WO2009096490A1 - ペプチド固定化用溶液及びその利用 - Google Patents

ペプチド固定化用溶液及びその利用 Download PDF

Info

Publication number
WO2009096490A1
WO2009096490A1 PCT/JP2009/051504 JP2009051504W WO2009096490A1 WO 2009096490 A1 WO2009096490 A1 WO 2009096490A1 JP 2009051504 W JP2009051504 W JP 2009051504W WO 2009096490 A1 WO2009096490 A1 WO 2009096490A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
solid phase
phase carrier
surfactant
solution
Prior art date
Application number
PCT/JP2009/051504
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Honda
Tsutomu Kawabe
Mina Okochi
Miyoko Matsushima
Naoki Matsumoto
Mitsuo Kawase
Yasuko Yoshida
Tomokazu Takase
Original Assignee
National University Corporation Nagoya University
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya University, Ngk Insulators, Ltd. filed Critical National University Corporation Nagoya University
Priority to US12/864,619 priority Critical patent/US20110046015A1/en
Priority to JP2009551580A priority patent/JPWO2009096490A1/ja
Publication of WO2009096490A1 publication Critical patent/WO2009096490A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding

Definitions

  • the present invention relates to a peptide immobilization solution and use thereof, and more particularly to a peptide immobilization solution, a method for producing a solid phase carrier on which a peptide is immobilized, a peptide array, and a method for using a peptide array.
  • proteins and peptides have been attracting attention regarding mechanisms related to diseases.
  • Information on disease-related genes and their compounds / proteins encoding them has become available through genome analysis, but protein function analysis is required for actual diagnosis and drug discovery.
  • protein function analysis is required for actual diagnosis and drug discovery.
  • the present inventors have made various studies on a method for immobilizing a peptide on a solid phase carrier.
  • a peptide immobilization solution containing dissolved peptide contains sodium dodecyl sulfate and the like.
  • the present inventors have found that the amount of immobilization can be improved and the fluctuation of the amount of immobilization can be reduced by containing the surfactant. Based on this finding, the present inventors have completed the present invention. That is, according to the present invention, the following means are provided.
  • a peptide immobilization solution for immobilizing a peptide on a solid phase carrier A solution containing a surfactant.
  • the surfactant can increase the amount of the peptide immobilized on the solid phase carrier as compared with the case where a peptide immobilization solution not containing the surfactant is used.
  • the solution according to (1) which is an active agent.
  • the surfactant includes an anionic surfactant.
  • a supply method comprising: (10) The peptide supply step is a step of preparing a peptide immobilization solution containing the peptide and the surfactant and supplying the peptide immobilization solution on the solid phase carrier.
  • the solid support is plate-shaped,
  • the step of supplying the peptide immobilization solution is a step of discharging the peptide immobilization solution onto the solid phase carrier as droplets by a droplet discharge method by piezoelectric driving or electrostatic driving.
  • a method for producing a peptide-immobilized body in which a peptide is immobilized on a solid phase carrier Supplying the peptide to the solid phase carrier so as to form a state in which the peptide coexists with a surfactant on the solid phase carrier; Immobilizing the peptide supplied on the solid support on the solid support;
  • a manufacturing method comprising: (13) In the peptide supply step, one or more peptide immobilization solutions containing the peptide and a surfactant are prepared, and the peptide immobilization solution is supplied onto the solid phase carrier.
  • the manufacturing method according to (12) which is a process.
  • the surfactant includes sodium dodecyl sulfate.
  • the peptide immobilization solution further contains a salt.
  • the solid phase carrier is plate-shaped,
  • the peptide supply step is a step of discharging the peptide immobilization solution onto the solid phase carrier as droplets by a droplet discharge method using piezoelectric driving or electrostatic driving.
  • FIG. 2 is a diagram schematically showing the peptide array prepared in Example 1. It is a figure which shows the evaluation result about the fixed amount of the peptide obtained in Example 1.
  • FIG. It is a figure which shows the evaluation result about the spot diameter obtained in Example 1.
  • FIG. 3 is a diagram schematically showing the peptide array prepared in Example 2. It is a figure which shows the evaluation result of the storage stability of a peptide array. It is a figure which shows the evaluation result of the variation in the amount of immobilization about the same sample in a peptide array.
  • the present invention relates to a peptide immobilization solution and use thereof. That is, the present invention relates to a peptide immobilization solution, a method for supplying a peptide onto a solid phase carrier, a method for producing a solid phase carrier on which a peptide is retained, a solid phase carrier on which a peptide is retained, a peptide array, and a peptide array. It relates to usage.
  • a surfactant is also supplied on the solid phase carrier together with the peptide to be immobilized. . That is, a state in which the peptide and the surfactant coexist on the solid phase carrier is formed. When such a state is formed, the amount of peptide immobilized is increased, and the amount of peptide immobilized is stabilized.
  • the peptide exhibits a charge and polarity (nonpolarity) corresponding to the amino acid constituting it.
  • a surfactant having a hydrophobic group and a hydrophilic group interacts with such a peptide and adsorbs and orients it, thereby preparing an environment for discharging and immobilizing the peptide on the solid phase carrier. Such interaction between the peptide and the surfactant is presumed to contribute to the immobilization of the peptide on the solid phase carrier.
  • a good peptide immobilization amount can be obtained on the solid phase carrier.
  • a stable immobilization amount can be obtained on the solid phase carrier. Furthermore, a more reliable evaluation system can be constructed.
  • the solid phase carrier is used by the droplet discharge method. It is suitable for the supply form discharged as droplets.
  • FIG. 1 shows a state in which the peptide immobilization solution of the present invention is supplied as droplets on a solid phase carrier.
  • peptide means a compound formed by binding two or more amino acids by a peptide bond (—CO—NH—).
  • immobilization of peptide means that the “peptide” is immobilized on a solid phase carrier by some interaction with the surface thereof.
  • the interactions are not limited and include hydrogen bonds, dipole interactions, hydrophilic or hydrophobic interactions, ionic bonds, electrostatic bonds, covalent bonds, and the like.
  • the “solid phase carrier” means an object having at least a part of a solid phase on which a peptide is immobilized.
  • the solid phase carrier of the present invention is not particularly limited.
  • the property of the solid phase of the solid phase carrier is not limited.
  • the peptide immobilization solution is a solution for supplying at least a peptide on a solid phase carrier for the final purpose of immobilizing the peptide on the solid phase carrier. Peptides are present as solutes in this solution.
  • the solvent of this solution is preferably an aqueous medium.
  • the aqueous medium includes water or a mixed solution with an organic solvent compatible with water. Although it does not specifically limit as an organic solvent, DMSO etc. are mentioned.
  • the pH of the peptide immobilization solution is appropriately determined, but can be about 4 to 10.
  • the peptide to be immobilized in the peptide immobilization solution of the present invention may be naturally derived or synthesized.
  • Naturally-occurring peptides include naturally occurring peptides or fragments thereof.
  • Synthetic peptides may be chemically synthesized by, for example, a well-known solid phase synthesis method or may be synthesized by genetic engineering. Moreover, it may be modified and synthesized based on a naturally derived peptide.
  • the peptide to be immobilized is a peptide having an amino acid sequence of a substrate recognition site of a predetermined enzyme, a peptide having an amino acid sequence of a ligand recognition site that binds to a predetermined receptor, or a binding site of a predetermined receptor or an inhibitor of the enzyme
  • examples thereof include peptides having an amino acid sequence, peptides to which an antibody binds or peptides having an amino acid sequence serving as an epitope thereof, various physiologically active peptides such as cytokines and hormones, or peptides having an amino acid sequence of an active site thereof. It is sufficient that the peptide to be immobilized has the amino acid sequence as described above.
  • the peptide to be immobilized does not necessarily need to have a functional group that crosslinks or condenses with a functional group on the surface of the solid phase carrier, but does not exclude such chemical modification.
  • a functional group includes a cysteine or thiol group, an oxyamino group, etc., depending on the type of the functional group formed on the surface of the solid phase carrier.
  • the peptide to be immobilized may have an amino acid sequence that serves as an appropriate linker.
  • the linker is appropriately used when bonded to a solid phase carrier by chemical bonding or the like. It is preferable to modify the linker with a functional group necessary for chemical bond formation.
  • the number of amino acid residues constituting the linker is not particularly limited, but preferably does not exceed the length advantageous for immobilization as a whole.
  • the number of constituent amino acid residues of the peptide to be immobilized is not particularly limited, but in consideration of the immobilization ability, it is preferably 50 or less, more preferably 30 or less, and still more preferably 20 or less. . Furthermore, it is preferably 10 or less.
  • the number of amino acid residues of the peptide to be immobilized varies depending on the type of interaction to be evaluated, but may be 30 or less in consideration of synthesis difficulty, specificity and efficiency in screening, and the like. preferable. Moreover, when epitope search etc. are considered, More preferably, it is 20 or less. In view of the number of residues recognized by the antibody as an epitope and the necessity of a so-called linker site for avoiding steric hindrance, the number is preferably 6 or more.
  • a single peptide immobilization solution may contain only one kind of peptide or may contain two or more kinds of peptides. Only one type of peptide may be supplied and immobilized on one evaluation region on the solid phase carrier to evaluate the interaction between each peptide and the test sample, or two or more types of peptides may be included in one evaluation region. You may make it supply and evaluate the interaction of 2 or more types of peptides and a test sample.
  • the peptide immobilization solution of the present invention can contain a surfactant.
  • the surfactant is not limited as long as it can at least solubilize the peptide to be immobilized, but in comparison with the case of using a peptide immobilization solution that does not contain the surfactant, A surfactant capable of increasing the amount of the peptide immobilized on the carrier is preferred. By using such a surfactant, the amount of the peptide immobilized on the solid phase carrier can be increased.
  • Surfactants include ionic surfactants, nonionic surfactants, and amphoteric surfactants.
  • ionic surface activity can be preferably used. It is considered that the peptide is charged and the surfactant is preferably ionic as well in order to immobilize the peptide.
  • anionic surfactants include, for example, fatty acid salts such as fatty acid sodium (RCOOM), alkylbenzene sulfonates such as sodium alkylbenzene sulfonate (RSO 3 M), and sodium dodecyl sulfate (SDS).
  • Monoalkyl sulfate (RSO 4 M) (in the above, M represents an alkali metal such as sodium).
  • An anionic surfactant is preferable from the viewpoint of chemical stability and cost. More preferably, it is SDS from the viewpoint of abundant use results with respect to biomaterials.
  • Examples of the cationic surfactant include quaternary ammonium salts such as alkyltrimethylammonium salts, dialkyldimethylammonium salts, and alkylbenzyldimethylammonium salts, and alkylpyridiniums.
  • the peptide immobilization solution may contain only one type of surfactant, or may contain two or more types.
  • amphoteric surfactant can be preferably used in consideration of the orientation of the surfactant.
  • amphoteric surfactants include alkyl dimethylamine oxide and alkyl carboxybetaine.
  • nonionic surfactants can also be preferably used.
  • the nonionic surfactant include polyoxyethylene alkyl ether, fatty acid sorbitan ester, alkyl polyglucoside, fatty acid diethanolamide, and alkyl monoglyceryl ether.
  • the peptide immobilization solution can further contain a salt.
  • the salt is preferably one that does not impair the physiological activity of the peptide.
  • Examples of such salts include buffered phosphates and citrates.
  • the kind of the buffering salt is also appropriately selected according to the pH imparted to the peptide immobilization solution.
  • the peptide immobilization solution can further contain other solutes as necessary.
  • Solid phase carrier The structure of the solid phase of the solid phase carrier to which the peptide immobilization solution is applied is not particularly limited.
  • the solid phase may be dense, or may be porous having closed cells and / or open cells. It may be a knitted body, a woven body, an entangled body, or the like formed by combining various forms of fibrous bodies.
  • the shape of the solid support is not limited.
  • the solid support can be, for example, a flat sheet or plate, or a spherical shape. When arraying peptides, it is preferable to use a plate-like body as a solid phase carrier.
  • the surface on which the peptide is immobilized may be one surface of the solid support having such a shape, and if it has a wide surface of a flat solid support, a spherical surface, or a hollow part, it is the outer surface thereof. May also be the inner surface.
  • the material for such a solid phase carrier is not particularly limited. For example, natural materials such as glass, ceramics, plastic, metal, and wood may be used.
  • the surface on which the peptide of the solid phase carrier is immobilized is preferably hydrophilic considering the affinity with the peptide immobilization solution.
  • an ionic surfactant when used as the surfactant, it preferably has an ionic functional group opposite to the ion (anion and / or cation) of the surfactant.
  • a solid phase carrier itself has a functional group, or such a functional group is provided on the surface of the solid phase carrier.
  • Such a functional group is not particularly limited, and examples of the cationic functional group that becomes a cation when dissociated in water include amino groups such as a primary amino group and a secondary amino group, and imino groups.
  • examples of the anionic functional group that becomes an anion when dissociated in water include a carboxyl group, a phosphate group, and a sulfonate group.
  • the solid phase carrier can have a functional group capable of binding to the peptide or a separately added cross-linking agent on the surface thereof.
  • a functional group is not particularly limited, and examples thereof include an active ester group, an epoxy group, a maleimide group, a formyl group, and a benzylthioester group.
  • the peptide immobilization solution described above is supplied onto a solid phase carrier, and can form a state in which the peptide and the surfactant coexist on the solid phase carrier. As a result, the action described above can be exhibited.
  • the form in which the peptide immobilization solution is supplied to the solid phase carrier is not particularly limited. This is because the purpose of this solution is to form a coexistence state of the peptide and the surfactant on the solid phase carrier and to efficiently immobilize the peptide on the solid phase carrier.
  • such a solution is supplied as droplets on a solid support. This is because according to such a supply form, the peptides can be easily arrayed.
  • a contact method in which a pin contacts a solid phase carrier and a non-contact method through a liquid suitable discharge head used for ink jet or the like.
  • a non-contact method via a droplet ejection head is more preferable.
  • a droplet discharge head by piezoelectric driving or electrostatic driving is used. According to these driving methods, the denaturation of the peptide can be suppressed, and even the peptide immobilization solution containing the surfactant can suppress the generation of bubbles in the discharge channel.
  • each droplet can be discharged with high accuracy, and a large amount of peptide can be immobilized on the solid phase carrier with a stable amount of immobilization. Therefore, it is possible to easily form a peptide array with a good amount of immobilization and in which fluctuation of the amount of peptide immobilization between droplets (evaluation regions) is suppressed. Since peptides exhibit various characteristics depending on the amino acid composition, it is preferable to employ a piezoelectric driving system that has a large driving force (ejection force) and a large room for adjustment between peptides.
  • the method for supplying the peptide of the present invention onto a solid phase carrier comprises the step of supplying the peptide to the solid phase carrier so as to form a state in which the peptide coexists with a surfactant on the solid phase carrier. Can do. By forming such a state on the solid phase carrier, the peptide and the surfactant interact with each other, so that the peptide is easily immobilized on the solid phase carrier.
  • the peptide immobilization solution of the present invention containing a peptide and a surfactant can be prepared in advance, and this solution can be supplied as droplets on a solid phase carrier.
  • a droplet of peptide or surfactant may be supplied in advance on a solid phase carrier, and then the other droplet may be supplied in an overlapping manner.
  • the peptide or surfactant applied in advance may be in the form of droplets containing the peptide or surfactant, or may be solidified when the other is subsequently supplied onto the solid phase carrier. Good.
  • the peptide immobilization solution of the present invention is preferably used.
  • the solid phase carrier is formed into a plate-like body, and the peptide immobilization solution is converted into droplets by a droplet ejection method using piezoelectric driving or electrostatic driving. It is preferable to discharge onto a solid support.
  • the method for producing a solid phase carrier retaining the peptide of the present invention comprises a step of supplying the peptide to the solid phase carrier so as to form a state in which the peptide coexists with a surfactant on the solid phase carrier, Immobilizing on a solid support.
  • the peptide is easily fixed to the solid support by the interaction between the peptide and the surfactant. In this state, more peptides are immobilized on the solid phase carrier by immobilizing the peptide on the solid phase carrier.
  • the peptide can be immobilized while suppressing variations in the amount of immobilization.
  • the peptide supplying step is as already described in the method for supplying a peptide to a solid phase carrier of the present invention.
  • the method for immobilizing the peptide on the solid phase carrier is not particularly limited.
  • Peptide and surfactant are allowed to coexist in a suitable solvent, typically an aqueous medium, and then the aqueous medium is dried to distill off to allow interaction between the peptide and the solid support surface.
  • a suitable solvent typically an aqueous medium
  • the aqueous medium is dried to distill off to allow interaction between the peptide and the solid support surface.
  • / or the peptide can be immobilized on the solid support by the interaction between the surfactant and the solid support surface.
  • the peptide and / or solid phase carrier surface has a crosslinkable functional group, or the peptide can be immobilized on the solid phase via a covalent bond by including a crosslinker in the aqueous medium in addition to the peptide and the surfactant. It can be immobilized on a carrier.
  • treatment such as heating of the solid phase carrier can be performed as necessary.
  • the surfactant coexists with the peptide as it is.
  • a washing operation such as removing unreacted substances can be performed as necessary.
  • the surfactant may be substantially removed.
  • a peptide array can be produced by using a plate-like body as a solid phase carrier and supplying a peptide immobilization solution or the like onto the solid phase carrier in droplets. As already described, it is preferable to discharge the peptide immobilization solution onto the solid phase carrier as droplets by a droplet discharge method using piezoelectric driving or electrostatic driving. Variations in the amount of droplets supplied between droplets (evaluation regions) can be suppressed, and as a result, a peptide array can be produced in which variations in the amount of immobilized peptides are suppressed and the amount of immobilized peptides is good.
  • the peptide-immobilized product obtained by the production method of the present invention can have the following configuration. That is, the peptide-immobilized body includes a solid phase carrier, and an evaluation region that holds one or more peptides and one or more surfactants on the solid phase carrier, respectively. be able to. This solid phase is in a state before the surfactant is removed by washing or the like.
  • the evaluation area is an area prepared for evaluation of the peptide on the solid phase carrier. By immobilizing a peptide by coexisting a peptide and a surfactant in this evaluation region, the peptide can be an evaluation target.
  • a plate-like solid phase carrier is preferably prepared and formed by arranging such evaluation regions in a matrix.
  • peptide-immobilized body of the present invention an effective amount of peptide is retained in each evaluation region, and variation in the amount of peptide immobilization between evaluation regions is suppressed. For this reason, a more reliable evaluation system can be easily constructed.
  • the peptide array of the present invention comprises a plate-like solid phase carrier, two or more evaluation regions on the solid phase carrier, and one or more peptides and one or more surfactants. And an evaluation region for holding each of them.
  • the peptide array uses a plate-like body as a solid phase carrier in the peptide-immobilized body of the present invention, and a plurality of, preferably several tens or more evaluation regions are prepared in a matrix on the solid phase carrier. is there. According to such a peptide array, it is possible to evaluate with high reliability and efficiency with respect to an interaction that may be exhibited by many kinds of peptides.
  • the coefficient of variation of the peptide immobilization amount of the peptide immobilized on each evaluation region formed on the solid support can be 20% or less on average. More preferably, it is 10% or less, More preferably, it is 5% or less. When the coefficient of variation is 5% or less, quantitative analysis is possible as a clinical test tool.
  • the peptide array of the present invention can be used for detection and evaluation of various interactions between peptides and other substances. Since a quantitatively effective amount of the peptide can be immobilized in each evaluation region while suppressing variation, it is possible to evaluate with good detection accuracy and reproducibility, and it is possible to evaluate the interaction with high reliability.
  • the interaction detected by the peptide array of the present invention is not particularly limited.
  • substrate arrays of various enzymes such as protein kinase, protease, hydrolase, ligand array, inhibitor array, epitope array, and other physiologically active peptide arrays Can be mentioned.
  • the peptide to be immobilized In the peptide-immobilized body and peptide array of the present invention, the peptide to be immobilized, the surfactant, the solid phase carrier, the peptide supply form, etc. Various aspects described in the manufacturing method are applied as they are.
  • a peptide array was prepared using an inkjet type (piezoelectric drive type) microarray manufacturing apparatus. In order to evaluate the possibility of mass production, the array was manufactured under the condition that the time from the start to the end of the spot was equivalent to the production of 2000 sheets (including appropriate disposal). The peptide used was FITC-labeled so as to enable evaluation of the prepared array. Evaluation of the array was performed by measuring the amount of immobilization with a fluorescence scanner after immobilizing the peptide.
  • peptides As peptides, four types of peptides consisting of the amino acid sequences described in SEQ ID NOs: 1 to 4 were used and dissolved in the following solvents to obtain a peptide immobilization solution. Other peptide array production conditions were as follows.
  • Sequence number 1 NQFLYPYPYAKPAAVR Sequence number 2: STEVFTKKTKLTEEEK Sequence number 3: EKNRRLNFLKKISQRYQ Sequence number 4: YQLDAYPSGAWYYVPL
  • Peptide immobilization solution 16 residues, 4 types, 2.0 mg / ml
  • Solvent 0.1% by mass SDS, 20 mM phosphate buffer (pH 8.5) * However, 0.2 mass% SDS solution was added to various peptides in a powder form and mixed, and then an equal amount of 40 mM phosphate buffer was added, and dissolution of the peptide was confirmed with an optical microscope.
  • the amount of the immobilized peptide was evaluated by the fluorescence intensity, and the variation was evaluated by the coefficient of variation (CV) of the fluorescence intensity. Separately, CV was calculated by measuring the spot diameter (spot quantification). CV was calculated as standard deviation / average value ⁇ 100 (%) (hereinafter the same).
  • FIG. 3 shows comparison results (Example 1, Comparative Example 1 and Comparative Example 2) of peptide immobilization amount (fluorescence intensity) depending on the type of solvent of the peptide immobilization solution obtained based on the above evaluation results. . Moreover, the comparison result (Example 1 and Comparative Example 3) of the spot diameter by the difference in the supply form (inkjet system and pin system) of the peptide immobilization solution is shown in FIG.
  • Example 1 Comparative Example 1 and Comparative Example 2, all four types of peptides could be dissolved in Example 1, but in Comparative Example 1 and Comparative Example 2, there were peptides that could not be partially dissolved. there were.
  • the fluorescence intensities (average values) obtained for the peptide-dissolving solutions of the peptides (SEQ ID NO: 3: EKKNLNFLKISQRYQ) dissolved in all the solvents of Example 1, Comparative Example 1 and Comparative Example 2 were compared. As shown in FIG. 3, the fluorescence intensity obtained for Example 1 was 2 to 3 times that of Comparative Example 1 and Comparative Example 2. Moreover, CV (%) of Example 1 was 3/4 to 1/2 of Comparative Example 1 and Comparative Example 2, respectively. From the above results, it was found that the peptide immobilization solution of Example 1 can increase the amount of peptide immobilization, and also suppress the variation in the amount of immobilization between spots.
  • the spot diameter by the ink jet method is very small, whereas the spot diameter by the pin method is CV (% ) And fluctuated about 5 times. From the above results, it was found that a stable spot diameter was obtained by the droplet ejection by the ink jet method, and the detection accuracy was extremely excellent as compared with that by the pin method. In addition, it was found that the inclusion of a surfactant in the solvent for the peptide immobilization solution allows the droplets to be supplied and held on the solid phase carrier in a state where variation in droplet size is suppressed. .
  • the use of a surfactant as a peptide immobilization solution has the advantages of high peptide solubility, large amount of peptide immobilization, and small variation in peptide immobilization amount.
  • the variation in the amount of immobilized peptides was small even under the conditions for mass production.
  • Storage stability of peptide arrays In this example, the storage stability of the prepared peptide array was evaluated.
  • an assay was performed using the serum of a milk allergic patient. After preparation, the peptide array was vacuum packaged and stored in a desiccator at room temperature, and stored for 2 weeks, 1 month, 3 months and 6 months, respectively. Using the peptide array after each storage period, the assay was performed on three of each. The peptide array assayed on the same day without adding serum was used as the background of nonspecific adsorption in each peptide, and the average was subtracted from the fluorescence intensity in each peptide of the actually assayed carrier.
  • the peptide used in the present Example includes a peptide that may be an epitope of milk allergy.
  • the amino acid sequences of these peptides (SEQ ID NOs: 5 to 35) were as shown below. Moreover, it melt
  • Other peptide array production conditions were as follows.
  • Peptide immobilization solution 16 residues, 31 types, 2.0 mg / ml Solvent: 0.1% by mass SDS, 20 mM phosphate buffer (pH 8.5) *
  • poly-DL-alanine manufactured by SIGMA-ALDRICH: P9003 MW1000-5000
  • SIGMA-ALDRICH P9003 MW1000-5000
  • the peptide array produced in this example can be assayed without problems until 6 months after production by supplying the peptide immobilization solution to the solid phase carrier and then storing it in a vacuum state. This was possible and was found to be excellent in storage stability.
  • the CV tends to increase compared with the signal detected with low fluorescence intensity, but the peptide array prepared in Example 2 showed an average value of about 7.7% as CV.
  • This is Tapia et al. (Tapier V, Bongartz J, Schutkowski M, Bruni N, Weiser A, Ay B, Volkmer R, Or-Guil M. Affinity Profiling. -118. (2007)), it was possible to produce a peptide array with higher accuracy considering that the CV in the peptide array carrier was about 28% as a whole.

Abstract

固相担体上においてペプチドの良好な固定化量を得ることができるペプチドの固定化技術を提供する。このため、本発明では、ペプチドを固相担体上へ固定化する際、ペプチドとともに界面活性剤とを固相担体上に存在させるようにする。こうすることで、固定化量を向上させることができる。

Description

ペプチド固定化用溶液及びその利用
 本発明は、ペプチドの固定化用溶液及びその利用に関し、詳しくは、ペプチド固定化用溶液、ペプチドを固定化した固相担体の製造方法、ペプチドアレイ及びペプチドアレイの使用方法に関する。
 疾患に関するメカニズムに関し、近年、タンパク質やペプチドが着目されるようになってきている。ゲノム解析により疾患関連遺伝子及びその合成物/それをコードするタンパク質に関する情報が得られるようになってきているが、実際の診断や創薬にはタンパク質の機能解析が必要となる。また、各種の発症メカニズムを解析し、診断や治療に役立てるためには、タンパク質を介した細胞内シグナル伝達について情報を得る必要がある。タンパク質やペプチドについて網羅的解析が必要である。
 既にDNA等核酸に関する網羅的解析は、DNAマイクロアレイ等により実現されているが、タンパク質については網羅的に取得することが困難であるとともに、その生理活性を維持して固定化することは極めて困難である。一方、タンパク質に比べて小分子であるペプチドは、タンパク質に比して化学合成が容易であり、また、タンパク質ほど変性の問題がないと考えられる。
 この種のペプチドアレイとしては、ペプチドを有機溶媒やDMSOを含む固定化用溶液で固定化するものが知られている(Tapia Vら, Anal Biochem. 363, 108-118. (2007)。ペプチドアレイは、細胞内シグナル伝達等に関連する基質探索、リガンド探索、インヒビター探索のほか、アレルゲン探索や新たな生理活性ペプチド探索への用途が期待されている。
発明の概要
 ペプチドを固定化して各種作用を探索するには、感度が良好でかつ信頼性の高い評価系を構築する必要がある。例えば、ペプチドをアレイ化する場合には、固相担体上の個別の評価領域(典型的にはスポット)において、より多くのペプチドを固定化し、個別の評価領域間のペプチド固定化量の変動を抑制することが求められる。しかしながら、本発明者らによれば、実際のところ、固相担体へのペプチドの評価領域あたりの固定化量は必ずしも十分でなくしかも評価領域間の固定化量も変動も大きいことがわかった。
 そこで、本発明は、固相担体上においてペプチドの良好な固定化量を得ることができるペプチドの固定化技術を提供することを一つの目的とする。また、本発明は、固相担体上においてペプチドの安定化した固定化量を得ることができるペプチドの固定化技術を提供することを他の一つの目的とする。さらに、本発明は、より信頼性の高い評価系を構築できるペプチドの固定化技術を提供することを他の一つの目的とする。
 本発明者らは、上記した課題を解決するべく、固相担体上へのペプチドを固定化する手法について種々検討したところ、ペプチドを溶解して含有するペプチド固定化用溶液中にドデシル硫酸ナトリウムなどの界面活性剤を含有させることで、固定化量が向上しかつ固定化量の変動も低減できるという知見を得た。本発明者らは、この知見に基づき本発明を完成した。すなわち、本発明によれば、以下の手段が提供される。
(1) ペプチドを固相担体上へ固定化するためのペプチド固定化用溶液であって、
 界面活性剤を含有する、溶液。
(2)前記界面活性剤は、前記界面活性剤を含有しないペプチド固定化用溶液を用いた場合と比較して、前記固相担体上への前記ペプチドの固定化量を増加させることができる界面活性剤である、(1)に記載の溶液。
(3) 前記界面活性剤はイオン性界面活性剤を含む、(1)又は(2)に記載の溶液。
(4) 前記界面活性剤はアニオン系界面活性剤を含む、(1)~(3)のいずれかに記載の溶液。
(5) 前記界面活性剤はドデシル硫酸ナトリウムを含む(4)に記載の溶液。
(6) さらに、塩を含有する、(1)~(5)のいずれかに記載の溶液。
(7) 前記ペプチドは、50残基以下のアミノ酸残基からなるペプチドである、(1)~(6)のいずれかに記載の溶液。
(8) 圧電駆動又は静電駆動による液滴吐出方式での固相担体への供給用である、(1)~(7)のいずれかに記載の溶液。
(9) ペプチドの固相担体上への供給方法であって、
 固相担体上において界面活性剤とともに前記ペプチドが共存する状態を形成するように前記ペプチドを前記固相担体に供給する工程、
を備える、供給方法。
(10) 前記ペプチド供給工程は、前記ペプチドと前記界面活性剤とを含有するペプチドの固定化用溶液を準備し、前記固相担体上に前記ペプチド固定化用溶液を供給する工程である、(9)に記載の供給方法。
(11) 前記固相担体はプレート状であり、
 前記ペプチド固定化用溶液の供給工程は、前記ペプチド固定化用溶液を、圧電駆動又は静電駆動による液滴吐出方式によって液滴として前記固相担体上に吐出する工程である、(9)又は(10)記載の供給方法。
(12) ペプチドが固相担体に固定化されたペプチド固定化体の製造方法であって、
 前記固相担体上において界面活性剤とともに前記ペプチドが共存する状態を形成するように前記ペプチドを前記固相担体に供給する工程と、
 前記固相担体上に供給された前記ペプチドを前記固相担上に固定化する工程と、
を備える、製造方法。
(13) 前記ペプチド供給工程は、前記ペプチドと界面活性剤とを含有する1種又は2種以上のペプチド固定化用溶液を準備し、前記ペプチド固定化用溶液を前記固相担体上に供給する工程である、(12)記載の製造方法。
(14) 前記界面活性剤は、アニオン系界面活性剤である、(12)又は(13)に記載の製造方法。
(15) 前記界面活性剤は、ドデシル硫酸ナトリウムを含む、(14)に記載の製造方法。
(16) 前記ペプチド固定化用溶液は、さらに、塩を含有する、(12)~(15)のいずれかに記載の製造方法。
(17) 前記ペプチドは、50残基以下のアミノ酸残基からなるペプチドである、(12)~(16)のいずれかに記載の製造方法。
(18) 前記固相担体はプレート状であり、
 前記ペプチド供給工程は、前記ペプチド固定化用溶液を、圧電駆動又は静電駆動による液滴吐出方式によって液滴として前記固相担体上に吐出する工程である、(13)~(17)のいずれかに記載の製造方法。
(19)ペプチドが固相担体に固定化されたペプチド固定化体であって、
 (12)~(18)のいずれかに記載の製造方法によって得られる、ペプチド固定化体。
(20)ペプチドアレイであって、
 プレート状の固相担体と、
 前記固相担体上にある2個以上の評価領域であって、1種又は2種以上のペプチドと1種又は2種以上の界面活性剤とをそれぞれ保持する評価領域と、
を備える、ペプチドアレイ。
(22)前記1種類又は2種類以上の界面活性剤はアニオン系界面活性剤を含む、(21)に記載のペプチドアレイ。
(23) 前記1種又は2種以上のペプチドは、50残基以下のアミノ酸残基からなるペプチドを含む、(21)又は(22)に記載のペプチドアレイ。
本発明のペプチド固定化用溶液を固相担体上に付与して形成される状態を示す図である。 実施例1で作製したペプチドアレイを模式的に表す図である。 実施例1で得られたペプチドの固定化量についての評価結果を示す図である。 実施例1で得られたスポット径についての評価結果を示す図である。 実施例2で作製したペプチドアレイを模式的に表す図である。 ペプチドアレイの保存安定性の評価結果を示す図である。 ペプチドアレイ内の同一検体についての固定化量のバラツキの評価結果を示す図である。
発明を実施するための形態
 本発明は、ペプチド固定化用溶液及びその利用に関している。すなわち、本発明は、ペプチド固定化用溶液、ペプチドの固相担体上への供給方法、ペプチドが保持された固相担体の製造方法、ペプチドが保持された固相担体、ペプチドアレイ及びペプチドアレイの使用方法等に関している。
 本発明のペプチド固定化用溶液によれば、図1に示すように、固相担体上にペプチドを固定化するとき、固定化しようとするペプチドとともに界面活性剤も固相担体上に供給される。すなわち、固相担体上においてペプチドと界面活性剤とが共存する状態が形成される。このような状態が形成されると、ペプチドの固定化量が増大され、また、ペプチドの固定化量が安定化される。
 必ずしも推論であって本発明を拘束するものではないが、ペプチドは構成するアミノ酸に応じた電荷や極性(非極性)を呈する。疎水性基及び親水性基を有する界面活性剤は、このようなペプチドと相互作用して吸着配向することにより、固相担体へのペプチドの吐出や固定化の環境を整える。このようなペプチドと界面活性剤との相互作用が、ペプチドの固相担体への固定化に寄与しているものと推測される。
 以上のことから、本発明のペプチド固定化用溶液によれば、固相担体上において良好なペプチド固定化量を得ることができる。また、本発明のペプチド固定化用溶液によれば、固相担体上において安定した固定化量を得ることができる。さらに、より信頼性の高い評価系を構築することができる。
 さらに、本発明のペプチド固定化用溶液によれば、界面活性剤を含むことにより、ペプチドが界面活性剤により均一に溶解され、表面張力も低下されることから、液滴吐出方式によって固相担体に液滴として吐出される供給形態に適したものとなっている。
 本発明の他の実施形態も、いずれも固相担体上においてペプチドと界面活性剤とが共存することによる作用に基づいて上記効果を得ることができる。以下、本発明のこれらの実施形態について、適宜図面を参照しながら詳細に説明する。図1は、本発明のペプチド固定化用溶液が固相担体上に液滴として供給された状態を示す。
 なお、本明細書において、「ペプチド」とは、2個以上のアミノ酸がペプチド結合(-CO-NH-)により結合して生じる化合物を意味するものとする。
 また、本明細書において、「ペプチドの固定化」とは、上記「ペプチド」を、固相担体上にその表面との何らかの相互作用により固定することを意味するものとする。相互作用は限定されないで、水素結合、双極子相互作用、親水性又は疎水性相互作用、イオン結合、静電結合、共有結合等が含まれる。
 また、本明細書において、「固相担体」とは、ペプチドが固定化される固相を少なくとも一部に有する物体を意味する。本発明の固相担体は、特に限定されない。固相担体の有する固相の性状も限定されない。
(ペプチド固定化用溶液)
 ペプチド固定化用溶液は、ペプチドを固相担体上に固定化することを最終的な目的として、少なくともペプチドを固相担体上に供給するための溶液である。ペプチドは、この溶液中において溶質として存在している。この溶液の溶媒は水性媒体であることが好ましい。水性媒体とは、水、又は水と相溶する有機溶媒との混液を含んでいる。有機溶媒としては、特に限定しないが、DMSO等が挙げられる。ペプチド固定化用溶液のpHは、適宜決定されるが、pH4~10程度とすることができる。
(ペプチド)
 本発明のペプチド固定化用溶液において固定化対象とするペプチドとしては、天然由来のものであってもいし、合成のものであってもよい。天然由来のペプチドとは、天然に存在するもの又はその断片を含んでいる。また、合成ペプチドとは、例えば、周知の固相合成法等により化学的に合成するものであってもよいし、遺伝子工学的に合成するものであってもよい。また、天然由来のペプチドに基づいて改変して合成したものであってもよい。
 固定化されるペプチドとしては、所定の酵素の基質認識部位のアミノ酸配列を有するペプチド、所定のレセプターと結合するリガンド認識部位のアミノ酸配列を有するペプチド、所定のレセプターや酵素のインヒビターの結合部位となるアミノ酸配列を有するペプチド、抗体が結合するペプチド又はそのエピトープとなるアミノ酸配列を有するペプチド、サイトカイン、ホルモンなどの種々の生理活性ペプチド又はその活性部位のアミノ酸配列を有するペプチドが挙げられる。なお、固定化されるペプチドは、上述のようなアミノ酸配列を有している可能性があれば足りる。
 固定化されるペプチドは、特に固相担体表面の官能基と架橋させたり縮合させたりする官能基を別途保持している必要はないが、こうした化学修飾を排除するものではない。例えば、このような官能基等としては、固相担体の表面に形成された官能基の種類にもよるが、システイン若しくはチオール基、オキシアミノ基などが挙げられる。また、固定化されるペプチドは、適当なリンカーとなるアミノ酸配列を備えていてもよい。リンカーは、固相担体に化学結合等により結合させる場合等に適宜用いられる。リンカーに化学結合形成に必要な官能基や修飾することが好ましい。リンカーを構成するアミノ酸残基数は特に限定しないが、全体として固定化に有利な長さを超えないことが好ましい。
 固定化されるペプチドの構成アミノ酸残基数は特に限定されないが、固定化能を考慮すると、好ましくは50個以下であり、より好ましくは30個以下であり、さらに好ましくは、20個以下である。さらに、好ましくは10個以下である。また、固定化されるペプチドのアミノ酸残基数は、評価しようとする相互作用の種類によっても異なるが、合成の困難性、スクリーニングにおける特異性と効率等を考慮すると、30個以下であることが好ましい。また、エピトープ探索等を考慮すると、より好ましくは20個以下である。また、抗体がエピトープとして認識する残基数や立体障害を回避するための所謂リンカー部位の必要性を考慮すると、6個以上であることが好ましい。
 1つのペプチド固定化用溶液は、1種のペプチドのみを含有していてもよいし、2種類以上のペプチドを含有していてもよい。固相担体上の一つの評価領域に1種のペプチドのみを供給し固定化して、各ペプチドと被験試料との相互作用を評価してもよいし、一つの評価領域に2種以上のペプチドを供給して2種以上のペプチドと被験試料との相互作用を評価するようにしてもよい。
(界面活性剤)
 本発明のペプチド固定化用溶液は界面活性剤を含有することができる。本発明において界面活性剤としては、少なくとも固定化しようとするペプチドを可溶化できるものであればよいが、その界面活性剤を含有しないペプチド固定化用溶液を用いた場合と比較して、固相担体上へのペプチドの固定化量を増加させることができる界面活性剤であることが好ましい。こうした界面活性剤を用いることにより、固相担体上へのペプチドの固定化量を増大させることができる。
 界面活性剤としては、イオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤がある。本発明においては、イオン性界面活性を好ましく用いることができる。ペプチドが電荷を有しており、ペプチドを固定化するには界面活性剤も同様にイオン性であることが好ましいと考えられる。イオン性界面活性剤うち、アニオン界面活性剤としては、例えば、脂肪酸ナトリウムなどの脂肪酸塩(RCOOM)、アルキルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩(RSO3M)、ドデシル硫酸ナトリウム(SDS)等のモノアルキル硫酸塩(RSO4M)(以上において、Mはナトリウム等のアルカリ金属を表す。)が挙げられる。アニオン界面活性剤は、化学的安定性やコストの点から好ましい。より好ましくは、生体材料に対する豊富な使用実績の観点からSDSである。カチオン界面活性剤としては、例えば、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩等の第4級アンモニウム塩やアルキルピリジニウムが挙げられる。なお、ペプチド固定化用溶液は、1種類の界面活性剤のみ含んでいてもよいし、2種類以上含んでいてもよい。
 また、アミノ酸構成によっては、局所的に親水性基や疎水性基が異なることから、界面活性剤の配向性を考慮すると、両性界面活性剤も好ましく用いることができる。両性界面活性剤としては、例えば、アルキルジメチルアミンオキシド、アルキルカルボキシベタインが挙げられる。
 さらに、耐pH変化、低気泡性、低刺激性、作業安全性を考慮すると、非イオン系界面活性剤も好ましく用いることができる。非イオン系界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、脂肪酸ソルビタンエステル、アルキルポリグルコシド、脂肪酸ジエタノールアミド、アルキリモノグリセリルエーテルが挙げられる。
 ペプチド固定化用溶液は、さらに塩を含むことができる。塩としては、ペプチドの生理活性を損なわないものであることが好ましい。こうした塩としては、例えば、緩衝性のあるリン酸塩、クエン酸塩等が挙げられる。緩衝性の塩の種類は、また、ペプチド固定化用溶液に付与されるpHに応じて適宜選択される。ペプチド固定化用溶液は、さらに、必要に応じ、そのほかの溶質を含むことができる。
(固相担体)
 ペプチド固定化用溶液を適用する固相担体の固相の構造は特に限定されない。その固相は、緻密質であってもよいし、独立気泡及び/又は連続気泡を有する多孔質であってもよい。各種形態の繊維状体を組み合わせてなる編成体、織成体及び交絡体などであってもよい。固相担体の形状も限定しない。固相担体は例えば、平坦なシート状、プレート状のほか、球状等とすることができる。ペプチドをアレイ化する場合には、固相担体としてプレート状体を用いることが好ましい。
 ペプチドが固定化される表面は、こうした形状の固相担体の一表面であればよく、平坦な固相担体の広い表面、球状体の表面、中空部を有する場合は、その外表面であっても内表面であってもよい。こうした固相担体の材料としては、特に限定されない。例えば、ガラス、セラミックス、プラスチック、金属、木質等の天然材料であってもよい。
 固相担体のペプチドが固定化される表面は、ペプチド固定化用溶液との親和性を考慮すると、親水性であることが好ましい。また、界面活性剤としてイオン性界面活性剤を用いるときには、界面活性剤が有するイオン(アニオン及び/又はカチオン)と反対のイオン性の官能基を有することが好ましい。典型的には、このような固相担体自体が官能基を有しているか、あるいは固相担体の表面にこうした官能基が付与されていることが好ましい。こうした官能基は特に限定されないが、水中で解離したときカチオンとなるカチオン性の官能基としては、例えば、第1級アミノ基や第2級アミノ基などのアミノ基、イミノ基が挙げられる。また、水中で解離したときアニオンとなるアニオン性官能基としては、例えば、カルボキシル基、リン酸基、スルホン酸基などが挙げられる。
 また、固相担体は、その表面にペプチド又は別途添加される架橋剤と結合可能な官能基を備えることができる。このような官能基は特に限定するものではないが、例えば、活性エステル基、エポキシ基、マレイミド基、ホルミル基、ベンジルチオエステル基等が挙げられる。
 以上説明したペプチド固定化用溶液は、固相担体上に供給され、固相担体上においてペプチドと界面活性剤とが共存する状態を形成することができる。これにより、既に説明した作用等を発揮することができる。ペプチド固定化用溶液を固相担体へ供給する形態は、特に限定されない。この溶液は、固相担体上において、ペプチドと界面活性剤との共存状態を形成して、ペプチドを効率よく固相担体に固定化させることを目的とするからである。好ましくは、こうした溶液を液滴として、固相担体上に供給する。このような供給形態によれば、ペプチドを容易にアレイ化できるからである。このような供給形態を実現する装置としては、ピンが固相担体上に接触する接触方式とインクジェット等に用いられる液適吐出ヘッドを介した非接触方式がある。吐出精度や効率を考慮すると、より好ましくは、液滴吐出ヘッドを介した非接触方式である。より好ましくは、圧電駆動又は静電駆動による液滴吐出ヘッドを用いる。これらの駆動方式によれば、ペプチドの変性を抑制でき、また、界面活性剤を含むペプチド固定化用溶液であっても吐出流路における気泡の発生を抑制することができる。この結果、高い精度で各液滴を吐出して、ペプチドを安定した固定化量でしかも多くのペプチドを固相担体に固定化できる。したがって、良好な固定化量でしかも液滴(評価領域)間でのペプチド固定化量の変動が抑制されたペプチドアレイを容易に形成できる。ペプチドはアミノ酸の構成によって様々な特性を呈するため、駆動力(吐出力)が大きく各ペプチド間での調整の余地が大きい圧電駆動方式を採用することが好ましい。
(ペプチドの固相担体へのペプチドの供給)
 本発明のペプチドの固相担体上への供給方法は、固相担体上において界面活性剤とともに前記ペプチドが共存する状態を形成するように前記ペプチドを前記固相担体に供給する工程を、備えることができる。固相担体上においてこのような状態を形成することで、ペプチドと界面活性剤が相互作用して、ペプチドが固相担体上に固定化されやすくなる。
 ペプチドの供給工程を実施するには、例えば、固相担体上に界面活性剤とペプチドとを含有する液滴を形成するようにする。このためには、予め、ペプチドと界面活性剤とを含有する本発明のペプチド固定化用溶液を準備し、この溶液を固相担体上に液滴として供給することができる。また、固相担体上に予め、ペプチド又は界面活性剤の液滴を供給しておき、その後、他方の液滴を重ねて供給するようにしてもよい。予め付与されるペプチド又は界面活性剤は、その後他方が固相担体上に供給される時点で、ペプチド又は界面活性剤を含有する液滴の状態であってもよいし、乾固されていてもよい。ペプチドと界面活性剤との相互作用の効果を発揮させるには、好ましくは、本発明のペプチド固定化用溶液を用いる。
 なお、固相担体上にこのような液滴を形成するには、固相担体をプレート状体とし、ペプチド固定化用溶液を、圧電駆動又は静電駆動による液滴吐出方式によって液滴として前記固相担体上に吐出することが好ましい。
(ペプチド固定化体の製造)
 本発明のペプチドが保持された固相担体の製造方法は、固相担体上において界面活性剤とともに前記ペプチドが共存する状態を形成するように前記ペプチドを前記固相担体に供給する工程と、ペプチドを固相担上に固定化する工程と、を備えることができる。この方法によれば、ペプチドと界面活性剤との相互作用により固相担体にペプチドが固定されやすくなっている。この状態で、ペプチドを固相担体に固定化することで、より多くのペプチドが固相担体上に固定される。また、固定化量のバラツキを抑制してペプチドを固定化できる。ペプチドの供給工程については、本発明のペプチドの固相担体への供給方法にて既に説明したとおりである。
 ペプチドを固相担体に固定化する方法は特に限定されない。ペプチドと界面活性剤とが適当な溶媒、典型的には水性媒体中に共存するようにした上で、当該水性媒体を留去するよう乾燥することで、ペプチドと固相担体表面との相互作用及び/又は界面活性剤と固相担体表面との相互作用によって、ペプチドを固相担体に固定化できる。また、ペプチド及び/又は固相担体表面に架橋可能な官能基を備えているか、あるいは、ペプチドと界面活性剤のほかに水性媒体中に架橋剤を含めることで共有結合を介してペプチドを固相担体に固定化できる。共有結合の形成を伴って固定化する場合、必要に応じ、固相担体の加熱等などの処理を行うことができる。加熱などの固定化工程では、界面活性剤はそのままペプチドと共存される。所定時間加熱後、未反応物質を除去するなどの洗浄操作も必要に応じて行うことができる。洗浄操作を行った後は、界面活性剤は実質的に除去されてもよい。
 固相担体としてプレート状体を用い、ペプチド固定化用溶液等を液滴で固相担体上に供給することで、ペプチドアレイを製造できる。既に説明したが、ペプチド固定化用溶液を、圧電駆動又は静電駆動による液滴吐出方式によって液滴として固相担体上に吐出することが好ましい。液滴(評価領域)間での液滴供給量の変動を抑制でき、結果として、ペプチド固定化量の変動が抑制されしかもペプチド固定化量が良好なペプチドアレイを製造できる。
(ペプチド固定化体)
 本発明の製造方法によって得られる、ペプチド固定化体は、以下の構成を有することができる。すなわち、ペプチド固定化体は、固相担体と、固相担体上にある、1種又は2種以上のペプチドと1種又は2種以上の界面活性剤とをそれぞれ保持する評価領域と、を備えることができる。この固相体は、界面活性剤が洗浄等により除去される前の状態である。評価領域は、固相担体上にペプチドの評価のために準備された領域である。この評価領域内にペプチドと界面活性剤とを共存させてペプチドを固定化することで、ペプチドを評価対象とすることができる。プレート状の固相担体には、こうした評価領域をマトリックス状に配列して準備し、形成することが好ましい。
 本発明のペプチド固定化体によれば、各評価領域において有効量のペプチドを保持し、しかも評価領域間でのペプチド固定化量のバラツキが抑制されている。このため、より信頼性の高い評価系を容易に構築することができる。
(ペプチドアレイ)
 本発明のペプチドアレイは、プレート状の固相担体と、固相担体上にある2個以上の評価領域であって、1種又は2種以上のペプチドと1種又は2種以上の界面活性剤とをそれぞれ保持する評価領域と、を備えることができる。ペプチドアレイは、本発明のペプチド固定化体において、固相担体としてプレート状体を用い、複数個の、好ましくは数十個以上の評価領域が固相担体上にマトリックス状に準備された形態である。このようなペプチドアレイによれば、多数種類のペプチドが奏する可能性のある相互作用につき、高い信頼性でかつ効率的に評価できる。
 本発明のペプチドアレイにあっては、固相担体上に形成された各評価領域に固定化されたペプチドのペプチド固定化量の変動係数が平均20%以下とすることができる。より好ましくは、10%以下であり、さらに好ましくは5%以下である。変動係数が5%以下であると、臨床検査ツールとして定量的な分析が可能である。
 本発明のペプチドアレイは、ペプチドと他の物質との各種相互作用の検出及び評価に用いることができる。量的に有効量のペプチドを各評価領域にバラツキを抑制して固定化できるため、検出精度及び再現性の良好な評価が可能となり、相互作用の信頼性の高い評価が可能となる。本発明のペプチドアレイで検出する相互作用は特に限定しないが、例えば、プロテインキナーゼ、プロテアーゼ、加水分解酵素等の各種酵素の基質アレイ、リガンドアレイ、インヒビターアレイ、エピトープアレイ、その他の生理活性ペプチドアレイが挙げられる。
 なお、本発明のペプチド固定化体及びペプチドアレイにおいて、固定されるペプチド、界面活性剤、固相担体、ペプチドの供給形態など、本発明のペプチド固定化用溶液、ペプチド供給方法及びペプチド固定化体の製造方法において説明した各種態様がそのまま適用される。
 以下、本発明を、実施例を挙げて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(界面活性剤を含有するペプチド固定化用溶液を用いたペプチドアレイの作製)
 本実施例では、インクジェット方式(圧電駆動方式)のマイクロアレイ製造装置を用いてペプチドアレイを作製した。アレイの作製は、大量生産の可否をも評価するため、スポット開始から終了までの時間が、2000枚生産相当となる条件で実施した(適宜捨て打ちを含めて実施した)。ペプチドは、作製したアレイの評価を可能とするべく、FITC標識したものを使用した。アレイの評価は、ペプチドの固定化処理を実施した上で、その固定化量を蛍光スキャナーで測定して行った。なお、ペプチドは、配列番号1~4に記載のアミノ酸配列からなる4種類のペプチドを用い、以下に示す溶媒に溶解してペプチド固定化用溶液とした。その他のペプチドアレイの作製条件は以下の通りであった。
 配列番号1:NQFLPYPYYAKPAAVR
 配列番号2:STEVFTKKTKLTEEEK
 配列番号3:EKNRLNFLKKISQRYQ
 配列番号4:YQLDAYPSGAWYYVPL
(1)ペプチド固定化用溶液
 ペプチド:16残基、4種類、2.0mg/ml
 溶媒:0.1質量%SDS、20mM リン酸緩衝液(pH8.5)
*ただし、粉末状の各種ペプチドに0.2質量%SDS溶液を添加し混合後、等量の40mMリン酸緩衝液を添加し、ペプチドの溶解を光学顕微鏡にて確認して調製した。
(2)スポット数:1020(255×4種類)
(3)スポットパターン:各種ペプチドにつき15行×17列(ピッチ200μm)
(4)スポット速度:1020スポット目で2000枚生産相当となる条件(適宜捨て打ちを実施)
(5)固相担体:76.2mm×25.4mm×1mm(活性エステル基板)
(6)ペプチド固定化用溶液の固相担体への供給
 インクジェット方式のマイクロアレイ製造装置に所定量のペプチド溶液をセットし、ペプチド固定化用溶液を上記(2)~(4)の条件で固相担体上にスポットした。なお、スポット領域を図2に示した。
(7)ペプチドの固定化
 以下の操作で、ペプチドを固相担体上に固定化した。
       a)80℃で1時間加熱処理をする
       b)(2×SSC,0.2%SDS)溶液に15分間浸漬する(室温)
       c)(2×SSC,0.2%SDS)溶液に5分間浸漬する(95℃)
       d)滅菌水中で10回程度振とうする(3回)
       e)遠心乾燥する
(8)評価
 蛍光スキャナー(GEヘルスケア バイオサイエンス製ArrayWorx)でペプチドアレイの蛍光強度を測定し、数値解析ソフト(Axon社製Gene Pix.Pro)にて蛍光強度の数値化を実施した。さらに、固定化されたペプチド量を蛍光強度、そのバラツキを蛍光強度の変動係数(CV)にて評価した。また、別に、スポット径(スポット定量性)を測定してCVを算出した。なお、CVは、標準偏差/平均値×100(%)として算出した(以下、同じ。)。
 なお、比較例1~3として、以下に記載する項目以外は上記と同一条件でペプチドアレイを作製した。
(比較例1:溶媒の相違)
(1)ペプチド固定化用溶液
 溶媒:5質量%DMSO
*ただし、粉末状の各種ペプチドに5質量%DMSOを添加し混合した。
(比較例2:溶媒の相違)
(1)ペプチド固定化用溶液
 溶媒:20質量%グリセロール
*ただし、粉末状の各種ペプチドに20質量%グリセロールを添加し混合した。
(比較例3:スポット径の比較)
(1)ペプチド固定化用溶液
 溶媒:50質量%DMSO
*ただし、粉末状の各種ペプチドに20質量%グリセロールを添加し混合した。
(2)スポット数:12(3×4種類)
(3)スポットパターン:2行×6列
(4)スポット速度:装置性能に準じた速度(2000枚生産相当の条件ではない)
(6)マイクロアレイ作製装置としてはピン方式による装置とした。
 以上の評価結果に基づいて得られた、ペプチド固定化用溶液の溶媒の種類によるペプチド固定化量(蛍光強度)の比較結果(実施例1、比較例1及び比較例2)を図3に示す。また、ペプチド固定化用溶液の供給形態(インクジェット方式及びピン方式)の違いによるスポット径の比較結果(実施例1及び比較例3)を図4に示す。
 実施例1、比較例1及び比較例2において、実施例1にあっては、4種類全てのペプチドを溶解できたが、比較例1及び比較例2にあっては、一部溶解できないペプチドがあった。実施例1、比較例1及び比較例2の全ての溶媒で溶解したペプチド(配列番号3:EKNRLNFLKKISQRYQ)のペプチド溶解用溶液について得られた蛍光強度(平均値)を比較した。図3に示すように、実施例1について得られた蛍光強度は、比較例1及び比較例2のそれに比較して2倍~3倍であった。また、実施例1のCV(%)は、比較例1及び比較例2のそれぞれ3/4から1/2であった。以上の結果から、実施例1のペプチド固定化用溶液は、ペプチドの固定化量を増大でき、しかも、固定化量のスポット間のバラツキも抑制されていることがわかった。
 また、図4に示すように、実施例1と比較例3とのスポット径の比較結果から、インクジェット方式によるスポット径は極めてバラツキが小さいのに対して、ピン方式によるスポット径は、CV(%)にして5倍程度に大きくばらついた。以上の結果から、インクジェット方式による液滴吐出によれば、安定したスポット径が得られ、ピン方式によるものに比較して検出精度も極めて優れていることがわかった。また、ペプチド固定化用溶液の溶媒に界面活性剤を含有していることで液滴サイズのバラツキの抑制された状態で固相担体上で液滴を供給し、保持させることができることがわかった。
 以上の結果をまとめると、ペプチド固定化用溶液として界面活性剤を用いることで、ペプチドの溶解性が高いこと、ペプチドの固定化量が多いこと、及びペプチド固定化量のバラツキが小さいというメリットが得られ、ペプチド固定化量のバラツキは大量生産を想定した条件においてさえ小さいことがわかった。また、従来法(ピン方式アレイ)に比べて、より定量的にスポットすることも可能であることがわかった。これらの結果から、界面活性剤を固定化に用いることで、高品質で大量生産可能なペプチドアレイを作製できることがわかった。
(ペプチドアレイの保存安定性)
 本実施例は、作製したペプチドアレイの保存安定性について評価した。ペプチドアレイの保存安定性を評価するため、ミルクアレルギー患者の血清を用いてアッセイを行った。ペプチドアレイは作製後、真空包装をした上、室温でデシケーター中に保存し、それぞれ2週間、1ヶ月、3ケ月及び6ヶ月経過保存した。各保存期間経過後のペプチドアレイを用いて、各々3枚についてアッセイを実施した。同日に血清を加えない状態でアッセイしたペプチドアレイを各ペプチドにおける非特異吸着のバックグラウンドとし、その平均を実際にアッセイした担体の各ペプチドにおける蛍光強度から減算した。減算した蛍光強度の平均をペプチド毎にその経時的な変遷をもって比較し、ペプチドアレイ保存安定性として評価した。なお、本実施例で使用したペプチドはミルクアレルギーのエピトープの可能性のあるペプチドを含む。これらのペプチドのアミノ酸配列(配列番号5~35)は以下に示す通りであった。また、以下に示す溶媒に溶解してペプチド固定化用溶液とした。その他のペプチドアレイの作製条件は以下の通りであった。
Figure JPOXMLDOC01-appb-T000001
(1)ペプチド固定化用溶液
 ペプチド:16残基、31種類、2.0mg/ml
 溶媒:0.1質量%SDS、20mM リン酸緩衝液(pH8.5)
*上記31種類に、poly-DL-alanine(SIGMA-ALDRICH製:P9003 M.W.1000-5000))をネガティブコントロールとして加え、合計32種類をアレイ化した
*ただし、粉末状の各種ペプチドに0.2質量%SDS溶液を添加し混合後、等量の40mMリン酸緩衝液を添加し、ペプチドの溶解を光学顕微鏡にて確認して調製した。
(2)スポット数:192(31種類×6回)
(3)スポットパターン:各種ペプチドにつき12行×3列(ピッチ200μm)
(4)固相担体:76.2mm×25.4mm×1mm(活性エステル基板)
(5)ペプチド固定化用溶液の固相担体への供給
 インクジェット方式(圧電駆動方式)のマイクロアレイ製造装置に所定量のペプチド溶液をセットし、ペプチド固定化用溶液を上記(2)~(4)の条件で固相担体上にスポットした。なお、スポット領域を図5に示した。
(6)ペプチドの固定化
 保存期間経過後のペプチドアレイにつき、以下の操作で、ペプチドを固相担体上に固定化した。
       a)80℃で1時間加熱処理をする
       b)(2×SSC,0.2%SDS)溶液に15分間浸漬する(室温)
       c)(2×SSC,0.2%SDS)溶液に5分間浸漬する(95℃)
       d)滅菌水中で10回程度振とうする(3回)
       e)遠心乾燥する
(7)イムノアッセイ
 保存期間経過後、以下の手順でイムノアッセイを行った。
    a)(50mM Ethanolamine,0.1% SDS,0.1M Tris(hydroxymethyl)aminomethane)溶液に90分間浸漬する(室温)
       b)PBS-T(1×PBS,0.1% Tween20)溶液に5分間浸漬する(室温、3回)
    c)(1% OVA,PBS-T)溶液で希釈した患者血清(1:10)200mLアプライした担体をマイクロカバーガラス(松波ガラス社製size 24×60mm、thickness No.4)で覆い、Humid chamber(Sigma社)内で1時間静置する(37℃)
       d)c)で反応中の担体を4℃の環境下に移し、O/N静置する
       e)PBS-T溶液中でマイクロカバーガラスを外す
       f)PBS-T溶液に5分間浸漬する(室温、3回)
    g)(1% OVA、PBS-T)溶液で希釈したGoatanti-human IgE-Alexa647 polyclonal antibodies(1:500)200mLをc)と同様の手順で反応させ、暗所にて3時間静置する(室温)
       h)PBS-T溶液中でマイクロカバーガラスを外す
       i)PBS-T溶液に5分間浸漬する(室温、3回)
       j)滅菌水中で10回程度振とうする(3回)
(8)評価
 蛍光スキャナー(Agilent社製scanner model G2505B, software G2565BA/DA)でペプチドアレイの蛍光強度を測定し、数値解析ソフト(Axon社製Gene Pix.Pro)で蛍光強度の数値化を実施した。アッセイしたペプチドアレイの各ペプチドの蛍光強度の変化を比較し、保存安定性を評価した。結果を図6に示す。
 図6に示すように、ペプチドアレイの保存による蛍光強度の低下は認められなかった。すなわち、真空包装後、デシケーター中に室温保存で充分に耐えうるペプチドアレイであることがわかった。以上の結果から、本実施例で作製したペプチドアレイは、ペプチド固定化用溶液を固相担体に供給して、その後真空状態で保存することにより、作製後6ヶ月まで問題なくアッセイを行うことが可能であり、保存安定性に優れることがわかった。
(作製したペプチドアレイのイムノアッセイにおける精度評価)
 本実施例では、実施例2で作製したペプチドアレイのアッセイにおける精度を決定した。このため、ミルクアレルギー患者血清及びミルクアレルギー患者プール血清各3検体ずつを用い、アッセイを実施した。それぞれの血清につき、ペプチドアレイにおける各ペプチドの3個のスポットの蛍光強度値を測定し、これらの蛍光強度値の変動係数(CV)を算出し、これをもって作製したペプチドアレイのアッセイに対する精度評価とした。なお、イムノアッセイ及び評価については実施例2と同様にして行った。結果を図7に示す。図7は、S/N比=2をカットオフラインと定め、各ペプチドの蛍光強度における同一ペプチドアレイ(同一固相担体の意味)内CVをその蛍光強度値の平均とともにプロットして作成した。
 一般的に蛍光強度が低く検出されるシグナルでは高いものに比べ、CVが大きくなる傾向にあるが、実施例2で作製したペプチドアレイはCVとして平均で約7.7%の値を示した。これは前もってTapiaら(Tapia V, Bongartz J, Schutkowski M, Bruni N, Weiser A, Ay B, Volkmer R, Or-Guil M. Affinity profiling using the peptide microarray technology: a case study. Anal Biochem. 363, 108-118. (2007))により報告されたペプチドアレイ担体内でのCVが全体で約28%であることを考えると、より高精度なペプチドアレイの作製を実現した。
 以上の結果から、本発明によれば、既存のインクジェット方式によるペプチドアレイ(Tapiら)と比較し、CVという観点でより精度の高い、良質なペプチドアレイの作製が可能であることがわかった。
配列番号1~35:合成ペプチド

Claims (22)

  1.  ペプチドを固相担体上へ固定化するためのペプチド固定化用溶液であって、
     界面活性剤を含有する、溶液。
  2.  前記界面活性剤は、前記界面活性剤を含有しないペプチド固定化用溶液を用いた場合と比較して、前記固相担体上への前記ペプチドの固定化量を増加させることができる界面活性剤である、請求項1に記載の溶液。
  3.  前記界面活性剤はイオン性界面活性剤を含む、請求項1又は2に記載の溶液。
  4.  前記界面活性剤はアニオン系界面活性剤を含む、請求項1~3のいずれかに記載の溶液。
  5.  前記界面活性剤はドデシル硫酸ナトリウムを含む、請求項4に記載の溶液。
  6.  さらに、塩を含有する、請求項1~5のいずれかに記載の溶液。
  7.  前記ペプチドは、50残基以下のアミノ酸残基からなるペプチドである、請求項1~6のいずれかに記載の溶液。
  8.  圧電駆動又は静電駆動による液滴吐出方式での固相担体への供給用である、請求項1~7のいずれかに記載の溶液。
  9.  ペプチドの固相担体上への供給方法であって、
     固相担体上において界面活性剤とともに前記ペプチドが共存する状態を形成するように前記ペプチドを前記固相担体に供給する工程、
    を備える、供給方法。
  10.  前記ペプチド供給工程は、前記ペプチドと前記界面活性剤とを含有するペプチドの固定化用溶液を準備し、前記固相担体上に前記ペプチド固定化用溶液を供給する工程である、請求項9に記載の供給方法。
  11.  前記固相担体はプレート状であり、
     前記ペプチド固定化用溶液の供給工程は、前記ペプチド固定化用溶液を、圧電駆動又は静電駆動による液滴吐出方式によって液滴として前記固相担体上に吐出する工程である、請求項9又は10に記載の供給方法。
  12.  ペプチドが固相担体に固定化されたペプチド固定化体の製造方法であって、
     前記固相担体上において界面活性剤とともに前記ペプチドが共存する状態を形成するように前記ペプチドを前記固相担体に供給する工程と、
     前記固相担体上に供給された前記ペプチドを前記固相担上に固定化する工程と、
    を備える、製造方法。
  13.  前記ペプチド供給工程は、前記ペプチドと界面活性剤とを含有する1種又は2種以上のペプチド固定化用溶液を準備し、前記ペプチド固定化用溶液を前記固相担体上に供給する工程である、請求項12に記載の製造方法。
  14.  前記界面活性剤は、アニオン系界面活性剤である、請求項12又は13に記載の製造方法。
  15.  前記界面活性剤は、ドデシル硫酸ナトリウムを含む、請求項14に記載の製造方法。
  16.  前記ペプチド固定化用溶液は、さらに、塩を含有する、請求項12~15のいずれかに記載の製造方法。
  17.  前記ペプチドは、50残基以下のアミノ酸残基からなるペプチドである、請求項12~16のいずれかに記載の製造方法。
  18.  前記固相担体はプレート状であり、
     前記ペプチド供給工程は、前記ペプチド固定化用溶液を、圧電駆動又は静電駆動による液滴吐出方式によって液滴として前記固相担体上に吐出する工程である、請求項13~17のいずれかに記載の製造方法。
  19.  ペプチドが固相担体に固定化されたペプチド固定化体であって、
     請求項12~18のいずれかに記載の製造方法によって得られる、ペプチド固定化体。
  20.  ペプチドアレイであって、
     プレート状の固相担体と、
     前記固相担体上にある2個以上の評価領域であって、1種又は2種以上のペプチドと1種又は2種以上の界面活性剤とをそれぞれ保持する評価領域と、
    を備える、ペプチドアレイ。
  21.  前記1種類又は2種類以上の界面活性剤はアニオン系界面活性剤を含む、請求項20に記載のペプチドアレイ。
  22.  前記1種又は2種以上のペプチドは、50残基以下のアミノ酸残基からなるペプチドを含む、請求項20又は21に記載のペプチドアレイ。
PCT/JP2009/051504 2008-01-29 2009-01-29 ペプチド固定化用溶液及びその利用 WO2009096490A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/864,619 US20110046015A1 (en) 2008-01-29 2009-01-29 Peptide immobilization solution and use thereof
JP2009551580A JPWO2009096490A1 (ja) 2008-01-29 2009-01-29 ペプチド固定化用溶液及びその利用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008018006 2008-01-29
JP2008-018006 2008-01-29
JP2008-243701 2008-09-24
JP2008243701 2008-09-24

Publications (1)

Publication Number Publication Date
WO2009096490A1 true WO2009096490A1 (ja) 2009-08-06

Family

ID=40912835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051504 WO2009096490A1 (ja) 2008-01-29 2009-01-29 ペプチド固定化用溶液及びその利用

Country Status (3)

Country Link
US (1) US20110046015A1 (ja)
JP (1) JPWO2009096490A1 (ja)
WO (1) WO2009096490A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4824841B2 (ja) * 2009-12-28 2011-11-30 カルピス株式会社 脳機能改善用組成物および脳機能を改善する方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120190574A1 (en) 2009-06-19 2012-07-26 The Arizona Board of Regents, A body Corporate of the State of Arizona for and on behalf of Arizona Compound Arrays for Sample Profiling
US20140356885A1 (en) * 2013-05-30 2014-12-04 Siemens Healthcare Diagnostics Inc. Reducing Non-Specifically Bound Molecules on Supports
US10758886B2 (en) 2015-09-14 2020-09-01 Arizona Board Of Regents On Behalf Of Arizona State University Conditioned surfaces for in situ molecular array synthesis
EP3472201A4 (en) 2016-06-20 2020-05-13 Healthtell Inc. METHOD FOR DIFFERENTIAL DIAGNOSIS OF AUTOIMMUNE DISEASES
WO2017223117A1 (en) 2016-06-20 2017-12-28 Healthtell Inc. Methods for diagnosis and treatment of autoimmune diseases
CN110168370A (zh) 2016-11-11 2019-08-23 健康之语公司 用于鉴定候选生物标志物的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003439A (ja) * 2005-06-27 2007-01-11 Hitachi Software Eng Co Ltd バイオセンサの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003439A (ja) * 2005-06-27 2007-01-11 Hitachi Software Eng Co Ltd バイオセンサの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BHATNAGAR, P. ET AL.: "Multiplexed electrospray deposition for protein microarray with micromachined silicon device", APPL PHYS LETT, vol. 91, no. L, 2007, pages 014102 *
RODA, A. ET AL.: "Protein Microdeposition Using a Conventional Ink-Jet Printer.", BIOTECHNIQUES, vol. 28, no. 3, 2000, pages 492 - 496 *
SUN, L. ET AL.: "Producing peptide arrays for epitope mapping by intein-mediated protein ligation", BIOTECHNIQUES, vol. 37, no. 3, 2004, pages 430 - 436 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4824841B2 (ja) * 2009-12-28 2011-11-30 カルピス株式会社 脳機能改善用組成物および脳機能を改善する方法
EP2520308A1 (en) * 2009-12-28 2012-11-07 Calpis Co., Ltd. Composition for improving brain function and method for improving brain function
EP2520308A4 (en) * 2009-12-28 2013-07-03 Calpis Co Ltd COMPOSITION FOR IMPROVING BRAIN FUNCTION AND METHOD FOR IMPROVING BRAIN FUNCTION
US8569241B2 (en) 2009-12-28 2013-10-29 Calpis Co., Ltd. Composition for improving brain function and method for improving brain function
TWI461208B (zh) * 2009-12-28 2014-11-21 Calpis Co Ltd 腦機能改善用組成物

Also Published As

Publication number Publication date
JPWO2009096490A1 (ja) 2011-05-26
US20110046015A1 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
WO2009096490A1 (ja) ペプチド固定化用溶液及びその利用
Avseenko et al. Immobilization of proteins in immunochemical microarrays fabricated by electrospray deposition
Schena Protein microarrays
US6977155B2 (en) Arrays of biological membranes and methods and use thereof
Avseenko et al. Immunoassay with multicomponent protein microarrays fabricated by electrospray deposition
JP4361271B2 (ja) アッセイ、合成、および保存用の器具、ならびに、その作製、使用、および操作の方法
JP7159145B2 (ja) アレイ合成および生体分子解析のための、支持体、システム、および方法
US20080044830A1 (en) Three-Dimensional Nanostructured and Microstructured Supports
US20020102617A1 (en) Protein microarrays
US20090275480A1 (en) Universal readout for target identification using biological microarrays
JP2004533500A (ja) 生細胞および有機分子をカプセル封入するための方法およびゲル組成物
JP2008510167A (ja) マイクロアレイ分析における非特異的結合の軽減
JP2019500580A (ja) デジタル計数のためのフローシステムおよび方法
Grainger et al. Current microarray surface chemistries
Wu et al. Comparison of hydroxylated print additives on antibody microarray performance
JP4197279B2 (ja) 生体由来物検出用基板及びその製造方法
JP4006523B2 (ja) タンパク質アレイ及びその作製方法
CN110325858A (zh) 生物物质固定化方法及其利用
JP2007285835A (ja) バイオプレート用プレート及びその製造方法並びにバイオプレート
Hartmann et al. Non-contact protein microarray fabrication using a procedure based on liquid bridge formation
JP2004537032A (ja) ピクセルアレイ
Kumar et al. Recent progress in combinatorial solid phase synthesis: techniques, characterization and its application in drug development
EP2795500B1 (en) Coated substrates for high energy capture phase binding and methods of production and use thereof
Wang et al. Small molecule microarrays: Applications using specially tagged chemical libraries
JP5050267B2 (ja) 三次元構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706127

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551580

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12864619

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09706127

Country of ref document: EP

Kind code of ref document: A1