WO2009101455A1 - Physicochemical method of processing liquid and semisolid wastes of olive mills using ozone (o3) - Google Patents

Physicochemical method of processing liquid and semisolid wastes of olive mills using ozone (o3) Download PDF

Info

Publication number
WO2009101455A1
WO2009101455A1 PCT/GR2009/000011 GR2009000011W WO2009101455A1 WO 2009101455 A1 WO2009101455 A1 WO 2009101455A1 GR 2009000011 W GR2009000011 W GR 2009000011W WO 2009101455 A1 WO2009101455 A1 WO 2009101455A1
Authority
WO
WIPO (PCT)
Prior art keywords
olive
wastes
liquid
processing
ozone
Prior art date
Application number
PCT/GR2009/000011
Other languages
French (fr)
Inventor
Pantelis Xynogalas
Original Assignee
Pantelis Xynogalas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pantelis Xynogalas filed Critical Pantelis Xynogalas
Publication of WO2009101455A1 publication Critical patent/WO2009101455A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/20Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation using specific microorganisms or substances, e.g. enzymes, for activating or stimulating the treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/40Treatment of liquids or slurries
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F5/00Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
    • C05F5/002Solid waste from mechanical processing of material, e.g. seed coats, olive pits, almond shells, fruit residue, rice hulls
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F5/00Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
    • C05F5/004Liquid waste from mechanical processing of material, e.g. wash-water, milling fluid, filtrate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • C02F2103/322Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters from vegetable oil production, e.g. olive oil production
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the olive tree is the most significant tree like cultivation of the Mediterranean countries. There are the 98% of the olive trees of the world. Although the important role which this specific agricultural activity plays in reference to our national economy, there are significant problems deriving from the olive reaming process, because of the large amount wastes.
  • Biodegradable polymers Compounds, which are decomposed difficultly, like fatty substances and phenols. It has also been reported, that the phenolic content attributes to the phytotoxicity and the wastes microbial properties. In combination with the high values that have been measured for biochemical oxygen demand (BOD) and chemical oxygen demand (COD), they have very strong toxic action.
  • BOD biochemical oxygen demand
  • COD chemical oxygen demand
  • Ozone oxidies the phenole's byproducts, the detergents, the industrial chemical wastes and the aromatic compounds, which have intense odor without living toxic wastes.
  • the application of this prototype technology, which is described at present, is based on ozone transmission through liquid waste from olive mills by combination with coagulated action of a minimal ferrous sulfate amount. Using this method is detoxification guaranteed from olive mill wastes with simultaneous decrease of pollution load about 95%.
  • the results of the above are: 1) Water production suitable for fertirrigation 2) The usage of the detoxified wastes to produce a fertilizer of the best quality
  • the liquid waste is transported through the perpendicular pump suitable for sludge (1) into a stainless oxidation tank (2).
  • the ferrous sulfate solution is prepared into a small volume stainless tank (3), and it is transferred through a system of metering (4) into the oxidation tank.
  • ozone which is produced by appropriate generator (5), is transmitted into oxidation reactor.
  • Organic and chemical sludge (6) are precipitated on the oxidation tank basis and carried out in order to be used as fertilizer.
  • Finally the obtained water is carried out by physical flow into a concrete storage tank (7).
  • the no toxic water is suitable for fertirrigation. All the above used tanks must be made of stainless steel and the pipings made of PVC. In some special cases we must use silicones.
  • radicals have no electric charge, are very effective. For example they can remove a hydrogen atom from another molecule resulting to a new radical. Alternatively a radical can be added to an alkene removing an electron from double bond C-C creating a new radical. Based on the above the hydroxy radicals attack the organic compounds RH in a minimal time and no selectively, according to the following reaction.
  • a tank made of stainless material (2) is used for liquid waste oxidation, which is transferred through suitable pump (1), where is a stirring system (3) and the appropriate system (4) for the atmospheric air supplying into the tank.
  • the air assists the stirring, providing an extra oxygen amount.
  • Ozone generator (5) is supplied by a manufacture industry or could be manufactured locally.
  • the ozone flow will be ranged between 50g/h and 2.5 kg/h. accordingly to waste COD.
  • O 2 and OH will mainly be obtained and other oxidative such as O 2 , H 2 O 2 , active oxygen.
  • Dosimetric pump (6) will supply the system with FeS04 solution, which is prepared into a small tank (7) with a suitable stirring system.
  • the liquid is carried out the neutralization tank with suitable pump (13) and it is filtered through active carbon filter (14). After that it undergoes aerobic or anaerobic treatment (15) for nitration
  • the final obtained water goes into a concrete storage tank (16) and it is processed with ozone it has an almost zero polluting load. Thus, it is suitable for many usages, which relate to agricultural economy and not only.
  • the chemical sludge (17) are pumped by the appropriate pump (18) from oxidation and neutralization tanks and with biological are syncomposted with olive leaves, olive stone and other agricultural wastes on a drier bed (19). At the same time they should be soaked by the ozonized liquid waste, then the final product should be a fertilizer of very high quality.
  • the ozone generator either is purchased once or it is manufactured and installed locally. Thus is used and for other procedures apart from wastewater treatment from olive mills, which are related to agricultural economy generally, like it happens in advanced European countries and U.S.A.
  • Ozone generator of the OZONIA manufacturer with maximum flow rate 1.24 kg/h has been already started up. Thereafter 2 L of a 50% solution Of H 2 O 2 is added, while correspondingly air is transmitted at a rate of 16 m 3 /h.
  • the air like ozone aims at the mixture's stirring. This remains in the oxidation reactor about 1 hour and after diluting 1 : 1 with purified water is filtered through a bag filter.
  • the filtrate obtained has the following characteristics:
  • This filtrate has been processed with an aerobic or anaerobic digestion and more ozonization should be of almost zero polluting load.
  • the mass of chemical and organic sludge obtained from whole above procedure is the 1/3 of the initial wastewater mass approximately and it is disposed for composting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Botany (AREA)
  • Biochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Physicochemical methods and oxidative process used to solve the problem of pollution of olive mills wastewater. The application of the suggested technology is based on ozone transmission through liquid waste of olive mills by combination with coagulated action of a minimal ferrous sulphate quantity. Using this method detoxification of olive mill wastes is guaranteed with simultaneous decrease of pollution load about 95%. Under acidic conditions and the organic substrate presence and a small ferrous sulphate quantity the ozone is decomposed as follows: O3 + H2O +Fe2+ → O2 + Fe3+ +OH- + OH+ The hydroxyl radicals are very effective and they attack the organic compounds RH in a minimal time and non-selectively resulting organic radicals. The obtained oxygen reacts with them and thus the organic material decomposition takes place the oxidized liquid and wastes are subjected a further ozonization and a biological process in order to be suitable for fertirrigation. The obtained chemical sludge from oxidation and neutralization reactors with the produced biological by aerobic and anaerobic processes, are syn-composted with olive leaves, olive stone and other agricultural wastes on dried up bed in order to produce a fertiliser of the best quality.

Description

Physicochemical method of processing liquid and semisolid wastes of olive mills using ozone (O3)
As it is known the olive tree is the most significant tree like cultivation of the Mediterranean countries. There are the 98% of the olive trees of the world. Although the important role which this specific agricultural activity plays in reference to our national economy, there are significant problems deriving from the olive reaming process, because of the large amount wastes.
More specifically in Greece 1,5 million tons of olive mill wastes are produced yearly. They are derived from liquid fraction of olive sap and from water which is added during the phases of washing, kneading and from olive oil separation. The wastes have a characteristic strong odor, acidic PH, high buffer capacity and surface tension. Further more they contain a rich organic substances amount, which are classified as follows:
Decomposed substances such as, sugars and organic acids. Biodegradable polymers (proteins) Compounds, which are decomposed difficultly, like fatty substances and phenols. It has also been reported, that the phenolic content attributes to the phytotoxicity and the wastes microbial properties. In combination with the high values that have been measured for biochemical oxygen demand (BOD) and chemical oxygen demand (COD), they have very strong toxic action. The essential properties of the waste depend on the production process and the quantity of the added water. They range usually in the following values: PH = 3 - 6, BOD = 20-60g/L and COD = 90 - 170g/L.
Physicochemical methods like filtration, centrifugation evaporation, coagulation and precipitation, inverse osmosis and superfiltering used to solue the problem of pollution. Recently oxidation with oxygen under high pressure, oxidation with electrolysis and finally the Fenton oxidative process hydrogen peroxide (H2O2) and ferrous sulfate (FeSO4), which is a method which combines chemical oxidation with organic compounds coagulation, were used.
Later combined methods predominated in order to take Commercial products from the treatment of the wastes like compost and proteins for animal feed, thus the applied techniques to be economically feasible. Simultaneously biological process of cleaning and toxic substances decomposition used in order to produce byproducts of high added value like compost and fertilizers. The last years limited number of the two phases olive mill (ecological oil - plants) has been established and work. Using this specific technology the volume of wastes decreases as well as the amount of using water during the olive oil production. However the polluting load shows an increase on its consentration per volume unit. Also it is necessary a further pulp treatment in specific oil-plants from where oil, olive stone and a large amount of semisolid waste having a moisture content of about 70% are obtained. This method is nothing but transferring the liquid wastes problem to solid wastes. Besides it has been demonstrated, that the oil has been produced by the two phases process, has higher acidity and lower quality than the oil comes from the traditional way production. Substantially the oil plant conversion from three phases to two phases (repasso method) not only does not solve the environmental problem, but also demands the industrialization of oil tree cultivation at the expense of the olive oil quality. At the present invention it is proposed a method of processing liquid wastes from olive mills using O3, which has been produced from specific and economical devices. As it is known the ozone when is reacting with water has the ability to detoxify it about 100%. Ozone oxidies the phenole's byproducts, the detergents, the industrial chemical wastes and the aromatic compounds, which have intense odor without living toxic wastes. The application of this prototype technology, which is described at present, is based on ozone transmission through liquid waste from olive mills by combination with coagulated action of a minimal ferrous sulfate amount. Using this method is detoxification guaranteed from olive mill wastes with simultaneous decrease of pollution load about 95%. The results of the above are: 1) Water production suitable for fertirrigation 2) The usage of the detoxified wastes to produce a fertilizer of the best quality
The application of the above proposed technology is also more economical and effective than the chemical oxidation by Fenton's reagents and furthermore maintains the traditional way of olive oil production, which qualifies to be of highest quality. The above method is described to block diagram (figure 1).
The liquid waste is transported through the perpendicular pump suitable for sludge (1) into a stainless oxidation tank (2). The ferrous sulfate solution is prepared into a small volume stainless tank (3), and it is transferred through a system of metering (4) into the oxidation tank. At the same time ozone, which is produced by appropriate generator (5), is transmitted into oxidation reactor. Organic and chemical sludge (6) are precipitated on the oxidation tank basis and carried out in order to be used as fertilizer. Finally the obtained water is carried out by physical flow into a concrete storage tank (7). The no toxic water is suitable for fertirrigation. All the above used tanks must be made of stainless steel and the pipings made of PVC. In some special cases we must use silicones.
As it has been mentioned already the waste PH ranges between the limits 4 and 6. Thus under acidic conditions, the presence of organic substrate and a small amount of ferrous sulfate, ozone is decomposed rapidly to oxygen (O2) by simultaneous hydroxy radicals (OH*) production.
O3 + H2O +Fe2+ → O2 + Fe3+ + OH" + OH' (1) Unless most of radicals have no electric charge, are very effective. For example they can remove a hydrogen atom from another molecule resulting to a new radical. Alternatively a radical can be added to an alkene removing an electron from double bond C-C creating a new radical. Based on the above the hydroxy radicals attack the organic compounds RH in a minimal time and no selectively, according to the following reaction.
OH* +RH → H2O + R* (2) The obtained oxygen (O2) from reaction (1) reacts with the organic radical (R*) and thus the breaking down of the organic materials has been succeeded.
O2 + R* → O2R* (3) The Fe3+ ions produced react with the hydroxyl ions (OH") to form complexes. [Fe(H2O)6]3+ + H2O → [Fe(H2O)5OH]2+ + H3O+ (4)
[Fe(H2O)5OH]2+ + H2O → [Fe(H2O)4(OH)2]+ + H3O+ (5)
Thus we notice that in the PH range from 4 to 6 with a series of hydrolytic reactions, complexes of Fe3+ and hydroxyl are formed. As the charge of the complexes is decreasing due to the increase of the number of hydroxyl ions, the repulsion between ions is reduced and their tendency to polymerize is increased. By this way some indissoluble colloidal polymers of ferric oxide hydrate are produced which precipitate finally. Hence suspended particles as well as organic molecules are entrained by the accretions and precipitate. This results to a decrease of the waste's COD number demonstrating the coagulational action of ferrous sulfate. It should be noted, that where it is necessary a small amount of hydrogen hyperoxide (H2O2) must be used with ozone simultaneously.
This reacts with Fe2+ ions and move hydroxy radicals (OH) are produced, indispensable during the whole oxidation process. Fe2+ + H2O2 → Fe3+ + OH" + OH* (6)
The ozone and ferrous sulfate quantities are used at the present procedure depend on volume and polluted load of oil-plant liquid wastes. According to another embodiment, besides the initial which is general, the present invention is described as follows (figure 2):
A tank made of stainless material (2) is used for liquid waste oxidation, which is transferred through suitable pump (1), where is a stirring system (3) and the appropriate system (4) for the atmospheric air supplying into the tank. The air assists the stirring, providing an extra oxygen amount. Ozone generator (5) is supplied by a manufacture industry or could be manufactured locally. The ozone flow will be ranged between 50g/h and 2.5 kg/h. accordingly to waste COD. Thus O2 and OH will mainly be obtained and other oxidative such as O2, H2O2, active oxygen. Dosimetric pump (6) will supply the system with FeS04 solution, which is prepared into a small tank (7) with a suitable stirring system. It is desirable, that the quantity of Fe2+ be as small as possible, so Fe2+ ions don't bind a large number of OH. This ranges from 3 kg to 7 kg/m3 of liquid waste. This should be remained into this reactor almost an hour. The waste is coming out through the appropriate pump (9) and since it is filtered though bagfilter (10) or cartridge or sand filter leads to another stainless tank (11), where it is stirred by a stirring system (12) with Ca(OH)2 or NaOH according to follow reaction:
Ca(OH)2 +FeSO4.7H2O → CaSO4 + Fe(OH)2 +7H2O (7)
There after it takes place the oxidation reaction, because of the dissolved oxygen:
4Fe(OH)2 +O2 + 2H2O «→ 4Fe(OH)3J (8)
Further addition of a calcium hydroxide small quantity gives:
Fe2(SO4)3 + 3Ca(OH)2 «→ 3CaSO4 +2Fe(OH)3J, (9) The total obtained insoluble precipitate Fe(OH)3 entrains the suspended colloidal particles. At the same time extra ozone is piped in order to achieve a more decrease of waste polluting load. As it is known, under acid conditions, the Ca(OH)2 or NaOH or KOH addition extents the ozone life time and consequently its efficacy time. Also, the above addition decreases the carbonate and the acidic carbonate ions, which deactivate a large amount of radical OH*.
Then the liquid is carried out the neutralization tank with suitable pump (13) and it is filtered through active carbon filter (14). After that it undergoes aerobic or anaerobic treatment (15) for nitration The final obtained water goes into a concrete storage tank (16) and it is processed with ozone it has an almost zero polluting load. Thus, it is suitable for many usages, which relate to agricultural economy and not only. The chemical sludge (17) are pumped by the appropriate pump (18) from oxidation and neutralization tanks and with biological are syncomposted with olive leaves, olive stone and other agricultural wastes on a drier bed (19). At the same time they should be soaked by the ozonized liquid waste, then the final product should be a fertilizer of very high quality. It is detectable that with ozone use the physicochemical process becomes more effective in reference with Fenton system. That loses its oxidative action since PH decreases. Also for a signifying increasing of liquid waste COD, the H2O2 and FeSO4 quantities must be decreased.
However this is unprofitable but also ineffective, since H2O2 is unstable and deactivates a large number of OH". Thus large quantities of ions of solute iron remain in the wastes thus it should be become inimical to the environment. As it is known ozone is transformed to oxygen, so its most effective action in reference with hyperoxide is showed at the follow reaction
Fe2++ O2 → Fe3++ 02→ (10)
Where O2→ is the hyperoxide radical, which has strong oxidative action. Finally, must be taken into account the oxidation time, which increases when temperature decreases by proportional way. The proposed method could be applied into the two phases olive mills, since in this case liquid wastes are obtained. Specifically, during the moist husk resolution, the wastewater requires further physicochemical treatment and biorectification.
The described invention about the liquid and semisolid wastes of oil plants when it is applied, ensues the following advantages:
1. The waste (ratio COD/BOD) toxicity decreases because of the solute oxygen large quantity. Thus, the further aerobic or anaerobic digestion should be more effective. The obtained water after ozonization becomes the highest quality of fertirrigation. 2. Because of ozone dissociates to water the wastes aren't extra charged according to toxicity, since the demanded FeSO4 quantities are less than in reference with Fenton process. 3. It achieves the maximum decrease of COD, of the fatty organic compounds, of phenolic compounds, of the dyes and of the turbidity. 4. The present method because of its simplicity is useful and economical.
Furthermore: a) The ozone generator either is purchased once or it is manufactured and installed locally. Thus is used and for other procedures apart from wastewater treatment from olive mills, which are related to agricultural economy generally, like it happens in advanced European countries and U.S.A. b) The organic substance produced after its syn-composting with olive stone, leaves and other woody byproducts forms a fertilizer of very high quality useful for every oil- plant and in any case commercialized.
Below is given an example of practice of the suggested method and is does not limit the present invention in regard to anything. Two tons (2 m3 or 2000 kg) of wastes is placed with continuous stirring in a stainless container of 5 m3 capacity. The waste's composition is: COD = 160 g/L, BOD5 = 35 g/L, SS = 90 g/L, total phenolic compounds = 15 g/L and PH = 4.2. To this container 15 kg of solid FeSO4 VH2O as solution of 30% w/v are added, which has prepared into of 70 L tank with a stirring system. This addition takes place by a docimetric pump with a flow rate of 50 L/h.
Ozone generator of the OZONIA manufacturer with maximum flow rate 1.24 kg/h has been already started up. Thereafter 2 L of a 50% solution Of H2O2 is added, while correspondingly air is transmitted at a rate of 16 m3/h.The air like ozone aims at the mixture's stirring. This remains in the oxidation reactor about 1 hour and after diluting 1 : 1 with purified water is filtered through a bag filter.
The filtration result is transferred to the suitable tank with stirring system, where is neutralized with calcium hydroxide (Ca(OH)2) (PH = 8.2) and at the same time is ozonated. Then it is filtered through a carbon active filter. The filtrate obtained has the following characteristics:
COD = 1.2 g/L, BOD5 = 0.95 g/L,
SS = 0.4 g/L and total phenolic compounds = 0.07 g/L.
This filtrate has been processed with an aerobic or anaerobic digestion and more ozonization should be of almost zero polluting load. The mass of chemical and organic sludge obtained from whole above procedure is the 1/3 of the initial wastewater mass approximately and it is disposed for composting.

Claims

1) Method of processing the liquid and semisolid wastes of olive mills using ozone (O3) and reducers.
2) Method of processing the liquid and semisolid wastes of olive mills by combination of ozone, hydrogen peroxide, air and ferrous sulfate into a suitable stirring reactor.
O3 + H2O + F3+ → O2 +Fe3+ + OH" + OH'
Fe2+ + H2O2 → Fe3+ +OH' + OH*
3) Method of processing the liquid wastes of olive mills according to claim 1 characterized in that the ozone generator either is supplied from industrial manufacture or it is manufactured and installed locally.
4) Method of processing the liquid wastes of olive mills characterized in that the wastewater is filtered and since it would be subjected to neutralizing with an alkaline solution, it is separated to sludge and liquid filtrate. 5) Method of processing the liquid wastes of olive mills according to claim 2 characterized in that per m3 of liquid wastes, from 0.3 kg to 15 kg of ferrous cations, from 50 kg/h to 25 kg/h ozone supplying and from 0.2 kg to 15 kg H2O2 (50%) are added.
6) Method of processing the liquid wastes of olive mills, according to claim 1 , 2, 3, 4 characterized in that the filtration should be taken place through bag filter, cartridge, sandfilter, active carbon or through filtration bed formed from olive stone.
7) Method of processing the liquid wastes of olive mills according to any preceding claim, characterized in that the liquid filtrate is subjected to further ozonization into neutralizing tank.
8) Method of processing the liquid wastes of olive mills according to any preceding claim, characterized in that the final filtrate should be subjected aerobic or anaerobic digestion and further ozonization.
9) Method of processing of the liquid wastes of olive mills according to any preceding claim, characterized in that the obtained chemical sludge from oxidation and neutralization reactors with biological those are syn- composted with olive leaves, olive stone and other agricultural wastes on dried up bed. At the same time these are soaked by the ozonized liquid waste and further more nutritive substances are added in order to fertilizer production 10) Method of processing of the liquid wastes of olive mills according to any preceding claim characterized in that this should be applied to anybody sporadic oil plants and as well as into cooperative farms of wastewater treatment of oil- plants with simultaneous or not fertilizer's production.
PCT/GR2009/000011 2008-02-11 2009-02-10 Physicochemical method of processing liquid and semisolid wastes of olive mills using ozone (o3) WO2009101455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GR20080100094 2008-02-11
GR20080100094A GR1006296B (en) 2008-02-11 2008-02-11 Ozone-based physicochemical method for the treatment of oil press liquids and semi-solid waste

Publications (1)

Publication Number Publication Date
WO2009101455A1 true WO2009101455A1 (en) 2009-08-20

Family

ID=40548447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GR2009/000011 WO2009101455A1 (en) 2008-02-11 2009-02-10 Physicochemical method of processing liquid and semisolid wastes of olive mills using ozone (o3)

Country Status (2)

Country Link
GR (1) GR1006296B (en)
WO (1) WO2009101455A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135117A1 (en) * 2010-04-29 2011-11-03 Juan Luis Fernandez De Mesa Coca Phytofortificant obtained through the conversion of olive oil mill waste water
JP2013220407A (en) * 2012-04-19 2013-10-28 Okumura Corp Method and apparatus of purifying water containing oil and/or volatile organic compound
CN103449668A (en) * 2013-08-30 2013-12-18 中国地质大学(武汉) Method for treating restaurant wastewater through combination of microbial decomposition and active carbon adsorption
ITLE20120007A1 (en) * 2012-07-31 2014-02-01 Marco Grasso PROCESS INNOVATION FOR THE TREATMENT OF OLIVE WORKING RESIDUES.
ITBA20130010A1 (en) * 2013-02-13 2014-08-14 Alice Biosources Srl COMPOSITION FOR COSMETIC USE INCLUDING OLIVE OXIDE
EP2789598A1 (en) * 2013-04-12 2014-10-15 Manios, Thrassyvoulos Process for obtaining compost from wastewaters produced by olive oil mills
CN104176879A (en) * 2014-07-29 2014-12-03 安徽光明槐祥工贸集团有限公司 Sewage treatment method used in glutinous rice flour processing
CN104230618A (en) * 2014-08-21 2014-12-24 西南化工研究设计院有限公司 Recycling process of water resource from ethylene preparation through ethanol dehydration
CN104310715A (en) * 2014-11-04 2015-01-28 唐山金利海生物柴油股份有限公司 Treatment method for biodiesel waste water
CN105060607A (en) * 2015-07-10 2015-11-18 湖南省交通科学研究院 Landfill leachate treatment method
CN105347584A (en) * 2015-12-17 2016-02-24 山西德恒机电科技有限公司 High-salt, high-concentration and degradation-resistant organic wastewater treatment method
CN105541005A (en) * 2015-12-17 2016-05-04 桑德集团有限公司 Degradation-resistant salt chemical wastewater deep treatment method
CN105859033A (en) * 2016-05-09 2016-08-17 南京海益环保工程有限公司 Domestic sewage treatment process
ES2609994A1 (en) * 2015-10-22 2017-04-25 Juan Luis Fernández De Mesa Coca Procedure to recycle olive mill products, preparation thus obtained and uses given to it (Machine-translation by Google Translate, not legally binding)
ES2612380A1 (en) * 2015-11-13 2017-05-16 Universitat Politécnica de Catalunya Procedure for the treatment of wastewater: flox process (Machine-translation by Google Translate, not legally binding)
CN108341572A (en) * 2018-02-02 2018-07-31 东华大学 A method of realizing that sludge recessive growth is reduced using Fenton oxidation coupling Microbial Iron reduction
CN108558493A (en) * 2018-03-02 2018-09-21 南京农业大学 A method of estrogen and antibiotic in oxidation composting technique removal feces of livestock and poultry
CN108793591A (en) * 2018-06-06 2018-11-13 广西师范大学 A kind of device of processing livestock breeding wastewater containing antibiotic based on anaerobism-multiphase-fenton Fenton coupling and land percolation technology
CN109052744A (en) * 2018-11-01 2018-12-21 祁东县鸟江大岭铅锌矿业有限公司 Intelligent ore processing sewage-treatment plant
CN110563223A (en) * 2018-07-06 2019-12-13 中石化石油工程技术服务有限公司 process method for treating difficultly degraded COD (chemical oxygen demand) in produced water of high-sulfur-content gas field
CN110590047A (en) * 2019-08-28 2019-12-20 四川蓝魔方环境科技有限公司 Organophosphorus wastewater treatment process
CN111056588A (en) * 2020-02-05 2020-04-24 新昌德劳污水处理有限公司 Domestic wastewater recycling device
EP4011854A1 (en) * 2020-12-11 2022-06-15 Consejo Superior de Investigaciones Científicas (CSIC) Use of the liquid fraction of an olive mill solid waste digestate in fertirrigation treatments
DE102021123858A1 (en) 2021-09-15 2023-03-16 L.U.A. GmbH & Co. KG Process for the environmentally friendly treatment of the waste water produced during olive pressing

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CANIZARES ET AL: "Advanced oxidation processes for the treatment of olive-oil mills wastewater", CHEMOSPHERE, PERGAMON PRESS, OXFORD, GB, vol. 67, no. 4, 18 January 2007 (2007-01-18), pages 832 - 838, XP005834742, ISSN: 0045-6535 *
E. BETTANAZI, C. CARETTI, S. CAFFAZ, E. AZZARI, C. LUBELLO: "Oxidative processes for olive mill wastewater treatment", WATER SCIENCE AND TECHNOLOGY, vol. 55, no. 10, 2007, pages 79 - 87, XP002529494 *
IOSIF EMMANOUIL KAPELLAKIS ET AL: "Olive oil history, production and by-product management", RE/VIEWS IN ENVIRONMENTAL SCIENCE & BIO/TECHNOLOGY, KLUWER ACADEMIC PUBLISHERS, DO, vol. 7, no. 1, 17 April 2007 (2007-04-17), pages 1 - 26, XP019580374, ISSN: 1572-9826 *
J. BELTRAN-HEREDIA, J.TORREGROSA, J. GARCIA, J.R. DOMINGUEZ, J.C. TIERNO: "Degradation of olive mill wastewater by the combination of Fenton's reagent and ozonation process with an aerobic biological treatment", WATER SCIENCE AND TECHNOLOGY, vol. 44, no. 5, 2001, pages 103 - 106, XP002529493 *
JESUS BELTRAN-HEREDIA, JAOQUIN TORREGROSA, JAOQUIN R DOMINGUEZ, JUAN GARCIA: "Ozonation of black-table-olive oil industrial wastewaters: effect of an aerobic biological pretreatment", JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, vol. 75, 2000, pages 561 - 568, XP002529492 *
KADIR KESTIOGLU, TANER YONAR, NURI AZBAR: "Feasability of physico-chemical treatment and Advanced Oxidation Processes (AOPs) as a means of pretreatment of olive mill effluent (OME)", PROCESS BIOCHEMISTRY, vol. 40, 2005, pages 2409 - 2416, XP002529495 *
PANAGIOTA PARASKEVA, EVAN DIAMADOPOULOS: "Technologies for olive mill wastewater (OMW) treatment: a review", JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, vol. 81, 1 July 2006 (2006-07-01), pages 1475 - 1485, XP002529491 *
SHILPI SINGH, MAOHONG FAN, ROBERT C. BROWN: "Ozone treatment of process water from dry-mill ethanol plant", BIORESOURCE TECHNOLOGY, vol. 99, 29 May 2007 (2007-05-29), pages 1801 - 1805, XP002529496 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135117A1 (en) * 2010-04-29 2011-11-03 Juan Luis Fernandez De Mesa Coca Phytofortificant obtained through the conversion of olive oil mill waste water
ES2370785A1 (en) * 2010-04-29 2011-12-22 Juan Luis Fernández De Mesa Coca Phytofortificant obtained through the conversion of olive oil mill waste water
JP2013220407A (en) * 2012-04-19 2013-10-28 Okumura Corp Method and apparatus of purifying water containing oil and/or volatile organic compound
ITLE20120007A1 (en) * 2012-07-31 2014-02-01 Marco Grasso PROCESS INNOVATION FOR THE TREATMENT OF OLIVE WORKING RESIDUES.
ITBA20130010A1 (en) * 2013-02-13 2014-08-14 Alice Biosources Srl COMPOSITION FOR COSMETIC USE INCLUDING OLIVE OXIDE
EP2789598A1 (en) * 2013-04-12 2014-10-15 Manios, Thrassyvoulos Process for obtaining compost from wastewaters produced by olive oil mills
CN103449668A (en) * 2013-08-30 2013-12-18 中国地质大学(武汉) Method for treating restaurant wastewater through combination of microbial decomposition and active carbon adsorption
CN104176879A (en) * 2014-07-29 2014-12-03 安徽光明槐祥工贸集团有限公司 Sewage treatment method used in glutinous rice flour processing
CN104230618A (en) * 2014-08-21 2014-12-24 西南化工研究设计院有限公司 Recycling process of water resource from ethylene preparation through ethanol dehydration
CN104230618B (en) * 2014-08-21 2016-08-17 西南化工研究设计院有限公司 A kind of producing ethylene from dehydration of ethanol water resource utilization process
CN104310715A (en) * 2014-11-04 2015-01-28 唐山金利海生物柴油股份有限公司 Treatment method for biodiesel waste water
CN105060607A (en) * 2015-07-10 2015-11-18 湖南省交通科学研究院 Landfill leachate treatment method
ES2609994A1 (en) * 2015-10-22 2017-04-25 Juan Luis Fernández De Mesa Coca Procedure to recycle olive mill products, preparation thus obtained and uses given to it (Machine-translation by Google Translate, not legally binding)
WO2017081354A1 (en) * 2015-11-13 2017-05-18 Universitat Politècnica De Catalunya Method for treating wastewater: flox process
ES2612380A1 (en) * 2015-11-13 2017-05-16 Universitat Politécnica de Catalunya Procedure for the treatment of wastewater: flox process (Machine-translation by Google Translate, not legally binding)
CN105347584A (en) * 2015-12-17 2016-02-24 山西德恒机电科技有限公司 High-salt, high-concentration and degradation-resistant organic wastewater treatment method
CN105541005A (en) * 2015-12-17 2016-05-04 桑德集团有限公司 Degradation-resistant salt chemical wastewater deep treatment method
CN105859033A (en) * 2016-05-09 2016-08-17 南京海益环保工程有限公司 Domestic sewage treatment process
CN108341572A (en) * 2018-02-02 2018-07-31 东华大学 A method of realizing that sludge recessive growth is reduced using Fenton oxidation coupling Microbial Iron reduction
CN108341572B (en) * 2018-02-02 2021-09-14 东华大学 Method for realizing sludge recessive growth reduction by Fenton oxidation coupled microorganism iron reduction
CN108558493A (en) * 2018-03-02 2018-09-21 南京农业大学 A method of estrogen and antibiotic in oxidation composting technique removal feces of livestock and poultry
CN108793591A (en) * 2018-06-06 2018-11-13 广西师范大学 A kind of device of processing livestock breeding wastewater containing antibiotic based on anaerobism-multiphase-fenton Fenton coupling and land percolation technology
CN110563223A (en) * 2018-07-06 2019-12-13 中石化石油工程技术服务有限公司 process method for treating difficultly degraded COD (chemical oxygen demand) in produced water of high-sulfur-content gas field
CN109052744A (en) * 2018-11-01 2018-12-21 祁东县鸟江大岭铅锌矿业有限公司 Intelligent ore processing sewage-treatment plant
CN110590047A (en) * 2019-08-28 2019-12-20 四川蓝魔方环境科技有限公司 Organophosphorus wastewater treatment process
CN111056588A (en) * 2020-02-05 2020-04-24 新昌德劳污水处理有限公司 Domestic wastewater recycling device
EP4011854A1 (en) * 2020-12-11 2022-06-15 Consejo Superior de Investigaciones Científicas (CSIC) Use of the liquid fraction of an olive mill solid waste digestate in fertirrigation treatments
DE102021123858A1 (en) 2021-09-15 2023-03-16 L.U.A. GmbH & Co. KG Process for the environmentally friendly treatment of the waste water produced during olive pressing
DE102021123858B4 (en) 2021-09-15 2023-07-06 L.U.A. GmbH & Co. KG Process for the environmentally friendly treatment of the waste water produced during olive pressing

Also Published As

Publication number Publication date
GR1006296B (en) 2009-03-09

Similar Documents

Publication Publication Date Title
WO2009101455A1 (en) Physicochemical method of processing liquid and semisolid wastes of olive mills using ozone (o3)
Liu et al. Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH
EP1157972A1 (en) A method of processing oil-plant wastes
Mohammadi et al. Treatment of wastewater from rubber industry in Malaysia
El-Gohary et al. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment
AU608305B2 (en) A method for treating polluted material
Pawar et al. An overview of the Fenton process for industrial wastewater
CA2279525A1 (en) Hybrid biological and chemical process for decontaminating municipal sewage sludge
WO2003045851A1 (en) Method for stabilizing and conditioning town and industrial wastewater sludge
JP3820180B2 (en) Purification method for contaminated soil
Vanotti et al. Removing and recovering nitrogen and phosphorus from animal manure
US3867284A (en) Water treatment with nitrogen dioxide
CN101597116A (en) A kind of 2,5-dichloronitrobenzene waste water treatment process
CZ300446B6 (en) Method of treatment of iron-containing waterworks sludge and a mixture prepared by this method
Kosinska et al. Precipitation of heavy metals from industrial wastewater by Desulfovibrio desulfuricans
CN102786179A (en) Method for treatment and comprehensive utilization of high-concentration organic wastewater
KR20060091084A (en) Treatment method for livestock waste water including highly concentrated organic materials
KR100785849B1 (en) Manufacture methods of fertilizer about organic waste in excrements of livestock
Benaddi et al. A review on processes for olive mill waste water treatment
CN112707379A (en) Method for treating high ammonia nitrogen wastewater and recovering ammonia and magnesium ammonium phosphate reactor suitable for method
EP2279153B1 (en) Method for treating and/or pretreating liquid manure or biogas plant reject for the elimination of harmful substances, particularly nitrogen, phosphorus, and odor molecules
JP2007196172A (en) Liquid extract of humic substance, solidifying agent, concentrating agent and method for treating organic waste water by using them
KR100450882B1 (en) Organic waste cleanser and method of recycling organic waste
KR20020031118A (en) Treatment method for high concentrated organic wastewater
JPH08309394A (en) Deodorization of organic sludge and manufacture of property change inhibiting agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09710955

Country of ref document: EP

Kind code of ref document: A1