WO2009101659A1 - ガス濃度遠隔計測方法および装置 - Google Patents

ガス濃度遠隔計測方法および装置 Download PDF

Info

Publication number
WO2009101659A1
WO2009101659A1 PCT/JP2008/002006 JP2008002006W WO2009101659A1 WO 2009101659 A1 WO2009101659 A1 WO 2009101659A1 JP 2008002006 W JP2008002006 W JP 2008002006W WO 2009101659 A1 WO2009101659 A1 WO 2009101659A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
gas
target
light receiving
scattered light
Prior art date
Application number
PCT/JP2008/002006
Other languages
English (en)
French (fr)
Inventor
Hideki Ninomiya
Original Assignee
Shikoku Research Institute Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Incorporated filed Critical Shikoku Research Institute Incorporated
Priority to JP2009553290A priority Critical patent/JP5159799B2/ja
Publication of WO2009101659A1 publication Critical patent/WO2009101659A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry

Definitions

  • the present invention relates to a method and apparatus for remotely measuring the concentration and spatial distribution of gas in a target space, and for example, can remotely measure the concentration and spatial distribution of hydrogen gas that cannot be captured with the naked eye, both indoors and outdoors, and is portable.
  • the present invention relates to a gas concentration remote measurement device.
  • Non-Patent Document 1 describes the value of Raman shift in known molecules. Table 1 shows an example of Raman shift values for known molecules.
  • the applicant irradiates the monitoring target space with laser light, collects the Raman scattered light whose wavelength is shifted by a predetermined numerical value according to the gas type, converts it to an electronic image, and amplifies it.
  • a technology to visualize a gas such as hydrogen gas by converting the image into an optical image again to visualize the spatial intensity distribution of a specific wavelength and displaying the leaked gas on the background image of the monitored space (Patent Literature) 2) Condensing detected light having a wavelength of approximately 309 nm caused by two or more different laser beams irradiated to the monitoring target space, converting it to an electronic image, amplifying it, and converting it again into an optical image
  • Patent Document 3 A hydrogen gas and hydrogen flame monitoring method and apparatus for imaging a spatial intensity distribution have been proposed.
  • the applicant scans the space to be monitored with laser light, collects Raman scattered light with a first optical bandpass filter having a transmission wavelength center at a wavelength obtained by Raman-shifting the wavelength of the laser light,
  • the light signal is converted into an electrical signal by the light receiving element, and the first time waveform is measured, and the second optical bandpass filter that transmits light having a wavelength range different from that of the transmitted light of the first optical bandpass filter is used.
  • the laser light is collected, converted into an electric signal by a single light receiving element, the time waveform is measured, and then the difference between the first time waveform and the second time waveform is taken to obtain the scanning position information of the laser beam.
  • a Raman scattered light signal image colored with the corresponding position coordinates of the monitored space is created, and the hydrogen gas is visualized by superimposing it on the background image of the monitored space And recommended hydrogen gas visualization method and system for (Patent Document 4).
  • an object of the present invention is to provide a method and an apparatus for remotely measuring a gas concentration and a spatial distribution that can solve the above-described problems.
  • the (B) Raman scattering efficiency is known as described in Non-Patent Document 1, and the (C) light receiving system sensitivity can be corrected in advance (however, the Raman scattered light of the target gas)
  • the configuration of the means for selecting for example, the configuration using the filter of FIG. 15
  • (D) attenuation due to the atmosphere varies depending on the measurement situation
  • (F) the degree of overlap between the laser beam and the light receiving system vary depending on aging of the device. .
  • the concentration of the target gas cannot be obtained with high accuracy only by obtaining the measured value of the Raman scattered light intensity of the target gas.
  • this problem becomes significant when the concentration of the target gas is low.
  • nitrogen gas exists uniformly at a concentration of about 80% in the atmosphere, and nitrogen gas also emits Raman scattered light when irradiated with laser light.
  • the measured value of the Raman scattered light intensity of the nitrogen gas also reflects the above (D) attenuation by the atmosphere, (E) fluctuation of the laser light irradiation intensity, and (F) the degree of overlap between the laser light and the light receiving system.
  • the inventor acquires a measurement value of the Raman scattered light intensity of nitrogen gas, and (D) attenuation by the atmosphere, (E) fluctuation of the laser light irradiation intensity, and (F) in the target gas based on this measurement value. ) I thought whether the overlap between the light source and the light receiving system could be corrected. As a result of intensive studies, the inventor simultaneously measured the Raman scattered light intensity of nitrogen gas in the atmosphere and the Raman scattered light intensity of the target gas, and determined the concentration and spatial distribution of the target gas from the ratio of these Raman scattered light intensities. It was possible to ask.
  • the present invention irradiates a target space with laser light, and measures the concentration and spatial distribution (location) of the target gas from the ratio of the Raman scattered light intensity of the atmospheric nitrogen gas and the Raman scattered light intensity of the target gas. It relates to a method and an apparatus.
  • 1st invention irradiates laser light to object space, condenses the scattered light from nitrogen gas with a condensing mechanism, and measures the Raman scattered light signal intensity with a 1st light-receiving mechanism, 1st In synchronism with the process, a second process of irradiating the target space with laser light, condensing the scattered light of the target gas with the condensing mechanism, and measuring the Raman scattered light signal intensity with the second light receiving mechanism, and nitrogen gas And a third step of calculating the concentration of the target gas in the target space based on the intensity ratio of the Raman scattered light intensity of the target gas.
  • the condensing mechanism divides the parallel light from the objective lens, a lens optical system that collimates the Raman scattered light condensed by the objective lens, and the parallel light from the lens optical system. And selecting the light distributor so as to improve the transmittance and the reflectance of each of the target gas and the nitrogen gas according to the characteristics of the target gas.
  • the objective lens is a Fresnel lens, a grating lens, or a hologram lens.
  • the first light receiving mechanism includes a bandpass filter having a Raman scattering wavelength of nitrogen gas as a transmission center wavelength, and a light receiving element.
  • the second light receiving mechanism includes a band-pass filter having a Raman scattering wavelength of the target gas as a transmission center wavelength, and a light receiving element.
  • the integrated value in the wavelength of the spectrum in the transmission wavelength region of the bandpass filter of the first light receiving mechanism and the transmission wavelength of the bandpass filter of the second light receiving mechanism is the integrated value in the wavelength of the spectrum in the transmission wavelength region of the bandpass filter of the first light receiving mechanism and the transmission wavelength of the bandpass filter of the second light receiving mechanism.
  • a sixth invention is characterized in that, in any one of the first to fifth inventions, a monitoring target is scanned with laser light, and a three-dimensional gas concentration distribution in the target space is measured.
  • the target gas is hydrogen gas.
  • a laser light irradiation device that irradiates a target space with laser light, a first light receiving mechanism that detects Raman scattered light from nitrogen gas in the target space, and Raman scattered light from the target gas in the target space.
  • a gas concentration remote measurement device comprising: a calculation unit that calculates the concentration of the target gas in a ninth aspect based on the eighth aspect, the condensing mechanism is configured to divide the objective lens, a lens optical system that collimates the Raman scattered light collected by the objective lens, and a parallel light beam from the lens optical system. And an optical distributor.
  • the optical distributor is a beam splitter, a wavelength selection mirror, or an edge filter.
  • An eleventh invention is characterized in that, in the ninth or tenth invention, the objective lens is a Fresnel lens, a grating lens or a hologram lens.
  • the first light receiving mechanism includes a bandpass filter having a Raman scattering wavelength of nitrogen gas as a transmission center wavelength, and a light receiving element.
  • the second light receiving mechanism includes a band-pass filter having a Raman scattering wavelength of the target gas as a transmission center wavelength, and a light receiving element.
  • a thirteenth invention is characterized in that, in any one of the eighth to twelfth inventions, the light collecting mechanism or the light receiving mechanism includes a pinhole.
  • the light collecting mechanism and / or the light receiving mechanism includes an optical filter that eliminates disturbance light.
  • the laser beam irradiation apparatus includes a drive mechanism for scanning the monitoring target with the laser beam, and the calculation unit is a three-dimensional unit in the target space. The gas concentration distribution can be calculated.
  • the present invention it is possible to remotely measure the gas concentration with high accuracy regardless of whether it is indoors or outdoors. Further, it is possible to provide a portable gas concentration remote measurement device.
  • 6 is a graph showing the relationship between the amount of received light and the distance when a laser pulse with a half width of 0.5 ns propagates on the received optical axis in the apparatus of Example 1.
  • 6 is a configuration diagram of a light receiving device main body according to Embodiment 2.
  • Light receiving system body / 2 Point laser device / 3: Visible laser light source / 4: Aluminum vapor deposition right angle prism / 5: Right angle prism / 10: Condensing mechanism / 11: Objective lens / 12: Heat ray cut filter / 13 : Concave lens / 14: Beam splitter (BS) / 15: Cover member / 16: Convex lens / 20: Light receiving mechanism / 21: Raman edge filter / 22: Interference filter / 23: Condensing lens (convex lens) / 24: Pinhole / 25: Light receiving element / 30: Laser light irradiation device / 31: Laser light source / 32: Polarizing beam splitter (PBS) / 33: Expander / 34: Amplifier / 35: A / D converter / 36: Trigger signal transmitter / 40: Data processing device
  • the concentration of the target gas is remotely measured by the following procedure.
  • a target space is irradiated with a laser beam, and nitrogen gas in the atmosphere caused by the laser light and Raman scattered light from the target gas are simultaneously collected.
  • the condensed light is divided into two, each light is passed through a narrow band interference filter, and the Raman scattered light of the nitrogen gas and the target gas is selected, and the Raman scattered light caused by each gas is simultaneously detected. It is acquired and converted into an electric signal by a light receiving element, and a time waveform is measured with reference to an irradiation signal of laser light.
  • the target gas concentration is calculated from the ratio of the Raman scattered light intensity of the nitrogen gas and the Raman scattered light intensity of the target gas.
  • V Enlarging and irradiating the laser beam diameter, suppressing the beam diffusion and irradiating the target portion.
  • the light condensing system is refracted, and the objective lens is made of resin-made Fresnel lens to reduce the weight.
  • Vii A background image is acquired and information on the target gas is displayed on the background image. That is, the background image is colored in a different color according to the target gas concentration, or the target gas concentration and distance are displayed as character information on the background image or separately.
  • the gas concentration remote measurement method of the present invention is based on the premise that nitrogen gas is uniformly distributed at a normal atmospheric concentration. Therefore, it is preferable to perform the measurement after adjusting the instrument in a place where the target gas is not clearly present.
  • the gas concentration remote measurement method of the present invention provides a high-precision concentration of the target gas when the concentration of the target gas at the measurement location is uniformly above a certain level and the concentration of nitrogen gas is below a certain level. Cannot be measured.
  • the Raman scattered light signal of nitrogen gas cannot be obtained, and the concentration of the target gas can be obtained from the Raman scattered light signal intensity ratio of nitrogen gas and target gas.
  • the target gas is hydrogen gas
  • the method of the present invention is effective for accurately measuring the hydrogen gas concentration around 4%, which is the lower explosion limit.
  • the hydrogen gas concentration exceeds 20%, the measurement error Becomes 20%, and the concentration of hydrogen gas cannot be measured with high accuracy by the method of the present invention.
  • the hydrogen gas concentration exceeds 20% when the hydrogen gas is restricted in a building or the like, and the hydrogen gas leaked in the outdoor measurement stays at a concentration exceeding 20%. Is almost not.
  • the target gas exceeds a predetermined concentration (for example, 20%), since the Raman scattered light signal is strong, simultaneous measurement of the nitrogen gas and the target gas is unnecessary. That is, the target gas concentration can be obtained directly from the Raman scattered light signal intensity of the target gas after adjusting the instrument in a place where the target gas is clearly absent. In this way, when the target gas is present at a high concentration throughout the measurement location, it is possible to measure the target gas concentration with reference to the Raman scattered light signal waveform of nitrogen gas clearly measured at a location where the target gas does not exist. it can.
  • a predetermined concentration for example, 20%
  • FIG. 10 is a graph obtained by measuring the Raman scattered light intensity signal in a high concentration (concentration 20%) hydrogen gas.
  • the nitrogen Raman signal was measured in advance (during adjustment).
  • the target gas can be measured by the method of the present invention. For example, when hydrogen gas of 20% or more is partially present, the Raman scattered light intensity signals of nitrogen gas and hydrogen gas shown in FIG. 10 can be obtained at the same time. Can be measured.
  • the concentration of the target gas is calculated by the following formula.
  • P 0 is the laser energy
  • k is the optical efficiency of the light receiving system (transmittance and reflectance)
  • G is the optical overlap function of the laser light and the light receiving system
  • S is the light receiving area (effective area of the objective lens)
  • L is a separation distance
  • N is a molecular density
  • is a Raman scattering efficiency (backward Raman scattering cross section)
  • ⁇ L is a distance resolution (a value obtained by converting an observation time resolution into a distance)
  • ⁇ L is a laser wavelength extinction coefficient (absorption or scattering).
  • ⁇ r is the Raman scattering wavelength extinction coefficient (due to absorption and scattering).
  • the received light amount P (N 2 ) of nitrogen gas Raman scattered light and the received light amount P (H 2 ) of hydrogen gas Raman scattered light are respectively given by the following equations.
  • the difference in Raman scattered light wavelength between nitrogen gas and hydrogen gas is about 30 nm.
  • the Raman signal intensity S (N 2 ) of nitrogen gas and the Raman signal intensity S (H 2 ) of hydrogen gas are respectively given by the following equations.
  • ⁇ h and ⁇ n are constants according to Non-Patent Document 1
  • ⁇ h is 7.098 ⁇ 10 ⁇ 30 (cm 2 ⁇ sr ⁇ 1 )
  • ⁇ n is 2.855 ⁇ 10 ⁇ 30 (cm 2 ⁇ sr -1 ).
  • the ratio of ⁇ h and ⁇ n is the ratio of the total spectrum intensity, and according to the actually measured value, the intensity ratio is 3.7 (when the value of Non-Patent Document 1 is used, the intensity ratio is 3.1).
  • ( ⁇ h ⁇ k h ) and ( ⁇ n ⁇ k n ) can be obtained from the specifications of the component parts. Using these values, the concentration ratio (N h / N n ) of nitrogen gas and hydrogen gas can be obtained from the following equation.
  • the Raman scattered light includes vibration Raman scattered light and rotational Raman scattered light, and any of them may be used in the present invention.
  • the former is superior to the latter in that the wavelength is farther from Rayleigh scattering and is less likely to be disturbed by diffuse reflection.
  • the spectrum of rotational Raman scattered light with a Raman shift of about 587 cm ⁇ 1 is stronger than vibrational Raman scattered light.
  • the Raman shift for each laser wavelength to be irradiated is as shown in Table 2.
  • the edge filter has a performance of attenuating 355 nm to 10 ⁇ 6 and transmitting 362 nm light by 90% or more, and the optical bandpass filter has a wavelength shifted by Raman.
  • An optical bandpass filter for condensing difference calculation light having a transmission wavelength center in the vicinity of a wavelength of 362.2 nm is close in wavelength and Raman to an optical bandpass filter for condensing Raman scattered light.
  • Those having a transmission wavelength center at a wavelength not including scattered light are selected, and the transmission wavelength width of both optical bandpass filters must be at least ⁇ 2 nm or less (preferably ⁇ 0.8 nm or less).
  • the rotating Raman scattered light is generated in the valley of the fluorescence with respect to the irradiation of the laser beam, and thus has a feature that the influence of the fluorescence is small.
  • the rotating Raman scattered light generated in the immediate vicinity of the irradiated laser light is affected by the fluorescence. It turns out that it is difficult to receive.
  • the apparatus of the present embodiment measures the concentration of hydrogen gas existing in the target space, and receives the Raman scattered light intensity from the nitrogen gas and hydrogen gas existing in the target space into an electric signal,
  • a laser beam irradiation device 30 that irradiates a target space with laser light and a data processing device 40 are main components. Hereinafter, these components will be described.
  • the light receiving system body 1 includes a light collecting mechanism 10, a light receiving mechanism 20, and a point laser device 2.
  • the point laser device 2 includes a visible light laser light source 3 for confirming the optical axis attached to the light receiving system main body 1 and prisms 4 and 5.
  • the laser beam is reflected by the prisms 4 and 5, and the objective lens 11.
  • the target area can be irradiated from the center of the area.
  • the housing of the light receiving system main body 1 is shielded by the cover member 15, and the ambient light is prevented from entering the light receiving device main body 1 by blocking the ambient light.
  • the condensing mechanism 10 includes an objective lens 11, a heat ray cut filter 12, a concave lens 13, and a beam splitter 14. Since the apparatus of this example does not need to capture a clear image and only requires a function of measuring light intensity, a Fresnel lens (Acrylite 000 [manufactured by Mitsubishi Rayon Co., Ltd.) of the objective lens 11 was employed.
  • the Fresnel lens of the present example is an acrylic resin with a concavo-convex surface on one side, and has a diameter of 200 mm and a focal length of 230 mm.
  • the light condensing mechanism 10 can be significantly reduced in weight and size. It is also possible to use a grating lens or a hologram lens for the objective lens 11.
  • the heat ray cut filter 12 cuts infrared light that becomes disturbance light.
  • a light receiving element that is insensitive to infrared light is used in the light receiving mechanism 20 described later, it is not an essential configuration.
  • the concave lens 13 is required to guide parallel light to the light receiving mechanism 20. This is because each filter provided in the light receiving mechanism 20 exhibits the performance of the catalog value only when light orthogonal to the surface is incident, so that the collected Raman scattered light is converted into parallel light.
  • the beam splitter 14 divides the collected Raman scattered light and enters the light receiving elements 25a and 25b arranged orthogonally.
  • the Raman scattered light from the nitrogen gas is transmitted and the Raman scattered light from the hydrogen gas is reflected.
  • the Raman scattered light from the hydrogen gas is transmitted and the Raman scattered light from the nitrogen gas is transmitted. It is good also as a structure which reflects (refer Example 3 mentioned later).
  • the light receiving mechanism 20 is composed of Raman edge filters 21a and 21b, interference filters 22a and 22b, condenser lenses 23a and 23b, pinholes 24a and 24b, and light receiving elements 25a and 25b.
  • 21a and 21b cut laser scattering (Rayleigh scattering and Mie scattering) light that becomes disturbance light.
  • the interference filters 22a and 22b are band-pass filters that selectively transmit light of a specific wavelength, and are for condensing only Raman scattered light.
  • the above-described Raman edge filter 21a and the interference filter 22a for selecting light of 386.7 nm ⁇ 1 nm are arranged, and selectively transmit nitrogen gas Raman scattered light to the light receiving element 25a.
  • the above-described Raman edge filter 21b and the interference filter 22b for selecting light of 416.1 nm ⁇ 1 nm are arranged, and selectively transmits hydrogen gas Raman scattered light to the light receiving element 25b.
  • the light receiving elements 25a and 25b used small metal package photomultiplier tubes (R7400U-03 [manufactured by Hamamatsu Photonics Co., Ltd.)], and shielded the tube body, socket periphery and wiring for noise suppression.
  • As the light receiving elements 25a and 25b known elements such as a CCD and an avalanche photodiode can be used. In this case, a heat ray cut filter is essential.
  • an inexpensive photomultiplier tube is selected.
  • the pinholes 24a and 24b are placed at the focal positions of the condenser lenses 23a and 23b, and the viewing angle can be adjusted by changing the aperture diameter of the pinhole.
  • the condenser lenses 23a and 23b By providing a pinhole at the focal position of the condenser lenses 23a and 23b, it is possible to suppress the arrival of disturbance light other than the Raman scattered light.
  • the light collected by the objective lens 11 of the condensing mechanism 10 and made into parallel light by the concave lens 13 is divided into two by the beam splitter 14, condensed by the condensing lenses 23a and 23b, and pinholes 24a, Passes 24b and enters the light receiving elements 25a and 25b.
  • the light receiving element 25a converts the Raman scattered light of nitrogen gas into the electrical signal
  • the light receiving element 25b converts the Raman scattered light of hydrogen gas into the electrical signal.
  • the intensity of the Raman scattered light in the filter transmission wavelength range is measured. Therefore, the spectral distribution of the Raman scattered light intensity within the filter transmission wavelength is measured. I need to know. Therefore, in this example, nitrogen gas and hydrogen gas were filled in a container, and laser light of 355 nm was irradiated to measure the spectrum of the Raman scattered light intensity of nitrogen gas and hydrogen gas.
  • the focal length of the spectroscope used in the spectroscopic measurement is 50 cm
  • the lattice constant is 1800 L / mm
  • the wavelength resolution is 0.03 nm
  • the filter used for the observation of nitrogen Raman light is the center wavelength 386.8 nm
  • the filter used for the observation of hydrogen Raman light has a center wavelength of 416.3 nm and a full width at half maximum of 1.8 nm.
  • FIGS. 15 and 16 it can be confirmed that the Raman scattering light spectrum of nitrogen gas has one peak, whereas the Raman scattering light spectrum of hydrogen gas shows a peak due to rotational transition. These peaks were confirmed to show the same shape at a hydrogen concentration of 1 to 100%.
  • the ratio between the maximum peak value of hydrogen gas and the maximum peak value of nitrogen gas is 3.1: 1, which is consistent with the value of Non-Patent Document 1. Looking at the total spectral intensity within the transmission wavelength range of the filter, the ratio of the integrated value of the spectral intensity distribution of hydrogen gas to the integrated value of nitrogen gas is 3.7: 1, and the value of ⁇ h / ⁇ n in Equation 7 above Becomes 3.7.
  • Increasing the viewing angle makes it possible to detect a wide range of light, which is effective when scanning a laser beam to observe a wide range.
  • reducing the viewing angle is effective when the target location is specified and observed.
  • disturbance light from a wide range passes through the pinhole, so that the influence of the disturbance light increases.
  • a weak signal Raman scattered light from a low-concentration gas
  • a viewing angle of 5 mrad is obtained with a pinhole having a diameter of 0.5 mm, and 54 mrad when the pinhole is removed.
  • a pinhole having a diameter of 0.5 mm is used to monitor an area 30 cm in diameter 10 m ahead, and an area having a diameter of 1.3 m 10 m ahead is to be monitored by removing the pinhole.
  • the light receiving system of this embodiment is a refraction type condensing system, and has a configuration as shown in the schematic diagram of FIG.
  • the light from the object is collected on the imaging plane by the condenser lens 23.
  • the lens and the imaging plane are arranged so that the image of the point O on the object is focused on the center of the imaging plane, the light incident from the direction of the point Q will deviate from the pinhole opening. Not observed.
  • the light from the point Q is disturbance light, the disturbance is eliminated by the pinhole, and the effect of suppressing the disturbance light is increased by reducing the viewing angle of the light receiving system.
  • the light from the point P on the object is shifted from the center of the imaging plane, and the light from the point R is blurred on the imaging plane.
  • the intensity (intensity per unit area) of the light deviating from the center (focus position) of the object is different. This deviation occurs due to the positional relationship between the optical axis of the laser and the optical axis of the light receiving element, and the detection signal intensity varies depending on the arrangement of the laser and the light receiving element and the angle of the optical axis.
  • the laser irradiation position was 20 cm from the optical axis of the light receiving element (10 cm from the end of the objective lens 11).
  • the overlapping state of the laser beam and the light receiving system at this time is as shown in FIG.
  • the detection sensitivity ( ⁇ ) of the Raman scattered light and the detection sensitivity (G) of the light receiving system have the relationship shown in FIG. .
  • the focus of the light receiving system is adjusted to infinity (assuming the focal position of the imaging surface)
  • the image is blurred and the light receiving efficiency is low at a short distance, and the light receiving efficiency is high when the object moves away (see overlap function G in FIG. 5).
  • the light from the object becomes weaker in inverse proportion to the square of the distance, and the total light detection amount decreases as the separation distance increases (see detection sensitivity ⁇ in FIG. 5).
  • the former is a measurement limit distance for the Raman scattered light intensity to be weak
  • the latter is a measurement limit distance for the lens not being focused.
  • the apparatus of this example can measure up to a distance of about 20 m (see FIG. 6).
  • FIG. 11 is a graph showing the standard value of the amount of received light when a laser pulse with a half width of 8 ns propagates on the light receiving optical axis.
  • FIG. 12 shows the laser pulse with a half width of 4 ns in the apparatus of the first embodiment. It is a graph which shows the amount of received light at the time of irradiating. From FIG. 11 and FIG. 12, when the half-value width is 8 ns, the signal peak within 5 m is unclear, and when the half-value width is 4 ns, the signal peak within 2 m is unclear, and the gas position cannot be specified. I understand that.
  • FIG. 13 is a graph showing the amount of received light when a laser pulse with a half width of 0.5 ns is irradiated in the apparatus of the first embodiment. From FIG. 13, it can be seen that the gas position can be specified up to a distance of 0.5 m by using a laser pulse with a half-width of 0.5 ns. As described above, it was found that when the pulse width of the laser beam was narrowed (irradiation time was shortened), the spatial resolution was improved (see FIG. 11) and gas at a short distance could be detected (see FIGS. 12 and 13). However, since it is difficult to arbitrarily adjust the pulse width of the pulsed laser, it is preferable to use a laser with a different oscillation mechanism.
  • the laser light irradiation device 30 includes a laser light source 31, a polarization beam splitter (PBS) 32, and an expander 33.
  • the laser light source 31 is for generating Raman scattered light, and a 355 nm pulse YAG laser was used.
  • the laser irradiation intensity is adjusted by a polarizing beam splitter (PBS) 32, and the beam diameter is adjusted by an expander 33.
  • the expander 33 is composed of a concave lens (material: synthetic quartz, focal length: -25mm) and a convex lens (material: synthetic quartz, focal length: 70mm).
  • the beam diameter is 12mm, and the beam diameter at 30m ahead is 13.5. mm (see FIG. 2 (b)).
  • the Raman scattered light wavelength is determined by the wavelength of the laser light to be irradiated and the type of target gas, and is not limited to a wavelength of 355 nm.
  • a wavelength of 355 nm For example, when 266 nm laser light, which is the fourth harmonic of a YAG laser, is irradiated, nitrogen gas emits 283.6 nm Raman scattered light, and hydrogen gas emits 299.1 nm Raman scattered light. It is possible to calculate the concentration of hydrogen gas by simultaneously observing these lights and obtaining the signal intensity ratio.
  • the edge filter shown in the embodiment is used for 266 nm
  • an interference filter having a transmission wavelength center of 283.6 nm is used for detecting Raman scattered light of nitrogen gas
  • the transmission wavelength center is used for detecting man scattered light of hydrogen gas.
  • a 299.1 nm interference filter is used.
  • FIG. 17 is a configuration diagram of the data processing device 40.
  • the electrical signals detected by the light receiving elements 25a and 25b are digitized by the A / D converter 35, and the time change of the electrical signal intensity (time change of the amount of received light) is output to the arithmetic unit with the irradiation start time of the laser light as a time reference.
  • the trigger signal transmission unit 36 extracts a part of the irradiation laser light, converts it into an electrical signal with a photodiode (PD), converts it into a pulse signal with a signal generator, and uses it as a trigger signal for the A / D converter 35.
  • PD photodiode
  • the electric signals of the light receiving elements 25a and 25b are amplified to the necessary voltage of the A / D converter 35 by the amplifiers 34a and 34b and input to the A / D converter 35.
  • the sampling rate of the A / D converter 35 is 1 GS / s
  • the voltage resolution is 8 bits (256 divisions). Digitized data is recorded in RAM through the CPU for the number of times specified in advance, and when the specified number of data recording is completed, averaging is performed, and the time waveform and concentration of the Raman scattered light
  • the spatial distribution waveform, maximum density and maximum density position are displayed on the display.
  • the display contents can be selected.
  • Necessary data can be stored in an external memory (for example, a memory chip), and the stored data can be displayed on a display as required.
  • the number of data acquisition (number of averaging processes), display contents, coefficients for concentration measurement, and necessity of storage in external memory are input from an information input device such as a keyboard.
  • the CPU has an external communication function and can be connected to a personal computer (PC) via an interface.
  • the data processing program since the signal from the light receiving mechanism 20 is merely a waveform of an electric signal that changes with the passage of time, the data processing program uses the laser light irradiation system scanning control information (laser light irradiation direction position information) and Then, the concentration and presence position of the target gas are calculated by matching the spatial position coordinates of the target space.
  • FIG. 6 shows the Raman scattered light received signal intensity of nitrogen gas in the atmosphere when the laser optical axis and the received optical axis are crossed from 5 m to 20 m.
  • the horizontal axis is time, but it can be converted to distance at 15 cm / ns.
  • the crossing distance is 5 m
  • the signal intensity is strongest, and as the crossing distance becomes longer, 8 m and 10 m, the height of the mountain becomes lower and the base becomes wider.
  • the laser optical axis and the received optical axis are crossed at a short distance (5 m), the signal intensity is strong, but the distance over which the signal can be observed is limited.
  • the waveform of FIG. 6 differs depending on the above-described elements (D) to (F).
  • the elements (D) to (F) described above are the same as those in nitrogen gas. That is, in addition to the overlap of devices and the light extinction coefficient ( ⁇ ), fluctuations in the laser intensity (P 0 ) are similarly reflected in the Raman scattered light intensity of nitrogen and hydrogen, so these effects can be offset. Therefore, the accurate Raman scattered light intensity of hydrogen is required.
  • the optical efficiency of the light receiving system in the apparatus of Example 1 is as shown in Table 3, and the light receiving sensitivity of the light receiving element is as shown in Table 4.
  • ( ⁇ h ⁇ k h ) in the apparatus of Example 1 is 3.04 ⁇ 10 8 (mV / W)
  • ( ⁇ n ⁇ k n ) is 2.10 ⁇ 10 8 (mV / W).
  • FIG. 7 shows an example of simultaneous observation of Raman scattered light of nitrogen gas and hydrogen gas when hydrogen gas is released into the atmosphere.
  • FIG. 7 there is a peak of the Raman scattered light signal intensity of hydrogen gas around 100 ns, so that it can be seen that hydrogen gas exists about 15 m (light speed ⁇ time / 2) ahead.
  • the hydrogen concentration is determined from the Raman scattered light intensity of hydrogen gas based on the Raman scattered light received signal intensity of nitrogen gas by the measurement method defined by the above formulas 1 to 8 and 10. As a result, the concentration was 9%, which was almost the same as the measured value of the suction type hydrogen concentration meter.
  • the Raman signal intensity of hydrogen gas with a concentration of 14% is on the order of several mV, but since the S / N ratio (signal to noise ratio) is good, this signal is amplified by an amplifier. Thus, a larger signal can be obtained. Further, the S / N ratio can be improved by performing the averaging process. In order to shorten the averaging processing time, it is preferable to use a dedicated A / D board.
  • FIG. 8 shows a waveform obtained by amplifying a Raman scattered light signal of hydrogen gas having a concentration of 4% and averaging 64 times (overwriting data of 5 times). Note that the negative output of the signal strength is due to the characteristics of the amplifier used for amplification.
  • FIG. 9 shows the measurement results for each concentration of hydrogen gas at a separation distance of 13 m.
  • the gas concentration of less than 1% can be measured with the apparatus of this example.
  • a hydrogen concentration of 0.6% (error ⁇ 10%) was measurable from a distance of 13m.
  • the lower limit of the explosion limit is 4%, and a detection accuracy of 1% or less, which is a quarter of that, is required, but this can be achieved by the apparatus of this embodiment. It is.
  • the apparatus of the present embodiment described above has the following characteristics.
  • the weight of the light receiving device main body 1 (excluding the point laser device 2) of this embodiment is 900 g, and the dimensions are 220 ⁇ 220 ⁇ 340 mm.
  • (F) Correction of the overlap between the laser beam and the light receiving system is possible.
  • [F] Measurement of concentration spatial distribution By scanning the target space with a short pulse laser beam with suppressed beam diffusion, the spatial concentration distribution of the target gas can be obtained with high accuracy.
  • the apparatus of the second embodiment is obtained by changing the configuration of the light receiving system of the apparatus of the first embodiment. That is, the apparatus of the second embodiment is different from the apparatus of the first embodiment in that the convex lens 16 is provided instead of the concave lens, and the pinhole 24 and the Raman edge filter 21 are reduced to one sheet. Components such as the condensing lens 11, the interference filters 22a and 22b, the condensing lenses 23a and 23b, and the light receiving elements 25a and 25b can be configured using the same components as in the apparatus of the first embodiment.
  • the configuration of the apparatus of Example 2 is shown in FIG. According to the apparatus of the second embodiment, since the number of necessary parts is small, it is possible to reduce the component cost as compared with the apparatus of the first embodiment.
  • the apparatus of Example 1 was configured to transmit nitrogen Raman scattered light and reflect hydrogen Raman scattered light by a beam splitter 14 as a light distributor.
  • the apparatus of the present embodiment is configured to transmit Raman scattered light from nitrogen gas and reflect Raman scattered light from hydrogen gas using an optical distributor.
  • a multilayer wavelength selection mirror (dichroic mirror) is used instead of the beam splitter.
  • the wavelength of Raman scattered light from nitrogen gas is 386.7 nm
  • the wavelength of Raman scattered light from hydrogen gas is 416.5 nm, for example, a wavelength that reflects light having a wavelength shorter than 400 nm and transmits light having a wavelength longer than 400 nm
  • reflection and transmission efficiency can be improved.
  • the transmittance at a wavelength of 416.5 nm is 90%, and the light transmittance of hydrogen Raman scattered light is improved by 2.00 times (from 45% to 90%).
  • the reflectance at a wavelength of 386.7 nm is 93%, and the light-receiving efficiency of nitrogen Raman scattered light is improved 1.55 times (from 60% to 93%).
  • Table 5 shows the optical efficiency of the light receiving system of this example.
  • ADVANTAGE OF THE INVENTION it becomes possible to detect the leak of the gas in the gas production facilities of combustible gas, such as hydrogen gas, methane gas, and natural gas, from outside the safety distance.
  • combustible gas such as hydrogen gas, methane gas, and natural gas
  • a high-pressure gas facility has a distance of 8 m or more (site boundary distance) with respect to the site boundary. Leakage can be monitored remotely.
  • the ability to remotely measure the location and concentration of flammable gas and toxic gas can avoid dangers such as explosion and inhalation of toxic gas.
  • the ability to remotely measure the concentration of oxygen gas can prevent disasters such as lack of oxygen in advance.

Abstract

課題:ガス濃度および空間分布を遠隔計測する方法並びに装置の提供。 解決手段:対象空間にレーザー光を照射し、窒素ガスからの散乱光を集光機構で集光し、第一の受光機構でラマン散乱光信号強度を測定する第一工程、第一工程と同期して、対象空間にレーザー光を照射し、対象ガスの散乱光を集光機構で集光し、第二の受光機構でラマン散乱光信号強度を測定する第二工程、窒素ガスと対象ガスのラマン散乱光強度の強度比に基づいて対象空間における対象ガスの濃度を計算する第三工程、とを含むガス濃度遠隔計測方法および当該方法を実施するための装置。

Description

ガス濃度遠隔計測方法および装置
 本発明は、対象空間のガスの濃度および空間分布を遠隔計測する方法並びに装置に関し、例えば、肉眼でとらえることのできない水素ガスの濃度および空間分布を室内外で遠隔計測でき、且つ、携帯可能なガスの濃度遠隔計測装置に関する。
 従来、遠隔よりガス漏れの存在を監視するガス監視技術として、例えば、測定対象ガスの吸収波長をもつ赤外線レーザーを照射するレーザー光源を用いて、背景から反射される赤外線の漏洩ガスによる吸収をイメージセンサーで撮像し、2次元可視画像化して表示するものがある(特許文献1)。
 しかしながら、近紫外線波長領域から赤外線波長領域において吸収を示さないガス(例えば、水素ガス)については、光の吸収を利用する従来のガス可視化装置では検知することはできなかった。
 ところで、単色光を分子に照射したときに、散乱光の周波数が分子の振動周波数だけ変位するラマン散乱現象が知られている。この散乱光の周波数変位量は、照射した単色光の周波数に無関係で、物質に固有の量である。特定波長のレーザー光を対象ガスに照射すると、レーザー光が当たった物質から、レーザー光の波長と異なる波長のラマン散乱光が発生し、また、その散乱光の強度はその物質の濃度に依存する。
 非特許文献1には、公知の分子におけるラマンシフトの値が記載されている。表1に公知の分子におけるラマンシフトの値の一例を示す。
Figure JPOXMLDOC01-appb-T000001
 出願人は、監視対象空間にレーザー光を照射し、レーザー光の波長をガスの種別に応じて所定の数値だけラマンシフトした波長のラマン散乱光を集光し、電子画像に変換し、増幅し、再度光学像に変換することで特定波長の空間強度分布を画像化し、監視対象空間の背景画像上に漏洩ガスを表示することで、水素ガス等のガスを可視化する技術を提言し(特許文献2)、監視対象空間に照射した2以上の異なるレーザー光に起因する波長概ね309nmの被検出光を集光し、電子画像に変換し、増幅し、再度光学像に変換することで特定波長の空間強度分布を画像化することを特徴とする水素ガスおよび水素火炎監視方法並びにその装置を提言した(特許文献3)。
 また、出願人は、レーザー光により監視対象空間を走査し、当該レーザー光の波長をラマンシフトした波長に透過波長中心を有する第1の光学バンドパスフィルタによりラマン散乱光を集光し、1素子の受光素子により電気信号に変換し、第1の時間波形を測定すると共に、前記第1の光学バンドパスフィルタの透過光と波長域が異なる光を透過する第2の光学バンドパスフィルタにより特定波長の光を集光し、1素子の受光素子により電気信号に変換し、時間波形を測定し、続いて第1の時間波形と第2の時間波形との差分をとり、レーザー光の走査位置情報に基づいて監視対象空間の対応する位置座標を着色したラマン散乱光信号画像を作成し、それを監視対象空間の背景画像上に重畳表示することで水素ガスを可視化することを特徴とする水素ガス可視化方法およびそのシステムを提言した(特許文献4)。
特開平6-288858号公報 特許第3783019号公報 特許第3830050号公報 特開2007-232374号公報 "LASER REMOTE SENSING: Fundamentals and Applications" [Reprint Edition 1992] by Raymond M. Measures
 出願人は、特許文献2ないし4に記載の技術により、対象ガスの漏洩を遠隔”監視”することを可能としたが、対象空間における対象ガスの濃度を高精度に遠隔”計測”することはできなかった。より具体的には、例えば、水素ガス等の可燃性ガスの存在を検知したとしても、爆発の危険性を判断するにはその濃度を高精度に把握する必要があった。
 また、微弱なラマン散乱光を捉えるためには、大がかりな受光機構を設ける必要があり、計測装置の小型・軽量化の点で改良の余地があった。
 そこで、本発明は、上記課題を解決することのできる、ガス濃度および空間分布を遠隔計測する方法並びに装置を提供することを目的とする。
 対象空間にレーザー光を照射すると、対象ガスからのラマン散乱光を計測できる。しかし、計測されるラマン散乱光強度は測定条件に左右され一様でない。度重なる実験の結果、発明者はラマン散乱光強度の測定値が下記の要素に左右されることの知見を得た。
 (A)対象ガスの濃度
 (B)ラマン散乱効率
 (C)受光系感度
 (D)大気による減衰(レーザー光およびラマン散乱光)
 (E)レーザー光照射強度の変動
 (F)レーザー光と受光系の重なり具合
 上記(B)ラマン散乱効率は、非特許文献1にも記載されるように既知であり、上記(C)受光系感度も事前に補正することが可能である(ただし、対象ガスのラマン散乱光を選択する手段の構成(例えば図15のフィルターを用いる構成)によっては、後述するように、スペクトル強度分布をより正確に算出する必要がある。)。
 他方、上記(D)大気による減衰は測定状況によって異なり、上記(E)レーザー光照射強度の変動、および上記(F)レーザー光と受光系の重なり具合は、機器の経年変化によって異なるものとなる。このため、対象ガスのラマン散乱光強度の測定値を得るだけでは、対象ガスの濃度を高精度に求めることができなかった。特に、対象ガスの濃度が低い場合にこの問題は顕著となる。
 ところで、大気中には窒素ガスが約80%の濃度で均一に存在し、レーザー光の照射によって窒素ガスもラマン散乱光を発する。この窒素ガスのラマン散乱光強度の測定値も、上記の(D)大気による減衰、(E)レーザー光照射強度の変動、および(F)レーザー光と受光系の重なり具合、が反映される。そこで、発明者は、窒素ガスのラマン散乱光強度の測定値を取得し、この測定値に基づいて対象ガスにおける、(D)大気による減衰、(E)レーザー光照射強度の変動、および(F)光源と受光系の重なり具合、を補正することができないかと考えた。そして、発明者は鋭意検討の結果、大気中の窒素ガスのラマン散乱光強度と対象ガスのラマン散乱光強度を同時に測定し、これらのラマン散乱光強度の比から対象ガスの濃度および空間分布を求めることを可能とした。すなわち、本発明は、レーザー光を対象空間に照射し、大気中窒素ガスのラマン散乱光強度と対象ガスのラマン散乱光強度の比から、対象ガスの濃度と空間分布(存在位置)を計測する方法および装置に関する。
 第1の発明は、対象空間にレーザー光を照射し、窒素ガスからの散乱光を集光機構で集光し、第一の受光機構でラマン散乱光信号強度を測定する第一工程、第一工程と同期して、対象空間にレーザー光を照射し、対象ガスの散乱光を集光機構で集光し、第二の受光機構でラマン散乱光信号強度を測定する第二工程、窒素ガスと対象ガスのラマン散乱光強度の強度比に基づいて対象空間における対象ガスの濃度を計算する第三工程、とを含むガス濃度遠隔計測方法である。
 第2の発明は、第1の発明において、前記集光機構は、対物レンズと、対物レンズで集光したラマン散乱光を平行光線とするレンズ光学系と、レンズ光学系からの平行光線を分割する光分配器とを含んで構成し、前記対象ガスの特性に応じて、前記対象ガスおよび窒素ガスのそれぞれについて、透過率および反射率を改善させるよう前記光分配器を選択することを特徴とする。
 第3の発明は、第2の発明において、前記対物レンズが、フレネルレンズ、グレーティングレンズまたはホログラムレンズであることを特徴とする。
 第4の発明は、第1ないし3のいずれかの発明において、前記第一の受光機構は、窒素ガスのラマン散乱波長を透過中心波長に持つバンドパスフィルタと、受光素子とを備え、前記第二の受光機構は、対象ガスのラマン散乱波長を透過中心波長に持つバンドパスフィルタと、受光素子とを備えることを特徴とする。
 第5の発明は、第4の発明において、前記第一の受光機構のバンドパスフィルタの透過波長域にあるスペクトルの波長における積分値および前記第二の受光機構のバンドパスフィルタの透過波長にあるスペクトルの波長における積分値を算出し、それらの値から窒素ガスと対象ガスのラマン散乱断面積の比を算出し、当該ラマン散乱断面積の比を用いて対象ガスの濃度を算出することを特徴とする。
 第6の発明は、第1ないし5のいずれかの発明において、監視対象にレーザー光を走査し、対象空間における3次元のガス濃度分布を計測することを特徴とする。
 第7の発明は、第1ないし6のいずれかの発明において、前記対象ガスが、水素ガスであることを特徴とする。
 第8の発明は、対象空間にレーザー光を照射するレーザー光照射装置と、対象空間における窒素ガスからのラマン散乱光を検出する第一の受光機構と、対象空間における対象ガスからのラマン散乱光を検出する第二の受光機構と、対象空間からの散乱光を第一および第二の受光機構へ導く集光機構と、窒素ガスと対象ガスのラマン散乱光強度の強度比に基づいて対象空間における対象ガスの濃度を演算する演算部と、を備えるガス濃度遠隔計測装置である。
 第9の発明は、第8の発明において、前記集光機構は、対物レンズと、対物レンズで集光したラマン散乱光を平行光線とするレンズ光学系と、レンズ光学系からの平行光線を分割する光分配器とを備えることを特徴とする。
 第10の発明は、第9の発明において、前記光分配器が、ビームスプリッタ、波長選択ミラーまたはエッジフィルタであることを特徴とする。
 第11の発明は、第9または10の発明において、前記対物レンズが、フレネルレンズ、グレーティングレンズまたはホログラムレンズであることを特徴とする。
 第12の発明は、第8ないし11のいずれかの発明において、前記第一の受光機構は、窒素ガスのラマン散乱波長を透過中心波長に持つバンドパスフィルタと、受光素子とを備え、前記第二の受光機構は、対象ガスのラマン散乱波長を透過中心波長に持つバンドパスフィルタと、受光素子とを備えることを特徴とする。
 第13の発明は、第8ないし12のいずれかの発明において、前記集光機構または前記受光機構が、ピンホールを備えることを特徴とする。
 第14の発明は、第8ないし13のいずれかの発明において、前記集光機構および/または前記受光機構が、外乱光を排除する光学フィルタを備えることを特徴とする。
 第15の発明は、第8ないし14のいずれかの発明において、前記レーザー光照射装置は、監視対象にレーザー光を走査するための駆動機構を備え、前記演算部は、対象空間における3次元のガス濃度分布を演算可能であることを特徴とする。
 本発明によれば、室内・室外を問わずガス濃度を高精度に遠隔計測することが可能となる。
 また、携帯可能なガス濃度遠隔計測装置を提供することが可能となる。
(a)実施例1の受光装置本体の構成図、(b)(a)の写真である。 (a)実施例1のレーザー光照射装置の構成図、(b)(a)の要部拡大図、(c)(a)の写真である。 実施例1で用いた集光系を説明するための図面である。 実施例1におけるレーザー光軸と受光光軸の関係を説明するための図面である。 ラマン散乱光の検知感度(β)と受光系の検知感度(G)の関係を示すグラフである。 レーザー光軸と受光光軸との交叉位置による大気中窒素ガスのラマン散乱光受光信号強度を示すグラフである。 実施例1の装置による窒素ガスおよび水素ガス(濃度9%)の測定値である。 平均化処理を行った水素ガスのラマン散乱光信号波形(水素濃度4%、光軸交叉位置5m、増幅率32倍、平均処理64回)である。 実施例1の装置による水素ガスの濃度別測定値である。 高濃度水素ガス(濃度20%)のラマン散乱光受光信号強度を示すグラフである。 半値幅が8nsのレーザーパルスが受光光軸上を伝播する場合の受光光量(規格値)と距離の関係を示すグラフである。 実施例1の装置において、半値幅が4nsのレーザーパルスが受光光軸上を伝播する場合の受光光量と距離の関係を示すグラフである。 実施例1の装置において、半値幅が0.5nsのレーザーパルスが受光光軸上を伝播する場合の受光光量と距離の関係を示すグラフである。 実施例2の受光装置本体の構成図である。 (a)窒素ガスのラマン散乱光のスペクトル分布とフィルタの透過波長を示すグラフと、(b)水素ガスのラマン散乱光のスペクトル分布とフィルタの透過波長を示すグラフである。 窒素ガスのラマン散乱光強度と水素ガスのラマン散乱光強度の強度比を説明するためのグラフである。 実施例1のデータ処理装置の構成図である。 実施例3の波長選択ミラーの透過率と反射率を示すグラフである。
符号の説明
 図面に用いた主な凡例を以下に示す。
 1:受光系本体/2:ポイント用レーザー装置/3:可視光レーザー光源/4:アルミニウム蒸着直角プリズム/5:直角プリズム/10:集光機構/11:対物レンズ/12:熱線カットフィルタ/13:凹レンズ/14:ビームスプリッタ(BS)/15:カバー部材/16:凸レンズ/20:受光機構/21:ラマンエッジフィルタ/22:干渉フィルタ/23:集光レンズ(凸レンズ)/24:ピンホール/25:受光素子/30:レーザー光照射装置/31:レーザー光源/32:偏光ビームスプリッタ(PBS)/33:エキスパンダー/34:増幅器/35:A/Dコンバータ/36:トリガー信号送信部/40:データ処理装置
 最良の形態の本発明は、次の手順により対象ガスの濃度を遠隔計測する。
[1]レーザービームを対象空間に照射し、レーザー光に起因する大気中の窒素ガスと対象ガスからのラマン散乱光を同時に集光する。
[2]集光した光を2分し、それぞれの光を狭帯域の干渉フィルタを通過させて窒素ガスと対象ガスのラマン散乱光を選別して、それぞれのガスに起因するラマン散乱光を同時に取得し、受光素子で電気信号に変換し、レーザー光の照射信号を基準にして時間波形を測定する。
[3]窒素ガスのラマン散乱光強度と対象ガスのラマン散乱光強度の比から対象ガス濃度を算出する。
 上記の手順で対象ガスの濃度を計測する際には、次の点に留意するのが好ましい。
(i)対象ガスが存在しない場所で予備測定を行い、受光感度を補正し、次に対象空間を観測する。
(ii)受光系にピンホールを用いて視野角を制限する。
(iii)レーザー光を対象空間に走査することで、対象ガスの空間濃度分布を求める。この際、レーザー光の走査位置情報は、画像処理のために記憶しておく。
(iv)レーザーを短パルス状に照射することで、レーザー光照射とラマン散乱光の検知時間から測定器とガスまでの距離を求める。
(v)レーザービーム径を拡大して照射し、ビームの拡散を抑制して対象箇所に照射する。
(vi)集光系を屈折型とし、対物レンズを樹脂製のフレネルレンズを用いることにより軽量化を図る。
(vii)背景画像を取得し、背景画像上に対象ガスの情報を表示する。すなわち、対象ガス濃度に応じて背景画像を異なる色に着色し、または、対象ガス濃度や距離を文字情報として背景画像上に若しくは別個に表示する。
 上記の(i)について、補足の説明をする。
 本発明のガス濃度遠隔計測方法は、窒素ガスが通常の大気中における濃度で均一分布していることを前提としている。そのため、明らかに対象ガスが存在しない場所で計器を調整した後に測定を行うのが好ましい。
 また、本発明のガス濃度遠隔計測方法は、計測箇所における対象ガスの濃度が一定以上で均一に存在し、かつ、窒素ガスの濃度が一定以下である場合には、対象ガスの濃度を高精度に測定することができない。例えば、濃度100%の対象ガスが計測箇所全域に存在する場合は窒素ガスのラマン散乱光信号は得られず、窒素ガスと対象ガスのラマン散乱光信号強度比からは対象ガスの濃度は求まらない。
 対象ガスが水素ガスの場合、爆発下限である4%前後の水素ガス濃度を精度良く計測するためには本発明の方法が有効であるが、水素ガスの濃度が20%を超えると、測定誤差は20%となり本発明の方法によっては水素ガスの濃度を高精度に測定することができなくなる。ちなみに、水素ガスの濃度が20%を超えるのは、水素ガスが建物の中で溜まっているなど限定された場合であり、室外における測定において漏洩した水素ガスが20%を超える濃度で滞留することはおよそないといえる。
 他方、対象ガスが所定の濃度(例えば20%)を超える場合にはラマン散乱光信号が強いため、窒素ガスと対象ガスの同時測定は不要である。すなわち、明らかに対象ガスが存在しない場所で計器を調整した後、対象ガスのラマン散乱光信号強度から直接対象ガス濃度を求めることができる。このように対象ガスが高濃度で計測箇所全域に存在する場合においては、明らかに対象ガスが存在しない場所で測定した窒素ガスのラマン散乱光信号波形を基準にして対象ガス濃度を測定することができる。水素ガスでの実験によると、窒素ガスと水素ガスの同時測定を行わずに水素ガスの濃度を正確に求められるのは水素ガスが20%を超える場合であり、水素ガスの濃度が20%以下である場合には窒素ガスと水素ガスのラマン散乱光強度の同時観測が必要であった。図10は、高濃度(濃度20%)の水素ガスにおけるラマン散乱光強度信号を測定したグラフである。また、窒素ラマン信号は事前(調整時)に測定したものである。
 なお、高濃度の対象ガスの存在が部分的である場合(屋外で対象ガスの漏洩がある場合等)には、本発明の方法によって対象ガスを計測可能である。例えば、20%以上の水素ガスが部分的に存在する場合は、図10に示した窒素ガスと水素ガスのラマン散乱光強度信号が同時に得られるため、高濃度の水素ガスの濃度を高精度に測定することができる。
 上記の(v)について、補足の説明をする。
 上記(F)に記載したとおり、ラマン散乱光信号強度は、対象ガスとレーザービームの重なり具合によって観測されるラマン散乱光強度は異なるものとなる。このため、対象空間に照射するレーザービーム径を一定にすることが望ましい。しかしながら、レーザー光はビーム広がり角を持つため、進行距離と共にレーザービーム径が広がってくる。他方、ビーム広がり角は、レーザービーム径に反比例する。そこで、好ましい態様の本発明の方法では、ビームエキスパンダーでレーザービーム径を拡大して照射し、ビームの拡散を抑制して対象箇所に照射することで、精度の高い計測を行うことを可能としている。
[対象ガスの濃度算出]
 対象ガスの濃度は下記の計算式により算出される。
 エネルギーP0のレーザー光を照射したときの、ラマン散乱光の受光量Pは次式で与えられる。
Figure JPOXMLDOC01-appb-M000001
 ここで、P0はレーザーエネルギー、kは受光系の光学的効率(透過率や反射率)、Gはレーザー光と受光系の光学的重なり関数、Sは受光面積(対物レンズの有効面積)、Lは離隔距離、Nは分子密度、σはラマン散乱効率(後方ラマン散乱断面積)、ΔLは距離分解能(観測時間分解能を距離に換算した値)、αLはレーザー波長消散係数(吸収や散乱による)、αrはラマン散乱波長消散係数 (吸収や散乱による)である。
 続いて、対象ガスが水素ガスである場合におけるガス濃度の算出例を説明する。
 窒素ガスラマン散乱光の受光量P(N2)と、水素ガスラマン散乱光の受光量P(H2)は、それぞれ次式で与えられる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 窒素ガスと水素ガスのラマン散乱光波長の差は約30nmである。大気中においては、この波長帯域で特異な吸収を示す物質が無いため、窒素ガスと水素ガスの散乱波長消散係数は同じ値として扱え、αrn=αrhとなる。
 受光素子でラマン散乱光を電気信号(S)に変換するには、受光量(P)と受光感度(γ)の積を求めることになる。窒素ガスのラマン信号強度S(N2)と水素ガスのラマン信号強度S(H2)は、それぞれ次式で与えられる。
Figure JPOXMLDOC01-appb-M000004

Figure JPOXMLDOC01-appb-M000005
これらの信号強度の比を求めると、S(H2)/S(N2)=Cとして、次式が得られる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ここで、σとσは、非特許文献1によれば定数であり、σは7.098×10-30(cm2・sr-1)であり、σは2.855×10-30(cm2・sr-1)である。
σとσの比は全スペクトル強度の比であり、実測値によればその強度比は3.7となる(非特許文献1の値を用いた場合、その強度比は3.1となる。)。
 また、(γh・k)と(γn・kn)は構成部品の仕様から求めることができる。
 これらの値を用いると、窒素ガスと水素ガスの濃度比(Nh/Nn)は、次式から求められる。
Figure JPOXMLDOC01-appb-M000008
 ちなみに、後述の実施例1の装置における(γh・k)は3.04×108(mV/W) であり、(γn・kn)は2.10×108(mV/W)である。したがって、実施例1の装置においては、水素濃度Nhは、ラマン散乱断面積の比率(σ)の値を3.1(非特許文献1の値)とした場合、下記式9により求められる。また、ラマン散乱断面積の比率の値を実測値(σ=3.7)とした場合、水素濃度Nhは下記式10により求められる。なお、後述する図15のフィルタを用いる構成とする場合には式10を用いることが好ましく、フィルタを交換する場合には既知濃度のガスの測定値で補正する必要がある。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
[振動ラマン散乱光と回転ラマン散乱光]
 ラマン散乱光には振動ラマン散乱光および回転ラマン散乱光があるが、本発明ではいずれを利用してもよい。前者の方が、レーリー散乱から波長的に遠く、乱反射により妨害されにくい点で後者に対して優位性がある。他方、ラマンシフトが約587cm-1附近での回転ラマン散乱光のスペクトルは、振動ラマン散乱光比べ強いことが知られている。
 例えば、対象ガスが水素ガスの場合、照射するレーザー波長別のラマンシフトは表2のとおりとなる。表2に示すとおり、回転ラマン散乱光のシフト量は少ないため、照射レーザーの反射光をシャープにカットするフィルタが必要であることが分かる。近年開発された照射レーザー光の波長を遮断する遮断急峻度(透過率10-6から透過率50%までの急峻度)3nm以下の長波長透過フィルタ(エッジフィルタ)を用いるか、透過長幅が±2nm以下の狭帯域光学バンドパスフィルタを用いること(好ましくは両者を併用すること)により、回転ラマン散乱光の抽出が可能となる。
 例えば、照射するレーザー光の波長が355nmの場合、エッジフィルタは355nmを10-6に減衰させ362nmの光を90%以上透過する性能を有するものを、光学バンドパスフィルタはラマンシフトした波長である362.2nmの波長の近傍に透過波長中心を有するものを、差分算出用光を集光するための光学バンドパスフィルタは、ラマン散乱光を集光するための光学バンドパスフィルタと波長が近く且つラマン散乱光を含まない波長に透過波長中心を有するものを選択し、両光学バンドパスフィルタの透過波長幅は少なくとも±2nm以下(好ましくは±0.8nm以下)である必要がある。
 回転ラマン散乱光は、レーザー光の照射に対して蛍光の谷間に発生するため、蛍光の影響が少ないという特徴がある。出願人が特許文献4の図12で開示したように、レーザー光に起因する蛍光は照射レーザー光の直近には発生しないため、照射レーザー光の直近には発生する回転ラマン散乱光が蛍光の影響を受け難いことが分かる。
Figure JPOXMLDOC01-appb-T000002
 以下では、本発明を実施するための実施例を説明するが、本発明は実施例により何ら限定されるものではない。 
 本実施例の装置は、対象空間に存在する水素ガスの濃度を計測するものであり、対象空間に存在する窒素ガスおよび水素ガスからのラマン散乱光強度を電気信号に変換する受光系本体1、対象空間にレーザー光を照射するレーザー光照射装置30、およびデータ処理装置40を主たる構成要素とする。以下、これらの構成要素について説明する。
[受光系本体1]
 受光系本体1は、集光機構10と、受光機構20と、ポイント用レーザー装置2とから構成される。
 ポイント用レーザー装置2は、受光系本体1に取り付けられた光軸確認用の可視光レーザー光源3と、プリズム4,5とを備え、レーザービームをプリズム4,5で反射して、対物レンズ11の中心から対象エリアに照射することができる。
 受光系本体1は筐体がカバー部材15により遮蔽されており、外乱光を遮断することで周辺の外乱光が受光装置本体1に入射することを防止している。
[集光機構10]
 集光機構10は、図1に示す如く、対物レンズ11と、熱線カットフィルタ12と、凹レンズ13と、ビームスプリッタ14とから構成される。
 本実施例の装置では鮮明な映像を捉える必要がなく光強度を測定する機能だけが要求されるため、対物レンズ11のフレネルレンズ(アクリライト000[三菱レイヨン社製])を採用した。本実施例のフレネルレンズ(Fresnel lens)は、アクリル樹脂の片面に凹凸加工を施したものであり、口径は200mm、焦点距離は230mmである。本実施例では対物レンズ11にフレネルレンズを用いることにより、集光機構10の大幅な軽量化および小型化を実現可能としている。また、対物レンズ11にグレーティングレンズまたはホログラムレンズなどを用いることも可能である。
 熱線カットフィルタ12は、外乱光となる赤外光をカットする。ただし、後述の受光機構20で赤外光に不感の受光素子を用いる場合には必須の構成とはならない。
 凹レンズ13は、受光機構20に平行光を導くために必要とされる。受光機構20の備える各フィルタは、面と直交する光が入射した場合にのみカタログ値の性能が発揮されるため、集光したラマン散乱光を平行光にするためである。ちなみに、凹レンズを用いた構成の場合、後述の実施例2の構成と比べ凹レンズとフレネルレンズの間隔を短くすることができるという効果もある。
 ビームスプリッタ14は、集光したラマン散乱光を分割し、直交して配置された受光素子25a,25bに入射する。なお、本実施例では窒素ガスからのラマン散乱光を透過し、水素ガスからのラマン散乱光を反射する構成としているが、水素ガスからのラマン散乱光を透過し、窒素ガスからのラマン散乱光を反射する構成としてもよい(後述の実施例3参照)。
[受光機構20]
 受光機構20は、図1に示す如く、ラマンエッジフィルタ21a,21b、干渉フィルタ22a,22b、集光レンズ23a,23b、ピンホール24a,24b、受光素子25a,25bとから構成される
 ラマンエッジフィルタ21a,21bは、外乱光となるレーザー散乱(レーリー散乱とミー散乱)光をカットする。ただし、後述の干渉フィルタ22a、22bでレーザー光が遮断できる場合には必須の構成とはならない。
 干渉フィルタ22a,22bは、特定波長の光を選択透過するバンドパスフィルタであり、ラマン散乱光のみを集光するためのものである。
 ビームスプリッタ14と集光レンズ23aの間には、上述のラマンエッジフィルタ21aと386.7nm±1nmの光を選択する干渉フィルタ22aとを配置し、窒素ガスラマン散乱光を選択透過して受光素子25aに入射する。
 ビームスプリッタ14と集光レンズ23bの間には、上述のラマンエッジフィルタ21bと416.1nm±1nmの光を選択する干渉フィルタ22bとを配置し、水素ガスラマン散乱光を選択透過して受光素子25bに入射する。
 受光素子25a,25bは小型のメタルパッケージ光電子増倍管(R7400U-03[浜松ホトニクス社製])を使用し、雑音対策のために管本体とソケット外周および配線をシールドした。受光素子25a,25bにはCCDやアバランシェフォトダイオード(avalanche photodiode)などの公知の素子を用いることもできるが、その場合熱線カットフィルタが必須となる。本実施例では、受光素子で画像を取得しない仕様であるため、安価な光電子増倍管を選択した。
 ピンホール24a,24bは集光レンズ23a,23bの焦点位置に置かれ、ピンホールの開口径を変えることで視野角を調整可能とする。このように、集光レンズ23a,23bの焦点位置にピンホールを設けることで、ラマン散乱光以外の外乱光の入射到を抑制することを可能としている。
 以上の構成により、集光機構10の対物レンズ11で集められ、凹レンズ13によって平行光にされた光はビームスプリッタ14によって2分され、集光レンズ23a,23bによって集光され、ピンホール24a,24bを通過して、受光素子25a,25bに入る。受光素子25aで窒素ガスのラマン散乱光を、受光素子25bで水素ガスのラマン散乱光を、それぞれ電気信号に変換する。
 干渉フィルタ22a,22bによる透過波長の選択について補足の説明をする。
 振動ラマン散乱光を光学バンドパスフィルタを介して観測する場合、その強度はフィルタ透過波長範囲にあるラマン散乱光強度を測定することとなるため、フィルタ透過波長内のラマン散乱光強度のスペクトル分布を知る必要がある。そこで、本実施例では窒素ガスと水素ガスを容器に充填し、355nmのレーザ光を照射して窒素ガスと水素ガスのラマン散乱光強度のスペクトルを測定した。ここで、分光測定で用いた分光器の焦点距離は50cm、格子定は1800L/mm、波長分解能は0.03nmであり、窒素ラマン光の観測で用いたフィルタは中心波長386.8nm、半値全幅2.0nmであり、水素ラマン光の観測で用いたフィルタは中心波長416.3nm、半値全幅1.8nmである。
 図15および16に示すように、窒素ガスのラマン散乱光スペクトルは1つのピークを持つのに対し、水素ガスのラマン散乱光スペクトルには回転遷移に起因するピークが現れることが確認できる。これらのピークは水素濃度1~100%において同様の形状を示すことが確認された。水素ガスの最大ピーク値と窒素ガスの最大ピーク値の比は3.1:1であり、非特許文献1の値と一致する。フィルタの透過波長範囲内にある全スペクトル強度についてみると、水素ガスのスペクトル強度分布の積分値と窒素ガスの積分値の比は3.7:1であり、上記式7におけるσhnの値は3.7となる。
 ピンホール24a,24bによる視野角の調整について補足の説明をする。
 視野角を大きくすると広範囲の光を検知することができ、レーザービームを走査して広範囲を観測する場合に有効である。他方、視野角を小さくすると対象箇所を特定して観測する場合に有効となる。
 また、視野角を大きくすると広範囲からの外乱光がピンホールを通過するために外乱光の影響が大きくなる。他方、視野角を小さくすると外乱光の影響を受けにくく、微弱な信号(低濃度ガスからのラマン散乱光)を精度良く測定することができる(すなわち、S/N比が高くなる)。
 本実施例の構成では、直径0.5mmのピンホールで5mradの視野角となり、ピンホールをはずすと54mradとなる。本実施例では、直径が0.5mmのピンホールを用いることで10m先の直径30cmのエリアを監視対象とし、ピンホールをはずすことで10m先の直径1.3mのエリアを監視対象としている。
 本実施例の受光系は屈折型の集光系となっており、図3の模式図に示すとおりの構成である。
 対象物からの光は集光レンズ23によって結像面に集光される。例えば、対象物上の〇点の像が結像面の中心に結像するようにレンズと結像面を配置すると、Q点の方向から入射する光はピンホールの開口から外れ、受光素子では観測されない。このQ点からの光が外乱光である場合は、ピンホールによって外乱を排除されたことになり、受光系の視野角を小さくすることで、外乱光を抑制する効果が大きくなる。
 また、対象物上のP点からの光は結像面の中心からずれることになり、R点からの光は結像面ではぼやけてくる。このように対象物の中心(フォーカス位置)から外れた光の結像面上の強度(単位面積当たりの強度)は異なるものとなる。このズレはレーザーの光軸と受光素子の光軸の位置関係で発生することになり、レーザーと受光素子の配置と光軸の角度によって検知信号強度が異なってくる。
 本実施例ではレーザーの照射位置を受光素子の光軸から20cm(対物レンズ11の端から10cm)とした。この時のレーザー光と受光系の重なり具合は図4に示すとおりである。受光素子の視野内にレーザー光が入ることでラマン散乱光信号が観測され、重なりが受光系のフォーカス位置に近づくにつれて信号強度は強くなるが、同時に受光素子からの距離が離れるにつれて受光光量は距離の自乗に反比例して減少する。このため、均一な濃度のガスにおいても、受光されるラマン散乱信号強度は距離によって異なってくる。
 図3に示した光軸(O-O’線)上をレーザー光が通過すると仮定すると、ラマン散乱光の検知感度(β)と受光系の検知感度(G)は図5に示す関係となる。受光系のフォーカスを無限遠に調整(結像面を焦点位置仮定)すると、近距離では像はぼやけて受光効率は低く、対象物が遠ざかると受光効率が高くなる(図5の重なり関数G参照)。これに対して、対象物からの光は距離の自乗に反比例して弱くなり、総合の光検知量は離隔距離が大きくなるほど小さくなってくる(図5の検知感度β参照)。
 レーザー光軸と受光光軸を重ねることを前提とした構成においては、交叉位置の測定限界遠距離と測定限界近距離がある。すなわち、前者はラマン散乱光強度が弱くなるための測定限界距離であり、後者はレンズの焦点が合わないための測定限界距離である。前者(測定限界遠距離)に関し、本実施例の装置では、約20mの距離まで計測可能であることが確認できた(図6参照)。
 後者(測定限界近距離)に関しては、照射するレーザー光のパルス幅に依存する。図11は、半値幅が8nsのレーザーパルスが受光光軸上を伝播する際の受光光量の規格値を示すグラフであり、図12は、実施例1の装置において、半値幅が4nsのレーザーパルスを照射した場合の受光光量を示すグラフである。図11および図12から、半値幅が8nsの場合は5m以内の信号のピークは不鮮明となり、半値幅が4nsの場合は2m以内の信号のピークは不鮮明となり、ガスの位置特定が不可能であることが分かる。
 この問題は、半値幅の短いレーザー光を照射することにより改善することが可能である。図13は、実施例1の装置において、半値幅が0.5nsのレーザーパルスを照射した場合の受光光量を示すグラフである。図13から、半値幅が0.5nsのレーザーパルスを用いれば、0.5mの距離までガス位置の特定が可能となることが分かる。
 以上により、レーザー光のパルス幅を狭くする(照射時間を短くする)と、空間分解能が向上し(図11参照)、近距離のガスも検知できることが分かった(図12および図13参照)。但し、パルス発振レーザーのパルス幅を任意に調整することは難しいため、発振機構を変えたレーザーを用いることが好ましい。
[レーザー光照射装置30]
 レーザー光照射装置30は、図2に示す如く、レーザー光源31と、偏光ビームスプリッタ(PBS)32と、エキスパンダー33とから構成される。
 レーザー光源31は、ラマン散乱光を発生させるためのものであり、355nmのパルスYAGレーザーを使用した。レーザー照射強度は偏光ビームスプリッタ(PBS)32で調整され、ビーム径はエキスパンダー33により調整される。エキスパンダー33は、凹レンズ(材質:合成石英、焦点距離:-25mm)と凸レンズ(材質:合成石英、焦点距離:70mm)とで構成され、ビーム径を12mmとしており、30m先でのビーム径は13.5mmである(図2(b)参照)。
 なお、ラマン散乱光波長は、照射するレーザー光の波長と対象ガスの種類によって決定されるものであり、355nmの波長に限定されない。例えば、YAGレーザーの第4高調波である266nmのレーザー光を照射すると、窒素ガスは283.6nmのラマン散乱光を、水素ガスは299.1nmのラマン散乱光を発する。これらの光を同時に観測して信号強度比を求めることで水素ガスの濃度を算出することが可能である。この場合は、実施例に示したエッジフィルタを266nm用に、窒素ガスのラマン散乱光検知用に透過波長中心が283.6nmの干渉フィルタを用い、水素ガスのマン散乱光検知用に透過波長中心が299.1nmの干渉フィルタを用いる。
[データ処理装置40]
 図17は、データ処理装置40の構成図である。受光素子25a,25bで検出した電気信号はA/Dコンバータ35でデジタル化され、レーザー光の照射開始時間を時間基準として電気信号強度の時間変化(受光光量の時間変化)が演算部に出力される。
 トリガー信号送信部36は、照射レーザー光の一部を取り出して、ホトダイオード(PD)で電気信号に変換し、信号発生器でパルス信号化して、A/Dコンバータ35のトリガー信号とする。受光素子25a,25bの電気信号は、増幅器34a,34bでA/Dコンバータ35の必要電圧に増幅して、A/Dコンバータ35に入力される。
 本実施例では、A/Dコンバータ35のサンプリングレートは1GS/sであり、電圧分解能は8ビット(256分割)である。
 デジタル化されたデータは、事前に指定したデータ取込回数だけ、CPUを介してRAMに記録され、指定回数のデータの記録が終了すると、平均化処理を行い、ラマン散乱光の時間波形、濃度の空間分布波形、最大濃度と最大濃度位置をディスプレイに表示する。表示内容は選択可能としている。必要なデータは外部メモリー(例えば、メモリーチップ)に保存することが可能であり、必要に応じて保存データをディスプレイに表示できる。
 データ取込回数(平均化処理回数)、ディスプレイの表示内容、濃度測定のための係数、外部メモリへの保存の要否はキーボード等の情報入力器具から入力される。
 CPUには外部通信機能を持たせ、インターフェースを介してパーソナルコンピュータ(PC)に接続可能である。
 本実施例では、受光機構20からの信号は、時間の経過と共に変化する電気信号の波形に過ぎないため、データ処理プログラムにより、レーザー光照射系の走査制御情報(レーザー光照射方向位置情報)と、対象空間の空間位置座標をマッチングして、対象ガスの濃度および存在位置を算出する。
[水素ガス濃度の算出]
 図6にレーザー光軸と受光光軸を5mから20mで交叉させた場合の大気中窒素ガスのラマン散乱光受光信号強度を示す。横軸は時間であるが15cm/nsで距離に換算できる。図6を見ると交叉距離が5mの場合に最も信号強度が強く、8m、10mと交叉距離が遠くなるに伴い山の高さが低くなり、裾野が広くなることが分かる。換言すれば、レーザー光軸と受光光軸を近距離(5m)で交叉させると信号強度は強いが、信号を観測できる距離が限られてくる。長距離(20m)で交叉させると近距離の信号は観測できず、また信号強度も弱くなるが、広範囲の距離を観測することができる。図6の波形は、上述の(D)ないし(F)までの要素により異なるものとなる。しかし、同一装置で同一時間帯に水素ガスのラマン散乱光を測定すれば、上述の(D)ないし(F)の要素は窒素ガスにおけるそれと同じものとなる。すなわち、装置の重なり具合と光の消散係数(α)に加えて、レーザー強度(P0)の変動は窒素と水素のラマン散乱光強度に同様に反映されるため、これらの影響を相殺することで正確な水素のラマン散乱光強度が求められる。
 実施例1の装置における受光系の光学的効率は表3のとおりであり、受光素子の受光感度は表4のとおりである。上述のとおり、実施例1の装置における(γh・k)は3.04×108(mV/W) であり、(γn・kn)は2.10×108(mV/W)である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 大気中に水素ガスを放出した時の、窒素ガスと水素ガスのラマン散乱光の同時観測例を図7に示す。図7では100nsのあたりに水素ガスのラマン散乱光信号強度のピークがあることから、約15m(光速×時間/2)先に水素ガスが存在することが分かる。
 図7の計測データに基づき、上述の式1ないし式8および式10で規定される測定方法により、窒素ガスのラマン散乱光受光信号強度を基準にして、水素ガスのラマン散乱光強度から水素濃度を算出したところ、その濃度は9%となり、吸引式水素濃度計の測定値とほぼ同じ値を得ることができた。なお、本実施例では、σh/σの値として水素ガスのスペクトル強度分布の積分値と窒素ガスのスペクトル強度分布の積分値の比(=3.7)を、kとkおよびγとγとしてカタログ値を、それぞれ代入したが、既知濃度の水素ガスを用いて検量線を求めてもよい(すなわち、ラマン散乱断面積σ、受光効率k、受光感度γを一括して、既知濃度の水素ガスの測定値で補正することもできる)。
 図7に示したように、濃度14%の水素ガスのラマン信号強度は数mVのオーダーであるが、S/N比(信号対雑音比)は良好であるため、この信号を増幅器で増幅することでより大きな信号を得ることができる。また、平均化処理を施すことでS/N比を改善できる。平均化処理の時間を短縮するためには、専用のA/Dボードを用いることが好ましい。
 図8は、濃度4%の水素ガスのラマン散乱光信号を増幅して64回の平均化処理を行った波形(5回のデータを重ね書きしたもの)である。なお、信号強度にマイナスの出力があるのは、増幅に用いたアンプの特性による。
 本実施例の装置を用いて、水素ガス濃度の計測能力を検証した。図9に離隔距離13mにおける水素ガスの濃度別測定結果を示す。図9を見ると分かるように、本実施例の装置によれば、1%未満のガス濃度も測定できることが確認できた。実験では、13mの距離から0.6%(誤差±10%)の水素濃度が測定可能であることが確認できた。
 水素ガスの場合、爆発限界の下限は濃度4%であり、その4分の1である1%以下の検知精度が要求されるが、本実施例の装置によればそれを達成することが可能である。
 以上に説明した本実施例の装置は、次の特徴を有する。
[a]小型・軽量
 プラスチックのフレネルレンズを使用することで小型軽量化が可能である。本実施例の受光装置本体1(ポイント用レーザー装置2を除く)の重量は900gであり、寸法は220×220×340mmである。
[b]装置関数の自動補正
 大気中窒素ガスのラマン散乱光強度と対象ガスのラマン散乱光強度を同時測定することで、上述の(D)大気による減衰、(E)レーザー光照射強度の変動、(F)レーザー光と受光系の重なり具合、の補正が可能である。
[c]外乱の抑制
 受光系にピンホールを用いて視野角を制限することで、太陽光等の外乱を抑制することが可能である。
[d]濃度分布分解能の向上
 レーザービームが広がると対象ガスの存在位置ではレーザー照射密度が異なるため、レーザービーム径を拡大してビームの拡散を抑制することで照射密度を一定にすることができる。
[e]距離分解能の向上
 レーザーを短パルス状に照射することで、レーザー光照射とラマン散乱光の検知時間から測定器とガスまでの距離を高分解能で求めることができる。
[f]濃度空間分布の計測
 ビームの拡散を抑制した短パルス状のレーザー光を対象空間に走査することで、対象ガスの空間濃度分布を精度良く求めることができる。
 実施例2の装置は、実施例1の装置の受光系の構成を変えたものである。すなわち、実施例2の装置は、凹レンズの代わりに凸レンズ16を備える点、ピンホール24とラマンエッジフィルタ21が1枚に減っている点で実施例1の装置と相違する。集光レンズ11、干渉フィルタ22a,22b、集光レンズ23a,23b、受光素子25a,25b等の部品については、実施例1の装置と同様の部品を用いて構成することができる。実施例2の装置の構成を図14に示す。
 実施例2の装置によれば、必要な部品数が少ないため、実施例1の装置に比べ部品コストを抑えることが可能である。
 実施例1の装置は、表3に示すように、光分配器であるビームスプリッタ14により窒素ラマン散乱光を透過させて、水素ラマン散乱光を反射させる構成であった。これとは反対に、本実施例の装置は、光分配器を用いて窒素ガスからのラマン散乱光を透過させて、水素ガスからのラマン散乱光を反射させる構成である。本実施例の装置においては、ビームスプリッタの代わりに多層膜の波長選択ミラー(ダイクロイックミラー)を用いる。
 窒素ガスからのラマン散乱光波長が386.7nm、水素ガスからのラマン散乱光波長が416.5nmであるところ、例えば400nmよりも短波長の光を反射し、400nmよりも長波長の光を透過する波長選択ミラーがあれば、反射および透過の効率を改善することができる。図18のグラフが本実施例のフィルタの透過率と反射率の測定値である。この波長選択ミラーによれば、波長416.5nmでの透過率は90%となり、水素ラマン散乱光の受光率が2.00倍(45%から90%)に改善される。また、波長386.7nmでの反射率は93%となり、窒素ラマン散乱光の受光効率は1.55倍(60%から93%)に改善される。本実施例の受光系の光学的効率を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 本発明によれば、保安距離外から水素ガス、メタンガス、天然ガスなどの可燃性ガスのガス製造設備におけるガスの漏洩を検知することが可能となる。例えば、一般高圧ガス保安法によれば、高圧ガス設備は敷地境界に対し8m以上の距離(敷地境界距離)を有することが規定されるが、本発明によれば、敷地境界距離外からガスの漏洩を遠隔監視することが可能となる。
 また、可燃性ガスや有毒ガスの存在位置と濃度が遠隔計測できることは、爆発や有毒ガスの吸飲などの危険性が回避できる。さらに酸素ガスの濃度が遠隔計測できることは、酸欠等の災害を事前に防止することができる。

Claims (15)

  1.  対象空間にレーザー光を照射し、窒素ガスからの散乱光を集光機構で集光し、第一の受光機構でラマン散乱光信号強度を測定する第一工程、
     第一工程と同期して、対象空間にレーザー光を照射し、対象ガスの散乱光を集光機構で集光し、第二の受光機構でラマン散乱光信号強度を測定する第二工程、
     窒素ガスと対象ガスのラマン散乱光強度の強度比に基づいて対象空間における対象ガスの濃度を計算する第三工程、とを含むガス濃度遠隔計測方法。
  2.  前記集光機構は、対物レンズと、対物レンズで集光したラマン散乱光を平行光線とするレンズ光学系と、レンズ光学系からの平行光線を分割する光分配器とを含んで構成し、
     前記対象ガスの特性に応じて、前記対象ガスおよび窒素ガスのそれぞれについて、透過率および反射率を改善させるよう前記光分配器を選択することを特徴とする請求項1に記載のガス濃度遠隔計測方法。
  3.  前記対物レンズが、フレネルレンズ、グレーティングレンズまたはホログラムレンズであることを特徴とする請求項2に記載のガス濃度遠隔計測方法。
  4.  前記第一の受光機構は、窒素ガスのラマン散乱波長を透過中心波長に持つバンドパスフィルタと、受光素子とを備え、
     前記第二の受光機構は、対象ガスのラマン散乱波長を透過中心波長に持つバンドパスフィルタと、受光素子とを備えることを特徴とする請求項1ないし3のいずれか一項に記載のガス濃度遠隔計測方法。
  5.  前記第一の受光機構のバンドパスフィルタの透過波長域にあるスペクトルの波長における積分値および前記第二の受光機構のバンドパスフィルタの透過波長にあるスペクトルの波長における積分値を算出し、それらの値から窒素ガスと対象ガスのラマン散乱断面積の比を算出し、当該ラマン散乱断面積の比を用いて対象ガスの濃度を算出することを特徴とする請求項4に記載のガス濃度遠隔計測方法。
  6.  監視対象にレーザー光を走査し、対象空間における3次元のガス濃度分布を計測することを特徴とする請求項1ないし5のいずれか一項に記載のガス濃度遠隔計測方法。
  7.  前記対象ガスが、水素ガスであることを特徴とする請求項1ないし6のいずれか一項に記載のガス濃度遠隔計測方法。
  8.  対象空間にレーザー光を照射するレーザー光照射装置と、
     対象空間における窒素ガスからのラマン散乱光を検出する第一の受光機構と、
     対象空間における対象ガスからのラマン散乱光を検出する第二の受光機構と、
     対象空間からの散乱光を第一および第二の受光機構へ導く集光機構と、
     窒素ガスと対象ガスのラマン散乱光強度の強度比に基づいて対象空間における対象ガスの濃度を演算する演算部と、を備えるガス濃度遠隔計測装置。
  9.  前記集光機構は、対物レンズと、対物レンズで集光したラマン散乱光を平行光線とするレンズ光学系と、レンズ光学系からの平行光線を分割する光分配器とを備えることを特徴とする請求項8に記載のガス濃度遠隔計測装置。
  10.  前記光分配器が、ビームスプリッタ、波長選択ミラーまたはエッジフィルタであることを特徴とする請求項9に記載のガス濃度遠隔計測装置。
  11.  前記対物レンズが、フレネルレンズ、グレーティングレンズまたはホログラムレンズであることを特徴とする請求項9または10に記載のガス濃度遠隔計測装置。
  12.  前記第一の受光機構は、窒素ガスのラマン散乱波長を透過中心波長に持つバンドパスフィルタと、受光素子とを備え、
     前記第二の受光機構は、対象ガスのラマン散乱波長を透過中心波長に持つバンドパスフィルタと、受光素子とを備えることを特徴とする請求項8ないし11のいずれか一項に記載のガス濃度遠隔計測装置。
  13.  前記集光機構または前記受光機構が、ピンホールを備えることを特徴とする請求項8ないし12のいずれか一項に記載のガス濃度遠隔計測装置。
  14.  前記集光機構および/または前記受光機構が、外乱光を排除する光学フィルタを備えることを特徴とする請求項8ないし13のいずれか一項に記載のガス濃度遠隔計測装置。
  15.  前記レーザー光照射装置は、監視対象にレーザー光を走査するための駆動機構を備え、
     前記演算部は、対象空間における3次元のガス濃度分布を演算可能であることを特徴とする請求項8ないし14のいずれか一項に記載のガス濃度遠隔計測装置。
PCT/JP2008/002006 2008-02-13 2008-07-28 ガス濃度遠隔計測方法および装置 WO2009101659A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009553290A JP5159799B2 (ja) 2008-02-13 2008-07-28 ガス濃度遠隔計測方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008031542 2008-02-13
JP2008-031542 2008-02-13

Publications (1)

Publication Number Publication Date
WO2009101659A1 true WO2009101659A1 (ja) 2009-08-20

Family

ID=40956705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/002006 WO2009101659A1 (ja) 2008-02-13 2008-07-28 ガス濃度遠隔計測方法および装置

Country Status (2)

Country Link
JP (1) JP5159799B2 (ja)
WO (1) WO2009101659A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788486A (zh) * 2010-03-02 2010-07-28 武汉钢铁(集团)公司 转炉热端烟气在线分析装置
JP2011054861A (ja) * 2009-09-04 2011-03-17 Sony Corp 半導体装置の製造方法、半導体検査装置および結晶化度検査方法
JP2014182106A (ja) * 2013-03-21 2014-09-29 Horiba Ltd 温度計
RU2544264C1 (ru) * 2013-09-19 2015-03-20 Федеральное государственное бюджетное учреждение науки Институт мониторинга климатических и экологических систем Сибирского отделения Российской академии наук (ИМКЭС СО РАН) Способ газоанализа природного газа
US9166112B2 (en) 2008-10-17 2015-10-20 Koito Manufacturing Co., Ltd. Light emitting module, method of manufacturing the light emitting module, and lamp unit
EP2895842A4 (en) * 2012-09-13 2016-06-22 Valmet Technologies Oy MEASUREMENT OF GASEOUS COMPOUNDS BY SPECTROSCOPY
JP6292733B1 (ja) * 2017-03-29 2018-03-14 東京ガスエンジニアリングソリューションズ株式会社 ガス検知器
JP2018048825A (ja) * 2016-09-20 2018-03-29 九州電子技研株式会社 ラマン散乱光検出装置及びラマン散乱光検出方法
KR101848441B1 (ko) * 2017-08-28 2018-04-12 한국원자력기술 주식회사 보정 기능을 갖는 수소가스 원격 탐지 시스템
KR101848439B1 (ko) * 2017-08-28 2018-04-12 한국원자력기술 주식회사 수소가스 원격 탐지 시스템
KR101901206B1 (ko) 2018-02-13 2018-09-21 한국원자력기술 주식회사 상관관계를 이용한 수소가스 원격 탐지 방법
KR101901207B1 (ko) * 2018-02-13 2018-09-21 한국원자력기술 주식회사 수소가스 원격 탐지 시스템의 검출위치 매칭 방법
KR101905516B1 (ko) * 2017-08-30 2018-10-10 한국원자력연구원 순수 라만광 신호를 측정하기 위한 라만 라이다 장치
KR101913216B1 (ko) * 2017-10-25 2018-10-31 한국원자력연구원 가스 탐지 장치 및 가스 탐지 방법
JP2018169386A (ja) * 2018-02-14 2018-11-01 東京ガスエンジニアリングソリューションズ株式会社 ガス検知器
JP2019082456A (ja) * 2017-10-31 2019-05-30 株式会社四国総合研究所 光学式センサチップ及び光学式ガスセンサ
JP2020034475A (ja) * 2018-08-31 2020-03-05 株式会社四国総合研究所 ガス濃度測定装置およびガス濃度連続測定方法
JP2021060377A (ja) * 2019-10-09 2021-04-15 いであ株式会社 ガス漏れ検知システム及び方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9918018B2 (en) * 2016-04-04 2018-03-13 Illinois Tool Works Inc. Dynamic range enhancement systems and methods for use in welding applications
US10502830B2 (en) * 2016-10-13 2019-12-10 Waymo Llc Limitation of noise on light detectors using an aperture
KR102076997B1 (ko) * 2018-01-29 2020-02-14 한국원자력연구원 광축 정렬 상태의 모니터링을 위한 라만 라이다 장치 및 광축 정렬 상태 모니터링 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954040A (ja) * 1995-08-09 1997-02-25 Kdk Corp 呼気中成分の光学的測定方法
JP2000028528A (ja) * 1998-04-21 2000-01-28 Hewlett Packard Co <Hp> 希ガスの検出及びその決定
JP2004170088A (ja) * 2002-11-15 2004-06-17 Mitsubishi Heavy Ind Ltd 気体成分計測方法及び装置
JP2007232374A (ja) * 2006-02-27 2007-09-13 Shikoku Res Inst Inc ラマン散乱光による水素ガス可視化方法及びシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954040A (ja) * 1995-08-09 1997-02-25 Kdk Corp 呼気中成分の光学的測定方法
JP2000028528A (ja) * 1998-04-21 2000-01-28 Hewlett Packard Co <Hp> 希ガスの検出及びその決定
JP2004170088A (ja) * 2002-11-15 2004-06-17 Mitsubishi Heavy Ind Ltd 気体成分計測方法及び装置
JP2007232374A (ja) * 2006-02-27 2007-09-13 Shikoku Res Inst Inc ラマン散乱光による水素ガス可視化方法及びシステム

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9166112B2 (en) 2008-10-17 2015-10-20 Koito Manufacturing Co., Ltd. Light emitting module, method of manufacturing the light emitting module, and lamp unit
JP2011054861A (ja) * 2009-09-04 2011-03-17 Sony Corp 半導体装置の製造方法、半導体検査装置および結晶化度検査方法
CN101788486A (zh) * 2010-03-02 2010-07-28 武汉钢铁(集团)公司 转炉热端烟气在线分析装置
EP2895842A4 (en) * 2012-09-13 2016-06-22 Valmet Technologies Oy MEASUREMENT OF GASEOUS COMPOUNDS BY SPECTROSCOPY
JP2014182106A (ja) * 2013-03-21 2014-09-29 Horiba Ltd 温度計
RU2544264C1 (ru) * 2013-09-19 2015-03-20 Федеральное государственное бюджетное учреждение науки Институт мониторинга климатических и экологических систем Сибирского отделения Российской академии наук (ИМКЭС СО РАН) Способ газоанализа природного газа
JP2018048825A (ja) * 2016-09-20 2018-03-29 九州電子技研株式会社 ラマン散乱光検出装置及びラマン散乱光検出方法
JP6292733B1 (ja) * 2017-03-29 2018-03-14 東京ガスエンジニアリングソリューションズ株式会社 ガス検知器
JP2018169202A (ja) * 2017-03-29 2018-11-01 東京ガスエンジニアリングソリューションズ株式会社 ガス検知器
KR101848441B1 (ko) * 2017-08-28 2018-04-12 한국원자력기술 주식회사 보정 기능을 갖는 수소가스 원격 탐지 시스템
KR101848439B1 (ko) * 2017-08-28 2018-04-12 한국원자력기술 주식회사 수소가스 원격 탐지 시스템
KR101905516B1 (ko) * 2017-08-30 2018-10-10 한국원자력연구원 순수 라만광 신호를 측정하기 위한 라만 라이다 장치
KR101913216B1 (ko) * 2017-10-25 2018-10-31 한국원자력연구원 가스 탐지 장치 및 가스 탐지 방법
JP2019082456A (ja) * 2017-10-31 2019-05-30 株式会社四国総合研究所 光学式センサチップ及び光学式ガスセンサ
JP7033777B2 (ja) 2017-10-31 2022-03-11 株式会社四国総合研究所 光学式センサチップ及び光学式ガスセンサ
KR101901206B1 (ko) 2018-02-13 2018-09-21 한국원자력기술 주식회사 상관관계를 이용한 수소가스 원격 탐지 방법
KR101901207B1 (ko) * 2018-02-13 2018-09-21 한국원자력기술 주식회사 수소가스 원격 탐지 시스템의 검출위치 매칭 방법
JP2018169386A (ja) * 2018-02-14 2018-11-01 東京ガスエンジニアリングソリューションズ株式会社 ガス検知器
JP2020034475A (ja) * 2018-08-31 2020-03-05 株式会社四国総合研究所 ガス濃度測定装置およびガス濃度連続測定方法
JP7158004B2 (ja) 2018-08-31 2022-10-21 株式会社四国総合研究所 ガス濃度測定装置およびガス濃度連続測定方法
JP2021060377A (ja) * 2019-10-09 2021-04-15 いであ株式会社 ガス漏れ検知システム及び方法
JP7280797B2 (ja) 2019-10-09 2023-05-24 いであ株式会社 ガス漏れ検知システム及び方法

Also Published As

Publication number Publication date
JPWO2009101659A1 (ja) 2011-06-02
JP5159799B2 (ja) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5159799B2 (ja) ガス濃度遠隔計測方法および装置
JP4749890B2 (ja) ラマン散乱光による水素ガス可視化方法及びシステム
CN101529200B (zh) 确定表面和厚度
JP5092104B2 (ja) 分光測定装置、及び分光測定方法
US8803093B2 (en) Infrared camera for gas detection
US8988673B2 (en) Beam scattering laser monitor
CN103091299A (zh) 激光差动共焦图谱显微成像方法与装置
US20160356720A1 (en) Optical Spectrometer With Matched Etendue
US9945791B2 (en) Methods of spectroscopic analysis of diamonds and apparatuses thereof
CN103884703A (zh) 分光瞳激光差动共焦布里渊-拉曼光谱测量方法及装置
JP5667809B2 (ja) 光学式ガスセンサ
CN103105231A (zh) 一种高空间分辨共焦拉曼光谱探测方法与装置
CN105021577A (zh) 激光共焦诱导击穿-拉曼光谱成像探测方法与装置
KR101078135B1 (ko) 광원 스펙트럼 분석용 분광기의 전 영역 교정 장치 및 그 장치에서 정보 획득 방법
CN105181656A (zh) 激光差动共焦诱导击穿-拉曼光谱成像探测方法及装置
JP6364305B2 (ja) 水素ガス濃度計測装置および方法
US20140152841A1 (en) Method and system for emissivity determination
CN105572060A (zh) 气体泄漏的检测装置及方法
CN116209884A (zh) 用于光纤光热成像和光谱学的方法和设备
CN104990908B (zh) 激光双轴共焦诱导击穿‑拉曼光谱成像探测方法及装置
US7532325B2 (en) Method and apparatus for the separation of fluoroscence and elastic scattering produced by broadband illumination using polarization discrimination techniques
WO2019038823A1 (ja) 遠赤外分光装置、および遠赤外分光方法
JP7158004B2 (ja) ガス濃度測定装置およびガス濃度連続測定方法
Boher et al. 83‐4: High Resolution Optical Characterization of NIR Light Sources for 3D Imaging
CN105588808A (zh) 一种气体泄漏的检测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08790270

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009553290

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08790270

Country of ref document: EP

Kind code of ref document: A1