WO2009098756A1 - 高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液 - Google Patents

高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液 Download PDF

Info

Publication number
WO2009098756A1
WO2009098756A1 PCT/JP2008/051844 JP2008051844W WO2009098756A1 WO 2009098756 A1 WO2009098756 A1 WO 2009098756A1 JP 2008051844 W JP2008051844 W JP 2008051844W WO 2009098756 A1 WO2009098756 A1 WO 2009098756A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
copper
copper sulfate
anode
anode chamber
Prior art date
Application number
PCT/JP2008/051844
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Takashima
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Priority to PCT/JP2008/051844 priority Critical patent/WO2009098756A1/ja
Publication of WO2009098756A1 publication Critical patent/WO2009098756A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/14Sulfates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/20Electroplating: Baths therefor from solutions of iron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Definitions

  • the present invention relates to a method and an apparatus for producing a high-purity copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate, and a high-purity copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate.
  • the plating solution as described above is often subjected to a soluble anode method.
  • a plastic processing product copper plate, copper piece, Copper ions were eluted using a copper ball or the like.
  • a film called a black film is formed on the anode surface for the purpose of delaying the passivation of the anode or suppressing the generation of copper powder due to the disproportionation reaction.
  • Such a black film is considered to be a composite of phosphorus, oxide, hydroxide, chloride, etc. in alloy copper, but it is a film that generates and functions soundly under appropriate conditions.
  • the copper soluble anode method has been actively used.
  • the demands for miniaturization are more severe, so the problems caused by sliding particles cannot be ignored. It has become. Therefore, in these fields, there is a demand for a transition from a soluble anode method to an insoluble anode method in which a black film is not formed.
  • the insoluble anode method cannot be replenished with copper ions alone even when copper in the plating solution is consumed, and the additive is decomposed or altered by the strong oxidation reaction that occurs at the anode. There was a problem that it was impossible to operate for a long time.
  • Patent Document 1 a manufacturing apparatus in which a container containing a copper material is disposed in a dissolution tank containing a trivalent iron ion-containing solution (for example, Patent Document 1).
  • the manufacturing apparatus described in Patent Document 1 can supply copper ions into a solution while suppressing oxidation of a copper material that is an anode, and can be operated for a long time by an insoluble anode method. It is what.
  • the wiring material for multilayer wiring of high-end products has been shifted from Al to Cu, and the wiring formation process is also being shifted from the conventional RIE method to the dual damascene method, but it is currently used.
  • the copper dual damascene process includes a copper electrolytic plating process, the copper sulfate bath-dissolvable anode method currently dominates.
  • the quality and soundness of the film quality are never sufficient, and the application of the copper sulfate bath-insoluble anode method such as the production apparatus described in Patent Document 1, There is a demand for high purity copper ion generating materials.
  • the ion generation tank is partitioned into a positive electrode chamber and a negative electrode chamber with a hydrogen ion exchange membrane, and in the negative electrode chamber,
  • a manufacturing method and a manufacturing apparatus configured to release hydrogen gas from the vicinity of the cathode and to elute copper ions into the anode chamber from the anode made of a conductor rod and raw material copper in the anode chamber (for example, Patent Document 2).
  • the copper ions are eluted from the raw material copper put in the conductor cage made of titanium or the like into the dilute sulfuric acid aqueous solution, and the copper ions are increased due to the increase in resistance. While it becomes difficult to dissolve efficiently in the aqueous solution, impurities may elute from the conductor rod material, and the purity of the aqueous copper sulfate solution may be slightly reduced.
  • the raw material copper When the raw material copper is melted through a conductor rod made of titanium or the like, it is inevitable that the resistance increases due to the low electrical conductivity of the material of the conductor rod itself, and leakage current from the rod itself to the electrolyte also occurs. .
  • the energization of the raw material copper itself also becomes a contact energization with the brazing material, and also a contact resistance occurs here. Therefore, the electrical resistance is larger than the device that directly energizes the plate piece and energy is consumed for generating Joule heat. Inefficiency and high power consumption.
  • the copper material pieces accommodated in the basket cannot have a uniform surface as an electrode in a macro manner, and thus have a non-uniform current distribution and are not stable. As a result, the electrolytic efficiency is lowered, and the production efficiency is lowered.
  • Patent Document 2 in order to obtain a copper sulfate aqueous solution containing a specific range of copper as a plating bath base liquid product, the produced copper sulfate aqueous solution is dried by heating to make the copper concentration physically within a certain range. After making the pentahydrate salt, the required amount of addition is calculated, and the step of dissolving the salt in dilute sulfuric acid solution to form a plating bath base solution is necessary. There was a problem that the opportunity increased, the purity of the product was lowered, and the manufacturing cost was increased.
  • the present invention has been made in view of the above circumstances, and is a high-purity sulfuric acid capable of efficiently eluting copper ions and obtaining a high-purity copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate with high production efficiency. It aims at providing the manufacturing method and manufacturing apparatus of the copper sulfate aqueous solution containing copper aqueous solution or iron sulfate, and the copper sulfate aqueous solution containing high purity copper sulfate aqueous solution or iron sulfate.
  • an ion generating tank is partitioned into an anode chamber and a cathode chamber by a hydrogen ion exchange membrane.
  • elution efficiency is increased because copper ions are directly eluted from a pure copper copper plate or a high purity copper plate of 6N (99.9999%) or more into dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution.
  • a pure copper copper plate means the copper plate which has a composition of 4N (99.99%) or more.
  • an applied current is applied to an electrode made of a general copper plate of about 4N (99.99%). Since the current can be made higher than when used, the elution efficiency of copper ions into dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution is further improved. Thereby, a copper sulfate aqueous solution containing high quality and particularly high purity or a copper sulfate aqueous solution containing iron sulfate is generated.
  • the volume compartment ratio between the anode chamber and the cathode chamber and the ratio between the electrodes are from 4: 3 to 5: 1 range.
  • the volume ratio between the anode chamber and the cathode chamber and the ratio between the electrodes are set to 2: 1 in the ion generation tank. Can be configured.
  • the volume of the cathode chamber is smaller than the volume of the anode chamber, so that the amount of the electrolyte on the cathode chamber side can be reduced and the energization distance is shortened. Resistance is reduced. Thereby, even when the applied voltage to the electrode is reduced, the copper ions can be efficiently eluted, and when the applied voltage to the electrode is increased, the copper ions can be more efficiently eluted. .
  • the anode chamber from which copper ions are eluted has a larger capacity than the cathode chamber, the amount of copper sulfate aqueous solution or copper sulfate aqueous solution containing iron sulfate is increased compared to the amount of cathode chamber liquid.
  • the method for producing a high-purity copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate according to the present invention includes an aqueous solution intake step for extracting the aqueous solution in the anode chamber, and a copper ion concentration of the aqueous solution extracted from the anode chamber by the aqueous solution intake step.
  • the applied voltage and / or applied current to the anode and cathode are controlled.
  • the aqueous solution after generation is heated and dried to prepare a building bath base salt of the building bath base liquid to be a product, etc. A process becomes unnecessary. Moreover, since the aqueous solution used for the concentration measurement is returned to the anode chamber as it is, the amount of the aqueous solution is not depleted.
  • the applied voltage and current to each electrode can be controlled so that the optimal state for copper ion elution can be controlled. An aqueous copper sulfate solution or an aqueous copper sulfate solution containing iron sulfate can be produced.
  • An apparatus for producing a high-purity copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate according to the present invention includes an ion generation tank, a hydrogen ion exchange membrane that partitions the inside of the ion generation tank into an anode chamber and a cathode chamber, and the cathode chamber.
  • a pure copper copper plate that is provided in the anode chamber that is energized and discharges hydrogen gas from the surface, and is provided in the anode chamber that is supplied with dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution, and is energized to elute copper ions into the anode chamber; Or an anode made of a high purity copper plate of 6N or more.
  • the elution efficiency is improved because copper ions are directly eluted from a pure copper copper plate or a 6N or higher purity copper plate into a dilute sulfuric acid aqueous solution or a dilute iron sulfate aqueous solution. Further, when a stirring flow of the electrolytic solution is applied to the anode surface, the oxidation and diffusion at the interface are activated, so that the anode surface can be eroded flat when copper ions are eluted.
  • the anode surface is difficult to passivate by using a high purity copper plate of 6N or more as the anode, the applied current can be made high, so that elution of copper ions into dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution Efficiency is further improved. Thereby, the copper sulfate aqueous solution containing high quality and high purity copper sulfate aqueous solution or iron sulfate is produced
  • the apparatus for producing a high-purity copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate according to the present invention includes an aqueous solution intake means for taking out the aqueous solution in the anode chamber, and a copper ion concentration of the aqueous solution taken out from the anode chamber by the aqueous solution intake means A concentration measuring means for measuring the concentration, and an aqueous solution reflux means for returning the aqueous solution whose copper ion concentration is measured by the concentration measuring means to the anode chamber, and based on the measured value of the copper ion concentration in the concentration measuring means, Concentration control means for controlling an applied voltage and / or an applied current to the anode and the cathode is provided.
  • the manufacturing apparatus in order to directly measure the copper ion concentration of the aqueous solution in the anode chamber in real time, the aqueous solution after generation is heated and dried to prepare a salt for a bath of a plating bath base solution to be a product. A process becomes unnecessary. Further, since the aqueous solution used for concentration measurement is directly returned to the anode chamber, the amount of the aqueous solution is not depleted. In addition, based on the measured value of the copper ion concentration, the applied voltage and current to each electrode can be controlled so that the optimal state for copper ion elution can be controlled. An aqueous copper sulfate solution or an aqueous copper sulfate solution containing iron sulfate can be produced.
  • the apparatus for producing a high-purity copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate according to the present invention has a volume partition ratio between the anode chamber and the cathode chamber and a ratio between electrodes of 4: 3 to 5: It can be set as the structure made into 1 range.
  • the manufacturing apparatus of the high purity copper sulfate aqueous solution or the copper sulfate aqueous solution containing iron sulfate of the present invention is such that, in the ion generation tank, the volume compartment ratio and the electrode ratio between the anode chamber and the cathode chamber are 2: 1. It can be set as the structure made.
  • the volume of the cathode chamber is set to a volume division ratio that is smaller than the volume of the anode chamber, so that the amount of the electrolyte on the cathode chamber side can be reduced.
  • the energization distance is shortened, the resistance is reduced, and even when the voltage applied to the electrode is reduced, copper ions can be efficiently eluted.
  • the voltage applied to the electrode is increased, the copper ion Can be more efficiently eluted.
  • the anode chamber from which copper ions are eluted has a larger capacity than the cathode chamber, the amount of copper sulfate aqueous solution or copper sulfate aqueous solution containing iron sulfate is increased compared to the amount of cathode chamber liquid.
  • the high-purity copper sulfate aqueous solution or the copper sulfate aqueous solution containing iron sulfate of the present invention is produced by the above production method. Moreover, the high purity copper sulfate aqueous solution or the copper sulfate aqueous solution containing iron sulfate is manufactured with the said manufacturing apparatus.
  • the high-purity copper sulfate aqueous solution or the copper sulfate aqueous solution containing iron sulfate of the present invention can be made into a plating bath base liquid product with high quality and high purity by being manufactured by the above-described manufacturing method or manufacturing apparatus.
  • a pure copper copper plate or a plate-like anode made of a high-purity copper plate of 6N or more is used, and the electrolysis voltage is low in resistance.
  • the amount of dissolved oxygen in the anode chamber tends to be increased to the limit without any special operation. As a result, recombination of oxygen and free hydrogen, that is, generation of water is efficiently performed. This is done and the concentration of the electrolyte is small.
  • the effective electrolysis area of the anode is substantially constant, there is little variation in the amount of water decrease in the dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution, which is effective in managing sulfate ions in the aqueous solution.
  • oxidation at the anode interface is high and diffusion is fast, the generation and release of Cu + ions can be reduced, the formation of a passivating layer on the anode surface can be delayed, and copper caused by a disproportionation reaction The generation of powder can be reduced.
  • the high-quality and high-purity copper sulfate aqueous solution or iron sulfate is contained by the above-described configuration and action. It is possible to produce an aqueous copper sulfate solution with high production efficiency, and the number of processes can be reduced to reduce the chance of impurity contamination, thereby simultaneously improving quality, shortening production time and reducing costs. be able to.
  • An apparatus for producing a copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate includes an ion generating tank 2 and an inside of the ion generating tank 2 as an anode chamber 21.
  • the configuration of the manufacturing apparatus 1 of the present embodiment will be described in detail below.
  • the ion generation tank 2 has a box shape with an upper surface opened, and a predetermined dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution is stored therein.
  • the ion generation tank 2 is connected to a pipe near the bottom at a position of the anode chamber 21 described later, and a dilute sulfuric acid aqueous solution or dilute sulfuric acid containing copper ions generated in the anode chamber 21 is connected.
  • An aqueous iron solution can be sent to the outside.
  • the dilute iron sulfate aqueous solution stored in the ion generation layer 2 for example, a dilute sulfuric acid aqueous solution H 2 SO 4 of about 30 to 220 g / l (0.9 to 2.2 N with an ionization degree of 1)
  • a material containing divalent iron ions Fe 2+ or trivalent iron ions Fe 3+ can be used.
  • the ends of the hydrogen ion exchange membrane 23 are tightly connected to the opposite side wall and bottom of the ion generation tank 2 to separate the inside of the ion generation tank 2 into an anode chamber 21 and a cathode chamber 22, respectively.
  • the ion generation tank 2 is suspended near the center.
  • Proton exchange membrane 23 is, as it were selectively permeable to hydrogen ions H +, is intended to act like a semi-permeable membrane, is transmitted through the water molecule and a hydrogen ion H +, iron ions Fe 2+, Fe 3+ , metal ions such as copper ion Cu 2+ described later, and negative ions such as sulfate ion SO 4 2 ⁇ are not transmitted.
  • the hydrogen ion exchange membrane 23 only needs to selectively permeate hydrogen ions H +, and a commercially available cation resin, a hydrogen ion selective permeable membrane, or the like can be used.
  • An anode 25 is provided in the anode chamber 21.
  • the anode 25 is a plate-like electrode connected to the positive electrode side of a direct current supply device (see reference numeral 40 in FIG. 3).
  • the anode 25 has a side wall facing the hydrogen ion exchange membrane 23 in the anode chamber 21. In the vicinity (left side in FIG. 1).
  • the anode 25 of the present invention is made of a pure copper copper plate or a high purity copper plate of 6N or more, and elutes copper ions Cu 2+ in a dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution stored in the anode chamber 21.
  • a 6N8 (99.99998%) high-purity copper plate can be appropriately selected and used.
  • the anode 25 is preferably formed in a plate shape as in the illustrated example.
  • the anode 25 as a plate-like electrode made of a pure copper copper plate or a high purity copper plate of 6N or more, copper ions Cu 2+ can be efficiently eluted into the diluted iron sulfate solution.
  • the anode surface is not easily passivated, and the applied current can be made high, so that the elution efficiency of copper ions into the iron sulfate solution is further improved. improves.
  • an electrolytic solution dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution
  • the oxidation and diffusion at the interface are activated, so that the anode surface is eroded flatly when copper ions are eluted. It is possible to prevent the anode 25 from preferentially dissolving near the liquid surface of the dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution.
  • the shape and dimensions of the anode 25 are preferably those having a surface area as large as possible. Further, the shape and dimensions of the anode 25 can be appropriately determined in consideration of the volume and shape of the ion generation layer 2 and the anode chamber 21, production efficiency, and the like.
  • a high-quality and high-purity copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate is generated in the anode chamber 21.
  • a cathode 24 is provided in the cathode chamber 22.
  • the cathode 24 is an electrode connected to the negative electrode side of a DC current supply device (not shown), and is formed in a plate shape in the example shown in the figure, and in the vicinity of the side wall facing the hydrogen ion exchange membrane 23 in the cathode chamber 22 (FIG. 1). On the right).
  • the shape and size of the cathode 24 are preferably set to a shape and size that increases the surface area as much as possible in order to increase the reactivity in the ion generation layer 2.
  • a material having low reactivity with a dilute sulfuric acid aqueous solution or a dilute iron sulfate aqueous solution, excellent in electrical conductivity, and low in embrittlement reactivity with respect to hydrogen may be used.
  • Pure copper, copper alloy, Pt, Au, Ag, or the like can be used.
  • An electrode having a structure in which a surface of a Cu, Ti, C, Pb material or the like is covered with a platinum group oxide such as Ir or Ru can also be used.
  • the ion generating tank 2 is partitioned into a positive electrode chamber 21 and a negative electrode chamber 22 by a hydrogen ion exchange membrane 23, and a negative electrode chamber.
  • the ion generating tank 2 When manufacturing a copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate, first, the ion generating tank 2 is filled with a dilute sulfuric acid aqueous solution or a dilute iron sulfate aqueous solution. In this state, water molecules, sulfate ions SO 4 2 ⁇ , hydroxide ions OH ⁇ , ⁇ iron ions Fe 2+ (Fe 3+ ) ⁇ , undissociated sulfate molecules, and hydrogen ions H + exist in the cathode chamber 22.
  • water molecules, sulfate ions SO 4 2 ⁇ , hydrogen ions H + , hydroxide ions OH ⁇ , ⁇ iron ions Fe 2+ (Fe 3+ ) ⁇ , undissociated sulfuric acid molecules, and trace amounts of copper Ion Cu 2+ is present.
  • the iron ion Fe 2+ (Fe 3+ ) is present only when a dilute iron sulfate aqueous solution is used.
  • an electrolytic current of 2 to 15 A / dm 2 is applied to the anode 25 and the cathode 24 from a direct current supply device (see reference numeral 40 in FIG. 3).
  • a direct current supply device see reference numeral 40 in FIG. 3.
  • hydrogen ions H + in the cathode chamber 22 are released as hydrogen gas H 2 in the vicinity of the surface of the cathode 24.
  • positive ions must move from the anode chamber 21 to the cathode chamber 22, but the chambers 21 and 22 are partitioned by a hydrogen ion exchange membrane 23. Therefore, only hydrogen ions H + inside the anode chamber 21 move to the cathode chamber 22.
  • the upper limit of the electrolysis voltage applied to each electrode varies depending on the stirring conditions of the aqueous solution in the anode chamber 21, the temperature and the concentration, etc., but if it is set within a range where oxygen bubbles are not generated on the surface of the anode 25. good.
  • the hydrogen ion concentration in the anode chamber 21 is reduced by the above-described action. That is, cations in the anode chamber 21 are reduced.
  • an electrolytic current is applied to a pure copper copper plate or a 6N high purity copper plate constituting the anode 25.
  • copper ions Cu 2+ from the anode 25 to the initial cation concentration before energization.
  • the electrical neutrality in the anode chamber 21 is maintained.
  • the magnitude of the electrolytic current applied to the anode 25 is proportional to the amount of copper ions Cu 2+ eluted from the anode 25.
  • the produced dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution containing the copper ion Cu 2+ may be extracted through a pipe (not shown) provided in communication with the anode chamber 21, or from the opening of the anode chamber 21. It is good also as a method of extracting by a formula.
  • the dilute sulfuric acid aqueous solution or dilute sulfuric acid containing copper ion Cu2 + continuously is supplied by supplying the dilute sulfuric acid aqueous solution or the dilute iron sulfate aqueous solution to the ion generating tank 2.
  • An aqueous iron solution can be produced.
  • the method and apparatus for producing a copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate according to the present embodiment, it is provided in the anode chamber 21 and is made of a pure copper copper plate or a 6N high-purity copper plate. Since copper ions are directly eluted from the anode 25 into dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution, high concentration copper ions can be efficiently eluted.
  • the oxidation and diffusion at the interface are activated, so that the surface of the anode 25 can be eroded flat when copper ions are eluted.
  • the applied current can be made high, so that the elution efficiency of copper ions into the iron sulfate solution is further improved. Further improve.
  • the aqueous solution in the anode chamber 21 that has reached the target copper ion concentration is quickly sent out to the outside through a pipe (not shown) and replenished with a new electrolytic solution, whereby a copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate is added.
  • a pipe (not shown) provided in communication with the anode chamber 21 to a plating tank or the like the produced copper ion Cu 2+ can be quickly supplied toward a predetermined portion of the plating tank or the like. It becomes possible.
  • An apparatus 10 for producing an aqueous copper sulfate solution or an aqueous copper sulfate solution containing iron sulfate includes an ion generating tank 2A and a hydrogen ion exchange membrane 23 that partitions the inside of the ion generating tank 2A into an anode chamber 21A and a cathode chamber 22A. And provided in the cathode chamber 22A and energized to discharge hydrogen gas from the surface, and provided in the anode chamber 21A supplied with the iron sulfate solution and energized to elute copper ions into the anode chamber 21A.
  • the anode 25 made of 6N high-purity copper plate, and the volume ratio of the cathode chamber 22A is smaller than the volume of the anode chamber 21A in the ion generation tank 2 through the hydrogen ion exchange membrane 23.
  • the anode chamber 21 ⁇ / b> A and the cathode chamber 22 ⁇ / b> A are configured so that the distance between the electrodes on the cathode chamber 22 ⁇ / b> A side is set to an interelectrode ratio shorter than that between the electrodes on the anode chamber 21 ⁇ / b> A side. Volume compartment ratio and the inter-electrode ratio of 2: 1.
  • the production apparatus 10 of the present embodiment is configured so that the volume of the cathode chamber 22A is smaller than the volume of the anode chamber 21A in the ion generation tank 2A through the hydrogen ion exchange membrane 23.
  • the amount of the electrolyte solution on the chamber 22A side can be reduced, and the ratio between the electrodes on the cathode chamber 22A side is shorter than that between the electrodes on the anode chamber 21A side.
  • the distance between the electrodes can be shortened, and the electric resistance can be reduced.
  • copper ions can be efficiently eluted, and when the applied voltage to each electrode 24, 25 is increased, more copper ions can be dissolved. It can be eluted more efficiently.
  • the anode chamber 21A from which copper ions are eluted has a larger capacity than the cathode chamber 22A, the production amount of the copper sulfate aqueous solution or the copper sulfate aqueous solution containing iron sulfate can be increased as compared with the cathode chamber liquid amount. it can.
  • production can be performed in the ion generation tank 2A in a volume partition ratio between the anode chamber 21 and the cathode chamber 22 and a ratio between electrodes of 1: 3 to 5: 1.
  • the top is preferably in the range of 4: 3 to 5: 1.
  • the volume partition ratio and the inter-electrode ratio between the anode chamber 21A and the cathode chamber 22A are such that the anode chamber 21A side is larger than 5: 1, the amount of hydrogen ions in the cathode chamber 22A increases significantly, and the cathode There is a possibility that the polar chamber space on the chamber 22A side becomes too narrow, and the electrolyte 24 overflows from the cathode 24 due to reaction bubbles, an abnormal decrease in the energization area, and abnormal discharge occurs.
  • the volume division ratio between the anode chamber 21 and the cathode chamber 22 and the ratio between the electrodes are most preferably 2: 1 from the viewpoint of the above-described production efficiency.
  • the amount of the electrolytic solution on the cathode chamber 22A side can be reduced by manufacturing the copper sulfate aqueous solution or the copper sulfate aqueous solution containing iron sulfate using the manufacturing apparatus 10.
  • the interelectrode resistance can be reduced.
  • the anode chamber 21A from which copper ions are eluted has a larger capacity than the cathode chamber 22A, the production amount of the copper sulfate aqueous solution or the copper sulfate aqueous solution containing iron sulfate can be increased as compared with the cathode chamber liquid amount. it can.
  • An apparatus 11 for producing an aqueous copper sulfate solution or an aqueous copper sulfate solution containing iron sulfate includes an ion generation tank 2 and a hydrogen ion exchange membrane 23 that partitions the inside of the ion generation tank 2 into an anode chamber 21 and a cathode chamber 22.
  • a hydrogen ion exchange membrane 23 that partitions the inside of the ion generation tank 2 into an anode chamber 21 and a cathode chamber 22.
  • the cathode 24 Provided in the cathode chamber 22 and provided in the cathode 24 which is energized to discharge hydrogen gas from the surface and the anode chamber 21 supplied with the iron sulfate solution, and is energized to elute copper ions into the anode chamber 21.
  • a manufacturing apparatus including a pure copper copper plate or an anode 25 made of a high purity copper plate of 6N or more, an aqueous solution intake means 31 for extracting an aqueous solution in the anode chamber 21, and an aqueous solution intake means 31 that is taken out from the anode chamber 21 by the aqueous solution intake means 31.
  • Concentration measuring means 32 for measuring the copper ion concentration of the aqueous solution obtained, and aqueous solution reflux means 33 for returning the aqueous solution whose copper ion concentration is measured by the concentration measuring means 32 to the anode chamber 21, and measuring the concentration Based on the measured value of the copper ion concentration in the stage 32, an applied voltage of DC current supplied from the DC current supply device 40 to the anode 25 and the cathode 24 and / or a concentration control means 34 for controlling the applied current are provided. It is roughly structured.
  • the aqueous solution intake means 31 is a water intake provided on the anode chamber 21 side in the ion generation tank 2 and is stored in the anode chamber 21 and generated, or is a dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution in the generation process. Is used as an inlet for sending to the concentration measuring means 32 described later through the intake pipe.
  • the aqueous solution intake means 31 is provided so as to enter the anode chamber 21 from the opening of the anode chamber 21, and is formed in a pipe shape.
  • a piping configuration communicating with the side wall of the anode chamber 21 may be employed and can be appropriately adopted.
  • the concentration measuring means 32 measures the copper ion concentration or the iron ion concentration of the aqueous solution taken from the anode chamber 21 by the aqueous solution intake means 31 and sent through the intake pipe, and is composed of, for example, an absorptiometer.
  • the concentration measuring means 32 of the present embodiment is provided with a connection portion (not shown) for sending copper ion concentration measurement data to a concentration control means 34 described later. Further, the concentration measuring means 32 may have a configuration in which a measurement data display unit such as a display is provided.
  • the aqueous solution reflux means 33 takes water from the anode chamber 21 by the aqueous solution intake means 31, and returns the aqueous solution whose concentration is measured by being sent to the concentration measuring means 32 through the intake pipe and returned to the anode chamber 21, as shown in FIG.
  • a return port is disposed substantially above the opening of the anode chamber 21.
  • a pump means (not shown) is used as one of the paths of the dilute sulfuric acid aqueous solution or the dilute iron sulfate aqueous solution as described above. It can be provided in the position.
  • the pump means may be built in the concentration measuring means 32.
  • the concentration control means 34 controls the applied voltage and / or applied current to the anode 25 and the cathode 24 based on the measured value of the copper ion concentration in the concentration measuring means 32.
  • An unillustrated input section for inputting copper ion concentration measurement data and an unillustrated transmitting section for transmitting a control signal to a direct current supply means 40 described later are provided.
  • the concentration control means 34 may be configured to be provided with a measurement data display unit for copper ion concentration, for example, comprising a display.
  • the direct current supply device 40 is a power source for supplying an electrolytic current to the anode 25 and the cathode 24, and is provided with a control adjustment unit (not shown) in order to control a current value and a voltage value supplied to each electrode. . Further, the direct current supply means 40 is used not only as an electrolytic current supply to the anode 25 and the cathode 24 but also as, for example, a current supply means to the concentration measuring means 32, the concentration control means 34, and the pump means (not shown). it can.
  • the basic operation in manufacturing a copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate using the manufacturing apparatus 11 of the present embodiment is the same as the method described in the first embodiment.
  • the copper ion concentration is measured and the electrolytic current supplied to the electrodes 24 and 25 is controlled by the method described below.
  • the aqueous solution intake means 31 uses the dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution stored in the anode chamber 21 of the ion generation tank 2 in the production process of the copper sulfate aqueous solution or the copper sulfate aqueous solution containing iron sulfate. Is taken into the concentration measuring means 32 through the intake pipe. The concentration measuring means 32 measures the copper ion concentration of the dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution, sends this measurement data to the concentration control means 34, and the measurement of the copper ion concentration in the concentration measuring means 32 is completed. The diluted dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution is returned to the anode chamber 21 through the aqueous solution reflux means 33 again.
  • the concentration control means 34 when the copper ion concentration in the dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution being generated exceeds the threshold value, 25 and a control signal for instructing to stop the applied current is sent to the direct current supply means 40.
  • the anode 25 and A control signal instructing continuation of the applied voltage and / or applied current to the cathode 24 is sent to the direct current supply means 40.
  • the direct current supply means 40 controls the applied voltage and / or the applied current to the anode 25 and the cathode 24 based on the control signal sent from the concentration control means 34. That is, when the concentration of copper ions in the dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution taken from the anode chamber 21 is high, the electrolyte is replenished to the anode chamber 21A and the cathode chamber 21B to reduce the concentration, or Current application to the electrodes 24 and 25 is stopped. Moreover, when the copper ion concentration in the dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution taken from the anode chamber 21 is low, current application to the electrodes 24 and 25 is continued.
  • the manufacturing apparatus 11 of the present embodiment allows the copper ion concentration in the dilute sulfuric acid aqueous solution or the dilute iron sulfate aqueous solution being generated to reach the target value. Stop elution of copper ions.
  • the concentration measurement unit 32 or the concentration control unit 34 is provided with a measurement data display unit (not shown) and a sensing unit, so that an aqueous copper sulfate solution or copper sulfate containing iron sulfate is provided.
  • An operator can visually confirm or mechanically detect the completion of the generation of the aqueous solution.
  • the dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution that has been generated can be quickly and manually removed from the anode chamber 21 manually or automatically, and immediately in the anode chamber 21 a new dilute sulfuric acid aqueous solution or The dilute iron sulfate aqueous solution can be stored, and the production efficiency is improved.
  • the elution of copper ions can be continued and the copper ion concentration can reach the target value.
  • the manufacturing apparatus 11 of the present embodiment since the copper ion concentration or the iron ion concentration of the aqueous solution in the anode chamber 21 is directly measured in real time, the aqueous solution being generated as in the prior art is used. A process such as heat drying to produce a built-in bath salt is not necessary, and the process can be reduced and the quality can be maintained. Further, since the aqueous solution used for concentration measurement is returned to the anode chamber 21 as it is without any alteration due to the analysis, there is no contamination or wear due to the analysis of the aqueous solution.
  • the voltage and current applied to the electrodes 24 and 25 can be controlled so as to be in an optimum state for elution of copper ions.
  • an aqueous copper sulfate solution or an aqueous copper sulfate solution containing iron sulfate can be produced, and the operation can be automated.
  • the concentration of copper ions in the dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution is provided by providing a solenoid valve or the like in a pipe (not shown) provided in communication with the anode chamber 21. Reaches the target value and the application of the electrolysis current from the direct current supply device 40 to the anode 25 and the cathode 24 is stopped, the electromagnetic valve is opened, and a dilute sulfuric acid aqueous solution or a dilute iron sulfate aqueous solution is generated. It is good also as a structure delivered to the anode chamber 21 exterior. Thereby, the production efficiency of the dilute sulfuric acid aqueous solution or dilute iron sulfate aqueous solution containing copper ions is further improved.
  • an ion generation tank 2 composed of an anode chamber 21 and a cathode chamber 22 having a volume of 2 L as shown in FIGS. 1 and 3 was produced (Test Examples 1 and 3).
  • an acrylic plate as shown in FIG. 2, the anode chamber 21A having a volume of 2 L (electrolyte volume 100 mm ⁇ 100 mm ⁇ 200 mm) and the cathode having a volume of 1 L (electrolyte volume 100 mm ⁇ 100 mm ⁇ 100 mm)
  • An ion generation tank 2A composed of the chamber 22A was produced (Test Example 2).
  • a commercially available cation exchange membrane was used as the hydrogen ion exchange membrane for partitioning each anode chamber and cathode chamber.
  • anode 25 a copper plate made of high purity copper of 6N or more (equivalent to 6N8: copper purity 99.99998%) and having a size of 100 mm ⁇ 200 mm ⁇ 20 mm (water contact area: 100 mm ⁇ 100 mm) is used.
  • the anode chambers 21 and 21A of the ion generation tanks 2 and 2A are arranged on the side wall (on the left side in FIGS. 1 to 3) facing the hydrogen ion exchange membrane 23.
  • the cathode 24 a plate material made of pure copper equivalent to 4N8 (copper purity 99.998%) and having a size of 100 mm ⁇ 200 mm ⁇ 20 mm (water contact area: 100 mm ⁇ 100 mm) is used, as shown in FIGS. Further, in the cathode chambers 22 and 22A of the ion generation tanks 2 and 2A, the production apparatus 1 as shown in FIG. 1 is arranged on the side wall (right side in FIGS. 1 to 3) facing the hydrogen ion exchange membrane 23. (Test example 1: using ion generation tank 2) and manufacturing apparatus 10 as shown in FIG. 2 (test example 2: using ion generation tank 2A).
  • the aqueous solution water intake means 31 made of a Teflon (registered trademark) tube is inserted into the anode chambers 21 and 21A. It was connected to the inflow side of concentration measuring means 32 (Atotech Japan Co., Ltd .: copper, iron ion real-time analyzer) with a built-in pump by a water intake pipe composed of a Teflon (registered trademark) tube.
  • An aqueous solution recirculation means 33 comprising a Teflon (registered trademark) tube is connected to the water discharge side of the concentration measurement means 32, and the tip thereof is disposed substantially above the opening of the anode chamber 2 to dilute sulfuric acid after the copper ion concentration measurement. It was set as the structure which can return iron aqueous solution in the anode chambers 21 and 21A.
  • the measurement data output port of the concentration measuring means 32 is connected to the concentration control means 34 comprising a personal computer (IBM: Think Pad), and the external communication interface of the personal computer (concentration control means 34) is connected to the direct current supply means. 40 (manufactured by Yamamoto Metal Testing Machine Co., Ltd .: Wafer precision metal plating YPP-15100) was connected to the external communication interface to produce a manufacturing apparatus 11 (Test Example 3: using ion generation tank 2) as shown in FIG.
  • aqueous solution intake means 31, a concentration measurement means 32, and an aqueous solution reflux means 33 as shown in FIG. 3 are connected to the manufacturing apparatus 1 shown in FIG. 1 so that the copper ion concentration can be measured in real time.
  • the electrolytic solution a dilute sulfuric acid aqueous solution in which a special grade reagent sulfuric acid is added to ultrapure water having a resistance value of 18.2 M ⁇ and the amount of SO 4 is 180 g / L is used, and commercially available high-purity electrolytic iron is 13 g / L. The solution was metered and dissolved to obtain a dilute aqueous iron sulfate solution.
  • each of the anode chamber 21 and the cathode chamber 22 was supplied so that 2 L of dilute sulfuric acid aqueous solution was stored.
  • the electrolytic current to the anode 25 and the cathode 24 was applied so that the current density on the cathode 24 side was 8.5 A / dm 2, and the energization time was 5 hours.
  • aqueous solution intake means 31, a concentration measuring means 32, and an aqueous solution reflux means 33 as shown in FIG. 3 are connected to the manufacturing apparatus 10 shown in FIG. 2 so that the copper ion concentration can be measured in real time.
  • an electrolytic solution a special grade reagent sulfuric acid is added to ultrapure water having a resistance value of 18.2 M ⁇ so that the amount of SO 4 is 180 g / L, and commercially available high-purity electrolytic iron is metered to 13 g / L.
  • Test Example 1 The evaluation results of Test Example 1 and Test Example 2 are shown in FIG.
  • test example 1 has a fluctuation range of 680 mV
  • test example 2 has a fluctuation range of 390 mV, which is a 2: 1 cell test example. It is clear that the voltage fluctuation range of 2 is smaller and more stable than Test Example 1 of 1: 1 cell.
  • the electrolytic efficiency (electrical equivalent ⁇ electrode area ⁇ current value ⁇ ratio of theoretical electrolysis value and actual electrolysis amount determined by time) is about 100% (Test Example 1: 102%, Test Example 2: 99.99). 8%), which is an ideal value and no significant difference was observed.
  • Test Example 3 A continuous production test of an aqueous copper sulfate solution or an aqueous copper sulfate solution containing iron sulfate was performed using the manufacturing apparatus 11 shown in FIG.
  • an electrolytic solution a special grade reagent sulfuric acid is added to ultrapure water having a resistance value of 18.2 M ⁇ to adjust the amount of SO 4 to 180 g / L, and commercially available high-purity electrolytic iron is metered to 13 g / L and dissolved.
  • the dilute aqueous iron sulfate solution thus produced was supplied so that 2 L of dilute sulfuric acid aqueous solution was stored in each of the anode chamber 21 and the cathode chamber 22.
  • the concentration control means 34 and the direct current supply means 40 supply an electrolytic current to the anode 25 and the cathode 24 while stepping the current value from 500 mA to 10 A so that the anode surface has a high current density within a range where the anode surface is not passivated. Observed to be.
  • the target concentration of copper ions was about 35 g / L.
  • the measurement results of the component composition in Test Example 3 are shown in Table 2.
  • the energization time (operation time per batch) until the copper ion concentration reached about 35 g / L was determined to be about 7 hours from the progress of copper ion concentration and electrochemical calculation. In the conventional manufacturing method and manufacturing apparatus, it took about 3 weeks (320 hours) per batch, whereas in the manufacturing method and manufacturing apparatus of the present invention, the copper ion concentration at the same level in about 1/45 time. It was clarified that a dilute iron sulfate aqueous solution having a high production efficiency can be produced.
  • Test Example 4 In this test example, 6N (equivalent to 6N8) high-purity copper and a commercially available copper plate made of 4N (equivalent to 4N8) pure copper were used as the anode 25, respectively. Then, an aqueous solution intake means 31, a concentration measuring means 32, and an aqueous solution reflux means 33 as shown in FIG. 3 are connected to the manufacturing apparatus 10 shown in FIG. 2, and the test is performed so that the copper ion concentration can be measured in real time. Comparative evaluation was performed when the purity of the copper plate used for the anode 25 was different.
  • an electrolytic solution a special grade reagent sulfuric acid is added to ultrapure water having a resistance value of 18.2 M ⁇ to adjust the amount of SO 4 to 180 g / L, and commercially available high-purity electrolytic iron is measured to be 13.5 g / L.
  • the resulting diluted iron sulfate aqueous solution was added and dissolved, and 2 L of the diluted iron sulfate aqueous solution was stored in the anode chamber 21A and 1 L of the diluted iron sulfate aqueous solution was stored in the cathode chamber 22A.
  • the electrolytic current to the anode 25 and the cathode 24 was applied so that the current density on the cathode 24 side was 9 A / dm 2, and the energization time was 6.5 hours.
  • the cooling tub and the special glass cooling pipe were used to arrange the cooling tub in the ion generation tank 2 to take measures to cool the dilute iron sulfate aqueous solution. Thereby, it was able to be set as the test on the conditions which suppressed the liquid temperature rise of dilute iron sulfate aqueous solution to about 40 degreeC.
  • the copper ion concentration in the aqueous solution is about 35 g / L when either 6N high-purity copper or 4N pure copper is used for the anode 25 and is not inferior, but the applied integrated voltage is 4N pure copper for the anode 25. Since the case is higher, the dissolution efficiency of copper ions is lower by this amount. Further, the amount of copper powder residue simply filtered and collected from the aqueous solution in the anode chamber 21 in which the anode 25 using 4N pure copper was disposed was about 1.73 g, which was very large. When the anode 25 made of 6N high-purity copper was used, the amount of copper powder residue was not calibrated, resulting in almost zero.
  • the method and apparatus for producing a high-purity copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate of the present invention have high production efficiency, and the aqueous solution produced by this production method and production apparatus is It is clear that it has a high copper ion concentration with few impurities and is excellent in aqueous solution characteristics.
  • a high-quality and high-purity copper sulfate aqueous solution or a copper sulfate aqueous solution containing iron sulfate is produced at a high level
  • the number of steps can be reduced, thereby reducing the chance of impurity contamination, and simultaneously improving quality, reducing generation time, and reducing costs. Therefore, it is very useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

 銅イオンを効率的に溶出し、高純度の硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を高い製造効率で得ることができる、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液が提供される。イオン発生槽を水素イオン交換膜で陽極室と陰極室とに区画し、前記陰極室において、陰極表面から水素ガスを放出するとともに、希硫酸水溶液又は希硫酸鉄水溶液を供給した前記陽極室において、純銅銅板、又は6N以上の高純度銅板からなる陽極から銅イオンを前記陽極室内に溶出し、前記陽極室内において、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を生成する。

Description

高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液
 本発明は、高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液に関する。
 従来、銅メッキをおこなう際に必要な銅イオンを得るため、硫酸銅水和物を溶解した水溶液がメッキ液として適用されていたが、銅イオン以外の不純物が含有されていると、メッキ層の膜特性が低下してしまうという問題があった。
 また、近年、アノード素材として6N(99.9999%)純度以上の銅素材を用いた高純度製品が製品化されたため、鍍金浴ベース液原料としての硫酸銅に対して高い純度が要求されていた。
 上述のようなメッキ液は、溶解性アノード法に供されることが多く、この場合にはメッキ液中に銅イオンを供給するため、陽極に銅リン合金の塑性加工品(銅板、銅片、銅球等)を用いて銅イオンを溶出していた。
 銅の硫酸銅浴溶解性アノード法を用いる場合、アノードの不働態化を遅延させたり、不均化反応による銅粉発生を抑制することを目的とし、アノード表面にブラックフィルムと呼ばれる膜を生成させる。このようなブラックフィルムは、合金銅中のリン、酸化物、水酸化物、塩化物等の複合物と考えられるが、適正な条件下で健全に生成機能する膜であるため、厳密に健全なフィルム膜を生成維持する事は困難である。このため、ブラックフィルムは、実際の工業的操業においては多少の滑落と生成を繰り返しながら成膜されるが、この際に滑落した膜が、スライム状あるいは析出粉等のパーティクルとなってメッキ液を汚染し、成膜面へのノジュール生成等の悪影響を及ぼすという問題があった。
 プリント配線板分野においては、銅の溶解性アノード法が盛んに用いられてきたが、新興分野であるモジュール基板分野においては、微細化要求がさらに厳しいため、滑落パーティクルに起因する不具合は無視できない問題となっている。このため、これらの分野においては、溶解性アノード法から、ブラックフィルムを成膜しない不溶解性アノード法への移行が望まれている。
 しかしながら、一般的に不溶解性アノード法では、メッキ溶液中の銅が消費されても銅イオン単体の補給が出来ないうえ、陽極で生じる強力な酸化反応によって添加剤が分解あるいは変質するため、安定した長時間の操業が不可能であるという問題があった。
 このような問題を解決するため、例えば、3価鉄イオン含有溶液を入れた溶解槽に、銅材を収容した収容体を配設した製造装置が提案されている(例えば、特許文献1)。
 特許文献1に記載の製造装置は、上述の構成により、陽極である銅材の酸化を抑制しながら、溶液中に銅イオンを供給することができ、不溶解性アノード法による長時間操業を可能とするものである。これに伴い、さらに、工業的操業においては、高純度の銅イオンを含有した希硫酸水溶液のみでなく、高純度の硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液が要求されるようになってきている。
 また、半導体デバイス分野において、ハイエンド製品の多層配線の配線材料は、AlからCuに移行されており、配線形成プロセスも、従来のRIE法からデュアルダマシン法に移行されつつあるが、現在、用いられている銅デュアルダマシンプロセスでは銅の電解鍍金工程が含まれているため、現状では硫酸銅浴溶解性アノード法が主流を占めている。
 しかしながら、硫酸銅浴溶解性アノード法では、膜質の純度や健全性等が決して充分ではなく、特許文献1に記載の製造装置のような硫酸銅浴不溶解性アノード法の適用や、鍍金浴及び銅イオン発生材料の高純度化等が要求されている。
 また、実装技術の多様化から、バンプ構造中等に銅ポストが採用され、また、MEMS分野の構造中への銅の適用が検討される等、微細鍍金分野での銅の採用は拡がりつつあり、これに伴い、鍍金浴、銅イオン供給及び発生材料の高純度化等の要求が高まっている。
 上述のような要求に鑑み、銅イオンを効率的に発生させて不純物の少ない硫酸銅を得るため、イオン発生槽を水素イオン交換膜で陽極室と陰極室とに区画し、前記陰極室において、陰極付近から水素ガスを放出するとともに、前記陽極室において、導体籠と原料銅とからなる陽極から、銅イオンを前記陽極室内に溶出する構成とされた製造方法及び製造装置が提案されている(例えば、特許文献2)。
特開2002-206199号公報 特開2003-328198号公報
 特許文献2に記載の製造方法及び製造装置によれば、上述の構成により、容易に銅イオンを発生することができ、硫酸銅を安定的に得られる。
 しかしながら、特許文献2に記載の製造方法及び製造装置では、チタン等からなる導体籠に入れられた原料銅から、銅イオンが希硫酸水溶液に溶出される構成であり、抵抗増加などから銅イオンが効率よく水溶液に溶けにくくなるとともに、導体籠素材から不純物が溶出し、硫酸銅水溶液の純度を僅かながら低下させてしまう虞がある。
 チタン等からなる導体籠を介して原料銅を溶解する場合、導体籠の素材自体の低い電気伝導度によって抵抗が上昇するのが避けられないうえ、籠自体からの電解液への漏電流も生じる。さらに、原料銅自体の通電も籠材との接触通電となり、ここでの接触抵抗も生じるため、板片に直接通電する装置等に比べて電気抵抗が大きくなり、ジュール熱発生にエネルギーが消費されて非効率になり、電力消費が高くなる等の弊害がある。また、籠内に収容された銅材料片は、マクロ的に電極としての均一面を持てないことから不均一な電流分布となり、安定しない。この結果、電解効率を低下させてしまうこととなり、生産効率が低下する。
 また、特許文献2では、メッキ浴ベース液製品として特定範囲の銅分を含む硫酸銅水溶液とするためには、生成した硫酸銅水溶液を加熱乾燥して銅濃度が物理的に一定範囲内となる五水和塩とした後、必要な添加量を計算で求め、その塩を希硫酸水溶液で溶解してメッキ浴ベース液とする工程が必要となるため、溶液生成後の各工程においてコンタミネーションの機会が増加し、製品の純度を低下させるとともに、製造コストが上昇してしまうという問題があった。
 本発明は上記事情に鑑みてなされたものであり、銅イオンを効率的に溶出し、高純度の硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を高い製造効率で得ることができる、高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を提供することを目的とする。
 本発明の高純度な硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法は、イオン発生槽を水素イオン交換膜で陽極室と陰極室とに区画し、前記陰極室において、陰極表面から水素ガスを放出するとともに、希硫酸水溶液又は希硫酸鉄水溶液を供給した前記陽極室において、純銅銅板、又は6N以上の高純度銅板からなる陽極から銅イオンを前記陽極室内に溶出し、前記陽極室内において、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を生成する。
 上記構成の製造方法によれば、純銅銅板、又は6N(99.9999%)以上の高純度銅板から希硫酸水溶液又は希硫酸鉄水溶液に銅イオンを直接溶出させるため、溶出効率が高められる。純銅銅板とは、4N(99.99%)以上の組成を有する銅板をいう。また、陽極表面に電解液(希硫酸水溶液又は希硫酸鉄水溶液)の攪拌流を与えた場合には、界面の酸化及び拡散が活性化するため、銅イオン溶出の際、陽極表面を平坦にエロージョンさせることができる。また、純銅銅板、又は6N以上の高純度銅板を陽極に用いることにより、陽極表面の不働態化耐性が高まるため、印加電流を、一般の4N(99.99%)程度の銅板からなる電極を用いた場合よりも高電流とすることができることから、銅イオンの希硫酸水溶液又は希硫酸鉄水溶液への溶出効率がより一層向上する。これにより、高品質で、且つ、特に純度の高い硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液が生成される。
 本発明の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法は、前記イオン発生槽において、前記陽極室と前記陰極室との容積区画比率及び電極間比率を4:3~5:1の範囲として構成することができる。
 また、本発明の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法は、前記イオン発生槽において、前記陽極室と前記陰極室との容積区画比率及び電極間比率を2:1として構成することができる。
 上記構成の製造方法によれば、陰極室の容積が陽極室の容積よりも小さくなる容積区画比率とすることにより、陰極室側の電解液量を低減できるとともに、通電距離が短縮されることから抵抗が低減する。これにより、電極への印加電圧を低減した場合でも効率良く銅イオンを溶出することができ、また、電極への印加電圧を高くした場合には、銅イオンをより一層効率良く溶出することができる。
 また、銅イオンが溶出される陽極室が陰極室よりも大きな容量となるため、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液は、陰極室液量に比べて製造量が増大する。
 本発明の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法は、前記陽極室内の水溶液を取り出す水溶液取水工程と、該水溶液取水工程によって前記陽極室内から取り出された水溶液の銅イオン濃度を測定する濃度測定工程と、該濃度測定工程で銅イオン濃度が測定された水溶液を前記陽極室内に戻す水溶液還流工程と、を備え、前記濃度測定工程における銅イオン濃度の測定値に基いて、前記陽極及び陰極への印加電圧、及び/または、印加電流を制御する。
 上記構成の製造方法によれば、陽極室内の水溶液の銅イオン濃度をリアルタイムで直接測定するため、生成後の水溶液を加熱乾燥して製品となる建浴ベース液の建浴用塩を作成する等の工程が不要となる。また、濃度測定に用いられた水溶液をそのまま陽極室に戻すため、水溶液量を減耗させることがない。
 また、銅イオン濃度の測定値に基き、銅イオン溶出に最適な状態となるように、各電極への印加電圧や電流を制御することができることから、高効率を維持した最適な状態で、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を生成することができる。
 本発明の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置は、イオン発生槽と、該イオン発生槽内部を陽極室と陰極室とに区画する水素イオン交換膜と、前記陰極室内に設けられ、通電されて水素ガスを表面から放出する陰極と、希硫酸水溶液又は希硫酸鉄水溶液を供給した前記陽極室に設けられ、通電されて前記陽極室内に銅イオンを溶出する純銅銅板、又は6N以上の高純度銅板からなる陽極と、を具備してなる。
 上記構成の製造装置によれば、純銅銅板、又は6N以上の高純度銅板から希硫酸水溶液又は希硫酸鉄水溶液に銅イオンが直接溶出されるため、溶出効率が高められる。また、陽極表面に電解液の攪拌流を与えた場合には、界面の酸化及び拡散が活性化するため、銅イオン溶出の際、陽極表面を平坦にエロージョンさせることができる。また、6N以上の高純度銅板を陽極に用いることにより、陽極表面が不働態化しにくいため、印加電流を高電流とすることができることから、銅イオンの希硫酸水溶液又は希硫酸鉄水溶液への溶出効率がより一層向上する。これにより、高品質で、且つ純度の高い硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液が生成される。
 本発明の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置は、前記陽極室内の水溶液を取り出す水溶液取水手段と、該水溶液取水手段によって前記陽極室内から取り出された水溶液の銅イオン濃度を測定する濃度測定手段と、該濃度測定手段で銅イオン濃度が測定された水溶液を前記陽極室内に戻す水溶液還流手段とを有し、前記濃度測定手段における銅イオン濃度の測定値に基いて、前記陽極及び陰極への印加電圧、及び/または、印加電流を制御する濃度制御手段が備えられている。
 上記構成の製造装置によれば、陽極室内の水溶液の銅イオン濃度をリアルタイムで直接測定するため、生成後の水溶液を加熱乾燥して製品となるメッキ浴ベース液の建浴用塩を作成する等の工程が不要となる。また、濃度測定に用いられた水溶液はそのまま陽極室に戻されるため、水溶液量が減耗されることがない。
 また、銅イオン濃度の測定値に基き、銅イオン溶出に最適な状態となるように、各電極への印加電圧や電流を制御することができることから、高効率を維持した最適な状態で、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を生成することができる。
 本発明の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置は、前記イオン発生槽において、前記陽極室と前記陰極室との容積区画比率及び電極間比率が4:3~5:1の範囲とされた構成とすることができる。
 また、本発明の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置は、前記イオン発生槽において、前記陽極室と前記陰極室との容積区画比率及び電極間比率が2:1とされた構成とすることができる。
 上記構成の製造装置によれば、陰極室の容積が陽極室の容積よりも小さくなる容積区画比率とされていることにより、陰極室側の電解液量を低減できる。また、通電距離が短縮されることから抵抗が低減し、電極への印加電圧を低減した場合でも効率良く銅イオンを溶出することができ、電極への印加電圧を高くした場合には、銅イオンをより一層効率良く溶出することができる。
 また、銅イオンが溶出される陽極室が陰極室よりも大きな容量となるため、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液は、陰極室液量に比べて製造量が増大する。
 本発明の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液は、上記製造方法で製造される。
 また、高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液は、上記製造装置で製造される。
 本発明の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液は、上記製造方法、または製造装置で製造されることにより、高品質で高い純度の鍍金浴ベース液製品とする事ができる。
 本発明の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置では、純銅銅板、又は6N以上の高純度銅板からなる板状の陽極を用いており、抵抗が少なく電解電圧を低く抑えることができるうえ、特別な操作を行うことなく、陽極室における溶存酸素量が極限まで高められる傾向にあるため、結果として酸素と遊離水素との再結合、つまり水の生成が効率良く行われ、電解液の濃化作用が小さい。
 また、陽極の有効電解面積がほぼ一定であるため、希硫酸水溶液又は希硫酸鉄水溶液中の水分減少量の変動が少なく、水溶液中の硫酸イオンの管理において有効である。
 また、陽極界面における酸化性が高く、拡散も速いため、Cuイオンの発生や遊離が低減され、陽極表面に不働態化層が生成するのを遅延させることができ、不均化反応による銅粉の発生を低減することができる。
 本発明の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及びその製造装置によれば、上述の構成及び作用により、高品質で、且つ純度の高い硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を、高い製造効率で生成することが可能になるとともに、工程数が削減されることによって不純物混入の機会を低減することができ、品質向上、生成時間短縮及びコストダウンを同時に達成することができる。
本発明に係る高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置の一例を説明する概略図である。 本発明に係る高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置の他例を説明する概略図である。 本発明に係る高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置の他例を説明する概略図である。 本発明に係る高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置の実施例を説明するグラフである。 本発明に係る高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置の実施例を説明するグラフである。
符号の説明
1、10、11…高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置(製造装置)2…イオン発生槽、21…陽極室、22…陰極室、23…イオン交換膜、24…陰極、25…陽極、31…水溶液取水手段、32…濃度測定手段、33…水溶液環流手段、34…濃度制御手段、40…直流電流供給手段
 以下、本発明に係る高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置の実施の形態について、図面を参照しながら説明する。
 本実施形態の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法では、図1~3の何れかに示すような製造装置を用いて、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を製造することができる。
[第1の実施形態]
 以下、本発明に係る高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置の第1の実施形態について、図1を参照して説明する。
「硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置」
 本実施形態の硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置(以下、製造装置と略称することがある)1は、イオン発生槽2と、該イオン発生槽2内部を陽極室21と陰極室22とに区画する水素イオン交換膜23と、陰極室22内に設けられ、通電されて水素ガスを表面から放出する陰極24と、希硫酸水溶液又は希硫酸鉄水溶液を供給した陽極室21に設けられ、通電されて陽極室21内に銅イオンを溶出する純銅銅板、又は6N(99.9999%)以上の高純度銅板からなる陽極25と、を具備して概略構成されている。
 本実施形態の製造装置1の構成について、以下に詳しく説明する。
 イオン発生槽2は、上面が開口した箱状とされており、内部に所定の希硫酸水溶液又は希硫酸鉄水溶液が貯留される。また、イオン発生槽2は、後述する陽極室21の位置において、底部付近の側壁に図示略の配管が接続されており、陽極室21で生成される銅イオンを含んだ希硫酸水溶液又は希硫酸鉄水溶液を外部へ送出できるようになっている。
 本実施形態では、イオン発生層2に貯留される希硫酸鉄水溶液として、例えば、30~220g/l(電離度を1として0.9~2.2N)程度の希硫酸水溶液HSO、又はそれに、2価鉄イオンFe2+、或いは3価鉄イオンFe3+が含有されたものを使用することができる。
 水素イオン交換膜23は、その端部がそれぞれイオン発生槽2の向かい合った側壁および底部に密着接続されて、イオン発生槽2内部を陽極室21および陰極室22に分離しており、図1に示す例では、イオン発生槽2の略中央付近に垂設されている。
 水素イオン交換膜23は、水素イオンHを選択的に透過するいわば、半透膜のような働きをするものとされ、水分子及び水素イオンHを透過するが、鉄イオンFe2+、Fe3+や、後述する銅イオンCu2+等の金属イオン、及び硫酸イオンSO 2-等のマイナスイオンは透過しないようになっている。
 なお、水素イオン交換膜23は、水素イオンHを選択的に透過するものであればよく、市販のカチオン樹脂、水素イオン選択透過膜等を用いることができる。
 陽極室21内には、陽極25が設けられている。
 陽極25は、直流電流供給装置(図3の符号40を参照)の正極側に接続される板状の電極であり、図示例では、陽極室21内において、水素イオン交換膜23と対向する側壁の近傍(図1の左側)に配されている。
 本発明の陽極25は、純銅銅板、又は6N以上の高純度銅板からなり、陽極室21内に貯留された希硫酸水溶液又は希硫酸鉄水溶液に銅イオンCu2+を溶出する。陽極25としては、例えば、6N8(99.99998%)高純度銅板等、適宜選択して用いることができる。
 陽極25は、図示例のように、板状に形成することが好ましい。
 陽極25を、純銅銅板、又は6N以上の高純度銅板からなる板状の電極とすることにより、希硫酸鉄溶液に銅イオンCu2+を効率良く溶出させることができる。また、特に6N以上の高純度銅板を陽極に用いることにより、陽極表面が不働態化しにくいため、印加電流を高電流とすることができることから、銅イオンの硫酸鉄溶液への溶出効率がより一層向上する。また、陽極25表面に電解液(希硫酸水溶液又は希硫酸鉄水溶液)の攪拌流を与えた場合、界面の酸化及び拡散が活性化するため、銅イオン溶出の際、陽極表面を平坦にエロージョンさせることができ、陽極25が希硫酸水溶液又は希硫酸鉄水溶液の液面付近で優先溶解してしまうのを防止することができる。
 なお、陽極25に6N未満の純度の銅板を用いた場合、印加される電解電流が低電流であっても、銅中の不純物によっては陽極表面が早く不働態化してしまうとともに、希硫酸鉄溶液に銅イオンCu2+を効率良く溶出させることが困難になる虞がある。
 陽極25の形状及び寸法は、銅イオンの溶出効率を高めるためには、表面積が出来る限り大きくなる形状及び寸法とすることが好ましい。また、陽極25の形状及び寸法は、イオン発生層2及び陽極室21の容積や形状、製造効率等を考慮しながら、適宜決定することができる。
 本発明の陽極25を用いることにより、陽極室21において、高品質で、且つ純度の高い硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液が生成される。
 陰極室22内には、陰極24が設けられている。
 陰極24は、図示しない直流電流供給装置の負極側に接続される電極であり、図示例では板状に形成され、陰極室22内において、水素イオン交換膜23と対向する側壁の近傍(図1の右側)に配されている。
 陰極24の形状及び寸法は、イオン発生層2内における反応性を高めるため、表面積ができる限り大きくなる形状及び寸法とすることが好ましい。
 また、陰極24の材質としては、希硫酸水溶液又は希硫酸鉄水溶液との反応性の低いものであり、導電率に優れ、且つ水素に対して脆化反応性の低いものを用いれば良く、例えば、純銅、銅合金、Pt、Au、Ag等を用いる事ができる。また、Cu、Ti、C、Pb材等の表面に、Ir、Ruなどの白金族酸化物を被覆した構造の電極等を用いることもできる。
「硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法」
 本実施形態の銅イオンを含有した硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法は、イオン発生槽2を水素イオン交換膜23で陽極室21と陰極室22とに区画し、陰極室22において、陰極24表面から水素ガスを放出するとともに、希硫酸水溶液又は希硫酸鉄水溶液を供給した陽極室21において、純銅銅板、又は6N高純度銅板からなる陽極25から銅イオンを陽極室21内に溶出し、該陽極室21内において、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を生成する方法として、概略構成されている。
 本実施形態の製造装置1を用いて、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を製造する方法について、以下に詳しく説明する。
 硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を製造する際には、先ず、イオン発生槽2内部に希硫酸水溶液又は希硫酸鉄水溶液を満たす。この状態において、陰極室22内には、水分子、硫酸イオンSO 2-、水酸イオンOH、{鉄イオンFe2+(Fe3+)}、未解離硫酸分子、及び水素イオンHが存在し、陽極室21内には、水分子、硫酸イオンSO 2-、水素イオンH、水酸イオンOH、{鉄イオンFe2+(Fe3+)}、未解離硫酸分子、及び微量の銅イオンCu2+が存在している。なお、上記鉄イオンFe2+(Fe3+)については、希硫酸鉄水溶液を用いた場合のみ存在する。
 次いで、陽極25及び陰極24に、直流電流供給装置(図3の符号40を参照)から、2~15A/dmの電解電流を印加する。
 各電極に電解電流を印加すると、陰極24表面付近において、陰極室22中の水素イオンHが水素ガスHとして放出される。この際、陰極室22の電気的中性を保つために、プラスイオンが陽極室21から陰極室22に移動しなければならないが、両室21、22間は水素イオン交換膜23で仕切られているので、陽極室21内部の水素イオンHのみが陰極室22に移動する。この際、銅イオンCu2+及び鉄イオンFe2+(Fe3+)は、水素イオン交換膜23を透過できず、陽極室21内に留まった状態となる。
 ここで、各電極に印加する電解電圧の上限は、陽極室21内の水溶液の攪拌条件や、温度及び濃度等により変化するが、陽極25表面において酸素泡が発生しない程度の範囲に設定すれば良い。
 そして、上述の作用により、陽極室21内の水素イオン濃度が低減する。つまり、陽極室21内の陽イオンが低減する。
 陽極25においては、該陽極25を構成する純銅銅板、又は6N高純度銅板に電解電流が印加されている。
 陽極室21内の陽イオン(水素イオンH)が低減した状態において、陽極室21の陽極25に通電することにより、通電前の初期状態の陽イオン濃度まで、銅イオンCu2+が陽極25から陽極室21内に貯留された希硫酸水溶液又は希硫酸鉄水溶液に溶出することで、陽極室21内における電気的中性が保たれることになる。この際、陽極25に印加される電解電流の大きさと、陽極25から溶出する銅イオンCu2+の量とが比例している。
 この状態で、陽極25及び陰極24に対する通電を継続することにより、陰極から連続的に水素ガスHが発生し、陰極室22中の水素イオン濃度が連続的に低減する。これにより、水素イオン交換膜23を介して、陽極室21内部の水素イオンHのみが陰極室22に連続的に移動し、陽極室21内の水素イオン濃度、つまり陽イオン濃度が低減する。
 この結果、純銅銅板、又は6N以上の高純度銅板からなる板状の陽極25から、高濃度の銅イオンCu2+が、陽極室21に貯留された希硫酸水溶液又は希硫酸鉄水溶液に連続的に溶出する。
 これにより、高品質で、且つ純度の高い銅イオンCu2+を含有した希硫酸水溶液又は希硫酸鉄水溶液を、効率良く製造することができる。
 製造された銅イオンCu2+を含有した希硫酸水溶液又は希硫酸鉄水溶液は、陽極室21に連通して設けられる図示略の配管を通じて抜き取っても良いし、または、陽極室21の開口部からバッヂ式で抜き取る方法としても良い。
 また、製造された水溶液を陽極室25から抜き取った後、イオン発生槽2に希硫酸水溶液又は希硫酸鉄水溶液を供給することにより、連続的に銅イオンCu2+を含有した希硫酸水溶液又は希硫酸鉄水溶液を製造することができる。
 以上、説明したように、本実施形態の硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置によれば、陽極室21内に設けられ、純銅銅板、又は6N高純度銅板からなる陽極25から、銅イオンを希硫酸水溶液又は希硫酸鉄水溶液に直接溶出させるため、高濃度の銅イオンを効率良く溶出させることができる。また、陽極25表面に電解液の攪拌流を与えた場合には、界面の酸化及び拡散が活性化するため、銅イオン溶出の際、陽極25表面を平坦にエロージョンさせることができる。また、6N以上の高純度銅板を陽極25に用いることにより、陽極25表面が不働態化しにくいため、印加電流を高電流とすることができることから、銅イオンの硫酸鉄溶液への溶出効率がより一層向上する。
 これにより、高品質で、且つ純度の高い硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を、高い製造効率で生成することが可能になるとともに、工程数が削減されることによって不純物混入の機会を低減することができ、品質向上及びコストダウンを同時に達成することができる。
 なお、目標銅イオン濃度に到達した陽極室21内の水溶液を、図示略の配管によって速やかに外部に送出し、新たな電解液を補充する事により、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造を連続して行うことができる。
 また、陽極室21に連通して設けられる図示略の配管をメッキ槽等に接続することにより、製造した銅イオンCu2+を、前記メッキ槽等の所定の箇所に向けて速やかに供給することが可能となる。
[第2の実施形態]
 以下、本発明に係る硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置の第2の実施形態について、図2を参照して説明する。
 なお、以下の説明において、第1の実施形態と同様の構成には共通の符号を付するとともに、その詳しい説明を省略する。
「製造装置」
 本実施形態の硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置10は、イオン発生槽2Aと、該イオン発生槽2A内部を陽極室21Aと陰極室22Aとに区画する水素イオン交換膜23と、陰極室22A内に設けられ、通電されて水素ガスを表面から放出する陰極24と、硫酸鉄溶液を供給した陽極室21A内に設けられ、通電されて陽極室21A内に銅イオンを溶出する6N高純度銅板からなる陽極25とを具備しており、イオン発生槽2において、水素イオン交換膜23を介した比率で、陰極室22Aの容積が陽極室21Aの容積よりも小さな容積区画比率とされているとともに、陰極室22A側の極間が陽極室21A側の極間よりも短い電極間比率とされて概略構成されており、図2に示す例では、陽極室21Aと陰極室22Aとの容積区画比率及び電極間比率が2:1とされている。
 本実施形態の製造装置10は、イオン発生槽2Aにおいて、水素イオン交換膜23を介した比率で、陰極室22Aの容積が陽極室21Aの容積よりも小さくなる容積区画比率とすることにより、陰極室22A側の電解液量を低減できるとともに、陰極室22A側の極間が陽極室21A側の極間よりも短い電極間比率とされていることにより、通常の1:1のセル設定に比べて電極間距離が短縮され、電気抵抗を低減できる。これにより、各電極24、25への印加電圧を低減した場合でも効率良く銅イオンを溶出することができ、また、各電極24、25への印加電圧を高くした場合には、銅イオンをより一層効率良く溶出することができる。
 また、銅イオンが溶出される陽極室21Aが陰極室22Aよりも大きな容量となるため、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造量を、陰極室液量に比べて増大させることができる。
 本実施形態の製造装置10では、イオン発生槽2Aにおける、陽極室21と陰極室22との容積区画比率及び電極間比率が1:3~5:1の範囲で生産が可能であり、操業効率上は4:3~5:1の範囲とされていることが好ましい。
 陽極室21Aと陰極室22Aとの容積区画比率及び電極間比率が、4:3よりも陽極室21A側が小さくなる比率だと、上述した電極間距離短縮による製造効率向上等の効果が充分に得られなくなる。
 また、陽極室21Aと陰極室22Aとの容積区画比率及び電極間比率が、5:1よりも陽極室21A側が大きくなる比率だと、陰極室22A内の水素イオン量が著しく増大するとともに、陰極室22A側の極室空間が狭くなりすぎ、陰極24から反応泡等による電解液の溢出や通電面積の異常減少及び異常放電が発生する虞がある。
 また、イオン発生槽2Aにおける、陽極室21と陰極室22との容積区画比率及び電極間比率は、上述の製造効率等の点から、2:1であることが最も好ましい。
「製造方法」
 本実施形態の製造方法では、上述のように、製造装置10を用いて、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を製造することにより、陰極室22A側の電解液量を低減することができ、また、電極間抵抗を低減できる。
 これにより、陽極25及び陰極24への印加電圧を低減した場合でも効率良く銅イオンを溶出することができ、また、陽極25及び陰極24への印加電圧を高くした場合には、銅イオンをより一層効率良く溶出することができる。また、銅イオンが溶出される陽極室21Aが陰極室22Aよりも大きな容量となるため、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造量を、陰極室液量に比べて増大させることができる。
[第3の実施形態]
 以下、本発明に係る硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置の第3の実施形態について、図3を参照して説明する。
 なお、以下の説明において、第1の実施形態と同様の構成には共通の符号を付するとともに、その詳しい説明を省略する。
「製造装置」
 本実施形態の硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置11は、イオン発生槽2と、該イオン発生槽2内部を陽極室21と陰極室22とに区画する水素イオン交換膜23と、陰極室22内に設けられ、通電されて水素ガスを表面から放出する陰極24と、硫酸鉄溶液を供給した陽極室21に設けられ、通電されて陽極室21内に銅イオンを溶出する純銅銅板、又は6N以上の高純度銅板からなる陽極25とを備えた製造装置であって、陽極室21内の水溶液を取り出す水溶液取水手段31と、該水溶液取水手段31によって陽極室21内から取り出された水溶液の銅イオン濃度を測定する濃度測定手段32と、該濃度測定手段32で銅イオン濃度が測定された水溶液を陽極室21内に戻す水溶液還流手段33とを有し、濃度測定手段32における銅イオン濃度の測定値に基いて、直流電流供給装置40から陽極25及び陰極24へ供給される直流電流の印加電圧、及び/または、印加電流を制御する濃度制御手段34が備えられて概略構成されている。
 水溶液取水手段31は、イオン発生槽2において陽極室21側に設けられた取水口であり、陽極室21内に貯留され、生成されるか、或いは生成過程にある希硫酸水溶液又は希硫酸鉄水溶液を汲み上げ、取水配管を通じて後述の濃度測定手段32へ送出するための入口となる。
 水溶液取水手段31は、図3に示す例では、陽極室21の開口部から陽極室21内に入り込むようにして設けられ、パイプ状に形成されているが、これには限定されず、例えば、陽極室21の側壁に連通した配管構成としても良く、適宜採用することができる。
 濃度測定手段32は、水溶液取水手段31によって陽極室21内から取水され、取水配管を通じて送り込まれた水溶液の銅イオン濃度、あるいは鉄イオン濃度を測定するものであり、例えば吸光度計等からなる。
 本実施形態の濃度測定手段32は、後述の濃度制御手段34に銅イオン濃度の測定データを送出するための、図示略の接続部が設けられている。
 また、濃度測定手段32は、例えばディスプレイ等からなる測定データ表示部が設けられた構成としても良い。
 水溶液還流手段33は、水溶液取水手段31によって陽極室21内から取水され、取水配管を通じて濃度測定手段32に送り込まれて濃度測定された水溶液を、陽極室21に戻すものであり、図3に示す例では、陽極室21開口部の略上方に戻し口が配されている。
 ここで、陽極室21内に貯留された希硫酸水溶液又は希硫酸鉄水溶液の取水及び還流のため、図示略のポンプ手段を、上述したような希硫酸水溶液又は希硫酸鉄水溶液の経路の何れかの位置に設けることができる。
 また、ポンプ手段は、濃度測定手段32に内蔵された構成としても良い。
 濃度制御手段34は、濃度測定手段32における銅イオン濃度の測定値に基いて、陽極25及び陰極24への印加電圧、及び/または、印加電流を制御するものであり、濃度測定手段32からの銅イオン濃度測定データが入力される図示略の入力部、及び、後述の直流電流供給手段40に制御信号を送出するための図示略の送出部が設けられている。
 また、濃度制御手段34は、例えばディスプレイ等からなる、銅イオン濃度の測定データ表示部が設けられた構成としても良い。
 直流電流供給装置40は、陽極25及び陰極24に電解電流を供給するための電源であり、各電極に供給する電流値及び電圧値を制御するため、図示略の制御調整手段が備えられている。
 また、直流電流供給手段40は、陽極25及び陰極24への電解電流供給のみならず、例えば、濃度測定手段32、濃度制御手段34、及び図示略のポンプ手段への電流供給手段として用いることもできる。
 本実施形態の製造装置11を用いて、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を製造する際の基本的な操作は、第1の実施形態で説明した方法と同様であり、さらに、例えば以下に説明するような方法で、銅イオン濃度の測定、及び各電極24、25に供給される電解電流の制御が行われる。
 本実施形態の製造装置11では、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の生成過程において、イオン発生槽2の陽極室21に貯留された希硫酸水溶液又は希硫酸鉄水溶液が水溶液取水手段31で取水され、取水配管を通じて濃度測定手段32に送り込まれる。
 濃度測定手段32は、希硫酸水溶液又は希硫酸鉄水溶液の銅イオン濃度を測定し、この測定データを濃度制御手段34に対して送出し、また、濃度測定手段32における銅イオン濃度の測定が終了した希硫酸水溶液又は希硫酸鉄水溶液は、水溶液環流手段33を通じて再び陽極室21に戻される。
 そして、濃度制御手段34は、濃度測定手段32から送出された銅イオン濃度データに基き、生成中の希硫酸水溶液又は希硫酸鉄水溶液中の銅イオン濃度が閾値を超えている場合には、陽極25及び陰極24への印加電圧、及び/または、印加電流の停止を指示する制御信号を直流電流供給手段40に対して送出し、銅イオン濃度が閾値を下回っている場合には、陽極25及び陰極24への印加電圧、及び/または、印加電流の継続を指示する制御信号を直流電流供給手段40に対して送出する。
 直流電流供給手段40は、濃度制御手段34から送出された制御信号に基き、陽極25及び陰極24への印加電圧、及び/または、印加電流を制御する。つまり、陽極室21内から取水した希硫酸水溶液又は希硫酸鉄水溶液中の銅イオン濃度が高い場合には、陽極室21A及び陰極室21Bへ電解液を補充し、濃度を低減するか、又は各電極24、25への電流印加を停止する。また、陽極室21内から取水した希硫酸水溶液又は希硫酸鉄水溶液中の銅イオン濃度が低い場合には、各電極24、25への電流印加を継続する。
 このような印加電圧、及び/または、印加電流の制御により、本実施形態の製造装置11は、生成中の希硫酸水溶液又は希硫酸鉄水溶液中の銅イオン濃度が目標値まで高まった場合には、銅イオンの溶出を停止する。銅イオン濃度が目標値に到達して生成が完了した希硫酸水溶液又は希硫酸鉄水溶液は、図示略の配管を通じて陽極室21内から取り出されるか、あるいは陽極室21の開口部から取り出される。この際、上述したように、濃度測定手段32、あるいは濃度制御手段34に図示略の測定データ表示部、及び感知部が設けられた構成とすることにより、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の生成が完了したことを作業者が目視確認、或いは機械的に感知することができる。これにより、生成が完了した希硫酸水溶液又は希硫酸鉄水溶液を、手動或いは自動で陽極室21から迅速に取り出すことができ、直ちに、陽極室21内に、次回生成用の新たな希硫酸水溶液又は希硫酸鉄水溶液を貯留することが可能となり、製造効率が向上する。
 また、生成中の希硫酸水溶液又は希硫酸鉄水溶液中の銅イオン濃度が高まっていない場合には、銅イオンの溶出を継続し、銅イオン濃度を目標値に到達させることが可能となる。
 以上説明したように、本実施形態の製造装置11によれば、陽極室21内の水溶液の銅イオン濃度、あるいは鉄イオン濃度をリアルタイムで直接測定するため、従来のような、生成中の水溶液を加熱乾燥して建浴塩を作製する等の工程が不要となり、工程減及び品位維持が可能となる。また、濃度測定に用いられた水溶液は、分析による変質無しにそのまま陽極室21に戻されるため、水溶液の分析による汚染・減耗が無い。
 また、銅イオン濃度の測定値に基き、銅イオン溶出に最適な状態となるように、各電極24、25への印加電圧や電流を制御することができることから、高効率を維持した最適な状態で、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を生成することができ、且つ操業の自動化も図る事ができる。
 なお、本実施形態の製造装置11では、陽極室21に連通して設けられる図示略の配管に電磁弁等を設けた構成とすることにより、希硫酸水溶液又は希硫酸鉄水溶液中の銅イオン濃度が目標値に到達し、直流電流供給装置40から陽極25及び陰極24への電解電流印加が停止された後、上記電磁弁を開状態として、生成が完了した希硫酸水溶液又は希硫酸鉄水溶液を陽極室21外部に供出する構成としても良い。
 これにより、銅イオンが含有された希硫酸水溶液又は希硫酸鉄水溶液の製造効率が一段と向上する。
 以下、実施例を示して、本発明の硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置を更に詳しく説明するが、本発明はこの実施例に限定されるものでは無い。
 本実施例においては、図1~3に示すような製造装置1(試験例1)、10(試験例2)、11(試験例3)を作製し、銅イオンが含有された希硫酸鉄水溶液を生成して試験を行った。
[製造装置]
 まず、アクリル板を用い、図1及び図3に示すような、容積が2Lの陽極室21及び陰極室22からなるイオン発生槽2を作製した(試験例1、3)。
 また、同様にアクリル板を用い、図2に示すような、容積が2L(電解液容積100mm×100mm×200mm)の陽極室21A、及び容積が1L(電解液容積100mm×100mm×100mm)の陰極室22Aからなるイオン発生槽2Aを作製した(試験例2)。
 なお、各陽極室と陰極室とを仕切る水素イオン交換膜には、市販の陽イオン交換膜を用いた。
 そして、陽極25として、6N以上(6N8相当:銅純度99.99998%)の高純度銅からなり、大きさが100mm×200mm×20mm(接水面積:100mm×100mm)の銅板を用い、図1~3に示すように、イオン発生槽2、2Aの陽極室21、21A内において、水素イオン交換膜23と対向する側壁側(図1~3において左側)に配した。
 また、陰極24として、4N8相当(銅純度99.998%)の純銅からなり、大きさが100mm×200mm×20mm(接水面積:100mm×100mm)の板材を用い、図1~3に示すように、イオン発生槽2、2Aの陰極室22、22A内において、水素イオン交換膜23と対向する側壁側(図1~3において右側)に配した構成とし、図1に示すような製造装置1(試験例1:イオン発生槽2を使用)、及び図2に示すような製造装置10(試験例2:イオン発生槽2Aを使用)とした。
 さらに、上記イオン発生槽2を用いた製造装置において、図3に示すように、テフロン(登録商標)チューブからなる水溶液取水手段31を、その先端部が陽極室21、21A内に入り込むようにして配し、テフロン(登録商標)チューブからなる取水配管によって、ポンプが内臓された濃度測定手段32(アトテックジャパン株式会社製:銅、鉄イオンリアルタイム分析装置)の入水側に接続した。濃度測定手段32の出水側には、テフロン(登録商標)チューブからなる水溶液環流手段33を接続し、その先端部を陽極室2の開口部略上方に配し、銅イオン濃度測定後の希硫酸鉄水溶液を陽極室21、21A内に戻すことができる構成とした。
 そして、濃度測定手段32の測定データ出力ポートを、パーソナルコンピュータ(IBM社製:Think Pad)からなる濃度制御手段34に接続し、パーソナルコンピュータ(濃度制御手段34)の外部通信インターフェースを直流電流供給手段40(山本鍍金試験機社製:ウエハー用精密鍍金電YPP-15100)の外部通信インターフェースに接続し、図3に示すような製造装置11(試験例3:イオン発生槽2を使用)とした。
[試験例1]
 図1に示す製造装置1に、図3に示すような水溶液取水手段31、濃度測定手段32、水溶液環流手段33を接続し、銅イオン濃度がリアルタイムで測定できる構成とした。
 そして、電解液として、抵抗値が18.2MΩの超純水に特級試薬硫酸を添加してS0量を180g/Lとした希硫酸水溶液を用い、市販の高純度電解鉄を13g/Lとなるように計量添加して溶解させ、希硫酸鉄水溶液を得た。そして、陽極室21及び陰極室22の各々に希硫酸水溶液が各2L貯留されるように供給した。
 また、陽極25及び陰極24への電解電流は、陰極24側の電流密度が8.5A/dmとなるように印加し、通電時間を5時間とした。
[試験例2]
 図2に示す製造装置10に、図3に示すような水溶液取水手段31、濃度測定手段32、水溶液環流手段33を接続し、銅イオン濃度がリアルタイムで測定できる構成とした。
 そして、電解液として、抵抗値が18.2MΩの超純水に特級試薬硫酸を添加してS0量を180g/Lとし、市販の高純度電解鉄を13g/Lとなるように計量添加して溶解させ、生成した希硫酸鉄水溶液を用い、陽極室21Aに2L、陰極室22Aに1Lの希硫酸鉄水溶液が各々貯留されるように供給した。
 また、陽極25及び陰極24への電解電流は、陰極24側の電流密度が8.5A/dmとなるように印加し、通電時間を5時間とした。
 上記試験例1及び試験例2の評価結果を、図4及び表1に示す。
Figure JPOXMLDOC01-appb-T000001

 
 図4のグラフ及び表1に示すように、陰極24側の電流密度が8.5A/dmとなるように電解電流を印加した場合、2:1セル(陽極2l:陰極1l)の試験例2は、1:1セル(陽極2l:陰極2l)の試験例1に比べて印加電圧が低くなっていることが明らかである。この印加電圧を積算平均値で比較すると、試験例1が6.8Vであるのに対し、試験例2では5.2Vと低い電圧の印加で済んでおり、電極間抵抗が低いことが明らかである。
 また、図4のグラフに示すような電解電圧昇上は、通常、積算印加電圧が高いほど陽極界面の不働態化が進み易くなり、昇上曲線がきつくなるが、陽極に6N以上の高純度銅板を用いた場合には耐電流密度性が高くなるため、試験例1及び試験例2とも、同様のカーブを描く曲線となっている。
 しかしながら、印加電圧の最大値と最小値との差を見ると、試験例1が680mVの変動幅となっているのに対し、試験例2では390mVとなっており、2:1セルの試験例2の方が、1:1セルの試験例1に比べて電圧変動幅が小さく、安定していることが明らかである。また、印加電圧が低位で安定しているほど、不働態化までの電解時間を長くできると考えられ、これを平均電圧値(Ave.)-最小電圧値(Min.)で表現すると、試験例1は6838-6610=228であり、試験例2では5220-5110=110となる。この場合も2:1セルの試験例2の方が低位安定していることが明らかである。
 上記結果により、本発明の硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置では、試験例1のような1:1セルよりも、試験例2のような2:1セルの方が工業生産的な観点から操業に適していると判断することができる。
 なお、電解効率(電気当量×電極面積×電流値×時間で求められる理論電解値と実電解量の比)については、双方とも100%程度(試験例1:102%、試験例2:99.8%)と理想的な値であり、大きな差は見られなかった。
[試験例3]
 図3に示す製造装置11を用いて、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の連続生成試験を行った。
 電解液として、抵抗値が18.2MΩの超純水に特級試薬硫酸を添加してS0量を180g/Lとし、市販の高純度電解鉄を13g/Lとなるように計量添加して溶解させ、生成した希硫酸鉄水溶液を用い、陽極室21及び陰極室22の各々に希硫酸水溶液が各2L貯留されるように供給した。
 そして、濃度制御手段34及び直流電流供給手段40により、電流値を500mAから10Aまでステップ変量させながら陽極25及び陰極24に電解電流を供給し、陽極表面が不働態化しない範囲で高電流密度になるよう観察した。なお、銅イオンの目標濃度は35g/L程度とした。
 上記試験例3における、成分組成の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 約30分間隔で経過観察を行ったところ、印加電流が9A以下では、不均化反応による陽極からの銅粉発生が見られるものの不働態化は見られなかったが、印加電流が9Aを超えると、陽極からの不均化銅粉の発生が更に顕著になり、10Aでは2h程度で不働態化が認められた。これにより、本発明の硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置を用いて操業する際の、適正な印加電流密度は、8.5A/dmと結論付けることができる。
 また、銅イオン濃度が35g/L程度になるまでの通電時間(1バッチあたりの操業時間)は、銅イオン濃化の進行間隔、及び電気化学的計算から、約7時間と割り出された。
 従来の製造方法及び製造装置においては、1バッチあたり3週間(320時間)程度かかっていたのに対し、本発明の製造方法及び製造装置では、約1/45の時間で同レベルの銅イオン濃度を有する希硫酸鉄水溶液を製造することができ、製造効率に優れていることが明らかとなった。
 また、表2に示すように、銅イオン濃度が34.2g/Lとなった時点での、希硫酸鉄水溶液中のAg、Pb濃度は1mg/L未満、Na濃度は0.05mg/Lであり、不純物が非常に少ない測定結果となった。
[試験例4]
 本試験例では、陽極25として、6N(6N8相当)の高純度銅、及び、市販の4N(4N8相当)の純銅からなる銅板をそれぞれ用いた。そして、図2に示す製造装置10に、図3に示すような水溶液取水手段31、濃度測定手段32、水溶液環流手段33を接続し、銅イオン濃度がリアルタイムで測定できる構成として試験を行うことにより、陽極25に用いる銅板の純度が異なる場合の比較評価を行なった。
 そして、電解液として、抵抗値が18.2MΩの超純水に特級試薬硫酸を添加してS0量を180g/Lとし、市販の高純度電解鉄を13.5g/Lとなるように計量添加して溶解させ、生成した希硫酸鉄水溶液を用い、陽極室21Aに2L、陰極室22Aに1Lの希硫酸鉄水溶液が各々貯留されるように供給した。
 また、陽極25及び陰極24への電解電流は、陰極24側の電流密度が9A/dmとなるように印加し、通電時間を6.5時間とした。
 また、陽極25に4N程度の純銅を用いた場合、ジュール熱によって電解液温が50℃を超過してしまい、イオン発生槽2及びイオン交換膜23を破壊してしまう虞があるため、本試験例では、冷却チラー及び特殊なガラス冷却管を用いて該冷却菅をイオン発生槽2内に配し、希硫酸鉄水溶液を冷却するという対策を施した。これにより、希硫酸鉄水溶液の液温上昇を40℃程度にまで抑制した条件下での試験とすることができた。
 上記試験例4における、6N(6N8相当)の高純度銅、及び4N(4N8相当)の純銅を用いた、それぞれの評価結果を、図5及び表3に示す。
Figure JPOXMLDOC01-appb-T000003

 
 図5のグラフに示すように、陽極25に6N(6N8相当)の高純度銅を用いた場合には、極めてスムーズな電圧推移となり、また、陽極25表面の目立った変色も無く、銅粉の発生も殆んど認められなかった。6N(6N8相当)の高純度銅を用いた陽極25は、陰極24側の電流密度が9A/dm、通電時間が6.5時間の操業条件下において、問題なく使用することができた。
 一方、陽極25に4N(4N8相当)の純銅を用いた場合には、図5に示すように、通電開始後約20分は、電極界面の著しい電気抵抗不全と不働態化が生じ、この不働態化が解消した後も電圧変動振幅が激しく、陽極25表面の変色や荒れの発生とともに、銅粉が大量に発生した。
 水溶液中の銅イオン濃度は、陽極25に6N高純度銅及び4N純銅の何れを用いた場合も約35g/Lであり遜色はないが、印加積算電圧は、陽極25に4Nの純銅を用いた場合の方が高くなっているため、この分だけ、銅イオンの溶解効率が低くなっている。また、4N純銅を用いた陽極25が配された陽極室21内の水溶液中から、簡易的に濾過採取した銅粉残渣量は1.73g程であり、非常に多かった。なお、6N高純度銅からなる陽極25を用いた場合には、銅粉残渣量は検量不能であり、ほぼゼロという結果となった。
 この結果より、陽極25に6N(6N8相当)の高純度銅を用いた場合、高純度の硫酸銅水溶液が得られるとともに、鉄イオン(硫酸鉄)を含む電解液を用いた場合でも、高効率での電解が可能であることが明らかである。
 また、上述したように、陽極25に4N純銅を用いた場合には、電解効率の低下や銅粉残渣発生に加え、ジュール熱発生量が高いために電解液の冷却対策を施す必要がある。
 また、表3に示す不純物の分析結果では、陽極25に6N高純度銅を用いた場合、4N純銅を用いた場合に比べ、Ag、Pb、及びZnの各不純物量が非常に少なくなっていた。
 本試験例では、高純度電解鉄を用いて電解液に鉄イオンを添加していることから、添加純鉄中に含まれる不純物がバックグラウンドの数値を若干上げているものの、陽極25に6N高純度銅を用いた場合と4N純銅を用いた場合とでは、不純物量に大きな差が生じることが明らかである。
 以上の結果により、本発明の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置が高い製造効率を有しているとともに、この製造方法及び製造装置によって製造された水溶液が、不純物が少なく高い銅イオン濃度を有しており、水溶液特性に優れていることが明らかである。
  本発明の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及びその製造装置によれば、高品質で、且つ純度の高い硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を、高い製造効率で生成することが可能になるとともに、工程数が削減されることによって不純物混入の機会を低減することができ、品質向上、生成時間短縮及びコストダウンを同時に達成することができる。よって産業上、極めて有用である。
 

Claims (10)

  1.  イオン発生槽を水素イオン交換膜で陽極室と陰極室とに区画し、
     前記陰極室において、陰極表面から水素ガスを放出するとともに、
     希硫酸水溶液又は希硫酸鉄水溶液を供給した前記陽極室において、純銅銅板、又は6N以上の高純度銅板からなる陽極から銅イオンを前記陽極室内に溶出し、
     前記陽極室内において、硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液を生成する高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法。
  2.  前記イオン発生槽において、前記陽極室と前記陰極室との容積区画比率及び電極間比率を4:3~5:1の範囲とした請求項1に記載の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法。
  3.  前記イオン発生槽において、前記陽極室と前記陰極室との容積区画比率及び電極間比率を2:1とした請求項1に記載の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法。
  4.  請求項1に記載の硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法であって、
     前記陽極室内の水溶液を取り出す水溶液取水工程と、
     該水溶液取水工程によって前記陽極室内から取り出された水溶液の銅イオン濃度を測定する濃度測定工程と、
     該濃度測定工程で銅イオン濃度が測定された水溶液を前記陽極室内に戻す水溶液還流工程と、を備え、
     前記濃度測定工程における銅イオン濃度の測定値に基いて、前記陽極及び陰極への印加電圧、及び/または、印加電流を制御する高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法。
  5.  イオン発生槽と、
     該イオン発生槽内部を陽極室と陰極室とに区画する水素イオン交換膜と、
     前記陰極室内に設けられ、通電されて水素ガスを表面から放出する陰極と、
     希硫酸水溶液又は希硫酸鉄水溶液を供給した前記陽極室に設けられ、通電されて前記陽極室内に銅イオンを溶出する純銅銅板、又は6N以上の高純度銅板からなる陽極と、を具備してなる高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置。
  6.  請求項5に記載の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置であって、
     前記陽極室内の水溶液を取り出す水溶液取水手段と、
     該水溶液取水手段によって前記陽極室内から取り出された水溶液の銅イオン濃度を測定する濃度測定手段と、
     該濃度測定手段で銅イオン濃度が測定された水溶液を前記陽極室内に戻す水溶液還流手段と、前記濃度測定手段における銅イオン濃度の測定値に基いて、前記陽極及び陰極への印加電圧、及び/または、印加電流を制御する濃度制御手段と、を具備してなる高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置。
  7.  前記イオン発生槽において、前記陽極室と前記陰極室との容積区画比率及び電極間比率が4:3~5:1の範囲とされている請求項5に記載の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造装置。
  8.  前記イオン発生槽において、前記陽極室と前記陰極室との容積区画比率及び電極間比率が2:1とされている請求項5に記載の高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法。
  9.  請求項1乃至4に記載の製造方法によって製造される高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液。
  10.  請求項5乃至8に記載の製造装置によって製造される高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液。
     
PCT/JP2008/051844 2008-02-05 2008-02-05 高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液 WO2009098756A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/051844 WO2009098756A1 (ja) 2008-02-05 2008-02-05 高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/051844 WO2009098756A1 (ja) 2008-02-05 2008-02-05 高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液

Publications (1)

Publication Number Publication Date
WO2009098756A1 true WO2009098756A1 (ja) 2009-08-13

Family

ID=40951844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051844 WO2009098756A1 (ja) 2008-02-05 2008-02-05 高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液

Country Status (1)

Country Link
WO (1) WO2009098756A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986977A1 (fr) * 2012-02-17 2013-08-23 Om Group Ultra Pure Chemicals Sas Procede de production de sulfate de cuivre
CN115449849A (zh) * 2022-08-31 2022-12-09 长沙利洁环保科技有限公司 一种微蚀液在线电解提铜循环再生工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185990A (ja) * 1989-01-11 1990-07-20 Dowa Mining Co Ltd 超高純度銅の製造方法
JP2004162078A (ja) * 2002-11-08 2004-06-10 Tsurumi Soda Co Ltd 銅メッキ装置
WO2005073434A1 (ja) * 2004-01-29 2005-08-11 Nippon Mining & Metals Co., Ltd. 超高純度銅及びその製造方法
JP2006206961A (ja) * 2005-01-28 2006-08-10 Hyomen Shori System:Kk フィルム状物への連続銅めっき装置および方法
JP2008038213A (ja) * 2006-08-08 2008-02-21 Mitsubishi Materials Corp 特に高純度な硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに特に高純度な硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185990A (ja) * 1989-01-11 1990-07-20 Dowa Mining Co Ltd 超高純度銅の製造方法
JP2004162078A (ja) * 2002-11-08 2004-06-10 Tsurumi Soda Co Ltd 銅メッキ装置
WO2005073434A1 (ja) * 2004-01-29 2005-08-11 Nippon Mining & Metals Co., Ltd. 超高純度銅及びその製造方法
JP2006206961A (ja) * 2005-01-28 2006-08-10 Hyomen Shori System:Kk フィルム状物への連続銅めっき装置および方法
JP2008038213A (ja) * 2006-08-08 2008-02-21 Mitsubishi Materials Corp 特に高純度な硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに特に高純度な硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986977A1 (fr) * 2012-02-17 2013-08-23 Om Group Ultra Pure Chemicals Sas Procede de production de sulfate de cuivre
CN115449849A (zh) * 2022-08-31 2022-12-09 长沙利洁环保科技有限公司 一种微蚀液在线电解提铜循环再生工艺
CN115449849B (zh) * 2022-08-31 2023-06-02 长沙利洁环保科技有限公司 一种微蚀液在线电解提铜循环再生工艺

Similar Documents

Publication Publication Date Title
CN112714803B (zh) 不溶性阳极酸性电镀铜的镀液生产和再生工艺及装置
KR101529373B1 (ko) 금속 분말 제조 방법 및 장치
AU2015225569A1 (en) Method and system to maintain electrolyte stability for all-iron redox flow batteries
JP5422083B2 (ja) ノンフローレドックス電池
TWI648435B (zh) Acidic copper plating process using insoluble anode and its equipment
CN113818055B (zh) 一种不溶性阳极的酸性电镀铜镀液或电镀补充液的成分调整方法及装置
CN103518007A (zh) 硫酸电解装置以及硫酸电解方法
CN102586851B (zh) 一种缓解并减少镀锡溶液产生锡泥的电解方法
WO2008016541B1 (en) Constituent maintenance of a copper sulfate bath through chemical dissolution of copper metal
JP2008038213A (ja) 特に高純度な硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに特に高純度な硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液
WO2009098756A1 (ja) 高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液
CN208829786U (zh) 一种电镀装置
JP2010084195A (ja) 銅メッキシステム並びに銅メッキ方法及び電解メッキ液の製造方法
JP2003328199A (ja) 銅メッキ方法およびその装置,銅製造方法およびその装置,金属メッキ方法およびその装置,金属製造方法およびその装置
JP6162554B2 (ja) Agの電解精製装置、および該装置を用いたAgの電解精製方法
WO2024078627A1 (zh) 一种结合电解溶铜的不溶性阳极镀铜工艺优化方法及装置
CN219470244U (zh) 一种酸性镀铜溶铜装置
CN217378033U (zh) 一种无氯气电再生pcb酸性循环蚀刻系统
EP4155434A1 (en) Startup method for electrolytic sulfuric acid solution manufacturing system
CN117483781B (zh) 一种银粉的制备方法
JP7188239B2 (ja) 電解槽および酸溶液の製造方法
JP2003328198A (ja) 銅イオン発生方法およびその装置,硫酸銅製造方法およびその装置,金属イオン発生方法およびその装置,酸性水製造方法およびその装置
CN219793163U (zh) 一种高速镀铜快速补充金属离子设备
CN218115658U (zh) 一种贵金属离子交换机
JP2017155343A (ja) Agの電解精製装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08704471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08704471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP