KR20060091084A - Treatment method for livestock waste water including highly concentrated organic materials - Google Patents

Treatment method for livestock waste water including highly concentrated organic materials Download PDF

Info

Publication number
KR20060091084A
KR20060091084A KR1020050011770A KR20050011770A KR20060091084A KR 20060091084 A KR20060091084 A KR 20060091084A KR 1020050011770 A KR1020050011770 A KR 1020050011770A KR 20050011770 A KR20050011770 A KR 20050011770A KR 20060091084 A KR20060091084 A KR 20060091084A
Authority
KR
South Korea
Prior art keywords
livestock wastewater
separated
water
treatment
tank
Prior art date
Application number
KR1020050011770A
Other languages
Korean (ko)
Other versions
KR100707975B1 (en
Inventor
박형근
Original Assignee
박형근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박형근 filed Critical 박형근
Priority to KR1020050011770A priority Critical patent/KR100707975B1/en
Publication of KR20060091084A publication Critical patent/KR20060091084A/en
Application granted granted Critical
Publication of KR100707975B1 publication Critical patent/KR100707975B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/22Rigid members, e.g. L-shaped members, with parts engaging the under surface of the loads; Crane hooks
    • B66C1/34Crane hooks
    • B66C1/36Crane hooks with means, e.g. spring-biased detents, for preventing inadvertent disengagement of loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C2700/00Cranes
    • B66C2700/01General aspects of mobile cranes, overhead travelling cranes, gantry cranes, loading bridges, cranes for building ships on slipways, cranes for foundries or cranes for public works
    • B66C2700/011Cable cranes

Abstract

본 발명은 고농도의 유기물을 함유하고 있는 축산폐수의 처리방법에 관한 것이다. 보다 상세하게는, 본 발명의 축산폐수의 처리방법은 축산폐수 중에 용존하는 BOD(생물학적 산소요구량)발생물질, COD(화학적산소요구량) 발생물질, SS(부유물질) 등을 포함하고 있는 유기오염물질을 1 단계로 고밀도의 진동 스크린을 통과시켜 일정 크기이상의 부유물질을 제거함으로써 오염물질 부하량을 크게 줄인 다음 1차용출ㆍ산화 . 2차응집 처리하여 오염물질을 가압부상 분리하거나 미세스크린 여과한 후, 2 단계로 산화된 분리수를 세라믹여재로 충전된 기계탑을 통과시키고 중화제로 pH 7~8의 수질로 변화시킨 후 고분자응집제를 주입하여 잔류 유기물을 제거하고, 다시 3 단계로 미생물 처리한 후 침전시켜 최종 방류하는 단계로 구성된다. The present invention relates to a method for treating livestock wastewater containing a high concentration of organic matter. More specifically, the method for treating livestock wastewater of the present invention includes organic pollutants including BOD (biological oxygen demand) generating substance, COD (chemical oxygen demand) generating substance, SS (floating substance), etc. dissolved in the livestock wastewater. The first step is to remove the suspended solids above a certain size by passing a high density vibrating screen to greatly reduce the pollutant load, and then first dissolve and oxidize. After secondary flocculation, contaminants were separated by pressurized flotation or fine screen filtered, and the oxidized separated water was passed through a mechanical tower filled with ceramic media in two stages, and the polymer was changed into a water quality of pH 7-8 with a neutralizing agent. It is composed of the step of removing the remaining organic matter by injection, followed by microbial treatment in three stages, followed by precipitation and final discharge.

상기의 단계로 구성된 본 발명의 축산폐수의 처리방법은 1 단계의 전처리 과정에서 일반적인 폐수처리공정 보다 처리효율이 높아 많은 물량을 처리하는데 유용하고 부하발생시 신속하게 방지처리 할 수 있으며, 1 단계의 전처리 과정에서의 높은 처리효율로 3 단계의 미생물 처리시 부하를 현저히 줄일 수 있어 경제적인 면에서 매우 유리한 효과가 있다. The livestock wastewater treatment method of the present invention composed of the above steps is useful in treating a large quantity of water due to higher processing efficiency than the general wastewater treatment process in the first stage of pretreatment, and can be prevented quickly when a load occurs, and the pretreatment of the first stage Due to the high processing efficiency in the process, it is possible to significantly reduce the load during the three-step microbial treatment, which is very economically advantageous.

축산폐수, 진동 스크린, 산화제, 가압부상, 미세스크린, 세라믹여재탑 Livestock Wastewater, Vibrating Screen, Oxidizer, Pressurized Flotation, Micro Screen, Ceramic Media Tower

Description

고농도 유기물 함유 축산폐수의 처리방법{Treatment method for livestock waste water including highly concentrated organic materials}Treatment method for livestock waste water including highly concentrated organic materials}

도 1은 본 발명의 축산폐수의 처리방법의 간략한 흐름도(Flow-Sheet)이다. 1 is a simplified flow chart (Flow-Sheet) of the method for treating livestock wastewater of the present invention.

도 2는 본 발명의 바람직한 실시예에 따른 축산폐수의 처리방법의 구성도이다. 2 is a block diagram of a method for treating livestock wastewater according to a preferred embodiment of the present invention.

본 발명은 고농도의 유기물을 함유하고 있는 축산폐수의 처리방법에 관한 것이다. 보다 상세하게는, 본 발명의 축산폐수의 처리방법은 축산폐수 중에 용존하는 BOD(생물학적 산소요구량)발생물질, COD(화학적산소요구량) 발생물질, SS(부유물질) 등을 포함하고 있는 유기오염물질을 1 단계로 고밀도의 진동 스크린을 통과시켜 일정 크기 이상의 부유물질을 제거함으로써 오염물질 부하량을 크게 줄인 다음 1차용출ㆍ산화 . 2차응집처리하여 오염물질을 가압부상 분리하거나 미세스크린 여과한 후, 2 단계로 산화된 분리수를 세라믹여재로 충전된 기계탑을 통과시키며 여기에서 배출된 수질을 중화(pH7-8)시켜 고분자응집제를 주입, 잔류 유기물을 제거하고, 다시 3 단계로 미생물 처리한 후 침전시켜 최종 방류하는 단계로 구성된다.The present invention relates to a method for treating livestock wastewater containing a high concentration of organic matter. More specifically, the method for treating livestock wastewater of the present invention includes organic pollutants including BOD (biological oxygen demand) generating substance, COD (chemical oxygen demand) generating substance, SS (floating substance), etc. dissolved in the livestock wastewater. The first step is to reduce the pollutant load by passing through a high density vibrating screen to remove suspended solids above a certain size, and then the first dissolution and oxidation. After the secondary flocculation treatment, contaminants are separated by pressurized flotation or fine screen filtered, and the oxidized separated water is passed through a mechanical tower filled with ceramic media in two steps, and the water quality discharged from this is neutralized (pH7-8). It is composed of the step of injecting, removing the remaining organic matter, and again after the microbial treatment in three steps to precipitate the final discharge.

축산폐수는 원 폐수의 BOD농도가 12,000~50,000㎎/L, SS농도가 20,000~30,000㎎/L로서 고농도의 유기물을 함유하고 있다. Livestock wastewater contains high concentrations of organic matter with BOD concentrations of 12,000 to 50,000 mg / L and SS concentrations of 20,000 to 30,000 mg / L.

일반적으로 상기의 축산폐수의 유기물 처리방법으로는 장시간 미생물조에 저류 폭기시키는 장기 폭기법과 1차 가압부상 처리 후 2차 호기성 미생물로 처리하는 표준활성 슬러지법이 있다. 그러나, 상기 장기 폭기법은 많은 부지소요와 미생물조의 부하 발생시 조기 진단하고 방지하기가 어려우며 거대폭기조 및 집수조 시설의 비용이 많이 드는 경제적인 부담감이 있다. 또한, 상기 표준활성 슬러지법은 1차 부상처리시 오염물질의 제거율이 한계가 있으며 제거율의 변동이 커서 미제거된 고농도의 유기물이 후처리 폭기조에 투입될 때 미생물들이 부하를 받아 안정된 처리수를 얻을 수 없는 단점이 있다. In general, the organic material treatment method of livestock wastewater includes a long-term aeration method for storage aeration in a microbial tank for a long time, and a standard activated sludge method for treatment with a second aerobic microorganism after the first pressure flotation treatment. However, the long-term aeration method is difficult to diagnose early and prevent a lot of site demand and microbial load, and there is a costly economic burden of large aeration tank and sump facilities. In addition, the standard activated sludge method has a limited removal rate of contaminants during the first flotation treatment, and the variation in removal rate is large so that microorganisms are loaded when a high concentration of organic matter is removed into the post-treatment aeration tank to obtain stable treated water. There is a disadvantage that can not be.

또한, 축산폐수를 처리하는데 어려움이 많아 대부분의 농가는 폐수를 퇴비화하거나 처리가 어려운 폐수는 폐수 위탁 처리업체에 위탁하여 처리함으로써 고 비용을 부담하고 있는 실정이다. 특히, 위탁한 폐수는 많은 양이 해양투기 되고 있는 현실이기에 자연환경을 보호하고 농가의 경제적인 운영과 폐수처리의 부담을 덜 수 있는 축산폐수의 처리방법이 요구되고 있다. In addition, many farmhouses have difficulty in treating livestock wastewater, and most farmers compost wastewater, or wastewater, which is difficult to treat, is charged with a wastewater consignment treatment company to pay a high cost. In particular, since the entrusted wastewater is a large amount of ocean dumping, there is a need for a method of treating livestock wastewater that can protect the natural environment and reduce the burden of economic operation and wastewater treatment of farmers.

이에, 본 발명자들은 상기한 문제점을 해결하기 위해 연구한 결과, 고 농도의 축산폐수를 진동스크린을 통과시켜 입자성 부유물질을 제거한 후, 여액을 1차용출ㆍ산화 . 2차응집처리하여 오염물질을 가압부상으로 분리하거나 미세스크린으로 여과시킨 다음 세라믹여재탑을 통과시키고 약알칼리 수질로 변화시킨 후 고분자응집제를 주입하여 용존성 잔류 유기물질을 제거하고 이를 다시 미생물로 처리할 경우, 전처리 과정에서 오염물질의 제거효율이 높아 많은 물량을 처리할 수 있으며 미생물 처리시설 비용을 현저히 줄일 수 있음을 발견하고, 본 발명을 완성하였다. Therefore, the present inventors have studied to solve the above problems, and after the high concentration livestock wastewater is passed through a vibrating screen to remove particulate suspended solids, the filtrate is first eluted and oxidized. Secondary flocculation treatment is used to separate contaminants into pressure flotation or filter with a fine screen, then pass through a ceramic filter tower, change to weak alkaline water, and inject a polymer flocculant to remove dissolved residual organic material and treat it as a microorganism. In this case, it was found that the removal efficiency of the contaminants in the pretreatment process can process a large quantity and significantly reduce the cost of the microbial treatment facility, and completed the present invention.

따라서, 본 발명의 목적은 전처리 과정에서의 높은 처리효율로 미생물조(폭기조)의 설비비용을 절감할 수 있는 축산폐수의 처리방법을 제공하는 것이다. Accordingly, an object of the present invention is to provide a method for treating livestock wastewater which can reduce the installation cost of a microbial tank (aeration tank) with high treatment efficiency in the pretreatment process.

상기의 목적을 달성하기 위하여, 본 발명의 축산폐수의 처리방법은 (1) 축산폐수원액을 고밀도의 진동스크린에 통과시킨 후 1차용출ㆍ산화 . 2차응집처리로 분리하는 단계; (2) 산화된 분리수를 세라믹여재탑을 통과시키고 약 알칼리성 수질로 변화시킨 후 고분자응집제를 주입하여 잔류 유기물을 제거하는 단계; 및 (3) 미생물 처리한 후 침전시켜 최종방류하는 단계로 구성되는 것을 특징으로 한다. In order to achieve the above object, the livestock wastewater treatment method of the present invention is (1) primary elution and oxidation after passing the livestock wastewater solution through a high density vibration screen. Separating into a second flocculation process; (2) passing the oxidized separated water through a ceramic filter tower and changing it into a weak alkaline water, and then injecting a polymer coagulant to remove residual organic matter; And (3) precipitating and then finally discharging the microbial treatment.

이하, 본 발명을 각 단계별로 보다 상세히 설명한다. Hereinafter, the present invention will be described in more detail at each step.

본 발명의 축산폐수의 처리공정은 축산폐수원액(집수조) - 스크린(진동스크린) - 1차 반응조 - 가압부상조(또는 미세스크린) - 2차 반응조 - 세라믹여재탑 - 3차 반응조 - 1차 침전조 - 폭기조(미생물조) - 2차 침전조 - 방류로 이루어지며, 간략한 흐름도(Flow-Sheet)는 하기 도 1에 나타내고, 본 발명의 일실시예에 따른 축산폐수 처리공정의 구성도는 도 2에 나타낸다. Livestock wastewater treatment process of the present invention is a livestock wastewater (collecting tank)-screen (vibration screen)-primary reaction tank-pressurized flotation tank (or fine screen)-secondary reaction tank-ceramic media tower-tertiary reactor-primary precipitation tank -Aeration tank (microbial tank)-Secondary sedimentation tank-Discharge, consisting of a brief flow chart (Flow-Sheet) is shown in Figure 1 below, the configuration of the livestock wastewater treatment process according to an embodiment of the present invention is shown in Figure 2 .

(1) 축산폐수원액을 고밀도의 진동스크린을 통과시킨 후 1차용출ㆍ산화 . 2차응집 처리하여 분리하는 단계.(1) Primary elution and oxidation of livestock wastewater through a high density vibration screen. Separation by secondary flocculation.

집수조에 수집된 축산폐수 원액을 고밀도의 진동스크린, 바람직하게는 120메시(mesh)의 진동스크린을 통과시켜 입자성의 부유물질을 제거한다. 이때, 부유물질의 제거율은 각 농장과 폐수의 수질에 따라 상이하나, 120메시(mesh)의 진동스크린을 통과시켰을 경우 약 15~25% 정도이다. 다음, 그 여액에 황산제1철(FeSO4) 또는 염화제2철(FeCl3) 등의 응집제를 199.2~1000ppm 투여하여 1차 용출이 일어나도록 한 후, 처리된 여액에 황산(H2SO4)을 가하여 폐수의 pH를 1~2로 유지시킨 다음 여기에 유기물 산화제, 바람직하게는 과망간산칼륨(KMnO4)을 30 ~ 1000ppm으로 투여하여 수중의 유기물을 산화 제거시킨다. 황산을 가한 이유는 축산폐수가 알칼리상태이므로 산화반응속도가 늦기 때문에 이를 산성의 수질상태로 만들어 산화반응이 빠르게 수행되도록 하기 위함이다. 산화제(KMnO4)의 투입농도는 원폐수의 농도에 따라 다르나 산화제 1ppm당 BOD발생물질 0.5ppm을 제거할 수 있다. 이때, 폐수고유의 냄새 및 색도가 일부 제거될 수 있다. The livestock wastewater collected in the sump is passed through a high density vibration screen, preferably a 120 mesh vibration screen, to remove particulate suspended solids. At this time, the removal rate of the suspended solids is different depending on the quality of each farm and waste water, but when passed through a vibration screen of 120 mesh (mesh) is about 15-25%. Next, 199.2 to 1000 ppm of a coagulant such as ferrous sulfate (FeSO 4 ) or ferric chloride (FeCl 3 ) was added to the filtrate to cause primary elution, and then sulfuric acid (H 2 SO 4 ) Is added to maintain the pH of the wastewater at 1-2, and then an organic oxidizing agent, preferably potassium permanganate (KMnO 4 ), is administered at 30 to 1000 ppm to oxidize and remove the organic matter in the water. The reason for adding sulfuric acid is because the livestock wastewater is in an alkaline state, so the oxidation reaction rate is slow, so that the oxidation reaction is performed quickly by making it an acidic water quality state. The concentration of the oxidizer (KMnO 4 ) depends on the concentration of the raw wastewater, but 0.5 ppm of BOD-generating material can be removed per ppm of the oxidant. At this time, the smell and color of the wastewater unique may be partially removed.

다음, 여기에 가성소다(NaOH) 또는 수산화칼슘(Ca(OH2)) 등의 알칼리제(중화제)를 투입하여 pH 7~8로 중화 또는 약알칼리화시킨 후 고분자응집제로 2차응집시켜 가압부상조(또는 미세스크린)에서 고액분리가 이루어지게 한다. 여기서, 미세스 크린은 체눈의 크기가 약 250메시인 것이 바람직하다.Next, an alkaline agent (neutralizing agent) such as caustic soda (NaOH) or calcium hydroxide (Ca (OH 2 )) is added thereto to neutralize or weakly alkalinize to pH 7-8, and then secondary agglomerate with a polymer flocculant to pressurize the tank (or Microliquid separation). Here, it is preferable that the micro screen has a body size of about 250 mesh.

상기 과정에서 전처리 전체 공정의 제거율이 87% 정도가 되고 축산폐수원액의 고액분리가 이루어진다. In the above process, the removal rate of the entire pretreatment process is about 87%, and solid-liquid separation of the livestock wastewater is performed.

상기 가압부상 공정은 1차 반응조의 응결된 반응폐수를 침전조에 유입하여 오염물질을 분리하는 공정으로서, 그 원리는 다음과 같다. 즉, 도 2에서 보는 바와 같이 1차 반응조에서 가압부상조로 유입되는 관로의 한부분에 가압용해된 물 즉, 물속에 미세한 기포가 가압용해 되어있는 물을 투입함으로서 가압된 물이 대기 중으로 순간 발산함과 동시에 대기압의 차로 인하여 미세기포가 발생하여 크게 응결된 산화응집된 물질(Floc)에 1개 또는 수개의 기포가 부착하여 침전 분리된다. 이때, 상부는 부착된 오염물질이 회전스크레파(Skimer)에 의해 제거되고, 하부는 미부착된 오염물질이 침전되어 분리되는 것이다. 중간층의 물은 분리가 완전히 이루어진 물로서, 2차 반응조로 유입되어 기계탑에 이송되고 3차반응조에 유입되어 반응을 거쳐 1차침전조에 유입하며 최종미생물처리(폭기조)후 2차침전조를 거쳐 하수에 방류되게 되는 것이다. The pressure flotation process is a process of separating contaminants by introducing the condensed reaction wastewater of the primary reaction tank into the precipitation tank, and the principle thereof is as follows. That is, as shown in FIG. 2, pressurized water diverges into the atmosphere by inserting pressurized water, that is, water in which microbubbles are pressurized and dissolved in a portion of a pipe flowing into the pressurization tank from the first reaction tank. At the same time, microbubbles are generated due to the difference in atmospheric pressure, and one or several bubbles are attached to the coagulated oxidized agglomerated substance (Floc) to precipitate and separate. At this time, the attached contaminant is removed by the rotating scraper (Skimer) at the top, and the unattached contaminant is precipitated and separated. The water in the middle layer is completely separated, and it flows into the secondary reaction tank, is transferred to the machine tower, into the tertiary reaction tank, passes through the reaction and enters the first precipitation tank, and after the final microbial treatment (aeration tank), the sewage is passed through the sedimentation tank. Will be released.

산화제로는 과망간산칼륨(KMnO4)이 바람직하며, 산화제의 사용으로 용존의 유기물질이 산화되는 동시에 응결(floc)된 물질이 형성되어 물과 부유물과의 분리가 뚜렷하게 된다. 이때, 산화제의 투입농도는 일반적으로 반응조의 투입약품량을 결정하는데 도입되는 Jar Test로 결정하여 사용함으로써, 슬러지 과다발생 방지 및 처리수질의 양호한 보전을 유지할 수 있으며, 약품의 소비량을 감소시킬 수 있다. As the oxidizing agent, potassium permanganate (KMnO 4) is preferable, and the use of the oxidizing agent oxidizes the dissolved organic material and forms a flocculated material, so that the separation between the water and the suspended matter becomes clear. At this time, the concentration of the oxidizing agent is generally determined by using Jar Test, which is introduced to determine the amount of chemicals in the reaction tank, thereby preventing excessive sludge generation and maintaining good preservation of treated water quality, and reducing the consumption of chemicals. .

상기의 처리단계에서 사용되는 고분자응집제로는 음이온성의 고분자응집제가 바람직하며, 그 양은 일반적으로 반응조의 투입약품량을 결정하는데 도입되는 Jar Test을 통해 결정하여 투입한다. As the polymer coagulant used in the above treatment step, an anionic polymer coagulant is preferable, and the amount thereof is generally determined by the Jar Test introduced to determine the amount of chemicals in the reactor.

한편, 폐수의 pH를 1~2로 유지하기 위해 황산을 사용하는데, 황산의 주입시 강산화가 이루어져 순간적으로 산소가 발생하므로 거품(bubble)발생 살포 장치로 살포하도록 한다. On the other hand, sulfuric acid is used to maintain the pH of the wastewater at 1 to 2, and when the sulfuric acid is injected, the oxygen is instantaneously generated so that it is sprayed with a bubble generating spray device.

(2) 산화된 분리수를 세라믹여재탑을 통과시키고 약알칼리성 수질로 변화시킨 후 고분자응집제를 주입, 잔류 유기물을 제거하는 단계.(2) passing the oxidized separated water through a ceramic filter column and changing it to a weak alkaline water quality, and then injecting a polymer coagulant to remove residual organic matter.

상기 과정을 통해 오염물질이 분리된 분리수는 2차 반응조에 유입된다. 이때, 분리수를 황산으로 처리하여 pH 1~2로 유지시킨다. 이를 세라믹여재로 충전된 기계탑을 통과시키고 알칼리제로 수질의 상태를 pH 7~8로 중화 또는 약알칼리화로 변화시킨 후, 3차 반응조에서 미제거된 용존성 유기물을 제거하기 위해 고분자응집제를 투입한다. 고분자응집제로 응결(floc)된 물질은 1차 침전조로 유입되어 강제침전 분리된다. The contaminant separated through the above process is introduced into the secondary reactor. At this time, the separated water is treated with sulfuric acid to maintain a pH of 1-2. This is passed through a machine column filled with ceramic media, and the water quality is changed to neutral or weakly alkaline with pH 7-8, and a polymer coagulant is added to remove the undissolved organic matter from the tertiary reactor. . The flocculated material with polymer coagulant flows into the primary settling tank and is separated by forced precipitation.

상기 (2) 단계에서 사용되는 중화제 및 고분자응집제는 상기 (1)단계에서의 구체적인 예와 동일하다.The neutralizing agent and the polymer coagulant used in step (2) are the same as the specific examples in step (1).

(3) 미생물 처리한 후 침전시켜 최종방류하는 단계.(3) after the microbial treatment to precipitate and finally discharge.

상기 (1) 및 (2)단계의 전처리공정을 거친 후, 전처리된 상등수를 예비 집수조(유량조정조)에 수집하여 미생물조(폭기조)에 유입한 다음, 호기성 미생물로 유 기물을 제거하고 미생물 군집(floc)으로 최종 침전(2차 침전조)시켜 하천에 방류함과 동시에 축사내의 청소수로 재활용한다. After passing through the pretreatment process of steps (1) and (2), the pretreated supernatant is collected in a preliminary collection tank (flow control tank) and introduced into the microbial tank (aeration tank), and then the organic matter is removed by aerobic microorganisms and the microbial community ( The floc) is finally settled (secondary settling tank) and discharged to the stream and recycled to the cleaning water in the house.

한편, 상기의 가압부상조 (또는 미세스크린), 제 1 및 제 2 침전조의 하부에 모아진 오염물질의 침전슬러지는 하부로 배출되어 농축조로 유입하여 탈수 케이크(cake) 처리하며, 여액은 다시 집수조로 반송된다. On the other hand, the sedimentation sludge of the contaminants collected at the lower part of the pressure flotation tank (or fine screen) and the first and second settling tank is discharged to the lower part and flows into the concentration tank to treat dehydration cake, and the filtrate is returned to the sump tank. Is returned.

상기 (1)~(3)의 단계로 이루어진 본 발명의 축산폐수의 처리방법은 (1) 단계의 처리효율이 매우 높아 많은 물량을 처리할 수 있으며, 후 처리과정의 미생물처리시 부하를 현저히 줄일 수 있어 폭기조의 시설 대형화 및 시설소요부지를 절감할 수 있으므로 경제적인 면에서 매우 유리하다. The method of treating livestock wastewater of the present invention consisting of the steps of (1) to (3) is capable of treating a large quantity due to the high treatment efficiency of step (1), and significantly reduces the load during microbial treatment of the post-treatment process. It is very economically advantageous because it can reduce the size of facility and the site of facility aeration tank.

이하, 실시예를 들어 본 발명을 보다 상세히 설명하지만, 본 발명이 이들 예로만 한정되는 것은 아니다. Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited only to these examples.

하기 실시예에서 매 실험시 사용원수(축산폐수)의 양은 500㎖/min x 10hr (300L/일)이며, 실험 가동시간은 10시간으로 제거대상 오염물질은 생물학적 산소요구량(BOD) 및 부유물질(SS)이다. In the following examples, the amount of raw water (livestock wastewater) used in each experiment was 500 ml / min x 10 hr (300 L / day), and the experiment operation time was 10 hours. The pollutants to be removed were biological oxygen demand (BOD) and suspended solids ( SS).

우선, 하기 실시예에서 가압부상 분리와 미세스크린 여과를 별개의 실시예가 아닌 한 실시예에서 함께 기재하고 있는 이유는, 이를 제외한 다른 모든 실시 조건이 동일할 경우 가압부상 분리나 미세스크린(250Mesh) 여과나 오염물질을 제거하는 정도에 있어서 차이가 없기 때문임을 밝혀둔다. First, in the following examples, the separation of the pressurized flotation and the fine screen filtration are described together in one embodiment, unless it is a separate embodiment. When all the other conditions are the same, the pressurized flotation separation or the fine screen (250Mesh) filtration is performed. Note that there is no difference in the degree of removal of contaminants.

[실시예] EXAMPLE

유기오염물질인 생물학적 산소요구량의 농도가 약 20,500ppm과 부유물질의 농도가 약 18,000ppm인 원액(축산폐수)을 진동스크린(SUS304 120Mesh)을 통과시켜 입자성 부유물질을 제거한 후 그 여액에 1차 응집제로 염화제이철(FeCl3)을 농도 1,000ppm으로 제조하여 반응조에 주입하여 용존 부유물질 용출이 일어나도록 하였다. 다음, 그 여액에 황산 746.2~1,000ppm을 가하여 pH 1~2로 유지하도록 한 후 유기물 산화제인 과망간산칼륨(KMnO4) 30ppm을 투입하여 유기물을 산화반응시켰다. 다음, 이를 가성소다로 pH 7~8이 되도록 중화시킨 후 고분자응집제(Anion Type)로 A.Floc(A-101, 세인상사제)를 150ppm 투입하여 응집(Floc) 및 가압부상 분리{또는 미세스크린(SUS304 250Mesh) 여과}하여 1차 유기물을 분리하였다. 그 결과를 하기 표 1에 나타내었다. The stock solution (livestock wastewater) with the concentration of biological oxygen demand of organic pollutants of about 20,500ppm and the concentration of suspended solids of about 18,000ppm is passed through a vibrating screen (SUS304 120Mesh) to remove particulate suspended solids. Ferric chloride (FeCl3) as a coagulant was prepared at a concentration of 1,000 ppm and injected into the reactor to dissolve the suspended solids. Next, sulfuric acid 746.2 ~ 1,000ppm was added to the filtrate to maintain a pH of 1 ~ 2, and then 30ppm of organic peroxide oxidant potassium permanganate (KMnO 4 ) was added to oxidize the organic matter. Next, neutralize it with caustic soda to pH 7 ~ 8, and add 150 ppm of A.Floc (A-101, Sein Corp.) as a polymer coagulant (Anion Type) to separate floc and pressurized flotation (or fine screen). The primary organics were separated by filtration (SUS304 250Mesh). The results are shown in Table 1 below.

Figure 112005007476496-PAT00001
Figure 112005007476496-PAT00001

상기 표 1에서 알 수 있는 바와 같이, 1차 산화 처리된 처리수의 농도는 원 폐수의 농도에 비해 87%가 감소되었다. As can be seen in Table 1, the concentration of the primary oxidation treated water was reduced by 87% compared to the concentration of the original wastewater.

이와 같은 고효율의 오염물질 제거가 가능한 이유는 적정량의 약품 주입과 더불어, 산화효율을 높이기 위해 황산을 투입하여 pH 1~2를 유지하면서 강산화제인 과망간산칼륨(KMnO4)을 주입함으로써 고농도의 유기물산화가 이루어졌기 때문이라 생각된다. Such high efficiency removal of contaminants is possible by injecting an appropriate amount of chemicals, and by adding sulfuric acid to maintain the pH of 1 ~ 2 while injecting sulfuric acid to increase oxidation efficiency, high concentration of organic matter oxidation is carried out by injecting potassium permanganate (KMnO4). I think it is because.

한편, 가압부상 분리된 상부 및 하부 슬러지 (또는 미세스크린 여과된 슬러지)는 농축조로 이송하여 탈수시키고 탈수여액은 다시 집수조 및 제 2 반응조로 유입하였다. 탈수가 완료된 케이크는 사업장내의 퇴비화시설로 운반하여 퇴비화 처리한다. Meanwhile, the upper and lower sludges (or fine screen filtered sludges) separated from the pressure flotation were transferred to a concentration tank and dewatered, and the dehydration filtrate was introduced into the collection tank and the second reaction tank again. Dehydrated cakes are transported to the composting facility in the workplace for composting.

상기의 1차 처리된 가압부상조(또는 미세스크린)에서 유입된 분리수에 다시 황산(H2SO4)을 220~602ppm 가하여 수소이온농도(pH)를 1~2로 유지하고 이를 세라믹여재탑을 통과시켰다. 세라믹여재(지름 3mm, 단위중량 1.3)는 일정체류시간(3Min)의 접촉으로 수질을 약알칼리수의 수질로 성질변화시키는 것으로 알려져 있으며 수질의 혼탁도를 개선시켜 주는 효과가 있다. 수량400mL당 1000mL(1,300g)의 여재가 필요하며 세라믹여재충전용기 산정시 분당유입량이 용기에 충분히 잠기도록 해야 한다. 220-602ppm of sulfuric acid (H 2 SO 4 ) is added to the separated water introduced from the above-mentioned first pressure flotation tank (or fine screen) to maintain a hydrogen ion concentration (pH) of 1-2, and the ceramic filter tower Passed. Ceramic media (diameter 3mm, unit weight 1.3) is known to change the water quality to water quality of weak alkaline water by contacting a certain residence time (3Min) and has the effect of improving the turbidity of the water quality. 1000 mL (1,300 g) of media is required per 400 mL of water, and the amount of minute flow should be submerged in the container when calculating the ceramic media filler.

세라믹여재탑에서 나온 수질변환수에 중화제인 가성소다를 가하여 중화시킨 후, 고분자응집제(Anion Type) A.Floc(A-101, 세인상사제)를 150ppm 투입하여 2차침전조에서 오염물질을 강제 침전, 분리시킨 다음 그 여액을 후처리인 미생물조(폭기조)로 보내어 호기성 미생물 처리 및 3차 침전분리 후 최종 방류하였다. 그 결과를 하기 표 2 및 표 3에 나타내었다. After neutralization by adding caustic soda, a neutralizer, to the water conversion water from the ceramic media tower, 150ppm of anion type A.Floc (A-101, manufactured by Sein Corp.) was forced to precipitate the pollutants in the secondary precipitation tank. After separation, the filtrate was sent to a post-treatment microbial tank (aeration tank) and finally discharged after aerobic microbial treatment and tertiary sedimentation. The results are shown in Tables 2 and 3 below.

Figure 112005007476496-PAT00002
Figure 112005007476496-PAT00002

상기 표 2의 결과에서 알 수 있는 바와 같이, 1차 처리된 분리수를 중화 처리한 수질의 수소이온농도를 1~2로 유지하여 세라믹여재충전탑을 통과시키고 알칼리제(중화제)로 수질을 중성 또는 약알칼리성으로 수질변화시킨 후 잔류 유기물을 응집시킴으로써 잔류유기물의 제거율을 높일 수 있었다. 특히, 응집은 음이온성 고분자응집제를 사용하여 응집 효과를 증대시켰을 뿐 아니라 수중의 용해성 유기물의 반응을 높일 수 있었다.As can be seen from the results in Table 2, the hydrogen ion concentration of the water treated with the neutralized treatment of the separated water was maintained at 1 to 2 to pass through the ceramic media charging tower, and the water quality was neutral or weak with an alkaline agent (neutralizing agent). The removal rate of the residual organic matter was increased by coagulating the residual organic matter after changing the water quality to alkaline. In particular, flocculation not only increased the flocculation effect by using anionic polymer coagulant, but also enhanced the reaction of soluble organic substances in water.

Figure 112005007476496-PAT00003
Figure 112005007476496-PAT00003

상기 표3에서 살펴볼 수 있듯이, 미생물조(제1, 2폭기조)에 유입되는 유입수는 전처리 단계에서 이미 고농도의 오염물질이 대부분 제거되었기 때문에 오염물질의 농도가 낮았다. 따라서, 오염물질 부하가 적어 미생물의 활성화 조건에 적합하였으며, 또한 대형의 미생물조가 필요하지 않아 경제적으로 처리할 수 있었다. 또한, 상기의 미생물 처리후의 최종 방류수는 수질환경 보전법상의 허용 기준치 이하로서 축산폐수의 오염물질을 안정적으로 처리할 수 있었다. As can be seen in Table 3, the influent water flowing into the microbial tank (first, second aeration tank) has a low concentration of contaminants since most of the high concentration of contaminants have already been removed in the pretreatment step. Therefore, the pollutant load is low, which is suitable for the activation conditions of microorganisms, and it is economically possible because a large microbial tank is not required. In addition, the final effluent after the above-mentioned microorganism treatment was able to stably treat the contaminants of the livestock wastewater below the acceptable standard value in the Water Environment Conservation Act.

이상에서 설명한 바와 같이, 본 발명에 의한 축산폐수의 처리방법은 처리시설의 1단계인 전처리과정이 일반적인 폐수처리공정 보다 처리효율이 훨씬 높고 분리와 침전이 양호하여 일일 많은 물량을 처리하는데 유용하며, 부하발생시 빠른 시간에 방지할 수 있고 1차 전처리에서의 높은 처리효율로 후처리과정인 미생물 처리시 부하를 현저하게 줄여 폭기조의 시설 대형화 및 시설 소요부지를 줄일 수 있다. As described above, the livestock wastewater treatment method according to the present invention is useful in treating a large amount of daily water because the pretreatment process, which is the first stage of the treatment facility, has much higher treatment efficiency and better separation and precipitation than the general wastewater treatment process. When load occurs, it can be prevented in a short time, and the high processing efficiency in the first pretreatment can significantly reduce the load in the microbial treatment, which is the post-treatment process, to reduce the size of the aeration tank and reduce the site requirements.

Claims (9)

(1) 축산폐수원액을 진동스크린에 통과시켜 입자성 부유물질을 제거한 후, 그 여액에 응집제를 투여하여 유기성 오염물질을 용출시킨 후 황산(H2SO4)을 가하여 폐수의 pH를 1~2로 산성화시킨 다음, 산화제의 투입으로 유기물을 산화처리한 다음 알칼리성 중화제로 중화시킨 후 산화 분리된 입자성물질을 고분자응집제로 응집시켜 분리하는 단계; (1) The livestock wastewater solution is passed through a vibrating screen to remove particulate suspended solids, and then coagulant is administered to the filtrate to elute organic contaminants, and sulfuric acid (H 2 SO 4 ) is added to adjust the pH of the wastewater to 1-2. Acidifying with, followed by oxidizing the organics by the addition of an oxidizing agent, neutralizing with an alkaline neutralizing agent, and then coagulating and separating the oxidized and separated particulate matter with a polymer coagulant; (2) 상기 (1)단계에서 분리된 분리수에 황산을 가하여 pH를 1~2로 산성화시킨 후 이를 세라믹여재가 충전된 기계탑을 통과시키고 알칼리성 중화제로 pH 7~8로 변화시킨 다음 고분자응집제를 주입하여 침전분리하는 단계; 및 (2) adding sulfuric acid to the separated water separated in step (1) to acidify the pH to 1-2, then passing it through a mechanical tower filled with ceramic media and changing the pH to 7-8 with an alkaline neutralizer. Injecting and separating the precipitate; And (3) 상기 (2)단계에서 분리된 상등수를 미생물 처리한 후 미생물군집(floc)으로 침전시켜 최종방류하는 단계;로 구성된 것을 특징으로 하는 축산폐수의 처리방법. (3) after the treatment of the supernatant separated in step (2) microorganisms, the step of sedimentation into a microbial community (floc) and finally discharged. 제 1항에 있어서, 상기 진동스크린의 체눈의 크기는 약 120메시인 것을 특징으로 하는 축산폐수의 처리방법. The method of claim 1, wherein the size of the body of the vibrating screen is about 120 mesh. 제 1항에 있어서, 상기 응집제는 황산제1철(FeSO4) 또는 염화제2철(FeCl3)인 것을 특징으로 하는 축산폐수의 처리방법. The method of claim 1, wherein the flocculant is ferrous sulfate (FeSO 4 ) or ferric chloride (FeCl 3 ). 제 1항에 있어서, 상기 산화제는 과망간산칼륨(KMnO4)인 것을 특징으로 하는 축산폐수의 처리방법. The method of claim 1, wherein the oxidizing agent is potassium permanganate (KMnO4). 제 1항에 있어서, 상기 세라믹여재가 충전된 기계탑은 지름 3mm 크기의 세라믹여재가 처리수량 400mL당 1000mL(1,300g) 충전되어 있는 것을 특징으로 하는 축산폐수의 처리방법.The method of claim 1, wherein the ceramic column is filled with a ceramic filter having a diameter of 3 mm is filled with 1000 mL (1,300 g) per 400 mL of the treated water. 제 1항에 있어서, 상기 (1)단계에서의 분리단계는 상기 산화 분리된 입자성 물질을 고분자응집제로 응집시켜 가압부상으로 분리하는 단계인 것을 특징으로 하는 축산폐수의 처리방법.The method of claim 1, wherein the separating in the step (1) is a step of agglomeration of the oxidatively separated particulate matter with a polymer flocculant to separate the resultant into a pressurized flotation. 제 1항에 있어서, 상기 (1)단계에서의 분리단계는 상기 산화 분리된 입자성 물질을 고분자응집제로 응집시켜 미세스크린으로 여과하여 분리하는 단계인 것을 특징으로 하는 축산폐수의 처리방법.The method of treating livestock wastewater according to claim 1, wherein the separating in step (1) is a step of coagulating the oxidatively separated particulate material with a polymer flocculant and filtering the fine screen. 제 1항, 제 6항 및 제 7항 중 어느 한 항에 있어서, 상기 고분자응집제는 음이온성 고분자응집제인 것을 특징으로 하는 축산폐수의 처리방법. The method of treating livestock wastewater according to any one of claims 1 to 6, wherein the polymer coagulant is an anionic polymer coagulant. 제 7항에 있어서, 상기 미세스크린의 체눈의 크기는 약 250메시인 것을 특징 으로 하는 축산폐수의 처리방법. The method of claim 7, wherein the size of the body of the microscreen is about 250 mesh.
KR1020050011770A 2005-02-14 2005-02-14 Treatment method for livestock waste water including highly concentrated organic materials KR100707975B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050011770A KR100707975B1 (en) 2005-02-14 2005-02-14 Treatment method for livestock waste water including highly concentrated organic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050011770A KR100707975B1 (en) 2005-02-14 2005-02-14 Treatment method for livestock waste water including highly concentrated organic materials

Publications (2)

Publication Number Publication Date
KR20060091084A true KR20060091084A (en) 2006-08-18
KR100707975B1 KR100707975B1 (en) 2007-04-16

Family

ID=37592988

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050011770A KR100707975B1 (en) 2005-02-14 2005-02-14 Treatment method for livestock waste water including highly concentrated organic materials

Country Status (1)

Country Link
KR (1) KR100707975B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160139472A (en) * 2015-05-27 2016-12-07 강원대학교산학협력단 Method for Phosphorus Removal from Waste Water Using Titanium Salt
CN108793597A (en) * 2018-06-15 2018-11-13 同济大学 A kind of higher suspension solid concentration stain disease reuse project method
KR20220146712A (en) * 2020-03-27 2022-11-01 스미토모 킨조쿠 코잔 엔지니어링 가부시키가이샤 A treatment method for untreated water and a wastewater treatment method including the treatment method
CN115594323A (en) * 2021-07-12 2023-01-13 环新生物工程有限公司(Tw) Organic wastewater treatment equipment and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174487B1 (en) 2011-12-08 2012-08-22 대한민국 Apparatus for experiment of ocean acidification using ph regulation and circulated culture
KR101344372B1 (en) 2012-03-21 2013-12-24 서정율 chromaticity removal composite and chromaticity removal method of using the Piggery Effluent purify release water
KR101499777B1 (en) * 2014-04-30 2015-03-10 (주)바요 Water Purification System Unified Settling Tank and Aeration Tank
KR20210079568A (en) 2019-12-20 2021-06-30 주식회사 부강테크 Physicochemical pretreatment reactor for treatment of high concentration organic wastewater containing milk fat and it's method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3561460B2 (en) 2000-03-10 2004-09-02 フジクリーン工業株式会社 Livestock wastewater sewage treatment method and apparatus
KR100355880B1 (en) 2000-03-31 2002-10-11 조현준 Purification disposal method and device of stock raising waste water
KR100442932B1 (en) 2002-02-09 2004-08-02 서희동 Treatment method for high concentrated organic wastewater
US6890429B2 (en) 2003-06-18 2005-05-10 Hog Slat, Inc. Systems and methods for treating waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160139472A (en) * 2015-05-27 2016-12-07 강원대학교산학협력단 Method for Phosphorus Removal from Waste Water Using Titanium Salt
CN108793597A (en) * 2018-06-15 2018-11-13 同济大学 A kind of higher suspension solid concentration stain disease reuse project method
KR20220146712A (en) * 2020-03-27 2022-11-01 스미토모 킨조쿠 코잔 엔지니어링 가부시키가이샤 A treatment method for untreated water and a wastewater treatment method including the treatment method
CN115362135A (en) * 2020-03-27 2022-11-18 住友金属矿山工程株式会社 Method for treating water to be treated and method for treating wastewater comprising the same
CN115594323A (en) * 2021-07-12 2023-01-13 环新生物工程有限公司(Tw) Organic wastewater treatment equipment and method

Also Published As

Publication number Publication date
KR100707975B1 (en) 2007-04-16

Similar Documents

Publication Publication Date Title
CA3007903C (en) Recovery of phosphorus compounds from wastewater
US8663478B2 (en) Method for treating water by advanced oxidation and ballasted flocculation, and corresponding treatment plant
KR100707975B1 (en) Treatment method for livestock waste water including highly concentrated organic materials
CN105906142B (en) A kind of landfill leachate advanced treatment system and processing method
KR101671751B1 (en) Remediation system of groundwater contaminants by oxidation treatment
KR100784933B1 (en) Apparatus for treating organic matter and nitrogen of high density organic wastewater
CN103771651B (en) A kind of municipal sewage plant effluent reuse does the treatment process of industrial boiler water-supply
CN109437454B (en) Enhanced physicochemical treatment method and device for refined high-salt high-ammonia special oily sewage
KR100957851B1 (en) Method of water treatment
CN110272158A (en) A kind of high salt, high organic matter and high rigidity wastewater treatment method
CN103787525A (en) Two-stage biochemical effluent in-depth treatment method for municipal sewage
KR20110091047A (en) Livestock wastewater treatment apparatus and treatment method
CN111320316A (en) Landfill leachate membrane concentrated solution treatment method
WO2000073220A1 (en) A disposal method for pig ordure
KR100673841B1 (en) High concentration organic wastewater treatment method use of ceramic coagulant
KR20050075948A (en) Leachate treating system and method of the same
KR20060111126A (en) Physical and chemical waste water disposal plant and method therein
JP3843052B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
KR0168827B1 (en) Method for purifying organic waste water
CN106430846A (en) Efficient treatment integrated process for recalcitrant wastewater with low organic matter content
KR100343637B1 (en) Treatment of leachate
KR101646590B1 (en) Method for treating recycle water of wastewater treatment
CN209456261U (en) A kind of hazardous waste processing center waste water treatment system
JPH0839075A (en) Method and equipment for treating sewage
KR101075592B1 (en) Wasted water teatment method at the food waste recycling facilities connected with a communitysewage disposal plant

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120409

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130307

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160407

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170320

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180327

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190305

Year of fee payment: 13