を構成する。
 次に、循環量制御部118a、118bを「開」状態とし、排出量制御部36を「閉」状態とし、予め培養液が収容されている培養液収容部112から供給装置114を用いて、密閉系部材10の内部空間12内に培養液を完全に満たされるまで供給する。
 なお、前記培養液を供給する方向は、空気圧制御部126の開閉動作により制御することができる。すなわち、空気圧制御部126を「開」状態とすることで前記供給する方向をDn、空気圧制御部126を「閉」状態とすることで前記供給する方向をUpに制御することができる。
 次に、該内部空間12内に培養液が完全に満たされた状態で、前記培養液を供給する方向をDnとする。なお、内部空間12内に培養液を供給する際の方向がDnであった場合はそのまま継続し、該方向がUpであった場合は、供給する方向をDnに変えて継続する。この培養液の供給を継続させることで、培養液を密閉系部材10の内部空間12と循環部110との間を循環させる。
 このように、培養液の供給する方向をDnに継続させることで、培養液が密閉系部材10と循環部110との間を循環されつつ、細胞培養担体Sの凹部S1方向に液圧P4が供給される(図13)。そのため、骨細胞等の圧力に強い細胞も培養することができる。
 細胞培養後、空気圧制御部126を「閉」状態とすることで供給方向をUpとする。
 このように、培養液の供給する方向をUpとすることで、細胞培養担体Sの第2面Sbに液圧P5が供給される。この液圧により、該細胞培養担体Sの凹部S1で培養された細胞は、細胞培養担体Sの凹部S1から剥離され、内部空間12内の培養液内に浮遊する(図14)。
 その後、排出量制御部36を「開」状態とし、制御部118bを「閉」状態とすることで、該培養液と共に、培養された細胞は、細胞回収部30の細胞排出管34を経て、細胞収容部32に回収される。
 以上より、本実施形態に係る細胞培養モジュールは、上述したような構成を備えているため、軟骨細胞等の圧力に強い細胞を培養することができ、かつ、トリプシン処理等の酵素処理を行う事無く、細胞培養担体で培養した細胞を、該細胞培養担体から容易に剥離させることができる。また、培養液を循環させることができるため、灌流培養も可能となる。
(第6の実施形態)
 図15は、第6の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。
 本実施形態に係る細胞培養モジュール6は、第1の実施形態で説明した培養液供給部20の培養液供給管24にフィーダー細胞(Feeder細胞)を供給するフィーダー細胞(Feeder細胞)供給部130を新たに備える点が異なる。その他は、第1の実施形態と同様なため、説明を省略する。
 フィーダー細胞(Feeder細胞)供給部130は、培養液供給管24に一体に又は着脱可能に設けられ、該内部空間12に培養液と共にフィーダー細胞(Feeder細胞)を供給する。
 フィーダー細胞(Feeder細胞)供給部130は、図15に示すように、フィーダー細胞(Feeder細胞)及び培養液を収容する細胞収容部132と、一端が培養液供給管24に、他端が該収容部132に取り付けられ、該収容部132に収容されたフィーダー細胞(Feeder細胞)及び培養液を該内部空間12に供給する細胞供給管134と、該供給管134に取り付けられ、該内部空間12に供給するフィーダー細胞(Feeder細胞)及び培養液の供給量を制御する供給量制御部136と、該収容部132に取り付けられフィーダー細胞(Feeder細胞)及び培養液の供給の際の供給圧を制御する供給圧制御部138とで構成されている。
 細胞収容部132は、例えば、樹脂性の収容容器で構成されている。
 細胞供給管134は、例えば、樹脂性のチューブで構成されている。
 供給量制御部136は、例えば、第1の実施形態と同様に電磁弁で構成されている。
 供給圧制御部138は、例えば、細胞収容部132から細胞供給管134に対して高圧ガスを供給する高圧ガス供給装置で構成されている。
 なお、フィーダー細胞(Feeder細胞)を内部空間12に供給する方法は、例えば、培養液水圧供給部20から培養液を該内部空間12に供給する際、供給量制御部136を「開」状態とし、供給圧制御部138から供給圧を与え、細胞収容部132内のフィーダー細胞(Feeder細胞)及び培養液を同時に供給する。これによって、フィーダー細胞(Feeder細胞)は、そのまま、培養液供給管24内を培養液と共に流れていき、細胞培養担体Sの第2面Sbに付着される。
 本実施形態に係る細胞培養モジュールは、このような構成とすることで、細胞培養担体Sの第2面Sbにフィーダー細胞(Feeder細胞)を別作業で設置する必要が無く、作業が効率的になる。また、直接、細胞培養モジュール内で、細胞培養担体Sの第2面Sbにフィーダー細胞(Feeder細胞)を付着させることができるため、細胞培養の際の汚染も防止することができる。
 また、本実施形態で説明したフィーダー細胞(Feeder細胞)供給部130は、前述したその他の実施形態に適用してもよい。なお、前述した第5の実施形態に係る細胞培養モジュール5に適用する場合は、図16に示すような構成を備えるとよい。
(第7の実施形態)
 図17は、第7の実施形態に係る細胞培養モジュールの断面構成を示す概念図である。
 本実施形態に係る細胞培養モジュール7は、第5の実施形態で説明した培養液循環系100が、培養液循環系100aに置き換えられた点が異なる。その他は、第5の実施形態と同様であるため、説明を省略する。
 培養液循環系100aは、例えば、図17に示すように、内部空間12内に充填された培養液を循環させる循環部110aと、内部空間12に充填された培養液に空気圧を供給することで、細胞培養担体Sの第2面Sbに水圧を供給する空気圧供給部140と、で構成されている。
 循環部110aは、培養液を事前に保持すると共に、循環された培養液を一時的に収容する培養液収容部112と、該収容部112に収容された培養液を該内部空間12内に循環方向Dnから供給する供給装置114aと、該密閉系部材10、該収容部112及び供給装置114a間を連結する配管116a、116b、116cと、配管116a、116cに取り付けられ、該循環部110aの循環のON/OFF及びその循環量を制御する循環量制御部118a、118bとを備える。
 空気圧供給部140は、例えば、空気圧を発生させる空気圧発生装置142と、一端が該配管116aに一体に又は着脱可能に連結され、他端が空気圧発生装置142に接続された配管144と、配管144に取り付けられ、配管116aからの培養液の空気圧発生装置142への侵入を防止すると共に、空気圧のON/OFFを制御する空気圧制御部146とで構成されている。
 培養液収容部112は、例えば、樹脂性の収容容器で構成されている。
 供給装置114aは、例えば、ポンプで構成されている。
 配管116a、116b、116cは、例えば、樹脂性のチューブで構成されている。
 循環量制御部118a、118bは、例えば、第1の実施形態で説明したような電磁弁で構成されている。
 空気圧発生装置142は、例えば、エアーシリンダーで構成されている。
 配管144は、例えば、樹脂性のチューブで構成されている。
 空気圧制御部146は、例えば、第1の実施形態で説明したような電磁弁で構成されている。
 本実施形態に示す細胞培養モジュール7では、該内部空間12内に循環方向Dnから培養液を供給する供給装置114aにより、該内部空間12内に培養液を充填し、前記充填させた培養液を循環方向Dnから循環させる。この循環により前記内部空間12に保持された細胞培養担体Sの凹部S1に水圧が供給される。また、空気圧供給部140により、該内部空間12に充填された培養液に空気圧を供給することで、細胞培養担体Sの第2面Sbに水圧を供給される。
 次に、図17に示す細胞培養モジュールを用いた細胞培養方法を、図18、図19を用いて説明する。
 図18、19は、本実施形態に係る細胞培養モジュールを用いた細胞培養方法の一例を説明するための概念図である。なお、第1の実施形態で説明した部分と重複する部分の説明は省略する。
 最初に、本実施形態に係る細胞培養モジュール7を構成する。
 次に、循環量制御部118a、118bを「開」状態とし、排出量制御部36を「閉」状態とし、空気圧制御部146を「閉」状態とし、予め培養液が収容されている培養液収容部112から供給装置114aを用いて、循環方向Dnから密閉系部材10の内部空間12内に培養液を供給する。
 該内部空間12内に培養液が完全に満たされた状態で、そのまま供給を継続し、培養液を密閉系部材10の内部空間12と循環部110aとの間を循環させる。
 このように、培養液の供給する方向をDnに継続させることで、細胞培養中においても培養液が密閉系部材10と循環部110aとの間を循環されつつ、細胞培養担体Sの凹部S1方向に液圧P6が供給される(図18)。そのため、骨細胞等の圧力に強い細胞も培養することができる。
 細胞培養後、循環量制御部118a、118bを「閉」状態とし、排出量制御部36を「閉」状態とし、空気圧制御部146を「開」状態とすることで該内部空間12に充填された培養液に空気圧を供給することで、細胞培養担体Sの第2面Sbに液圧P7が供給される。この液圧により、該細胞培養担体Sの凹部S1で培養された細胞は、細胞培養担体Sの凹部S1から剥離され、内部空間12内の培養液内に浮遊する(図19)。その後、排出量制御部36を「開」状態にすることで、培養された細胞は、細胞回収部30の細胞排出管34を経て、細胞収容部32に回収される。
 以上より、本実施形態に係る細胞培養モジュールは、上述したような構成を備えているため、第5の実施形態と同様に、軟骨細胞等の圧力に強い細胞を培養することができ、かつ、トリプシン処理等の酵素処理を行う事無く、細胞培養担体で培養した細胞を、該細胞培養担体から容易に剥離させることができる。更に、第5の実施形態と比べて、細胞培養担体Sの第2面Sbに供給する液圧P7をより高精度に制御することができるため、培養する細胞毎に前記液圧P7の高精度な制御が可能となる。
(その他の実施形態)
 以上、本発明の実施形態について詳細に説明したが、本発明は、その要旨を逸脱しない範囲において、各種の設計変更や改良を行うことができる。
 例えば、前述したように、第1、2の実施形態で説明した細胞培養モジュール1、2に、第5の実施形態で説明した培養液循環系100を更に設けてもよい。この場合、培養液循環系100を、第5の実施形態で説明したように凹部S1及び第2面Sbの両方に液圧(水圧)を供給するような構成としてもよく、単に、内部空間12内の培養液を循環させるためだけに、例えば、細胞培養担体Sの水平方向に対向するように配置してもよい。

Claims (7)

  1.  細胞を培養する凹部が設けられた多孔体からなる細胞培養担体を内部空間に密閉可能に保持する密閉系部材と、
     前記内部空間に培養液が充填された状態で、前記内部空間に保持された細胞培養担体の前記凹部が設けられた第1面に対向する第2面に対して水圧を供給する水圧供給部と、
     前記第2面に対する水圧により前記凹部から剥離された細胞を前記内部空間から回収する細胞回収部と、
     を備えることを特徴とする細胞培養モジュール。
  2.  細胞を培養する凹部が設けられた多孔体からなる細胞培養担体を内部空間に密閉可能に保持する密閉系部材と、
     前記内部空間に培養液が充填された状態で、前記内部空間に保持された細胞培養担体の前記凹部及び前記凹部が設けられた第1面に対向する第2面に対して水圧を供給する水圧供給部と、
     前記第2面に対する水圧により前記凹部から剥離された細胞を前記内部空間から回収する細胞回収部と、
     を備えることを特徴とする細胞培養モジュール。
  3.  前記内部空間に培養液を充填し、前記充填させた培養液を循環させる培養液循環系が更に設けられていることを特徴とする請求項1又は2に記載の細胞培養モジュール。
  4.  細胞を培養する凹部が設けられた多孔体からなる細胞培養担体を内部空間に密閉可能に保持する密閉系部材と、
     前記内部空間に培養液を充填し、前記充填させた培養液を循環させると共に、前記循環により前記内部空間に保持された細胞培養担体の前記凹部及び前記凹部が設けられた第1面に対向する第2面に対して水圧を供給する培養液循環系と、
     前記第2面に対する水圧により前記凹部から剥離された細胞を前記内部空間から回収する細胞回収部と、
     を備えることを特徴とする細胞培養モジュール。
  5.  細胞を培養する凹部が設けられた多孔体からなる細胞培養担体を内部空間に密閉可能に保持する密閉系部材と、
     前記内部空間に培養液を充填し、前記充填させた培養液を循環させると共に、前記循環により前記内部空間に保持された細胞培養担体の前記凹部に対して水圧を供給する培養液循環系と、
     前記内部空間に培養液が充填された状態で、前記内部空間に保持された細胞培養担体の前記凹部が設けられた第1面に対向する第2面に対して水圧を供給する水圧供給部と、
     前記第2面に対する水圧により前記凹部から剥離された細胞を前記内部空間から回収する細胞回収部と、
     を備えることを特徴とする細胞培養モジュール。
  6.  前記内部空間に保持された細胞培養担体の水平方向から水圧を供給する第2の水圧供給部を更に備えたことを特徴とする請求項1乃至5いずれか1項に記載の細胞培養モジュール。
  7.  前記細胞培養担体を構成する多孔体の気孔の平均気孔径が10nm以上10μm以下であり、前記気孔は前記細胞培養担体の前記凹部の表面から、前記第2面まで連通して設けられていることを特徴とする請求項1乃至6いずれか1項に記載の細胞培養モジュール。
PCT/JP2008/067703 2008-02-22 2008-09-30 細胞培養モジュール WO2009104296A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/438,172 US20100178694A1 (en) 2008-02-22 2008-09-30 Cell culture module
JP2009523091A JP5666131B2 (ja) 2008-02-22 2008-09-30 細胞培養モジュール
EP08828063.1A EP2128242B1 (en) 2008-02-22 2008-09-30 Cell culture module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-040916 2008-02-22
JP2008040916 2008-02-22
JP2008-172949 2008-07-02
JP2008172949 2008-07-02

Publications (1)

Publication Number Publication Date
WO2009104296A1 true WO2009104296A1 (ja) 2009-08-27

Family

ID=40985191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/067703 WO2009104296A1 (ja) 2008-02-22 2008-09-30 細胞培養モジュール

Country Status (4)

Country Link
US (1) US20100178694A1 (ja)
EP (1) EP2128242B1 (ja)
JP (1) JP5666131B2 (ja)
WO (1) WO2009104296A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114859A1 (ja) * 2012-02-01 2013-08-08 東洋製罐グループホールディングス株式会社 細胞回収方法
JP2013158247A (ja) * 2012-02-01 2013-08-19 Toyo Seikan Group Holdings Ltd 細胞回収方法
JP2013158253A (ja) * 2012-02-01 2013-08-19 Toyo Seikan Group Holdings Ltd 細胞回収方法
WO2014208004A1 (ja) * 2013-06-28 2014-12-31 東洋製罐グループホールディングス株式会社 細胞剥離方法
JP2015123028A (ja) * 2013-12-27 2015-07-06 コバレントマテリアル株式会社 細胞培養モジュール及び細胞培養方法
JP5891310B2 (ja) * 2012-09-26 2016-03-22 株式会社日立製作所 細胞培養容器およびそれを用いた細胞培養装置
WO2018005521A3 (en) * 2016-06-29 2018-03-08 Northeastern University Cell culture chambers and methods of use thereof
KR20200050022A (ko) * 2018-10-31 2020-05-11 한국생산기술연구원 진공 세포 배양장치
US11268058B2 (en) 2019-10-21 2022-03-08 Flaskworks, Llc Systems and methods for cell culturing
US11339363B2 (en) 2018-11-15 2022-05-24 Flaskworks, Llc Dendritic cell generating apparatus and method
WO2022202044A1 (ja) * 2021-03-25 2022-09-29 豊田合成株式会社 細胞培養容器および細胞培養方法
US11566217B2 (en) 2019-08-13 2023-01-31 Flaskworks, Llc Duty cycle for cell culture systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212461B (zh) * 2011-05-05 2013-04-17 中国人民解放军第二炮兵总医院 间充质干细胞过滤分离器及其应用
US20170342377A1 (en) * 2016-05-27 2017-11-30 Coorstek Kk Cell culture carrier and cell culture module
GB2624193A (en) * 2022-11-09 2024-05-15 Kirkstall Ltd Bioreactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169755A (ja) * 1992-12-03 1994-06-21 Mitsubishi Rayon Co Ltd 細胞培養用多孔質中空糸膜
JP2005512503A (ja) * 2001-03-23 2005-05-12 ヒストジェニックス コーポレイション 生物学的組織および組織構築物を製造するための組成物および方法
JP2005514056A (ja) * 2002-01-15 2005-05-19 アウグスチナス バーダー 容器内で細胞を育成または培養するための装置
JP2006094718A (ja) * 2004-09-28 2006-04-13 Kaneka Corp 細胞懸濁液の精製方法および細胞精製デバイス

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025851A (ja) * 1988-06-27 1990-01-10 Snow Brand Milk Prod Co Ltd 細胞培養方法とその装置
JP3036032B2 (ja) * 1990-09-17 2000-04-24 日立プラント建設株式会社 細胞の培養方法及びその装置
EP0629236B1 (en) * 1992-03-04 2002-10-09 The Regents Of The University Of Michigan Methods, compositions and devices for maintaining and growing human stem and/or hematopoietic cells
US6121042A (en) * 1995-04-27 2000-09-19 Advanced Tissue Sciences, Inc. Apparatus and method for simulating in vivo conditions while seeding and culturing three-dimensional tissue constructs
WO1996039992A1 (en) * 1995-06-07 1996-12-19 Advanced Tissue Sciences, Inc. Apparatus and method for sterilizing, seeding, culturing, storing, shipping, and testing replacement cartilage tissue constructs
FR2803852B1 (fr) * 2000-01-17 2004-11-05 Farzin Sarem Dispositif de culture cellulaire et tissulaire a circulation de fluide de culture controlee
JP2004057019A (ja) * 2002-07-25 2004-02-26 Toshiba Ceramics Co Ltd 細胞培養用基材
DE10249903B4 (de) * 2002-10-22 2007-10-11 Cytonet Gmbh & Co. Kg Mechanischer Bioreaktor
WO2004094586A2 (en) * 2003-04-18 2004-11-04 Carnegie Mellon University Three-dimentional, flexible cell growth substrate and related methods
JP4166213B2 (ja) * 2004-11-19 2008-10-15 日本板硝子株式会社 生化学用担持体
EP2115116B1 (en) * 2007-03-05 2018-01-24 Terumo BCT, Inc. Methods to control cell movement in hollow fiber bioreactors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169755A (ja) * 1992-12-03 1994-06-21 Mitsubishi Rayon Co Ltd 細胞培養用多孔質中空糸膜
JP2005512503A (ja) * 2001-03-23 2005-05-12 ヒストジェニックス コーポレイション 生物学的組織および組織構築物を製造するための組成物および方法
JP2005514056A (ja) * 2002-01-15 2005-05-19 アウグスチナス バーダー 容器内で細胞を育成または培養するための装置
JP2006094718A (ja) * 2004-09-28 2006-04-13 Kaneka Corp 細胞懸濁液の精製方法および細胞精製デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Dai 27 Kai The Annual Meeting of the Japanese Society for Biomaterials Yokoshu, 2005", article FUMIHIKO KITAGAWA ET AL.: "Kokikoritsu Ceramics Saibo Baiyo Tantai no Kaihatsu", pages: 301, XP008116982 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114859A1 (ja) * 2012-02-01 2013-08-08 東洋製罐グループホールディングス株式会社 細胞回収方法
JP2013158247A (ja) * 2012-02-01 2013-08-19 Toyo Seikan Group Holdings Ltd 細胞回収方法
JP2013158253A (ja) * 2012-02-01 2013-08-19 Toyo Seikan Group Holdings Ltd 細胞回収方法
US9574168B2 (en) 2012-02-01 2017-02-21 Toyo Seikan Group Holdings, Ltd. Cell collection method
JP5891310B2 (ja) * 2012-09-26 2016-03-22 株式会社日立製作所 細胞培養容器およびそれを用いた細胞培養装置
JPWO2014049701A1 (ja) * 2012-09-26 2016-08-22 株式会社日立製作所 細胞培養容器およびそれを用いた細胞培養装置
WO2014208004A1 (ja) * 2013-06-28 2014-12-31 東洋製罐グループホールディングス株式会社 細胞剥離方法
JP2015008667A (ja) * 2013-06-28 2015-01-19 東洋製罐グループホールディングス株式会社 細胞剥離方法
US9688963B2 (en) 2013-06-28 2017-06-27 Toyo Seikan Group Holdings, Ltd. Cell release method
JP2015123028A (ja) * 2013-12-27 2015-07-06 コバレントマテリアル株式会社 細胞培養モジュール及び細胞培養方法
WO2018005521A3 (en) * 2016-06-29 2018-03-08 Northeastern University Cell culture chambers and methods of use thereof
KR20200050022A (ko) * 2018-10-31 2020-05-11 한국생산기술연구원 진공 세포 배양장치
KR102134166B1 (ko) * 2018-10-31 2020-07-16 한국생산기술연구원 진공 세포 배양장치
US11339363B2 (en) 2018-11-15 2022-05-24 Flaskworks, Llc Dendritic cell generating apparatus and method
US11952563B2 (en) 2018-11-15 2024-04-09 Flaskworks, Llc Dendritic cell generating apparatus and method
US11566217B2 (en) 2019-08-13 2023-01-31 Flaskworks, Llc Duty cycle for cell culture systems
US11268058B2 (en) 2019-10-21 2022-03-08 Flaskworks, Llc Systems and methods for cell culturing
US11434459B2 (en) 2019-10-21 2022-09-06 Flaskworks, Llc Systems and methods for cell culturing
US11447732B2 (en) 2019-10-21 2022-09-20 Flaskworks, Llc Systems and methods for cell culturing
WO2022202044A1 (ja) * 2021-03-25 2022-09-29 豊田合成株式会社 細胞培養容器および細胞培養方法

Also Published As

Publication number Publication date
EP2128242A4 (en) 2013-04-24
JPWO2009104296A1 (ja) 2011-06-16
JP5666131B2 (ja) 2015-02-12
EP2128242A1 (en) 2009-12-02
US20100178694A1 (en) 2010-07-15
EP2128242B1 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP5666131B2 (ja) 細胞培養モジュール
US20230383237A1 (en) Automated cell culturing and harvesting device
EP2115116B1 (en) Methods to control cell movement in hollow fiber bioreactors
JP4104822B2 (ja) 3次元組織構築物の接種および培養時にinvivo条件をシミュレートするための装置および方法
US11884905B2 (en) Fluidic chip for cell culture use, culture vessel, and culture method
JP2008539738A (ja) 細胞培養モジュール用供給システム
CN107739713A (zh) 一种适用于空间细胞自动培养的换液系统
Grayson et al. Bioreactor cultivation of functional bone grafts
JP5235578B2 (ja) 細胞培養モジュール
US8173420B2 (en) Cell seeding module
CN207525252U (zh) 适用于空间细胞自动培养的换液系统
EP3950920A1 (en) Cell manipulation device and cell manipulation method
JP3726188B2 (ja) 中空糸付き器具及びその使用方法
WO2009047045A2 (en) Bioreactor for generation and complex mechanical stimulation of engineered biological tissue.
EP3239290A1 (en) Cell culture apparatus and cell culture bag
JP2005110695A (ja) 中空糸付き器具及びその使用方法
US20040253716A1 (en) Bioreactor for cultivating cells on a matrix
JP2019024399A (ja) 酸素供給機構
TWI286158B (en) Siphon bioreactor
CN201834910U (zh) 双向灌流力学实验装置
Searby et al. Design and development of a space station cell culture unit
CN113125402B (zh) 一种样品支持与分选芯片及流体进样分选系统
JP2010075091A (ja) 細胞培養システム
JP2019154277A (ja) 細胞培養容器
JP2022040796A (ja) 細胞培養装置及び細胞培養方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12438172

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008828063

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009523091

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08828063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE