WO2009098302A1 - Schnüffellecksucher nach dem referenzmessprinzip - Google Patents

Schnüffellecksucher nach dem referenzmessprinzip Download PDF

Info

Publication number
WO2009098302A1
WO2009098302A1 PCT/EP2009/051394 EP2009051394W WO2009098302A1 WO 2009098302 A1 WO2009098302 A1 WO 2009098302A1 EP 2009051394 W EP2009051394 W EP 2009051394W WO 2009098302 A1 WO2009098302 A1 WO 2009098302A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
suction port
gas suction
schnüffellecksucher
reference gas
Prior art date
Application number
PCT/EP2009/051394
Other languages
English (en)
French (fr)
Inventor
Werner Grosse Bley
Ludolf Gerdau
Gerhard KÜSTER
Ulrich DÖBLER
Original Assignee
Inficon Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inficon Gmbh filed Critical Inficon Gmbh
Priority to CN200980104172.0A priority Critical patent/CN101939628B/zh
Priority to US12/865,643 priority patent/US8528386B2/en
Priority to EP09709061A priority patent/EP2238422B1/de
Priority to AT09709061T priority patent/ATE557269T1/de
Priority to ES09709061T priority patent/ES2390711T3/es
Priority to JP2010545486A priority patent/JP5520234B2/ja
Publication of WO2009098302A1 publication Critical patent/WO2009098302A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/202Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material using mass spectrometer detection systems
    • G01M3/205Accessories or associated equipment; Pump constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/202Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material using mass spectrometer detection systems

Definitions

  • the invention relates to a Schnüffellecksucher according to the reference measuring principle, with a vacuum pump device containing a basic device connected to the base unit via a hose handpiece with sniffer tip, a sample gas suction port for sucking sample gas, a reference gas suction port for aspiration of reference gas and with a gas analyzer Determination of the concentrations of sample gas and reference gas.
  • WO 00/55603 describes a sniffer leak detector according to the reference measuring principle, which has a reference gas suction opening in addition to a sample gas suction opening. Sniffing leak detection is often used on test specimens containing refrigerants or hydrocarbons. In this case, the media present in the test specimen serve as test gas. If there is a leak, get to it _ O _
  • sniffer leak detector This contains a gas analyzer that can detect the test gas.
  • the problem with sniffer leak detection is that not only the test gas escaping from an existing leak is sucked in, but also gas from the vicinity of the sniffer tip. If these ambient gases contain low concentrations of the test gas, which may originate, for example, from previously detected leaks or from the filling station of a production line, these are also registered by the gas detector.
  • WO 02/48686 A2 describes a sniffer leak detector which likewise has a sample gas suction opening and a reference gas suction opening. Both intake ports are mutually connected through a switching valve to the inlet of a cuvette which is connected to a vacuum pumping device.
  • Refrigerators and air conditioning systems are increasingly using CO 2 as the refrigerant.
  • CO 2 is contained in high concentration in the exhalation air of the operator.
  • the sample gas suction port is located at the end of the sniffer tip, while the reference gas suction port is arranged laterally and last. Therefore, it may happen that a stream of breathing air of the operator Reference gas intake meets. In such a case, the device detects a "negative leak" because the concentration of CO 2 in the ambient air of the measuring point is higher than at the measuring point itself.
  • the invention has for its object to provide a sniffer leak detector according to the reference measurement principle, which provides reliable results regardless of any currents in the ambient air and improves the leak detection and leakage rating.
  • the sniffer leak detector according to the present invention is defined by claim 1. It is characterized in that the sample gas suction port and the reference gas intake port are arranged at the sniffer tip substantially parallel to each other.
  • the sample gas suction port is placed by the operator directly at the leak site to be inspected, while the reference gas suction port is laterally spaced therefrom but aligned with the same main direction.
  • the fact that the two intake openings are arranged substantially parallel to one another means that they can have a small angular deviation. This is a maximum of 15 degrees and in particular a maximum of 10 degrees.
  • the advantage of the invention is found in a dynamically moving atmosphere in which transverse flows are present. Such cross flows can occur by inhalation or exhalation of the operator.
  • the directional selectivity of the measuring sensitivity is achieved by the arrangement of the suction openings on the sniffer tip by both suction openings act in the same direction.
  • the suction openings may each be designed as a single opening or as a multiple opening, for example as individual holes or as a pore structure of a porous body. It is also possible to use a membrane which is permeable to the sample gas.
  • the reference gas intake opening is preferably arranged offset from the sample gas intake opening. This ensures that the sample gas suction port can be placed directly at the measurement location, while the reference intake port has a greater distance from the measurement point and thus can suck in more ambient air.
  • the sniffer tip should be designed so that a highly symmetrical gas transport to the detection system takes place.
  • the length and volume of the two gas channels leading from the sniffer tip to the gas analyzer should be approximately equal.
  • the gas inlets at the sniffer tip are coaxial to each other or rotationally symmetric.
  • the shape of the sniffer tip must be such that the sample gas suction opening, despite its proximity to the reference gas suction opening, causes a certain separation of the gas streams.
  • annular gap can again be designed as an opening, individual holes or membrane.
  • the sniffer corner finder operates with gas modulation.
  • the measurement gas and the reference gas are alternately supplied to the measurement in the detection system by alternately sucking through the sample gas suction port and the reference gas suction port. This creates an approximately sinusoidal signal whose amplitude represents the difference between the measurement and reference gas concentration.
  • Switching between sample gas and reference gas is effected by a switching valve which is controlled by a lock-in unit.
  • the differential amplitude is integrated phase-sensitive to the valve switching frequency. As a result, interference signals with the wrong frequency and / or phase angle are filtered out.
  • the detection system must have a sufficiently short time constant so that no signal intensity is lost due to insufficient modulation amplitude.
  • the time constant of the detection system should be equal to the reciprocal of the modulation frequency.
  • the modulation frequency must be high enough to enable dynamic leak localization. This means that the operator can move the sniffer tip at a sufficiently high speed without missing a leak.
  • a typical modulation frequency is on the order of 3Hz.
  • the material of the sniffer tip can be extremely hard depending on the use or abrasion resistant and elastic.
  • the switching valve for the gas streams can be arranged in or at the sniffer tip or at the end of the two gas transport lines, the switching valve should have the smallest possible dead volume and a sufficient Last grillfestmaschine to withstand continuous operation at the respective modulation frequency over a long period.
  • Fig. 1 shows a first embodiment of the sniffer leak detector, in which the
  • Fig. 2 shows an embodiment in which the gas analyzer a
  • FIG. 3 shows a schematic illustration of a sniffer tip with channel openings distributed around the sample gas suction opening
  • Fig. 4 shows an embodiment of the sniffer tip with coaxial
  • Fig. 5 shows another embodiment which is particularly robust
  • the Schnüffellecksucher shown in Figure 1 has a trained as a handle handpiece 10, which is connected via a hose 11 to a base unit 12. From the front end of the elongate handpiece 10 is a sniffer tip 13 from.
  • the sniffer tip consists of an elongated tube containing two separate channels. The one channel ends The plane of this suction opening is perpendicular to the longitudinal axis of the sniffer tip 13. The other channel terminates at the reference gas suction port 15, which is arranged slightly back and whose surface is parallel to that of the suction port 14.
  • the base unit 12 includes, among other things, a vacuum pumping device. Through the hose 11, the vacuum is transferred to the handpiece 10.
  • the handpiece 10 includes a gas analyzer (not shown). This consists here of an infrared gas analyzer, which is able to selectively detect the gas CO 2 . Such a gas analyzer is of simple and compact design, so that it can be accommodated in a handle.
  • the power supply is via the hose 11 through the base unit 12.
  • the handpiece 10 also contains the control buttons, such as a button 16, with which the operator triggers the implementation of the measurement. Characterized in that the reference gas suction port 15 is arranged substantially rectified to the sample gas suction, it is achieved that gas is sucked from both suction ports from the same direction.
  • Figure 2 shows another embodiment of the sniffer leak detector in which a mass spectrometer is used as the detection system.
  • a mass spectrometer means more equipment, but offers the advantages of highest selectivity, high sensitivity and great flexibility in the type of gases to be analyzed.
  • the sniffer tip 13 contains a sample gas line 20, which communicates with the sample gas intake opening 14, and a reference gas line 21 extending coaxially therewith, which communicates with the reference gas intake opening 15. Both lines extend through the tube 11 through to the base unit 12.
  • the base unit a switching valve 22 is included, which is designed here as a 3/2-way valve. This means that the valve has three connections and two alternative switching paths.
  • An inlet 22a is connected to the conduit 20 connected and another inlet 22b is connected to the line 21.
  • the outlet 22c of the switching valve is connected to a gas analyzer 25, which is a mass spectrometer.
  • the mass spectrometer needs a high vacuum.
  • a vacuum pumping device 26 is provided from a roughing pump 27 and a high vacuum pump 28 in the form of a turbomolecular pump.
  • a throttle 29th At the entrance of the gas analyzer 25 is a throttle 29th
  • the measuring signal of the gas analyzer 25 is fed via a line 30 to a lock-in unit 31.
  • This provides an output signal to a display 32 or other display device.
  • the lock-in unit 31 also controls the solenoid 33 of the switching valve 22.
  • the lock- ⁇ n unit receives a clock signal from a timer and, in a corresponding rhythm, reverses the switching valve 22 so that the inlet 22a and the inlet 22b alternately turn on Outlet 22c is connected.
  • FIGS. 3, 4 and 5 show various embodiments of the sniffer tip.
  • Figure 3 shows an embodiment of the sniffer tip 13a, with a tube 35 having the sample gas suction port 14 at its front end.
  • the pipe wall run microchannels that form the reference gas suction port 15 in their entirety.
  • the microchannels surround the sample gas intake opening 14 at regular angular intervals. They are connected to the line 21, while the sample gas suction port 14 is connected to the line 20. Both lines lead to the switching valve 22, which is designed and controlled in the same way as that of Figure 2.
  • FIG. 4 shows a sniffer tip 13b with an outer tube 35 and an inner tube 40 arranged coaxially therein.
  • the inner tube 40 forms the sample gas suction opening 14 and the annular space between the two tubes forms the reference gas suction opening 15.
  • the inner tube 40 stands towards the outer tube 35 forward.
  • the sniffer tip 13c which contains the two lines 20 and 21, made of an abrasion-resistant elastic material. It has at the front end a rounded tip 42, which has the sample gas suction opening 14 at its apex. Further opening, which are arranged on the dome, form in their entirety the reference gas intake opening 15.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Ein Schnüffellecksucher weist ein Handstück (10) mit einer Schnüffelspitze (13) auf. An der Schnüffelspitze befindet sich eine Messgas-Ansaugöffnung (14) und eine Referenzgas-Ansaugöffnung (15). Die Referenzgas-Ansaugöffnung (15) dient zum Ansaugen von Umgebungsgas. Erfindungsgemäß ist sie im wesentlichen gleich ausgerichtet wie die Messgas-Ansaugöffnung (14), so dass beide Ansaugöffnungen in derselben Richtung empfindlich sind.

Description

Unser Zeichen: 082807WO/Sg/rp
Schnüffellecksucher nach dem Referenzmessprinzip
Die Erfindung betrifft einen Schnüffellecksucher nach dem Referenzmessprinzip, mit einem eine Vakuumpumpvorrichtung enthaltenden Grundgerät, einem mit dem Grundgerät über einen Schlauch verbundenen Handstück mit Schnüffelspitze, einer Messgas-Ansaugöffnung zum Ansaugen von Messgas, einer Referenzgas-Ansaugöffnung zum Ansaugen von Referenzgas und mit einem Gasanalysator zur Feststellung der Konzentrationen von Messgas und Referenzgas.
In WO 00/55603 ist ein Schnüffellecksucher nach dem Referenzmessprinzip beschrieben, der außer einer Messgas-Ansaugöffnung eine Referenzgas- Ansaugöffnung aufweist. Die Schnüffellecksuche wird häufig bei Prüflingen eingesetzt, die Kältemittel oder Kohlenwasserstoffe enthalten. Hierbei dienen die im Prüfling vorhandenen Medien als Testgas. Ist ein Leck vorhanden, gelangen _ O _
geringe Mengen des jeweiligen Testgases zum Schnüffellecksucher. Dieser enthält einen Gasanalysator, der das Testgas erkennen kann. Bei der Schnüffellecksuche besteht das Problem, dass nicht nur das aus einem vorhandenen Leck austretende Testgas angesaugt wird, sondern auch Gas aus der Umgebung der Schnüffelspitze. Enthalten diese aus der Umgebung stammenden Gase geringe Konzentrationen des Testgases, das beispielsweise aus früher festgestellten Lecks oder aus der Füllstation einer Produktionslinie stammen kann, so werden diese ebenfalls vom Gasdetektor registriert. Um eine Unterscheidung zwischen Messgas und Umgebungsgas vorzunehmen, wird vorgeschlagen, im Gasanalysator eine Mess-Küvette und eine Referenz-Küvette vorzusehen, wodurch ein Messgassignal und ein Referenzgassignal erhalten werden. Beide werden in dem Lock-in-Verstärker so verarbeitet, dass das jeweilige Nutzsignal einer Modulation und anschließend einer phasenempfindlichen Gleichrichtung unterzogen wird. Auf diese Weise erhält man ein Nutzsignal, das die Differenz des Messsignals gegenüber dem Referenzsignal repräsentiert.
In WO 02/48686 A2 ist ein Schnüffellecksucher beschrieben, der ebenfalls eine Messgas-Ansaugöffnung und eine Referenzgas-Ansaugöffnung aufweist. Beide Ansaugöffnungen werden durch ein Schaltventil wechselseitig mit dem Einlass einer Küvette verbunden, welche an eine Vakuumpumpvorrichtung angeschlossen ist.
In Kühlschränken und Klimaanlagen wird zunehmend als Kältemittel CO2 eingesetzt. Bei der Dichtheitsprüfung derartiger Geräte ist als Testgas CO2 in der Umgebungsluft nachzuweisen. CO2 ist in hoher Konzentration in der Ausatmungsluft der Bedienungsperson enthalten. Bei den üblichen Schnüffellecksuchern nach dem Referenzmessprinzip ist die Messgas- Ansaugöffnung am Ende der Schnüffelspitze angeordnet, während die Referenzgas-Ansaugöffnung seitlich und zurückliegend angeordnet ist. Daher kann es vorkommen, dass ein Strom von Atemluft der Bedienungsperson die Referenzgas-Ansaugöffnung trifft. In einem solchen Fall stellt das Gerät ein „negatives Leck" fest, weil die Konzentration von CO2 in der Umgebungsluft der Messstelle höher ist als an der Messstelle selbst.
Der Erfindung liegt die Aufgabe zugrunde, einen Schnüffellecksucher nach dem Referenzmessprinzip zu schaffen, der unabhängig von etwaigen Strömungen in der Umgebungsluft zuverlässige Ergebnisse liefert und die Leckerkennung und Leckbewertung verbessert.
Der Schnüffellecksucher nach der vorliegenden Erfindung ist durch den Patentanspruch 1 definiert. Er ist dadurch gekennzeichnet, dass die Messgas- Ansaugöffnung und die Referenzgas-Ansaugöffnung an der Schnüffelspitze im wesentlichen parallel zueinander angeordnet sind.
Dadurch, dass die beiden Ansaugöffnungen im wesentlichen parallel sind, wird erreicht, dass sie Luft generell aus derselben Richtung ansaugen. Folglich wird das Messergebnis durch eine zufällige bzw. vorübergehende Querströmung der Luft nicht wesentlich verfälscht. Die Messgas-Ansaugöffnung wird von dem Bediener direkt an der auf Leckage zu prüfenden Stelle platziert, während die Referenzgas-Ansaugöffnung sich in seitlichem Abstand davon befindet, jedoch auf dieselbe Hauptrichtung ausgerichtet ist.
Dass die beiden Ansaugöffnungen im wesentlichen parallel zueinander angeordnet sind, bedeutet, dass sie eine geringe Winkelabweichung haben können. Diese beträgt maximal 15 Winkelgrade und insbesondere maximal 10 Winkelgrade. Der Vorteil der Erfindung zeigt sich bei einer dynamisch bewegten Atmosphäre, in der Querströmungen vorhanden sind. Solche Querströmungen können durch Ein- oder Ausatmung der Bedienungsperson auftreten. Hier wird durch die Anordnung der Ansaugöffnungen an der Schnüffelspitze eine Richtungsselektivität der Messempfindlichkeit erreicht, indem beide Ansaugöffnungen in dieselbe Richtung wirken. Die Ansaugöffnungen können jeweils als Einzelöffnung ausgebildet sein oder als Mehrfach-Öffnung, beispielsweise als einzelne Bohrungen oder als Porenstruktur eines porösen Körpers. Es ist auch möglich, eine Membran zu verwenden, die für das Messgas durchlässig ist.
Vorzugsweise ist die Referenzgas-Ansaugöffnung gegenüber der Messgas- Ansaugöffnung zurückversetzt angeordnet. Dadurch wird erreicht, dass die Messgas-Ansaugöffnung direkt am Messort platziert werden kann, während die Referenzansaugöffnung einen größeren Abstand von der Messstelle hat und somit mehr Umgebungsluft einsaugen kann.
Die Schnüffelspitze sollte so ausgebildet sein, dass ein hochsymmetrischer Gastransport zum Nachweissystem erfolgt. Dazu sollten Länge und Volumen der beiden Gaskanäle, die von der Schnüffelspitze zum Gasanalysator führen, annähernd gleich sein. Vorzugsweise sind die Gaseintritte an der Schnüffelspitze koaxial zueinander bzw. rotationssymmetrisch. Die Form der Schnüffelspitze muss so sein, dass die Messgas-Ansaugöffnung trotz ihrer Nähe zur Referenzgas- Ansaugöffnung eine gewisse Trennung der Gasströme bewirkt.
Beim industriellen Gebrauch von Schnüffellecksuchern sind die Anforderungen an die Robustheit der Geräte sehr hoch. Dies liegt einerseits an der rauen Arbeitsumgebung und andererseits an der intensiven Dauerbenutzung der Geräte. Für die Gestaltung der Schnüffelspitze gibt es verschiedene Möglichkeiten der Ausführung:
1. Zentrales Rohr, das leicht vorsteht gegenüber einem offenen Ringspalt um das Rohr herum,
2. zentrales, vorstehendes Rohr umgeben von einer Reihe von Mikrokanälen, die in eine Referenzgasleitung münden, wobei die Kanäle, _ C _
a. diskret gebohrt oder geätzt sind b. als poröser Filterkörper ausgebildet sind,
3. zentrales, vorstehendes Rohr umgeben von einer ringförmigen Membrane, die in eine Referenzgasleitung mündet,
4. Halbkugel- oder Halbellipsoidform mit Messgasöffnung zentral am höchsten Punkt und Ringspalt etwas „tiefer". Hierbei kann der Ringspalt wiederum ausgebildet sein als Öffnung, einzelne Löcher oder Membrane.
Der erfindungsgemäße Schnüffellecksucher nach dem Referenzmessprinzip arbeitet mit Gasmodulation. Das Messgas und das Referenzgas werden abwechselnd der Messung im Nachweissystem zugeführt, indem abwechselnd durch die Messgas-Ansaugöffnung und die Referenzgas-Ansaugöffnung angesaugt wird. Dadurch entsteht ein annähernd sinusförmiges Signal, dessen Amplitude die Differenz von Mess- und Referenzgaskonzentration repräsentiert. Das Umschalten zwischen Messgas und Referenzgas erfolgt durch ein Schaltventil, das von einer Lock-in-Einheit gesteuert ist. Die Differenzamplitude wird phasenempfindlich zur Ventilschaltfrequenz integriert. Dadurch werden Störsignale mit falscher Frequenz und/oder Phasenlage herausgefiltert. Das Nachweissystem muss eine genügend kurze Zeitkonstante besitzen, damit keine Signalintensität durch ungenügende Modulationsamplitude verloren geht. Mindestens sollte die Zeitkonstante des Nachweissystems gleich dem Kehrwert der Modulationsfrequenz sein. Andererseits muss die Modulationsfrequenz so hoch sein, dass eine dynamische Lecklokalisierung ermöglicht wird. Dies bedeutet, dass der Bediener die Schnüffelspitze mit hinreichend hoher Geschwindigkeit bewegen kann ohne ein Leck zu verpassen. Eine typische Modulationsfrequenz liegt in der Größenordnung von 3Hz. Das Material der Schnüffelspitze kann je nach Verwendung extrem hart sein oder abriebfest und elastisch. Das Schaltventil für die Gasströme kann in oder an der Schnüffelspitze angeordnet sein oder auch am Ende der beiden Gastransportleitungen, Das Schaltventil sollte ein möglichst kleines Totvolumen besitzen und eine ausreichende Lastwechselfestigkeit, um im Dauerbetrieb bei der jeweiligen Modulationsfrequenz über einen langen Zeitraum standzuhalten.
Im Folgenden werden unter Bezugnahme auf die Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert.
Es zeigen:
Fig. 1 eine erste Ausführungsform des Schnüffellecksuchers, bei dem der
Gasanalysator in das Handstück integriert ist,
Fig. 2 eine Ausführungsform, bei der der Gasanalysator ein
Massenspektrometer ist,
Fig. 3 eine schematische Darstellung einer Schnüffelspitze mit verteilt um die Messgas-Ansaugöffnung angeordneten Kanalöffnungen,
Fig. 4 eine Ausführungsform der Schnüffelspitze mit koaxialen
Ansaugöffnungen und
Fig. 5 eine weitere Ausführungsform, die sich besonders für robuste
Einsätze eignet.
Der in Figur 1 dargestellte Schnüffellecksucher weist ein als Handgriff ausgebildetes Handstück 10 auf, das über einen Schlauch 11 mit einem Grundgerät 12 verbunden ist. Vom vorderen Ende des länglichen Handstücks 10 steht eine Schnüffelspitze 13 ab. Die Schnüffelspitze besteht aus einem langgestreckten Rohr, das zwei getrennte Kanäle enthält. Der eine Kanal endet an der vorderen Messgas-Ansaugöffnung 14. Die Ebene dieser Ansaugöffnung ist rechtwinklig zur Längsachse der Schnüffelspitze 13. Der andere Kanal endet an der Referenzgas-Ansaugöffnung 15, die etwas zurückliegend angeordnet ist und deren Fläche parallel zu derjenigen der Ansaugöffnung 14 verläuft.
Das Grundgerät 12 enthält unter anderem eine Vakuumpumpvorrichtung. Durch den Schlauch 11 wird das Vakuum zum Handstück 10 übertragen. Das Handstück 10 enthält einen (nicht dargestellten) Gasanalysator. Dieser besteht hier aus einem Infrarot-Gasanalysator, der imstande ist, selektiv das Gas CO2 zu detektieren. Ein solcher Gasanalysator ist von einfacher und kompakter Bauweise, so dass er in einem Handgriff untergebracht werden kann. Die Stromversorgung geschieht über den Schlauch 11 durch das Grundgerät 12. Das Handstück 10 enthält auch die Bedienungsknöpfe, beispielsweise einen Knopf 16, mit dem der Bediener die Durchführung der Messung auslöst. Dadurch, dass die Referenzgas-Ansaugöffnung 15 im wesentlichen gleichgerichtet zu der Messgas- Ansaugöffnung angeordnet ist, wird erreicht, dass Gas von beiden Ansaugöffnungen aus derselben Richtung angesaugt wird.
Figur 2 zeigt eine andere Ausführungsform des Schnüffellecksuchers, bei dem als Nachweissystem ein Massenspektrometer benutzt wird. Ein Massenspektrometer bedeutet einen höheren Geräteaufwand, bietet jedoch die Vorteile höchster Selektivität, höchster Empfindlichkeit und großer Flexibilität bezüglich der Art der zu analysierenden Gase.
Gemäß Figur 2 enthält die Schnüffelspitze 13 eine Messgasleitung 20, die mit der Messgas-Ansaugöffnung 14 in Verbindung steht und eine hierzu koaxial verlaufende Referenzgasleitung 21, die mit der Referenzgas-Ansaugöffnung 15 in Verbindung steht. Beide Leitungen verlaufen durch den Schlauch 11 hindurch zu dem Grundgerät 12. Im Grundgerät ist ein Schaltventil 22 enthalten, das hier als 3/2-Wegeventil ausgebildet ist. Dies bedeutet, dass das Ventil drei Anschlüsse und zwei alternative Schaltwege hat. Ein Einlass 22a ist mit der Leitung 20 verbunden und ein anderen Einlass 22b ist mit der Leitung 21 verbunden. Der Auslass 22c des Schaltventils ist mit einem Gasanalysator 25 verbunden, bei dem es sich hier um ein Massenspektrometer handelt. Das Massenspektrometer benötigt ein Hochvakuum. Zu diesem Zweck ist eine Vakuumpumpvorrichtung 26 aus einer Vorvakuumpumpe 27 und einer Hochvakuumpumpe 28 in Form einer Turbomolekularpumpe vorgesehen. Am Eingang des Gasanalysators 25 befindet sich eine Drossel 29.
Das Messsignal des Gasanalysators 25 wird über eine Leitung 30 einer Lock-in- Einheit 31 zugeführt. Diese liefert ein Ausgangssignal an ein Display 32 oder eine andere Anzeigevorrichtung. Die Lock-in-Einheϊt 31 steuert außerdem den Elektromagneten 33 des Schaltventils 22. Die Lock-ϊn-Einheit empfängt von einem Taktgeber ein Taktsignal und steuert in entsprechendem Rhythmus das Schaltventil 22 um, so dass abwechselnd der Einlass 22a und der Einlass 22b mit dem Auslass 22c verbunden wird.
In den Figuren 3, 4 und 5 sind verschiedene Ausführungsformen der Schnüffelspitze dargestellt. Figur 3 zeigt eine Ausführungsform der Schnüffelspitze 13a, mit einem Rohr 35, das an seinem vorderen Ende die Messgas-Ansaugöffnung 14 aufweist. In der Rohrwand verlaufen Mikrokanäle, die in ihrer Gesamtheit die Referenzgas-Ansaugöffnung 15 bilden. Die Mikrokanäle umgeben die Messgas-Ansaugöffnung 14 in gleichmäßigen Winkelabständen. Sie sind mit der Leitung 21 verbunden, während die Messgas-Ansaugöffnung 14 mit der Leitung 20 verbunden ist. Beide Leitungen führen zu dem Schaltventil 22, das in gleicher Weise ausgebildet und gesteuert ist, wie dasjenige von Figur 2.
Figur 4 zeigt eine Schnüffelspitze 13b mit einem äußeren Rohr 35 und einem darin koaxial angeordneten inneren Rohr 40. Das innere Rohr 40 bildet die Messgas-Ansaugöffnung 14 und der Ringraum zwischen den beiden Rohren bildet die Referenzgas-Ansaugöffnung 15. Vorzugsweise steht das innere Rohr 40 gegenüber dem äußeren Rohr 35 nach vorne vor. Bei dem Ausführuπgsbeispiel von Figur 5 besteht die Schnüffelspitze 13c, die die beiden Leitungen 20 und 21 enthält, aus einem abriebfesten elastischen Material. Sie weist am vorderen Ende eine abgerundete Kuppe 42 auf, die in ihrem Scheitelpunkt die Messgas-Ansaugöffnung 14 aufweist. Weitere Öffnung, die an der Kuppe angeordnet sind, bilden in ihrer Gesamtheit die Referenzgas- Ansaugöffnung 15.

Claims

Patentansprüche
1. Schnüffellecksucher nach dem Referenzmessprinzip, mit einem eine Vakuumpumpvorrichtung (26) enthaltenden Grundgerät (12), einem mit dem Grundgerät über einen Schlauch (11) verbundenen Handstück (10) mit Schnüffelspitze (13), einer Messgas-Ansaugöffnung (14) zum Ansaugen von Messgas, einer Referenzgas-Ansaugöffnung (15) zum Ansaugen von Referenzgas und mit einem Gasanalysator (25) zur Feststellung der Konzentrationen von Messgas und Referenzgas,
d a d u r c h g e k e n n z e i c h n e t,
dass die Messgas-Ansaugöffnung (14) und die Referenzgas-Ansaugöffnung (15) an der Schnüffelspitze (13) im wesentlichen parallel zueinander angeordnet sind.
2. Schnüffellecksucher nach Anspruch 1, dadurch gekennzeichnet, dass die Referenzgas-Ansaugöffnung (15) gegenüber der Messgas-Ansaugöffnung (14) zurückversetzt angeordnet ist.
3. Schnüffellecksucher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Referenzgas-Ansaugöffnung (15) um die Messgas-Ansaugöffnung (14) herum angeordnet ist.
4. Schnüffellecksucher nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass die Referenzgas-Ansaugöffnung (15) aus mehreren Kanalöffnung besteht, die einen die Messgas-Ansaugöffnung (14) umgebenden Ring bilden.
5. Schnüffellecksucher nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass die Schnüffelspitze (13) aus einem abriebfesten elastischen Material besteht.
6. Schnüffellecksucher nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass die Schnüffelspitze (13c) eine abgerundete Kuppe (42) aufweist, an der die Ansaugöffnungen (14, 15) angeordnet sind.
7. Schnüffellecksucher nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass ein Schaltventil (22) vorgesehen ist, das abwechselnd die Messgas-Ansaugöffnung (14) und die Referenzgas- Ansaugöffnung (15) mit dem Gasanalysator (25) verbindet.
8. Schnüffellecksucher nach Anspruch 7, dadurch gekennzeichnet, dass das Schaltventil (22) von einer Lock-in-Einheit (31) gesteuert ist, welche die Signale des Gasanalysators (25) phasensynchron mit der Umschaltung des Schaltventils (22) verarbeitet.
PCT/EP2009/051394 2008-02-08 2009-02-06 Schnüffellecksucher nach dem referenzmessprinzip WO2009098302A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200980104172.0A CN101939628B (zh) 2008-02-08 2009-02-06 根据参考测量原理的嗅吸检漏器
US12/865,643 US8528386B2 (en) 2008-02-08 2009-02-06 Sniffing leak detector according to the reference measurement principle
EP09709061A EP2238422B1 (de) 2008-02-08 2009-02-06 Schnüffellecksucher nach dem referenzmessprinzip
AT09709061T ATE557269T1 (de) 2008-02-08 2009-02-06 Schnüffellecksucher nach dem referenzmessprinzip
ES09709061T ES2390711T3 (es) 2008-02-08 2009-02-06 Detector de fugas de rastreo según el principio de medición de referencia
JP2010545486A JP5520234B2 (ja) 2008-02-08 2009-02-06 基準測定法に基づく吸込み式漏れ検出器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008008262.7 2008-02-08
DE102008008262A DE102008008262A1 (de) 2008-02-08 2008-02-08 Schnüffellecksucher nach dem Referenzmessprinzip

Publications (1)

Publication Number Publication Date
WO2009098302A1 true WO2009098302A1 (de) 2009-08-13

Family

ID=40551276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/051394 WO2009098302A1 (de) 2008-02-08 2009-02-06 Schnüffellecksucher nach dem referenzmessprinzip

Country Status (8)

Country Link
US (1) US8528386B2 (de)
EP (1) EP2238422B1 (de)
JP (1) JP5520234B2 (de)
CN (1) CN101939628B (de)
AT (1) ATE557269T1 (de)
DE (1) DE102008008262A1 (de)
ES (1) ES2390711T3 (de)
WO (1) WO2009098302A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019211378A1 (de) 2018-05-04 2019-11-07 Inficon Gmbh Verfahren zum ermitteln der relativen lage eines gaslecks
EP3567356A1 (de) 2018-05-07 2019-11-13 Inficon GmbH Schüffellecksucher mit schaltventil und pufferkammer

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110122381A1 (en) 2009-11-25 2011-05-26 Kevin Hickerson Imaging Assembly
DE102010055195B4 (de) * 2010-12-20 2018-04-26 INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH Vorrichtung und Verfahren zur Dichtheitsprüfung an geschlossenen hohlen Bauteilen und Verpackungen
JP5757837B2 (ja) * 2011-10-11 2015-08-05 ジーエルサイエンス株式会社 ガスリ−クディテクタ−
AU2012215342B2 (en) * 2012-05-02 2017-04-13 Wilco Ag Method of detecting a propellant gas
DE102013209438A1 (de) * 2013-05-22 2014-11-27 Inficon Gmbh Schnüffellecksucher mit nanoporöser Membrane
CN104132781A (zh) * 2014-08-15 2014-11-05 珠海格力电器股份有限公司 一种提高冷媒泄漏检测结果准确性的检漏仪
DE102015001443B3 (de) * 2015-02-09 2016-05-25 Schütz GmbH Meßtechnik Gasspürgerät und Gasmessverfahren
EP3206019A1 (de) * 2016-02-11 2017-08-16 Inficon GmbH Verfahren zur quantifizierung der menge von optisch interferierenden gasverunreinigungen
EP3208591A1 (de) 2016-02-17 2017-08-23 Inficon GmbH Vakuumglockensonde und verfahren zur leckerkennung
DE102016217891A1 (de) * 2016-09-19 2018-03-22 Inficon Gmbh Füllsondenaufsatz mit langgestrecktem gasleitendem Element
FR3069639B1 (fr) * 2017-07-26 2019-08-30 Pfeiffer Vacuum Sonde de reniflage, detecteur de fuites et procede de detection de fuites
DE102017217374A1 (de) * 2017-09-29 2019-04-04 Inficon Gmbh Vorrichtung und Verfahren zur Unterscheidung eines aus einem Leck austretenden Prüfgases von Störgas
CN108760157A (zh) * 2018-04-10 2018-11-06 格力电器(芜湖)有限公司 一种气体检漏设备及其气体检漏枪头
USD943441S1 (en) * 2020-11-06 2022-02-15 Xuzhou Sinotemp Co., Ltd. Halogen leak detector
USD946436S1 (en) * 2020-11-13 2022-03-22 Fieldpiece Instruments, Inc. Leak detector
USD1005865S1 (en) * 2023-05-11 2023-11-28 Mucheng Zhu Combustible gas leak detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048686A2 (de) 2000-12-13 2002-06-20 Inficon Gmbh Verfahren zur feststellung eines gases mit hilfe eines infrarot-gas-analysators sowie für die durchführung dieser verfahren geeigneter gasanalysator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2018143A4 (es) * 1987-11-30 1991-04-01 Kent-Moore Corp Detector de fuga en refrigerante manual ultrasonico.
DE4316196C2 (de) * 1993-05-14 1994-07-28 Guenter Dr Vos Verfahren und Vorrichtung zur Gasanalyse
JPH0741441U (ja) * 1993-12-28 1995-07-21 株式会社島津製作所 リークデテクタ
JPH09159585A (ja) * 1995-12-04 1997-06-20 Shimadzu Corp ガス濃度測定装置
DE19911260A1 (de) 1999-03-13 2000-09-14 Leybold Vakuum Gmbh Infrarot-Gasanalysator und Verfahren zum Betrieb dieses Analysators
JP2002062212A (ja) * 2000-08-21 2002-02-28 Nkk Corp スニッファープローブ及びそれを用いた漏洩検査装置
US6401465B1 (en) * 2000-10-19 2002-06-11 Carrier Corporation Absorption chiller leak detection and location and checking hydrogen removing cells
DE10133567A1 (de) * 2001-07-13 2003-01-30 Inficon Gmbh Schnüffellecksucher und Verfahren zu seinem Betrieb
DE102004062102A1 (de) * 2004-12-23 2006-07-13 Inficon Gmbh Lecksuchgerät mit Schnüffelsonde
DE102005009713A1 (de) * 2005-03-03 2006-09-07 Inficon Gmbh Lecksuchgerät mit Schnüffelsonde
DE102005022157A1 (de) * 2005-05-13 2006-11-16 Inficon Gmbh Schnüffellecksuchgerät
DE102007043382A1 (de) * 2007-09-12 2009-03-19 Inficon Gmbh Schnüffellecksucher

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048686A2 (de) 2000-12-13 2002-06-20 Inficon Gmbh Verfahren zur feststellung eines gases mit hilfe eines infrarot-gas-analysators sowie für die durchführung dieser verfahren geeigneter gasanalysator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BÖHM, THOMAS: "A new type of refrigerant leak detector for leak tests in the refrigerating and air conditioning industry", NDT.NET, vol. 8, no. 01, January 2003 (2003-01-01), XP002524826, Retrieved from the Internet <URL:http://www.ndt.net/article/v08n01/boehm/boehm.htm> [retrieved on 20090422] *
THOMAS BÖHM: "A New Type of Refrigerant Leak Detector for Leak Tests in the Refrigerating and Air Conditioning Industry", NDT.NET, vol. 8, no. 01, January 2003 (2003-01-01)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019211378A1 (de) 2018-05-04 2019-11-07 Inficon Gmbh Verfahren zum ermitteln der relativen lage eines gaslecks
DE102018206877A1 (de) * 2018-05-04 2019-11-07 Inficon Gmbh Verfahren zum Ermitteln der relativen Lage eines Gaslecks
US11441969B2 (en) 2018-05-04 2022-09-13 Inficon Gmbh Method for determining the relative position of a gas leak
EP3567356A1 (de) 2018-05-07 2019-11-13 Inficon GmbH Schüffellecksucher mit schaltventil und pufferkammer
WO2019215080A1 (en) 2018-05-07 2019-11-14 Inficon Gmbh Sniffing leak detector with switching valve and buffer chamber
US11852562B2 (en) 2018-05-07 2023-12-26 Inficon Gmbh Sniffing leak detector with switching valve and buffer chamber

Also Published As

Publication number Publication date
JP5520234B2 (ja) 2014-06-11
CN101939628B (zh) 2015-08-05
ATE557269T1 (de) 2012-05-15
EP2238422A1 (de) 2010-10-13
US8528386B2 (en) 2013-09-10
ES2390711T3 (es) 2012-11-15
US20100326169A1 (en) 2010-12-30
CN101939628A (zh) 2011-01-05
DE102008008262A1 (de) 2009-08-13
EP2238422B1 (de) 2012-05-09
JP2011511294A (ja) 2011-04-07

Similar Documents

Publication Publication Date Title
EP2238422B1 (de) Schnüffellecksucher nach dem referenzmessprinzip
DE69021836T2 (de) Verdünnungssystem mit Mehrrohrströmungsteiler.
EP1924833B1 (de) Lecksuchgerät mit schnüffelsonde
EP2188608B1 (de) Schnüffellecksucher
EP3788340B1 (de) Verfahren zum ermitteln der relativen lage eines gaslecks
DE69618850T2 (de) Installation zum Nachweis von Helium in einem Flüssigkeitskreislauf
WO2002048686A2 (de) Verfahren zur feststellung eines gases mit hilfe eines infrarot-gas-analysators sowie für die durchführung dieser verfahren geeigneter gasanalysator
DE112019004472B4 (de) Ionenmobilitäts-Spektrometer mit gepulster Probenahme und Sniffer
EP1205741B1 (de) Leckdetektorpumpe mit Ventilkörpern im Gehäuse
DE112021002819T5 (de) Spurendetektionsvorrichtung
DE20303617U1 (de) Vorrichtung zur Atemalkoholmessung
DE102015222554A1 (de) Lecksuche mit Sauerstoff
WO2022135854A1 (de) Gaslecksuchvorrichtung und gaslecksuchverfahren zur erkennung eines gaslecks in einem prüfling
DE2827537A1 (de) Betriebsverfahren fuer eine einrichtung zur lecksuche, gasanalyse o.dgl. und dazu geeignete einrichtung
WO2017167738A1 (de) Gaslecksuche mit einer testgassprühvorrichtung
EP3688438B1 (de) Vorrichtung und verfahren zur unterscheidung eines aus einem leck austretenden prüfgases von störgas
EP0752095B1 (de) Testgas-lecksuchgerät
WO2006024442A1 (de) Vorrichtung zur verdünnung und analyse eines messfluids
AT524168B1 (de) Erkennungsverfahren für eine Erkennung von Leckagegas
DE102015102289A1 (de) Vorrichtung zur Entnahme von Proben aus einer in einer Leitung fließenden Prozessflüssigkeit
EP4356091A1 (de) Leckdetektionsvorrichtung
EP4196760A1 (de) Schnüffelsonde mit bypass-öffnung für einen gaslecksucher
DE20303747U1 (de) Probenehmer und Anordnung zur Probenahme für Analysen zur Bestimmung von Kontaminationen
EP0924456A2 (de) Staudrucklose Gaseinspeisung
DD264855A1 (de) Vorrichtung zur leckagepruefung von atemventilen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104172.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010545486

Country of ref document: JP

Ref document number: 2009709061

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12865643

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE