WO2009098327A1 - Procedimiento de producción de isocianatos y carbamatos fluorados con catalizadores heterogéneos - Google Patents

Procedimiento de producción de isocianatos y carbamatos fluorados con catalizadores heterogéneos Download PDF

Info

Publication number
WO2009098327A1
WO2009098327A1 PCT/ES2008/000062 ES2008000062W WO2009098327A1 WO 2009098327 A1 WO2009098327 A1 WO 2009098327A1 ES 2008000062 W ES2008000062 W ES 2008000062W WO 2009098327 A1 WO2009098327 A1 WO 2009098327A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
bis
carbon atoms
basic
substituted
Prior art date
Application number
PCT/ES2008/000062
Other languages
English (en)
French (fr)
Inventor
Ana Padilla Polo
Avelino CORMA CANÓS
Hermenegildo GARCÍA GÓMEZ
Raquel Juárez Marín
Original Assignee
Repsol Ypf, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Repsol Ypf, S.A. filed Critical Repsol Ypf, S.A.
Priority to PCT/ES2008/000062 priority Critical patent/WO2009098327A1/es
Priority to ARP090100340A priority patent/AR072340A1/es
Publication of WO2009098327A1 publication Critical patent/WO2009098327A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/04Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from amines with formation of carbamate groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates [APO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/082X-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a process for producing fluorinated isocyanates and carbamates by reacting amines or polyamines with fluorinated carbonates, performed in the presence of basic heterogeneous catalysts.
  • Organic carbamates are compounds widely used in a large number of applications including pharmaceutical preparations, agro-compound production (pesticides and herbicides), as well as being precursors in the synthesis of isocyanates and other intermediates in fine chemistry or wholesale materials (normally known as "commodities").
  • carbamates In that sense, one of the possible alternative ways to synthesize carbamates consists in the reaction of organic carbonates with amines.
  • dialkyl carbonates can react with amines in two different ways. Either forming carbamates (carbamoylation reaction) or forming alkylated products (alkylation reaction of the amine). This second reaction acts in competition with the first and is undesirable when what is sought is the synthesis of carbamates with high selectivity.
  • dimethyl carbonate The most widely used organic carbonate that has received the most attention due to its accessibility is dimethyl carbonate, although other dialkyl carbonates and alicyclic carbonates may act analogously to dimethyl carbonate.
  • WO 99/47493 describes a method of preparing organic carbamates by reacting alkyl amines and carbonates substituted with heteroatoms in the presence of organic metal salts in inert supports or metal catalysts that form a precipitate during or after the reaction.
  • Said metal salts mentioned are lead, zinc or tin salts, all of them where the metal cation is acidic.
  • WO 2005/063698 proposes the use of basic solid catalysts for the synthesis of carbamates from ureas and dimethylcarbonate or diphenylcarbonate.
  • basic heterogeneous catalysts or “basic heterogeneous catalysts of the present invention”.
  • Another aspect of the invention is the use of said basic heterogeneous catalysts for the synthesis of fluorinated carbamates.
  • the process of the invention allows to obtain fluorinated carbamates with a high yield and high purity by using basic heterogeneous catalysts which facilitates the separation, recovery and reuse of these solid catalysts.
  • the carbamates obtained according to the method of the present invention are especially suitable for subsequent transformation into the corresponding isocyanates, for example by heat treatment without the need for any catalyst.
  • reaction conditions for the formation of carbamates are milder than those described in the state of the art, for example, at temperatures between 20 and 200 ° C, and sufficient pressure to keep the reagents in liquid phase.
  • the amines usable within the framework of the present invention are aliphatic or aromatic amines and polyamines.
  • said amines or polyamines have the formula (I)
  • Ri is selected from the group consisting of alkyl substituted or unsubstituted with 1 to 20 carbon atoms, aryl substituted or unsubstituted with 6 to 15 carbon atoms, arylalkyl substituted or unsubstituted with 7 to 15 carbon atoms , alkenyl substituted or unsubstituted with 2 to 20 carbon atoms, alkynyl substituted or unsubstituted with 2 to 20 carbon atoms, substituted or unsubstituted cycloalkyl with 3 to 20 carbon atoms, substituted or unsubstituted cycloalkenyl with 4 to 20 atoms carbon and cycloalkynyl substituted or unsubstituted with 7 to 20 carbon atoms; it is already 1, 2, 3, 4, 5 or 6.
  • said amine is selected from the group consisting of n-propylamine, isopropylamine, n-butylamine, n-hexylamine, n-octylamine, laurylamine, cyclopentylamine, cyclohexylamine, cyclooctylamine, 1,2-diaminoethane, 1, 2- cyclohexyldiamine, both racemic and any of its enantiomers with any degree of enantiomeric excess, 1, 12-diaminododecane, 1,4-diaminocyclohexane, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 2, 4-diaminodiphenylmethane, tolylenediamine, aniline, benzylamine, 2-aminotoluene, 4-aminotoluene, 2,4'
  • the carbonates of the present invention are fluorinated carbonates, that is, those comprising two fluorinated alkyl groups, the same or different.
  • fluorinated alkyl group means an alkyl group comprising at least one fluorine atom.
  • R and R ' are independently selected from the group of additionally substituted or unsubstituted fluorinated alkyls, linear or branched with 1, 2, 3, 4, 5, 6, 7, or 8 carbon atoms, preferably 1, 2, 3 or 4 carbon atoms.
  • fluorinated carbonates are selected from the group consisting of bis (2- carbonate) fluoroethyl), bis (3-fluoropropyl) carbonate, bis (2,2,2-trifluoroethyl) carbonate, bis (1,3-difluoro-2-propyl) carbonate, bis (1,1,1-) carbonate trifluoro-2-propyl), bis (2, 2,3,3-tetrafluoropropyl) carbonate, bis (2, 2, 3, 3, 3- pentafluoropropyl carbonate), bis (1-fluoro-2-butyl carbonate) ), bis (2-fluoro-1-butyl) carbonate, bis (l-fluoro-2-methyl-2-propyl) carbonate, bis (2-fluoro-2- methyl-1-propyl) carbonate, carbonate bis (IH, IH, 2H, 2H-perfluoro-1-hexyl), bis (perfluorooctyl) carbonate, and bis (1, 1, 1,
  • the basic heterogeneous catalysts used in the process of the invention allow to obtain fluorinated carbamates.
  • the basic heterogeneous catalysts of the present invention are chosen from the group consisting of: a basic metal oxide, a double laminar hydroxide, a mixed double laminar oxide, a basic zeolite, a basic mesoporous material, an alkali metal hydroxide supported on zeolite, an amorphous and / or crushed crystalline aluminum phosphate or combinations thereof.
  • the catalysts of the present invention can be basic metal oxides, that is, those metal oxides that when suspended in pure water make the pH thereof greater than 7.
  • said basic metal oxide is CaO, BaO, MgO or a basic alumina optionally doped with alkali metals such as sodium or potassium, whatever the particle size of the oxide (Chem. Rev., 95, 537-558, 1995, J. of Catalysis, 225, 316 -326, 2004 and J. of Catalysis, 247, 223-230, 2007).
  • Preferred examples of this embodiment are those oxides in which the primary particle size (before undergoing agglomeration) is less than 100 nanometers. These types of materials, generally known as nanocrystals, show a particularly high catalytic activity.
  • HDL materials are a type of clays, structured in layers formed by metal hydroxides ⁇ Clays and Clay Minerals, 23, 369, 1975 and Catalysis Today, 11, 173-201, 1991). Such layers are positively charged and between them are anions and water molecules.
  • Most HDL materials are based on double metal hydroxides of groups 1, 2 and 13 of the periodic table (IUPAC, 1985), such as Li, Na, K, Mg, Ca, Al and Ga and transition metals such as Sc, Ni, Co, Mn, Cu, Cr, Zn and Fe.
  • HDL materials The structure of these HDL materials is similar to that of brucite [Mg (OH) 2 ] in which magnesium ions are surrounded in an octahedral environment by hydroxyl groups, so that the resulting octahedra share vertices to give rise to infinite layers.
  • the HDL catalyst is of the hydrotalcite (HT) type.
  • Natural hydrotalcite is a type of mineral whose idealized cell unit formula is:
  • the Mg / Al ratio can vary between 1 and 5 and other divalent and trivalent cations can replace the Mg and Al cations.
  • the anions located between the layers can be replaced by other anions.
  • some of the magnesium ions are isomorphically replaced by a trivalent cation, such as Al 3+ . This change results in a positively charged layer, which needs anions to counteract that charge, which are between the layers.
  • the double laminar hydroxides useful in the present invention can be represented by the following general formula (II):
  • M 11 is a divalent metal cation
  • M 111 is a trivalent metal cation
  • A is a charge anion n ⁇
  • x can vary between 0.1 and 0.5.
  • the preferred range of x is 0.2 to 0.33. Taking n values of 1, 2, 3 or 4. HDL materials can be hydrated and their degree of hydration can be calculated according to several formulas that are described in the literature. Consequently the value of "m" can vary considerably.
  • the hydration water present in the double laminar hydroxide is variable without affecting the structure and depends on the degree of humidity of the environment with which the material is balanced.
  • the percentage of water by weight with respect to the total weight of the double laminar hydroxide may be between 0 and 55%, preferably between 0 and 45%, preferably between 10 and 40%, more preferably between 20 and 35%, with respect to to the total weight of the material (Catalysis Today, 11, 173-201, 1991).
  • an increase in the value of x causes a decrease in the amount of water present.
  • the M 11 cation is preferably selected from the group of alkaline earth metals Be, Mg, Ca, Sr, Ba or
  • Ra alone or in combination with other divalent cations such as Cd, Cu, Zn, Ni, Fe, Co and Mn. More preferably M 11 is Mg 2+ .
  • the cation M 111 is preferably selected from the metals of group IIIA Al, Ga, In or Tl, alone or in combination with other trivalent cations such as Ni, Co, Fe, Mn, Cr, V, Ti and Sc. More preferably M 111 is Al 3+ .
  • anion A can vary widely. It is preferably selected from the group consisting of CO 3 2 " , NO 3 “ , OH “ , Cl “ , F “ , I “ , Br “ , ClO 4 “ or a combination thereof. More preferably the anion A is CO 3 2 " . Also other types of anions, such as SO 4 2" , CrO 4 2 “ , MoO 4 2” , can be conceived as anions of type A. According to another embodiment, the anions may be heteropoly acids or organic acids (for example, oxalic acid, malonic acid, arylsufonates or others).
  • the HT type material used in the present invention is a magnesium aluminum carbonate having the following general chemical formula (III):
  • x is between 0.1 and 0.5 and where the water content of hydration in the material is between 0 and 55%, preferably between 0 and 45%, preferably between 10 and 40%, more preferably between 20 and 35%, with respect to the total weight of the material (Catalysis Today, 11, 173-201, 1991).
  • the HT materials can be found hydrated and their degree of hydration can be calculated according to several formulas that are described in the literature. Consequently the value of "m” can vary considerably. For example, in Catalysis Today, 11, 1991, 173-201, whose content is incorporated into that of the present application, it is described as calculating the value of "m”. Another method for measuring the amount of water in the HT material is described in S.
  • Said method consists in determining the amount of water by means of thermogravimetric measures of weight loss. In this method, the difference between the initial weight and the weight lost is measured at approximately 378K (E. Kanezaki, Solid State Ionics 106 (1998) 279-284). In all cases an increase in the value of x causes a decrease in the amount of water present.
  • the catalysts of the present invention also comprise the group of mixed oxides obtained from double laminar hydroxides (HDL), also called double laminar mixed oxides.
  • HDL double laminar hydroxides
  • the HDL materials and, in particular the HT are converted into mixed oxides that have a homogeneous interdispersion of the elements, high surface area between 50-400 m 2 / g basicity of their active centers with values PFCs between 8 and 14 (JI Di Cosimo, VK Diez, M. Xu, E. Church, CR. Apesteguia, J. Catal. 178 (1998), 499-510).
  • PFCs between 8 and 14
  • magnesium hydrotalcites Compared to conventional aluminum hydrates (pH between 8 and 9), magnesium hydrotalcites have a higher basicity and a much larger surface area after being calcined.
  • HT materials can be used without calcining or calcined, however in their calcined form they are more active due to their greater surface area. Its basicity can be adjusted by increasing the Mg / Al ratio and / or by incorporating anions other than hydroxyl.
  • the mixed oxides obtained by calcination of HDL materials can be transformed back into HDL materials by hydration in a solution containing the A ⁇ anions that are to be sandwiched between the sheets. Starting from an HDL material with carbonate anions, the calcination process causes the decomposition of this anion, with the collapse of the laminar structure.
  • the catalysts of the present invention comprise the basic zeolites (Chem. Rev., 95, 537-558, nineteen ninety five) .
  • CsX, CsY and KX zeolites are preferred zeolites of the invention.
  • the catalysts of the present invention comprise the basic mesoporous materials.
  • a preferred material is an MCM-41 aluminosilicate containing cesium acetate or hydroxide (JS Beck, JC Vartuli, WJ Roth, ME Leonowicz, CT. Kresge, KD Schmitt, CT-W. Chu, DH Olson, EW Sheppard , SB McCullen, JB Higgins, and JL Schlenker, "A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates.” J. Am. Chem. Soc, 1992. 114: p. 10834-10843; CT. Kresge, ME Leonowicz , WJ Roth, J. C Vartuli, and JS Beck, "Ordered mesoporous molecular sieves synthesized by a liquid-crystal témplate mechanism.” Nature, 1992. 359: p. 710-712.)
  • the alkali metal hydroxides LiOH, NaOH, KOH, RbOH or CsOH, supported on zeolites such as those mentioned above, are also catalysts of the present invention.
  • the Cs (OH) supported on NaY zeolite is a preferred catalyst of this type.
  • crushed amorphous and / or crystalline aluminophosphates are catalysts of the present invention, and also include those that have received some further treatment, for example, their derivatives by heat treatment in the presence of ammonia or amines.
  • an amorphous aluminophosphate high surface area heat treated 450 0 C in the presence of ammonia is a preferred such catalyst.
  • the preparation of carbamates is carried out without the use of any additional solvent. but in excess of fluorinated carbonate at temperatures between 20 and 200 ° C, and sufficient pressure to keep the reagents in liquid phase.
  • the reaction temperature is between 20 and 150 ° C, more preferably between 20 and 120 0 C
  • the reaction pressure can vary between 1 and 10 bars, depending on the characteristics of the reagents.
  • inert organic solvents such as alcohols and ethers can also be used to facilitate stirring of the reaction mixture.
  • the carbamates obtained can be separated from the reaction mixture by filtration, extraction, precipitation, distillation, crushing or crystallization using a suitable solvent; additionally they can be purified by recrystallization or chromatographic techniques known in the state of the art.
  • a further embodiment of the invention further comprises the step of forming the corresponding isocyanates from the fluorinated carbamates of general formula (I) obtained by the process object of the invention.
  • Alkyl refers to a linear or branched hydrocarbon chain radical consisting of carbon and hydrogen atoms, which does not contain unsaturation, having between 1 and 20 carbon atoms, preferably 1 to 12, more preferably 1 to 8 atoms carbon, and which is attached to the rest of the molecule by a single bond, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl or n-pentyl.
  • Alkylidene refers to a linear or branched hydrocarbon chain radical consisting of carbon and hydrogen atoms, which does not contain unsaturation, having between 1 and 20 carbon atoms, preferably 1 to 12, more preferably 1 to 8 atoms of carbon, and that is attached to the rest of the molecule through two bonds different singles, for example, methylidene, ethylidene, 1,3-propylidene, 1,4-butylidene, or 2,4-pentylidene.
  • Cycloalkyl preferably means a linear or branched monocyclic saturated alicyclic hydrocarbon fraction having between 3 and 20 carbon atoms, preferably 3 to 12, more preferably 3 to 8 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, methyl cyclohexyl, dimethyl cyclohexyl and the like.
  • Cycloalkenyl preferably means a fraction of monocyclic non-aromatic alicyclic hydrocarbon containing 1, 2 or more conjugated or unconjugated carbon-carbon double bonds, preferably 1, 2 or 3, having between 4 and 20 carbon atoms, preferably 4 to 12, more preferably from 4 to 8 carbon atoms, linear or branched, such as cyclopentenyl, methyl cyclopentenyl, cyclopentadienyl, cyclohexenyl, and the like.
  • Alkynyl preferably means an unsaturated, linear or branched monovalent aliphatic hydrocarbon fraction containing 1, 2 or more triple conjugated or unconjugated carbon-carbon bonds, preferably 1, 2 or 3, having between 2 and 20 atoms carbon, preferably 2 to 12, more preferably 2 to 8 carbon atoms, such as -CCH, -CH 2 CCH, CCCH 3 , -CH 2 CCCH 3 , and the like.
  • Cycloalkynyl preferably means a fraction of monocyclic non-aromatic alicyclic hydrocarbon containing 1 or more triple conjugated or unconjugated carbon-carbon bonds, preferably 1, 2 or 3, having between 7 and 20 carbon atoms, preferably 7 to 12, more preferably from 7 to 8 carbon atoms, linear or branched, such as cyclopentinyl, methyl cyclopentinyl, cyclohexinyl, and the like.
  • Aryl preferably means a fraction of monocyclic or polycyclic hydrocarbon, having between 6 and 15 carbon atoms, preferably 6 to 12, more preferably 6 to 8 carbon atoms, comprising 1, 2, 3 or 4 aromatic nuclei, said cores being bonded with, condensed between them and / or covalently bonded to each other, such as phenyl, biphenyl, terphenyl, naphthyl, anthracenyl, phenanthrenyl, indenyl and the like;
  • Arylalkyl refers to an aryl group attached to an alkyl group, having between 7 and 15 carbon atoms, preferably 7 to 12, more preferably 7 or 8 carbon atoms, the alkyl group being attached to the rest of the molecule , such as benzyl and phenethyl.
  • Alkylaryl refers to an alkyl group attached to an aryl group, having between 7 and 15 carbon atoms, preferably 7 to 12, preferably 7 or 8 carbon atoms, the aryl group being attached to the rest of the molecule.
  • References herein to substituted groups in the compounds of the present invention refer to the specified moiety that may be substituted in one or more positions available by one or more suitable groups, for example, a fluoro group; a trifluoromethyl group; a Ci-C ⁇ alkanoyl group such as acetyl and the like; alkyl groups that include those groups having 1 to 12 carbon atoms, more preferably 1-3 carbon atoms; alkenyl and alkynyl groups; alkoxy groups of 1 to 12 carbon atoms.
  • an optionally substituted group may have a substituent at each substitutable position of the group, and each substitution is independent of the other. Therefore and as a non-limiting example, a substituted aryl group represents fluoro-phenyl, tolyl, trifluoromethyl phenyl, anisyl, 2,5-dimethoxy-phenyl and the like.
  • Non-limiting examples of the present invention will be described below, including examples of catalyst synthesis and obtaining carbamates with a fluorinated carbonate and comparative examples of obtaining carbamates with dimethyl carbonate (DMC).
  • DMC dimethyl carbonate
  • Zeolites of the commercial faujasite type X or Y sodium or obtained by hydrothermal synthesis are subjected to a series of ion exchanges with concentrated aqueous solutions of alkali metal salts potassium, rubidium and cesium under conditions described in MJ Climent, A. Corma, H. Garc ⁇ a and J. Primo, Appl. Catal., 1989, 51, 113-125.
  • a series of ion exchanges with concentrated aqueous solutions of alkali metal salts potassium, rubidium and cesium under conditions described in MJ Climent, A. Corma, H. Garc ⁇ a and J. Primo, Appl. Catal., 1989, 51, 113-125.
  • 100 g of NaX zeolite are suspended in a liter of a 0.3 M aqueous solution of potassium acetate. The suspension is stirred magnetically at room temperature for three hours.
  • the exchange with the other alkali ions is carried out in the same manner, but using aqueous solutions of the concentration indicated for the first, second and third exchange of rubidium acetate and cesium acetate.
  • the content of alkaline ions and the percentage of exchange is determined by chemical analysis of the zeolites, after breaking down known weights of samples solids dehydrated with hydrofluoric acid (40% in water) containing nitric acid (1 ml). After complete digestion at 50 ° C, the resulting liquor is analyzed by quantitative atomic absorption. According to the described method, the exchange rates of Na + for K + , Rb + and Cs + that are achieved are 95, 78 and 65%, respectively.
  • the basic strength of the materials is greater for the samples of zeolite X than for the analogous samples of zeolite Y.
  • the basic force increases as the charge / radius ratio of the alkali cation decreases.
  • These samples are prepared by the pore volume impregnation method.
  • the specific pore volume of NaX or NaY zeolite is determined commercial or obtained by hydrothermal synthesis by isothermal adsorption of nitrogen.
  • the desired amount of the alkali metal hydroxide is dissolved in this volume of distilled water.
  • This basic solution is added dropwise under constant stirring on a powdered sample of NaX or NaY zeolite dehydrated by heat treatment at 500 ° C. After completion of the addition, stirring of the powder sample is maintained for a minimum of 5 h.
  • An example of these basic materials consists of NaY zeolite containing cesium hydroxide (CsOH / NaY).
  • This catalyst is prepared according to the pore volume impregnation process by adding a milliliter of a 0.1 M aqueous solution of Cs (OH) per 3 g of NaY dehydrated.
  • Basic metal oxides with a high surface area can be prepared by decomposing salts of these metals with oxidic anions.
  • the oxides are the oxides of the alkaline earth metals and especially the magnesium and calcium oxides. These can be prepared starting with 1 M aqueous solutions of the corresponding acetates. These solutions are mixed with equivalent amounts of sodium oxalate. The resulting precipitate is collected, washed with plenty of distilled water and dried in an oven at 80 ° C. The calcination of these oxalates is carried out in a fine bed under a nitrogen atmosphere in an oven with a programmed temperature with an initial ramp of 5 0 CXmIn "1 up to 550 0 C.
  • laminar hydrotalcites as basic catalysts is magnesium and aluminum hydrotalcite in an atomic ratio Mg: Al of 3: 1 containing carbonate ions in the interlaminar regions as charge compensating anions.
  • These basic catalysts are prepared according to the procedures described in the chemical literature (MJ Climent, A. Corma, V. Fornes, A. Frau, R. Guil-Lopez, S. Iborra and J. Primo, Journal of Catalysis, 1996 , 163, 392-398).
  • the protocol consists of mixing identical volumes of two aqueous solutions.
  • the first solution contains a mixture in 3: 1 atomic proportions of magnesium nitrate (1.0 M) and aluminum nitrate (0.3 M).
  • the second solution contains sodium carbonate (0.1 M).
  • Precursor aluminophosphate (AlPO 4 ) with a P / Al ratio of 0.9 was prepared by precipitation following the method described by Lindblad et al (T. Lindblad, B. Rebenstorf, Y. Zhi-Guang, S. Lars and T. Andersson, Appl. Cat. A, 1994, 112, 187).
  • the procedure of aluminophosphate nitridation was carried out with a flow of ammonia gas (85 ml min '1) 700 0 C for 70 h.
  • the resulting sample has a specific surface area of 192 ITi 2 Xg "1 and a percentage of P, Al and N of 23.9, 24.6 and 8.9%, respectively.
  • the reaction yield is 95% with respect to 2,4-toluenediamine.
  • the carbamate can be recrystallized from 2,2,2-trifluoroethanol. Physical properties: Melting point 119 ° C; IR wave number (cirf 1 ): 3286, 2981, 1708, 1546, 1772, 1087, 1 H NMR ⁇ (ppm): 2.35, 4.60, 7.02, 7.26, 7.90.
  • the liquid phase is allowed to crystallize at room temperature, collecting a solid corresponding to the bis carbamate of 0-2,2,2-trifluoroethyl of 4,4'-diaminodiphenylmethane with a degree of purity greater than 90%.
  • the reaction yield is 90% with respect to 4,4'-diaminodiphenylmethane.
  • the carbamate can be recrystallized from 2,2,2-trifluoroethanol. 1 H NMR ⁇ : 7.52, 7.04, 4.60, 3.81 ppm.
  • 1,2-Ethylenediamine (0.6 g) is slowly added at room temperature to the 2,2,2-trifluoroethyl carbonate (45.2 g, 20 equivalents).
  • magnesium aluminum hydrotalcite (Mg / Al 3 atomic ratio) in its carbonate form (30 mg) is added.
  • the suspension is stirred magnetically for 1 h. After that time, the solid fraction is filtered off.
  • the O- (2,2,2-trifluoroethyl) carbamate of 1,2-ethylenediamine is separated from the hydrotalcite by dissolving in hot ethanol. After allowing the ethanol to cool, the poly fluorinated carbamate of ethylenediamine is collected by filtration with a purity of 90%. The reaction yield is 90% with respect to 1,2-ethylenediamine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Procedimiento para producir carbamatos fluorados que comprende la reacción entre una amina o poliamina y un carbonato fluorado, en presencia de catalizadores heterogéneos básicos. El procedimiento también puede comprender una etapa adicional en la que los carbamatos se transforman en los correspondientes isocianatos.

Description

PROCEDIMIENTO DE PRODUCCIÓN DE ISOCIANATOS Y CARBAMATOS FLUORADOS CON CATALIZADORES HETEROGÉNEOS
Campo de la invención:
La presente invención se refiere a un procedimiento para producir isocianatos y carbamatos fluorados mediante reacción de aminas o poliaminas con carbonatos fluorados, realizado en presencia de catalizadores heterogéneos básicos.
Estado de la técnica
Los carbamatos orgánicos son compuestos ampliamente utilizados en un gran número de aplicaciones incluidas preparaciones farmacéuticas, producción de agrocompuestos (pesticidas y herbicidas) , asi como ser precursores en la síntesis de isocianatos y otros intermedios en química fina o materiales de venta al por mayor (normalmente conocidos como "commodities") .
Con el fin de ser ecológico, o "verde", las síntesis orgánicas deben seguir, sino todas, al menos la mayoría los siguientes requerimientos: reducir los residuos, ser eficientes atómicamente, evitar el uso y/o la producción de materiales tóxicos y peligrosos, producir compuestos que funcionen mejor o igual que los existentes y que sean biodegradables, que eviten en lo posible el uso de sustancias auxiliares (por ejemplo disolventes), que reduzcan los requerimientos energéticos, que usen materiales renovables, y que utilicen catalizadores en lugar de reactivos en cantidades estequiométricas . En particular, un área de la química en constante desarrollo es la sustitución de reactivos que son tóxicos, agresivos para el medioambiente, producidos en procesos medioambientalmente no adecuados, no selectivos y que producen sales inorgánicas caras o difíciles de tratar, en resumen: la sustitución de aquellos compuestos químicos o procesos que no sean "verdes". Ejemplos emblemáticos de reactivos indeseables usados para metilación y carboximetilación son los metil haluros (CH3X), dimetilsulfato (DMS) y fosgeno (COCl2) .
En ese sentido, una de las posibles vias alternativas para sintetizar carbamatos consiste en la reacción de carbonatos orgánicos con aminas. Sin embargo, los carbonatos de dialquilo pueden reaccionar con aminas de dos maneras diferentes. Bien formando carbamatos (reacción de carbamoilación) o bien formando productos alquilados (reacción de alquilación de la amina) . Esta segunda reacción actúa compitiendo con la primera y es indeseable cuando lo que se persigue es la síntesis de carbamatos con una alta selectividad.
Por lo general, la falta de selectividad completa hacia el carbamato hace desaconsejable el empleo de carbonatos de dialquilo en procesos industriales.
El carbonato orgánico más ampliamente utilizado y que ha sido objeto de una mayor atención debido a su accesibilidad es el carbonato de dimetilo, aunque otros carbonatos de dialquilo y carbonatos aliciclicos pueden actuar de forma análoga al carbonato de dimetilo.
Numerosas patentes y artículos describen la reacción de formación de carbamatos a partir de carbonatos orgánicos (fundamentalmente dimetilcarbonato) y aminas, como por ejemplo: US 4,268,683, US 5,698,731, EP 0752414 Bl, EP 0570071 Bl, EP 0323514 Bl, EP 0881213, WO 98/55450, WO 01/56977 así como WO 2007/015852. Entre la literatura científica se pueden incluir: J. Molec. Catal., 91, 399-405, 1994, Tetrahedron Letters, 41, 6347-6350, 2000, J. of Technology and Biotechnology, 76, 857-861, 2001, Applied Catalysis A: General, 227, 1-6, 2002, Catalysis Letters, 82, 193-197, 2002, Puré Appl. Chem. , 77, 1719-1725, 2005 y Greeπ Chemistry, 7, 159- 165, 2005.
En WO 99/47493 se describe un método de preparación de carbamatos orgánicos por reacción de aminas y carbonatos de alquilo sustituidos con heteroátomos en presencia de sales orgánicas de metales en soportes inertes o catalizadores metálicos que forman un precipitado durante o después de la reacción. Dichas sales metálicas mencionadas son sales de plomo, zinc o estaño, todas ellas donde el catión metálico tiene carácter ácido. En WO 2005/063698 se propone el uso de catalizadores sólidos básicos para la síntesis de carbamatos a partir de ureas y de dimetilcarbonato o difenilcarbonato.
Los métodos propuestos en la citada técnica para producir carbamatos por reacción de aminas y carbonatos orgánicos presentan una serie de desventajas. En primer lugar, el uso de catalizadores metálicos solubles para la citada reacción es indeseable porque impurifican los productos de reacción y es difícil y costosa su eliminación para obtener carbamatos con la pureza que exige su posterior utilización industrial. Además, estos catalizadores generalmente pierden su actividad en el transcurso de la reacción, y en el caso de ser recuperados, no se pueden reciclar al proceso, lo que supone un coste relativamente elevado de catalizador y la formación de residuos metálicos indeseables desde el punto de vista medioambiental.
Además, algunos procesos producen una cantidad excesiva de N-Alquilación y/o bajo rendimiento de carbamoilación, a parte de que son necesarias condiciones de altas temperaturas y/o tiempos relativamente largos de reacción.
Sumario de la invención
Un aspecto de la presente invención es un procedimiento para producir carbamatos fluorados que comprende la reacción entre una amina o poliamina y un carbonato fluorado de fórmula (OR) (OR') C=O en donde R y R' se seleccionan independientemente de un grupo alquilo fluorado sustituido o no sustituido con 1 a 20 átomos de carbono, caracterizado porque el procedimiento se realiza en presencia de al menos un catalizador heterogéneo básico, escogido del grupo que consiste en: un óxido metálico básico, un hidróxido doble laminar, un óxido mixto doble laminar, una zeolita básica, un material mesoporoso básico, un hidróxido de metal alcalino soportado en zeolita, un aluminofosfato amorfo y/o cristalino triturado o combinaciones de los mismos. En la presente invención también denominados "catalizadores heterogéneos básicos" o "catalizadores heterogéneos básicos de la presente invención". Otro aspecto de la invención es el uso dichos catalizadores heterogéneos básicos para la síntesis de carbamatos fluorados.
El procedimiento de la invención permite obtener carbamatos fluorados con un alto rendimiento y elevada pureza mediante el empleo de catalizadores heterogéneos básicos lo que facilita la separación, recuperación y reutilización de estos catalizadores sólidos. Los carbamatos obtenidos según el método de la presente invención son especialmente aptos para su posterior transformación en los correspondientes isocianatos, por ejemplo por tratamiento térmico sin necesidad de catalizador alguno.
Adicionalmente, las condiciones de reacción para la formación de carbamatos son más suaves que las descritas en el estado de la técnica, por ejemplo, a temperaturas de entre 20 y 200°C, y presión suficiente como para mantener los reactivos en fase liquida.
De la descripción que se hace a continuación se derivan otras virtudes que hacen el procedimiento definido en la presente invención especialmente ventajoso para su aplicación industrial.
Descripción detallada de la invención
En contraste con el comportamiento general de los carbonatos de dialquilo que, cuando son reaccionados con aminas en presencia de catalizadores básicos sólidos, dan lugar a mezclas de productos de N-alquilación y N- carbamoilación (ver ejemplos de la presente invención) , se ha encontrado de forma inesperada que, cuando se emplean carbonatos orgánicos fluorados y se emplean los catalizadores heterogéneos básicos antes indicados, los únicos productos observados son esencialmente los N- carbamatos de fórmula (RO) (NHRi)C=O, aumentando sorprendentemente la selectividad de la reacción hasta valores próximos al 100 % y no observándose productos de N-alquilación.
A continuación se indican los reactivos y catalizadores de la presente invención y que constituyen una nueva ruta a isocianatos.
Aminas y poliaminas
Las aminas utilizables en el marco de la presente invención son aminas y poliaminas alifáticas o aromáticas.
De acuerdo con una realización preferida, dichas aminas o poliaminas tienen la fórmula (I)
R1 (NH2) a
(D en donde Ri se selecciona del grupo que consiste en alquilo sustituido o no sustituido con 1 a 20 átomos de carbono, arilo sustituido o no sustituido con 6 a 15 átomos de carbono, arilalquilo sustituido o no sustituido con 7 a 15 átomos de carbono, alquenilo sustituido o no sustituido con 2 a 20 átomos de carbono, alquinilo sustituido o no sustituido con 2 a 20 átomos de carbono, cicloalquilo sustituido o no sustituido con 3 a 20 átomos de carbono, cicloalquenilo sustituido o no sustituido con 4 a 20 átomos de carbono y cicloalquinilo sustituido o no sustituido con 7 a 20 átomos de carbono; y a es 1, 2, 3, 4, 5 ó 6. De acuerdo con otra realización preferida, dicha amina se selecciona del grupo que consiste en n- propilamina, isopropilamina, n-butilamina, n-hexilamina, n-octilamina, laurilamina, ciclopentilamina, ciclohexilamina, ciclooctilamina, 1, 2-diaminoetano, 1,2- ciclohexildiamina, tanto racémica como cualquiera de sus enantiómeros con cualquier grado de exceso enantiomérico, 1, 12-diaminododecano, 1, 4-diaminociclohexano, 1,3-bis (aminometil) ciclohexano, 1, 4-bis (aminometil) ciclohexano, 2, 4-diaminodifenilmetano, toluilendiamina, anilina, bencilamina, 2-aminotolueno, 4-aminotolueno, 2,4'- diaminodifenilmetano, 4,4'-diamino difenilmetano, 2,2'- diaminodifenilmetano, 2, 4-toluendiamina, 2,6- toluendiamina, m-fenilendiamina, 1,5-diamino naftaleno y mezclas de las mismas.
Carbonatos fluorados
Los carbonatos de la presente invención son carbonatos fluorados, es decir, aquellos que comprenden dos grupos alquilo fluorados, iguales o diferentes. A efectos de la presente invención se entiende por "grupo alquilo fluorado" un grupo alquilo que comprende al menos un átomo de flúor.
De acuerdo con una realización preferida R y R' se seleccionan independientemente del grupo de los alquilos fluorados adicionalmente sustituidos o no sustituidos, lineales o ramificados con 1, 2, 3, 4, 5, 6, 7, u 8 átomos de carbono, preferiblemente 1, 2, 3 ó 4 átomos de carbono. Preferiblemente los carbonatos fluorados se seleccionan del grupo que consiste en carbonato de bis (2- fluoroetilo) , carbonato de bis (3-fluoropropilo) , carbonato de bis (2, 2, 2-trifluoroetilo) , carbonato de bis (1, 3-difluoro-2-propilo) , carbonato de bis (1,1,1- trifluoro-2-propilo) , carbonato de bis (2, 2,3,3- tetrafluoropropilo) , carbonato de bis (2, 2, 3, 3, 3- pentafluoropropilo) , carbonato de bis (1-fluoro-2-butilo) , carbonato de bis (2-fluoro-1-butilo) , carbonato de bis(l- fluoro-2-metil-2-propilo) , carbonato de bis (2-fluoro-2- metil-1-propilo) , carbonato de bis (IH, IH, 2H, 2H-perfluoro- 1-hexilo) , carbonato de bis (perfluorooctilo) , y carbonato de bis (1, 1, 1, 3, 3, 3-hexafluoro-2-propilo) ; preferentemente el carbonato de bis (2, 2, 2-trifluoroetilo) .
Catalizadores En el estado de la técnica se conocen varios tipos distintos de catalizadores heterogéneos básicos (H.
Hattori, Chem. Rev. 95(1995) 537-558), los cuales se han utilizado como catalizadores en reacciones como la alquilación de fenoles (S. VeIu, CS. Swamy, Appl. Catal. A 119 (1994) 241-252), condensaciones aldólicas (K. K.
Rao, M. Gravelle, J. Sáncez Valente, F. Figueras, J.
Catal. 173 (1998) 115-121), reacciones de Knovenagel (A.
Corma, V. Fornés, F. Rey, J. Catal. 148 (1994) 205-212) o condensaciones de Claisen-Schmidt (W. T. Reichle, J. Catal. 94 (1985) 547-557), entre otros.
Se ha encontrado ahora que sorprendentemente los catalizadores heterogéneos básicos utilizados en el procedimiento de la invención permiten obtener carbamatos fluorados . Tal y como se indica más arriba, los catalizadores heterogéneos básicos de la presente invención están escogidos del grupo que consiste en: un óxido metálico básico, un hidróxido doble laminar, un óxido mixto doble laminar, una zeolita básica, un material mesoporoso básico, un hidróxido de metal alcalino soportado en zeolita, un aluminofosfato amorfo y/o cristalino triturado o combinaciones de los mismos.
Así pues, los catalizadores de la presente invención pueden ser óxidos metálicos básicos, es decir, aquellos óxidos metálicos que cuando se suspenden en agua pura hacen que el pH de la misma sea mayor que 7. Preferentemente dicho óxido metálico básico es CaO, BaO, MgO o una alúmina básica opcionalmente dopada con metales alcalinos como, por ejemplo, sodio o potasio, cualquiera que sea el tamaño de partícula del óxido (Chem. Rev. , 95, 537-558, 1995, J. of Catalysis, 225, 316-326, 2004 y J. of Catalysis, 247 , 223-230, 2007) . Ejemplos preferentes de esta realización son aquellos óxidos en que el tamaño de partícula primario (antes de sufrir aglomeración) es inferior a 100 nanometros. Este tipo de materiales, generalmente conocidos como nanocristalinos, muestran una actividad catalítica especialmente elevada.
Otro tipo de catalizadores de la invención pertenece al grupo de los hidróxidos dobles laminares (HDL) . Los materiales HDL son un tipo de arcillas, estructuradas en capas formadas por hidróxidos metálicos {Clays and Clay Minerals, 23, 369, 1975 y Catalysis Today, 11, 173-201, 1991) . Tales capas están cargadas positivamente y entre ellas se sitúan aniones y moléculas de agua. La mayoría de los materiales HDL están basados en hidróxidos dobles de metales de los grupos 1, 2 y 13 de la tabla periódica (IUPAC, 1985), tales como Li, Na, K, Mg, Ca, Al y Ga y metales de transición tales como Sc, Ni, Co, Mn, Cu, Cr, Zn y Fe. La estructura de estos materiales HDL es similar a la de la brucita [Mg(OH)2] en la que los iones magnesio están rodeados en un entorno octaédrico por grupos hidroxilo, de manera que los octaedros resultantes comparten vértices para dar lugar a capas infinitas.
Preferentemente, el catalizador HDL es del tipo hidrotalcita (HT) . La hidrotalcita natural es un tipo de mineral cuya fórmula de unidad de celda idealizada es:
[Mg6Al2(OH)16] (CO3 2") '4H2O
y consiste en octaedros de hidróxido de aluminio y magnesio interconectados por los vértices. Sin embargo, el ratio Mg/Al puede variar entre 1 y 5 y otros cationes divalentes y trivalentes pueden reemplazar los cationes de Mg y Al. Adicionalmente, los aniones situados entre las capas pueden ser substituidos por otros aniones. En los materiales HDL, algunos de los iones magnesio son isomórficamente reemplazados por un catión trivalente, tal como el Al3+. Este cambio resulta en una capa cargada positivamente, que necesita de aniones para contrarrestar esa carga, los cuales se sitúan entre las capas.
De acuerdo con una realización preferida, los hidróxidos dobles laminares útiles en la presente invención pueden representarse por la siguiente fórmula general (II) :
[M1VxM111 H ( OH ) 2 ] x+ (An- ) x/n - ITiH2O ( I I ) en donde M11 es un catión metálico divalente, M111 es un catión metálico trivalente, A es un anión de carga n~, y x puede variar entre 0,1 y 0,5. El intervalo preferido de x es de 0,2 a 0,33. Tomando n valores de 1, 2, 3 ó 4. Los materiales HDL pueden encontrarse hidratados y su grado de hidratación se puede calcular de acuerdo con varias fórmulas que aparecen descritas en la bibliografía. En consecuencia el valor de "m" puede variar considerablemente. Por ejemplo, en Catalysis Today, 11, 1991, 173-201, cuyo contenido se incorpora al de la presente solicitud, se describe como calcular el valor de "m" . Otro método para la medición de la cantidad de agua en el material HDL se describe en S. Miyata, Clays and Clays Minerals, 23, 1975, 369, cuyo contenido se incorpora en su totalidad. Dicho método consiste en la determinación de la cantidad de agua mediante medidas termogravimétricas de pérdida de peso. En dicho método se mide la diferencia entre el peso inicial y el peso perdido a aproximadamente 378K (E. Kanezaki, Solid State Ionics 106 (1998) 279-284) . El agua de hidratación presente en el hidróxido doble laminar es variable sin afectar la estructura y depende del grado de humedad del ambiente con el que se equilibra el material. Asi, el porcentaje de agua en peso con respecto al peso total del hidróxido doble laminar puede estar comprendido entre 0 y 55%, preferiblemente entre 0 y 45%, preferiblemente entre 10 y 40%, más preferiblemente entre 20 y 35%, con respecto al peso total del material (Catalysis Today, 11, 173-201, 1991) . En general, un aumento del valor de x causa un descenso en la cantidad de agua presente. El catión M11 se selecciona preferentemente del grupo de los metales alcalinotérreos Be, Mg, Ca, Sr, Ba o
Ra, solo o en combinación con otros cationes divalentes tales como Cd, Cu, Zn, Ni, Fe, Co y Mn. Más preferentemente M11 es Mg2+.
El catión M111 se selecciona preferentemente entre los metales del grupo IIIA Al, Ga, In o Tl, solo o en combinación con otros cationes trivalentes tales como Ni, Co, Fe, Mn, Cr, V, Ti y Sc. Más preferentemente M111 es Al3+.
La naturaleza del anión A puede variar ampliamente. Se selecciona preferentemente entre el grupo que consiste en CO3 2", NO3 ", OH", Cl", F", I", Br", ClO4 " o una combinación de ellos. Más preferentemente el anión A es CO3 2". Asimismo otro tipo de aniones, tales como SO4 2", CrO4 2", MoO4 2", se pueden concebir como aniones del tipo A. De acuerdo con otra realización, los aniones pueden ser heteropoliácidos o ácidos orgánicos (por ejemplo, ácido oxálico, ácido malónico, arilsufonatos u otros) . Preferentemente, el material tipo HT empleado en la presente invención es un carbonato de magnesio y aluminio que tiene la siguiente fórmula química general (III) :
Mg2xAl2 ( OH ) 4X+4CO3 - mH20 ( I I I )
en donde x está comprendido entre 0,1 y 0,5 y donde el contenido en agua de hidratación en el material está comprendido entre 0 y 55%, preferiblemente entre 0 y 45%, preferiblemente entre 10 y 40%, más preferiblemente entre 20 y 35%, con respecto al peso total del material (Catalysis Today, 11, 173-201, 1991) . Los materiales HT pueden encontrarse hidratados y su grado de hidratación se puede calcular de acuerdo con varias fórmulas que aparecen descritas en la bibliografía. En consecuencia el valor de "m" puede variar considerablemente. Por ejemplo, en Catalysis Today, 11, 1991, 173-201, cuyo contenido se incorpora al de la presente solicitud, se describe como calcular el valor de "m" . Otro método para la medición de la cantidad de agua en el material HT se describe en S. Miyata, Clays and Clays Minerals, 23, 1975, 369, cuyo contenido se incorpora en su totalidad. Dicho método consiste en la determinación de la cantidad de agua mediante medidas termogravimétricas de pérdida de peso. En dicho método se mide la diferencia entre el peso inicial y el peso perdido a aproximadamente 378K (E. Kanezaki, Solid State Ionics 106 (1998) 279-284) . En todos los casos un aumento del valor de x causa un descenso en la cantidad de agua presente .
Los catalizadores de la presente invención comprenden también el grupo de los óxidos mixtos obtenidos a partir de hidróxidos dobles laminares (HDL) , también denominados óxidos mixtos dobles laminares. Por descomposición térmica controlada a temperaturas entre 50
' y 600 °C, más preferiblemente entre 100 y 450 °C, los materiales HDL y, en concreto los HT, son convertidos en óxidos mixtos que poseen una interdispersión homogénea de los elementos, alta área superficial entre 50-400 m2/g y basicidad de sus centros activos con valores de pfCa entre 8 y 14 (J. I. Di Cosimo, V. K. Diez, M. Xu, E. Iglesia, CR. Apesteguia, J. Catal. 178 (1998), 499-510). Comparado con los hidratos de aluminio convencionales (pH entre 8 y 9) , las hidrotalcitas de magnesio tienen una basicidad mayor y un área superficial mucho mayor después de ser calcinadas. Estos materiales HT pueden ser usados sin calcinar o calcinados, sin embargo en su forma calcinada son más activos debido a su mayor área superficial. Su basicidad se puede ajustar incrementando el ratio Mg/Al y/o incorporando aniones diferentes al hidroxilo. Los óxidos mixtos obtenidos por calcinación de materiales HDL pueden ser transformados de nuevo en materiales HDL mediante hidratación en una solución que contenga los aniones A~ que se van a intercalar entre las láminas. Al partir de un material HDL con aniones carbonato, el proceso de calcinación produce la descomposición de este anión, teniendo lugar el colapso de la estructura laminar. Al re-hidratar el óxido mixto en ausencia de iones carbonato, se vuelve a obtener una estructura laminar en la que los aniones carbonato quedan reemplazados por otros iones, por ejemplo, aniones hidroxilo. Este tipo de HDL formadas a partir de óxidos mixtos re-hidratados también son catalizadores útiles en la presente invención. Ejemplos ilustrativos, aunque no limitativos, de métodos de preparación de materiales tipo HT rehidratados que son útiles como catalizadores en el procedimiento de la presente invención son los descritos en A. Corma et al. J. of Catal., 221, 474-482, 2004, A. Corma et al. J. of Catal. 225, 316-326, 2004 and F. Medina, Chem. Común, 2005, 1453-1455". Los catalizadores de la presente invención comprenden las zeolitas básicas (Chem. Rev. , 95, 537-558, 1995) . Las zeolitas CsX, CsY y KX son zeolitas preferentes de la invención.
Los catalizadores de la presente invención comprenden los materiales mesoporosos básicos. Un material de este tipo preferente es un aluminosilicato MCM-41 que contiene acetato ó hidróxido de cesio(J.S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, CT. Kresge, K. D. Schmitt, C. T. -W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, "A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates." J. Am. Chem. Soc, 1992. 114: p. 10834-10843; CT. Kresge, M. E. Leonowicz, W. J. Roth, J. C Vartuli, and J. S. Beck, "Ordered mesoporous molecular sieves synthesized by a liquid-crystal témplate mechanism. " Nature, 1992. 359: p. 710-712.)
Los hidróxidos de metales alcalinos LiOH, NaOH, KOH, RbOH o CsOH, soportados en zeolitas tales como las mencionadas anteriormente, son también catalizadores de la presente invención. El Cs(OH) soportado sobre zeolita NaY es un catalizador preferente de este tipo.
Finalmente, los aluminofosfatos amorfos y/o cristalinos triturados son catalizadores de la presente invención, e incluyen también aquellos que han recibido algún tratamiento posterior, por ejemplo, sus derivados por tratamiento térmico en presencia de amoniaco o aminas. Preferentemente un aluminofosfato amorfo de alta área superficial sometido a tratamiento térmico de 450 0C en presencia de amoniaco es un catalizador preferente de este tipo. Habitualmente, la preparación de carbamatos se realiza sin utilización de ningún disolvente adicional pero en exceso de carbonato fluorado a temperaturas de entre 20 y 200°C, y presión suficiente como para mantener los reactivos en fase liquida. Preferiblemente, la temperatura de reacción está comprendida entre 20 y 150 °C, más preferiblemente entre 20 y 120 0C, la presión de reacción puede variar entre 1 y 10 bars, dependiendo de las características de los reactivos. Aún no siendo habitualmente necesario, pueden además utilizarse disolventes orgánicos inertes tales como alcoholes y éteres para facilitar la agitación de la mezcla de reacción.
Los carbamatos obtenidos pueden ser separados de la mezcla de reacción mediante filtración, extracción, precipitación, destilación, trituración o cristalización utilizando un disolvente adecuado; adicionalmente pueden purificarse mediante recristalización o técnicas cromatográficas conocidas en el estado de la técnica.
Una realización adicional de la invención comprende además la etapa de formar los isocianatos correspondientes a partir de los carbamatos fluorados de fórmula general (I) obtenidos mediante el procedimiento objeto de la invención.
Síntesis de isocianatos Por otra parte, es conocido que los carbamatos, mediante termólisis, pueden experimentar reacciones . de eliminación de alcoholes para rendir isocianatos. Esta reacción exige generalmente la presencia de catalizadores. Sin embargo, los carbamatos fluorados obtenidos mediante el procedimiento objeto de la invención pueden rendir fácilmente isocianatos por eliminación de los correspondientes alcoholes fluorados, incluso en ausencia de catalizadores. Por ello, son especialmente adecuados para la síntesis de mono y poliisocianatos .
Los métodos para la transformación de carbamatos fluorados en sus correspondientes isocianatos son conocidos por el experto en la materia. Por ejemplo, ver WO 98/54128.
Asi, la reacción entre una amina de fórmula (I) RiNH2 con un carbonato fluorado de fórmula (OR) (OR' ) C=O, donde Ri, R y R' son como se definen anteriormente, de acuerdo con el procedimiento de la presente invención, produce un carbamato fluorado de, por ejemplo, fórmula (RiNH) (C=O) (OR) , el cual puede transformarse en un isocianato de fórmula Ri-N=C=O mediante los métodos antes mencionados, como por ejemplo, termólisis.
Definiciones
"Alquilo" se refiere a un radical de cadena hidrocarbonada lineal o ramificada que consiste en átomos de carbono e hidrógeno, que no contiene insaturación, que tiene entre 1 y 20 átomos de carbono, preferiblemente 1 a 12, más preferiblemente de 1 a 8 átomos de carbono, y que está unido al resto de la molécula mediante un enlace sencillo, por ejemplo, metilo, etilo, n-propilo, i- propilo, n-butilo, t-butilo o n-pentilo.
"Alquilideno" se refiere a un radical de cadena hidrocarbonada lineal o ramificada que consiste en átomos de carbono e hidrógeno, que no contiene insaturación, que tiene entre 1 y 20 átomos de carbono, preferiblemente 1 a 12, más preferiblemente de 1 a 8 átomos de carbono, y que está unido al resto de la molécula mediante dos enlaces sencillos distintos, por ejemplo, metilideno, etilideno, 1, 3-propilideno, 1, 4-butilideno, o 2, 4-pentilideno.
"Cicloalquilo" significa preferiblemente una fracción de hidrocarburo aliciclico saturado monociclico, lineal o ramificado, que tiene entre 3 y 20 átomos de carbono, preferiblemente 3 a 12, más preferiblemente de 3 a 8 átomos de carbono, tal como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, cicloheptilo, metil ciclohexilo, dimetil ciclohexilo y similares. "Alquenilo" significa preferiblemente una fracción de hidrocarburo alifático monovalente insaturado, lineal o ramificado, que contiene 1, 2 o más dobles enlaces carbono-carbono conjugados o no conjugados, preferiblemente 1, 2 ó 3, que tiene entre 2 y 20 átomos de carbono, preferiblemente 2 a 12, más preferiblemente de 2 a 8 átomos de carbono, tal como -CH=CH2, -CH2CH=CH2, -CH=CH-CH2, -C(CH3)=CH2, -CH=CH-CH=CH2, y similares;
"Cicloalquenilo" significa preferiblemente una fracción de hidrocarburo aliciclico no aromático monociclico que contiene 1, 2 ó más dobles enlaces carbono-carbono conjugados o no conjugados, preferiblemente 1, 2 ó 3, que tiene entre 4 y 20 átomos de carbono, preferiblemente 4 a 12, más preferiblemente de 4 a 8 átomos de carbono, lineales o ramificados, tal como ciclopentenilo, metil ciclopentenilo, ciclopentadienilo, ciclohexenilo, y similares.
"Alquinilo" significa preferiblemente una fracción de hidrocarburo alifático monovalente insaturado, lineal o ramificada, que contiene 1, 2 o más triples enlaces carbono-carbono conjugados o no conjugados, preferiblemente 1, 2 ó 3, que tiene entre 2 y 20 átomos de carbono, preferiblemente 2 a 12, más preferiblemente de 2 a 8 átomos de carbono, tal como -CCH, -CH2CCH, CCCH3, -CH2CCCH3, y similares.
"Cicloalquinilo" significa preferiblemente una fracción de hidrocarburo aliciclico no aromático monociclico que contiene 1 o más triples enlaces carbono- carbono conjugados o no conjugados, preferiblemente 1, 2 ó 3, que tiene entre 7 y 20 átomos de carbono, preferiblemente 7 a 12, más preferiblemente de 7 a 8 átomos de carbono, lineales o ramificados, tal como ciclopentinilo, metil ciclopentinilo, ciclohexinilo, y similares .
"Arilo" significa preferiblemente una fracción de hidrocarburo monociclico o policiclico, que tiene entre 6 y 15 átomos de carbono, preferiblemente 6 a 12, más preferiblemente de 6 a 8 átomos de carbono, que comprende 1, 2, 3 ó 4 núcleos aromáticos, dichos núcleos estando unidos con, condensados entre ellos y/o covalentemente enlazados unos con otros, tal como fenilo, bifenilo, terfenilo, naftilo, antracenilo, fenantrenilo, indenilo y similares;
"Arilalquilo" se refiere a un grupo arilo unido a un grupo alquilo, que tiene entre 7 y 15 átomos de carbono, preferiblemente 7 a 12, más preferiblemente de 7 u 8 átomos de carbono, estando el grupo alquilo unido al resto de la molécula, tal como bencilo y fenetilo.
"Alquilarilo" se refiere a un grupo alquilo unido a un grupo arilo, que tiene entre 7 y 15 átomos de carbono, preferiblemente 7 a 12, preferiblemente de 7 u 8 átomos de carbono, estando el grupo arilo unido al resto de la molécula. Las referencias del presente documento a grupos sustituidos en los compuestos de la presente invención se refieren al resto especificado que puede estar sustituido en una o más posiciones disponibles por uno o más grupos adecuados, por ejemplo, un grupo fluoro; un grupo trifluorometilo; un grupo alcanoilo Ci-Cβ tal como acetilo y similares; grupos alquilo que incluyen aquellos grupos que tienen de 1 a 12 átomos de carbono, más preferiblemente 1-3 átomos de carbono; grupos alquenilo y alquinilo; grupos alcoxilo de 1 a 12 átomos de carbono. A menos que se indique lo contrario, un grupo opcionalmente sustituido puede tener un sustituyente en cada posición sustituible del grupo, y cada sustitución es independiente de la otra. Por tanto y como ejemplo no limitativo, un grupo arilo sustituido representa fluoro-fenilo, tolilo, trifluorometil fenilo, anisilo, 2, 5-dimetoxi-fenilo y similares .
EJEMPLOS
A continuación se describirán ejemplos no limitativos de la presente invención, que incluyen ejemplos de síntesis de catalizadores y obtención de carbamatos con un carbonato fluorado y ejemplos comparativos de obtención de carbamatos con dimetil carbonato (DMC) .
1. Ejemplos de preparación de catalizadores descritos en la presente invención. 1.1 Preparación de zeolitas básicas de iones metálicos alcalinos .
Zeolitas del tipo faujasitas X ó Y sódicas comerciales u obtenidas por síntesis hidrotermal se someten a una serie de intercambios iónicos con disoluciones acuosas concentradas de sales de metales alcalinos potasio, rubidio y cesio en condiciones descritas en M. J. Climent, A. Corma, H. García and J. Primo, Appl. Catal., 1989, 51, 113-125. Asi a modo de ejemplo, para el caso del intercambio del Na+ por iones K+, 100 g de zeolita NaX se suspenden en un litro de una disolución acuosa 0,3 M de acetato de potasio. La suspensión se agita magnéticamente a temperatura ambiente durante tres horas. Transcurrido este tiempo, el sólido se recoge y se lava abundantemente con agua destilada. El proceso de intercambio iónico anterior se repite una segunda vez con una disolución acuosa 0,4 M de acetato potásico manteniendo la misma relación que para el primer intercambio. Finalmente, se lleva a cabo un tercer intercambio con una disolución 0,6 M de acetato potásico. Tras el tercer intercambio, la zeolita se recoge, se lava con abundante agua destilada y se seca a temperatura de 80 °C.
El intercambio con los otros iones alcalinos se lleva a cabo de idéntica manera, pero empleando disoluciones acuosas de la concentración indicada para el primer, segundo y tercer intercambio de acetato de rubidio y acetato de cesio.
El contenido en iones alcalinos y el porcentaje de intercambio se determina mediante análisis químico de las zeolitas, tras disgregar pesos conocidos de muestras sólidas deshidratadas con ácido fluorhídrico (40% en agua) conteniendo ácido nítrico (1 mi) . Tras la digestión completa a 50 °C, el licor resultante es analizado mediante absorción atómica cuantitativa. De acuerdo con el método descrito, los porcentajes de intercambio de Na+ por K+, Rb+ y Cs+ que se consiguen son de 95, 78 y 65 %, respectivamente .
La fuerza básica de los materiales es mayor para las muestras de zeolita X que para las muestras análogas de zeolita Y. Además la fuerza básica aumenta a medida que disminuye la relación carga/radio del catión alcalino. De acuerdo con la literatura química (A. Corma, V. Fornés, R. M. Martin-Aranda, H. García and J. Primo, Appl . Catal., 1990, 59, 237-248; A. Corma, R. M. Martin- Aranda and F. Sánchez, J. Catal., 1990, 126, 192- 198.), esta fuerza básica se puede medir llevando a cabo la reacción de Knoevenagel con benzaldehido empleando como metileno activo malonato de dietilo, 2-cianoacetato de etilo o malonodinitrilo o propanodinitrilo (N=C-CH2- C≡N) . Los rendimientos del producto de condensación en función del pKa del reactivo con metileno activo sirven para establecer la basicidad de los centros de la zeolita.
1.2 Preparación de zeolitas básicas conteniendo hidróxidos alcalinos.
Estas muestras se preparan por el método de impregnación a volumen de poro. En este procedimiento se determina el volumen de poro especifico de zeolita NaX o NaY comerciales u obtenidas por sintesis hidrotermal mediante adsorción isoterma de nitrógeno. Conocido el volumen de poro especifico de las muestras, se disuelve la cantidad deseada del hidróxido del metal alcalino en este volumen de agua destilada. Esta disolución básica se añade gota a gota bajo constante agitación sobre una muestra en polvo de zeolita NaX o NaY deshidratada por tratamiento térmico a 500 °C. Tras completar la adición, la agitación de la muestra pulverulenta se mantiene durante un mínimo de 5 h. Un ejemplo de estos materiales básicos consiste en la zeolita NaY conteniendo hidróxido de cesio (CsOH/NaY) . Este catalizador se prepara de acuerdo con el procedimiento de impregnación a volumen de poro añadiendo por cada 3 g de NaY deshidratado un mililitro de una disolución acuosa 0,1 M de Cs(OH) .
1.3 Preparación de aluminosilicatos mesoporosos básicos.
Se parte de un aluminosilicato mesoporoso estructurado y se procede bien al intercambio iónico con iones alcalinos o bien a la impregnación con hidróxidos alcalinos siguiendo los procedimientos descritos previamente para el caso de las zeolitas. Asi, un material mesoporoso con estructura hexagonal del tipo MCM-41 y con una relación Si/Al = 13 que presenta un volumen de poro de 0,76 mi g"1 se somete a un proceso de impregnación con 0,76 mi de una disolución acuosa 0,1 M de Cs(OH) para producir un material sólido básico que es capaz de actuar como catalizador de la formación de carbamatos fluoroalquilados de aminas aromáticas. 1.4 Preparación de óxidos metálicos básicos nanocristalinos .
Óxidos metálicos básicos con una alta área superficial pueden prepararse por descomposición de sales de estos metales con aniones oxidicos. Preferiblemente, los óxidos son los óxidos de los metales alcalinotérreos y en especial los óxidos de magnesio y de calcio. Estos se pueden preparar partiendo de disoluciones acuosas 1 M de los correspondientes acetatos. Estas disoluciones se mezclan con cantidades equivalentes de oxalato de sodio. El precipitado resultante se recoge, se lava con abundante agua destilada y se seca en estufa a 80 °C. La calcinación de estos oxalatos se lleva a cabo en lecho fino bajo atmósfera de nitrógeno en un horno con temperatura programada con una rampa inicial de 5 0CXmIn"1 hasta los 550 0C.
1.5 Preparación de hidrotalcitas laminares.
Un ejemplo de hidrotalcitas laminares como catalizadores básicos es la hidrotalcita de magnesio y aluminio en una relación atómica Mg: Al de 3:1 conteniendo en las regiones interlaminares iones carbonato como aniones de compensación de carga. Estos catalizadores básicos se preparan de acuerdo con los procedimientos descritos en la literatura química (M. J. Climent, A. Corma, V. Fornes, A. Frau, R. Guil-Lopez, S. Iborra and J. Primo, Journal of Catalysis, 1996, 163, 392-398) . El protocolo consiste en la mezcla de volúmenes idénticos de dos disoluciones acuosas. La primera disolución contiene una mezcla en proporciones atómicas 3:1 de nitrato de magnesio (1,0 M) y nitrato de aluminio (0,3 M). La segunda disolución contiene carbonato de sodio (0,1 M) . Mediante bombas perfusoras se van añadiendo a una velocidad de 60 mlxh"1 volúmenes iguales de ambas disoluciones en un matraz con agitación constante. La disolución resultante contiene las siguientes relaciones molares CO3 2"/ (Al+Mg) =0, 666 y OH"/ (Al+Mg) =2, 55. El pH final después de mezclar ambas disoluciones es de 13 unidades. El gel resultante se calienta en autoclave a 200 °C durante 18 h. Finalmente, el producto se filtra y se lava hasta que el pH de las aguas de lavado sea 7. El material se seca a 80 °C durante 12 h.
1.6 Preparación de óxidos mixtos doble laminares a partir de hidrotalcitas.
La calcinación de hidrotalcitas en condiciones controladas y ausencia de humedad da lugar a la formación de óxidos mixtos amorfos. La transformación se puede seguir por difracción de rayos X donde tras el tratamiento térmico se observa la desaparición del pico de difracción (1.0.0). Asi, una muestra de hidrotalcita de magnesio y aluminio en su forma carbonato se coloca en un horno elevándose gradualmente la temperatura desde el ambiente hasta los 450 °C. Esta temperatura se mantiene durante 18 h. El óxido mixto resultante muestra actividad como catalizador básico para la carbamoilación del 2,4- diaminotolueno . 1.7 Aluminofosfatos nitrogenados.
El aluminofosfato precursor (AlPO4) con una relación P/Al de 0,9 se preparó por precipitación siguiendo el método descrito por Lindblad et al (T. Lindblad, B. Rebenstorf, Y. Zhi-Guang, S. Lars and T. Andersson, Appl. Cat . A, 1994, 112, 187) . El procedimiento de nitridation del aluminofosfato se llevó a cabo con un flujo de amoniaco gas (85 mi min'1) a 700 0C durante 70 h. La muestra resultante tiene un área superficial especifica de 192 ITi2Xg"1 y un porcentaje de P, Al y N del 23,9, 24,6 y 8,9 %, respectivamente.
2. Ejemplos de formación de carbamatos fluorados:
2.1. Preparación del bis carbamato de 0-2,2,2- trifluoroetilo de la 2, 4-toluendiamina : [2, 4-bis (2, 2, 2- trifluroetiloxicarbonilamino) tolueno] , empleando hidrotalcita de magnesio y aluminio como catalizador.
2, 4-Toluendiamina (1,22 g) se añade a bis (2,2,2- trifluoroetil) carbonato (67,8 g, 30 equivalentes) y la mezcla se calienta a 60 °C. Cuando la mezcla alcanza esta temperatura se añade hidrotalcita de magnesio y aluminio (relación atómica Mg/Al = 3) en su forma carbonato (60 mg) . La suspensión se agita magnéticamente durante 1 h. Transcurrido ese tiempo, la mezcla se deja enfriar a temperatura ambiente y el sólido se separa por filtración. La fase liquida se deja cristalizar a temperatura ambiente, recogiéndose un sólido que corresponde al bis carbamato de 0-2, 2, 2-trifluoroetilo de la toluendiamina con un grado de pureza superior al 90 %. El rendimiento de la reacción es 95 % con respecto a la 2, 4-toluendiamina. El carbamato se puede recristalizar en 2, 2, 2-trifluoroetanol . Propiedades físicas: Punto de fusión 119 °C; IR número de onda (cirf1) : 3286, 2981, 1708, 1546, 1772, 1087, RMN 1H δ (ppm) : 2,35, 4,60, 7,02, 7,26, 7,90.
Comparación de los resultados descritos con los que resultan cuando se emplea el carbonato de dimetilo.
Si en lugar del carbonato de bis (2, 2, 2-trifluoretilo) se utiliza el carbonato de dimetilo y se opera en las mismas relaciones molares que en el ejemplo anterior, con el mismo catalizador y bajo las mismas condiciones operacionales se obtiene a las 21 h de reacción una conversión del 45 % donde el crudo de reacción está compuesto por una mezcla compleja, en la que en claro contraste con los resultados observados para reactivos fluorados, está formada exclusivamente por productos de N-metilación (>95 % selectividad) , no siendo detectable en la mezcla de reacción el producto de di N- carbamoilación .
2.2. Preparación del bis carbamato de 0-2,2,2- trifluoroetilo de la 2, 4-toluendiamina: [2, 4-bis (2, 2, 2- trifluroetiloxicarbonilamino) tolueno] empleando óxido de magnesio nanocristalino como catalizador. 2, 4-Toluendiamina (1,22 g) se añade a bis (2,2,2- trifluoroetil) carbonato (67,8 g, 30 equivalentes) y la mezcla se calienta a 105 0C. Cuando la mezcla alcanza esta temperatura se añade óxido de magnesio nanocristalino (tamaño promedio de particula 20 nm) (60 mg) . La suspensión se agita magnéticamente durante 1 h. Transcurrido ese tiempo, la mezcla se deja enfriar a temperatura ambiente y el sólido se separa por filtración. Análisis del crudo de reacción muestra la presencia del producto de dicarbamoilación en una selectividad del 90 % acompañado del producto de para- monocarbamoilación en un 5 % . La fase liquida se deja cristalizar a temperatura ambiente, recogiéndose un sólido que corresponde al bis carbamato de 0-2,2,2- trifluoroetilo de la 2, 4-toluendiamina con un grado de pureza superior al 90 %. El rendimiento de la reacción es 80 % con respecto a la 2, 4-toluendiamina. De manera análoga, en las mismas condiciones pero empleando óxido de magnesio nanocristalino se obtiene para el carbonato de dimetilo como reactivo una conversión de 2, 4-toluenediamina del 38 % y una distribución de productos formada por productos de mono-, di- y tri- metilación (selectividad global de N- metilación >95 %) y donde el producto de di N- carbamoilación no puede ser detectado por cromatografia de gases.
2.3. Sintesis del bis carbamato de 0-2, 2, 2-trifluoroetilo del 4, 4' -diaminodifenilmetano. 4, 4' -Diaminodifenilmetano (1,98 g) se añaden al carbonato de bis (2, 2, 2-trifluoretilo) (67,8 g, 30 equivalentes) y la mezcla se calienta a 60 °C. Cuando la mezcla alcanza esta temperatura se añade hidrotalcita de magnesio y aluminio (relación atómica Mg/Al = 3) en su forma carbonato (100 mg) . La suspensión se agita magnéticamente durante 1 h. Transcurrido ese tiempo, la mezcla se deja enfriar a temperatura ambiente y el sólido se separa por filtración. La fase liquida se deja cristalizar a temperatura ambiente, recogiéndose un sólido que corresponde al bis carbamato de 0-2, 2, 2-trifluoroetilo del 4 , 4' -diaminodifenilmetano con un grado de pureza superior al 90 %. El rendimiento de la reacción es 90 % con respecto al 4, 4' -diaminodifenilmetano. El carbamato se puede recristalizar en 2, 2, 2-trifluoroetanol . RMN 1H δ: 7,52, 7,04, 4,60, 3,81 ppm.
2.4. Síntesis del carbamato de 2, 2, 2-trifluoroetilo de la ciclohexilamina .
Ciclohexilamina (0,99 g) se añade lentamente al carbonato de bis (2,2,2-trifluoroetilo) (22,6 g, 10 equivalentes) . La mezcla se agita a temperatura ambiente y se añade hidrotalcita de magnesio y aluminio (relación atómica Mg/Al = 3) en su forma carbonato (50 mg) . La suspensión se agita magnéticamente durante 1 h. Transcurrido ese tiempo, se separan los sólidos por filtración. El carbamato de 0-2, 2, 2-trifluoroetilo de la ciclohexilamina se separa del catalizador por extracción con etanol caliente. El etanol se deja enfriar a temperatura ambiente recogiéndose el carbamato fluoroado por cristalización con un grado de pureza superior al 95 %. El rendimiento de la reacción es 95 % con respecto a la ciclohexilamina. RMN 1H δ: 4,60, 3,54, 1,66, 1,44 ppm.
2.5. Preparación del bis carbamato de 0- ( 2,2,2- trifluoroetilo) de la 1, 2-etilendiamina.
1, 2-Etilendiamina (0,6 g) se añade lentamente a temperatura ambiente al carbonato de 2, 2, 2-trifluoroetilo (45,2 g, 20 equivalentes) . A continuación se añade hidrotalcita de magnesio y aluminio (relación atómica Mg/Al 3) en su forma carbonato (30 mg) . La suspensión se agita magnéticamente durante 1 h. Transcurrido ese tiempo, la fracción sólida se separa por filtración. El carbamato de O- (2, 2, 2-trifluoroetilo) de la 1,2- etilendiamina se separa de la hidrotalcita por disolución en etanol caliente. Tras dejar enfriar el etanol, el carbamato poli fluorado de la etilendiamina se recoge por filtración con una pureza del 90 %. El rendimiento de la reacción es 90 % con respecto a la 1, 2-etilendiamina .

Claims

Reivindicaciones
1. Procedimiento para producir carbamatos fluorados que comprende la reacción entre una amina o poliamina y un carbonato fluorado de fórmula (OR) (OR') C=O, en donde R y R' se seleccionan independientemente de un grupo alquilo fluorado sustituido o no sustituido con 1 a 20 átomos de carbono, caracterizado porque el procedimiento se realiza en presencia de un catalizador heterogéneo básico seleccionado del grupo que consiste en: un hidróxido doble laminar, un óxido metálico básico, un óxido mixto doble laminar, una zeolita básica, un material mesoporoso básico, un hidróxido de metal alcalino soportado en zeolita, un aluminofosfato amorfo y/o cristalino triturado, o combinaciones de los mismos.
2. Procedimiento según la reivindicación 1, en donde el hidróxido doble laminar tiene la fórmula general (II):
[M1VxM111 X ( OH ) 2 ] x+ (An~ ) x/n - mH20 ( I I )
donde M11 es uno o más cationes metálicos divalentes, M111 es uno o más cationes metálicos trivalentes, A es un anión de carga n-; x varia entre 0,1 y 0,5; n es 1, 2, 3 ó 4 ; y donde el contenido en agua de hidratación está comprendido entre 0 y 55% con respecto al peso total del hidróxido doble laminar.
3. Procedimiento según la reivindicación 2, donde M11 es un metal alcalinotérreo solo o combinado con otros cationes metálicos divalentes seleccionados del grupo que consiste en Cd, Cu, Zn, Ni, Fe, Co y Mn.
4. Procedimiento según la reivindicación 3, donde el metal alcalinotérreo es magnesio.
5. Procedimiento según cualquiera de las reivindicaciones 2 a 4, donde M111 es un catión metálico trivalente del grupo IIIA, solo o en combinación con otros metales trivalentes seleccionados de Ni, Co, Fe, Mn, Cr, V, Ti y Sc.
6. Procedimiento según la reivindicación 5, donde el metal del grupo IIIA es el catión aluminio.
7. Procedimiento según cualquiera de las reivindicaciones 2 a 6, donde A es un anión escogido entre el grupo que consiste en CO3 2", NO3 ", OH", Cl", F", I", Br", ClO4 " o combinaciones de los mismos.
8. Procedimiento según la reivindicación 7, donde el anión A es CO3 2".
9. Procedimiento según cualquiera de las reivindicaciones anteriores, donde el hidróxido doble laminar es una hidrotalcita que tiene la fórmula general (III) :
Mg2xAl2 ( OH ) 4X+4CO3 mH20 ( I I I ) en donde x está comprendido entre 0,1 y 0,5; y en donde el contenido en agua de hidratación en el material está comprendido entre 0 y 55% con respecto al peso total del material.
10. Procedimiento según cualquiera de las reivindicaciones 2 a 9, donde x está comprendido entre 0,2 y 0,33.
11. Procedimiento según cualquiera de las reivindicaciones anteriores, donde el contenido en agua de hidratación en el material está comprendido entre 10 y 40% con respecto al peso total del material.
12. Procedimiento según la reivindicación 11, donde el contenido en agua de hidratación en el material está comprendido entre 20 y 35% con respecto al peso total del material .
13. Procedimiento según cualquiera de las reivindicaciones anteriores, en donde el carbonato fluorado se selecciona del grupo que consiste en carbonato de bis (2-fluoroetilo) , carbonato de bis (3- fluoropropilo) , carbonato de bis (2, 2, 2-trifluoroetilo) , carbonato de bis (1, 3-difluoro-2-propilo) , carbonato de bis (1, 1, 1-tri fluoro-2-propilo) , carbonato de bis (2, 2, 3, 3-tetrafluoro propilo), carbonato de bis (2, 2, 3, 3, 3-pentafluoropropilo) , carbonato de bis(l- fluoro-2-butilo) , carbonato de bis (2-fluoro-1-butilo) , carbonato de bis (1-fluoro-2-metil-2-propilo) , carbonato de bis (2-fluoro-2-metil-l-propilo) , carbonato de bis (IH, IH, 2H, 2H-perfluoro-1-hexilo) , carbonato de bis (perfluorooctilo) y carbonato de bis (1,1,1,3,3,3- hexafluoro-2-propilo) ; preferentemente el carbonato de bis (2,2,2-trifluoroetilo) .
14. Procedimiento según cualquiera de las reivindicaciones anteriores, en donde la amina o poliamina es una amina de fórmula (I)
R1(NHz)3 (I) donde Ri se selecciona del grupo que consiste en alquilo sustituido o no sustituido con 1 a 20 átomos de carbono, arilo sustituido o no sustituido con 6 a 15 átomos de carbono, arilalquilo sustituido o no sustituido con 7 a 15 átomos de carbono, alquenilo sustituido o no sustituido con 2 a 20 átomos de carbono, alquinilo sustituido o no sustituido con 2 a 20 átomos de carbono, cicloalquilo sustituido o no sustituido con 3 a 20 átomos de carbono, cicloalquenilo sustituido o no sustituido con 4 a 20 átomos de carbono y cicloalquinilo sustituido o no sustituido con 5 a 20 átomos de carbono; y a es 1, 2, 3, 4, 5 ó 6.
15. Procedimiento la reivindicación 14 en donde dicha amina o poliamina se selecciona del grupo que consiste en n-propilamina, isopropilamina, n-butilamina, n-hexilamina, n-octilamina, laurilamina, ciclopentilamina, ciclohexilamina, ciclooctilamina, 1, 2-diaminoetano, 1, 12-diaminododecano,
1, 4-diaminociclohexano, 1,3-bis (aminometil) ciclohexano, 1, 4-bis (aminometil) ciclohexano, anilina, bencilamina, 2- aminotolueno, 4-aminotolueno, 2, 4 ' -diaminodifenilmetano, 4,4' -diaminodifenilmetano, 2,2' -diaminodifenilmetano, 2, 4-toluendiamina, 2, 6-toluendiamina, m-fenilendiamina, 1,5-diamino naftaleno y mezclas de las mismas.
16. Procedimiento según cualquiera de las reivindicaciones anteriores, en donde la reacción se lleva a cabo a temperaturas de entre 20 y 150°C y presión suficiente como para mantener los reactivos en fase liquida.
17. Procedimiento según cualquiera de las reivindicaciones anteriores, que comprende el paso adicional de transformar los carbamatos fluorados obtenidos en el correspondiente isocianato.
18. Uso de un catalizador heterogéneo básico seleccionado del grupo que consiste en: un hidróxido doble laminar, un óxido metálico básico, un óxido mixto doble laminar, una zeolita básica, un material mesoporoso básico, un hidróxido de metal alcalino soportado en zeolita, un aluminofosfato amorfo y/o cristalino triturado, o combinaciones de los mismos, para la producción de carbamatos fluorados.
PCT/ES2008/000062 2008-02-06 2008-02-06 Procedimiento de producción de isocianatos y carbamatos fluorados con catalizadores heterogéneos WO2009098327A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/ES2008/000062 WO2009098327A1 (es) 2008-02-06 2008-02-06 Procedimiento de producción de isocianatos y carbamatos fluorados con catalizadores heterogéneos
ARP090100340A AR072340A1 (es) 2008-02-06 2009-02-02 Procedimiento de produccion de isocianatos y carbamatos fluorados con catalizadores heterogeneos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2008/000062 WO2009098327A1 (es) 2008-02-06 2008-02-06 Procedimiento de producción de isocianatos y carbamatos fluorados con catalizadores heterogéneos

Publications (1)

Publication Number Publication Date
WO2009098327A1 true WO2009098327A1 (es) 2009-08-13

Family

ID=40951797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000062 WO2009098327A1 (es) 2008-02-06 2008-02-06 Procedimiento de producción de isocianatos y carbamatos fluorados con catalizadores heterogéneos

Country Status (2)

Country Link
AR (1) AR072340A1 (es)
WO (1) WO2009098327A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125429A1 (ja) 2010-04-02 2011-10-13 旭硝子株式会社 カルバメート化合物の製造方法、カルバメート化合物、およびこれを用いたイソシアネート化合物の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999047493A1 (en) * 1998-03-17 1999-09-23 Huntsman Ici Chemicals Llc Method for the preparation of organic carbamates
WO2005063698A1 (en) * 2003-12-31 2005-07-14 Council Of Scientific & Industrial Research Process for preparing carbamates
WO2007015852A2 (en) * 2005-07-20 2007-02-08 Dow Global Technologies Inc. Heterogeneous supported catalytic carbamate process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999047493A1 (en) * 1998-03-17 1999-09-23 Huntsman Ici Chemicals Llc Method for the preparation of organic carbamates
WO2005063698A1 (en) * 2003-12-31 2005-07-14 Council Of Scientific & Industrial Research Process for preparing carbamates
WO2007015852A2 (en) * 2005-07-20 2007-02-08 Dow Global Technologies Inc. Heterogeneous supported catalytic carbamate process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125429A1 (ja) 2010-04-02 2011-10-13 旭硝子株式会社 カルバメート化合物の製造方法、カルバメート化合物、およびこれを用いたイソシアネート化合物の製造方法
CN102834373A (zh) * 2010-04-02 2012-12-19 旭硝子株式会社 氨基甲酸酯化合物的制造方法、氨基甲酸酯化合物、以及使用它制造异氰酸酯化合物的方法
CN102834373B (zh) * 2010-04-02 2014-07-23 旭硝子株式会社 氨基甲酸酯化合物的制造方法、氨基甲酸酯化合物、以及使用它制造异氰酸酯化合物的方法
US8927756B2 (en) 2010-04-02 2015-01-06 Asahi Glass Company, Limited Method for producing carbamate compound, carbamate compound, and method for producing isocyanate compound using same
JP5682622B2 (ja) * 2010-04-02 2015-03-11 旭硝子株式会社 カルバメート化合物の製造方法、カルバメート化合物、およびこれを用いたイソシアネート化合物の製造方法
US9260383B2 (en) 2010-04-02 2016-02-16 Asahi Glass Company, Limited Method for producing carbamate compound, carbamate compound, and method for producing isocyanate compound using same

Also Published As

Publication number Publication date
AR072340A1 (es) 2010-08-25

Similar Documents

Publication Publication Date Title
US20150011787A1 (en) Process for preparing organic-inorganic hybrid silicates and metal-silicates with an ordered structure and new hybrid silicates and metal-silicates
EP0055045B1 (en) Production of ethers
PT1499331E (pt) Solução de sal para limpeza do cólon
WO2010000888A1 (es) Preparación de carbamatos con catalizadores sólidos
CN109926040B (zh) 一种制备异佛尔酮的多相催化剂及其制备和应用
US8623321B1 (en) UZM-44 aluminosilicate zeolite
US7651677B1 (en) Method of preparing SSZ-74
Baikousi et al. Thiamine pyrophosphate intercalation in layered double hydroxides (LDHs): An active bio-hybrid catalyst for pyruvate decarboxylation
US11104637B2 (en) Process for the conversion of monoethanolamine to ethylenediamine employing a copper-modified zeolite of the MOR framework structure
CN105408254A (zh) 外表面积增加的沸石ssz-70
US5350722A (en) MTW-type zeolite and its preparation process
JPS5869846A (ja) メチルアミンの製法
CN109689572A (zh) 具有mww骨架结构的含硼沸石的固热合成
US5338525A (en) MFI-type zeolite and its preparation process
CN102311125A (zh) 一种高结晶度euo型分子筛的制备方法
CN109153577A (zh) 通过沸石间转化合成硅铝酸盐沸石ssz-26
US7344697B2 (en) Microporous crystalline zeolite material, zeolite ITQ-28, production method thereof and use of same
WO2009098327A1 (es) Procedimiento de producción de isocianatos y carbamatos fluorados con catalizadores heterogéneos
US8226925B2 (en) Microporous crystalline material of zeolitic nature, zeolite ITQ-39, method of preparation and uses
JP7483916B2 (ja) 無機固体シリルスルホン酸及び/又はリン酸触媒及びその製造方法と応用
Yuan et al. Preparation and characterization of L-aspartic acid-intercalated layered double hydroxide
TWI411578B (zh) Synthesis of a Small Grain Rare Earth - ZSM5 / ZSM11 Co - Crystallized Zeolite
EP0703898B1 (en) Improved zeolite zk-5 catalyst for conversion of methanol and ammonia to monomethylamine and dimethylamine
CN102311127B (zh) 一种小晶粒mcm-22分子筛的制备方法
KR20210037773A (ko) 제올라이트 pst-32 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08736666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08736666

Country of ref document: EP

Kind code of ref document: A1