WO2009096170A1 - 超平坦光周波数コム信号発生器 - Google Patents

超平坦光周波数コム信号発生器 Download PDF

Info

Publication number
WO2009096170A1
WO2009096170A1 PCT/JP2009/000301 JP2009000301W WO2009096170A1 WO 2009096170 A1 WO2009096170 A1 WO 2009096170A1 JP 2009000301 W JP2009000301 W JP 2009000301W WO 2009096170 A1 WO2009096170 A1 WO 2009096170A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
optical
drive signal
signal
frequency comb
Prior art date
Application number
PCT/JP2009/000301
Other languages
English (en)
French (fr)
Inventor
Takahide Sakamoto
Tetsuya Kawanishi
Masahiro Tsuchiya
Masayuki Izutsu
Original Assignee
National Institute Of Information And Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Information And Communications Technology filed Critical National Institute Of Information And Communications Technology
Priority to US12/864,507 priority Critical patent/US20110097029A1/en
Priority to EP09706924.9A priority patent/EP2239620B1/en
Publication of WO2009096170A1 publication Critical patent/WO2009096170A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/20Intrinsic phase difference, i.e. optical bias, of an optical modulator; Methods for the pre-set thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/56Frequency comb synthesizer

Definitions

  • the present invention relates to an ultra-flat optical frequency comb signal generator that uses a Mach-Zehnder type optical modulator to generate an optical frequency comb signal with high flatness. More specifically, the present invention relates to an optical frequency comb that can generate an optical frequency comb simply and stably even when a single modulation signal is used, by making the electrodes provided on both arms of the Mach-Zehnder optical modulator asymmetric. It relates to a comb generator.
  • optical frequency comb generation technology having a function of simultaneously generating a plurality of optical frequency components having frequency intervals of equal intervals.
  • An optical frequency comb generator capable of generating such an optical frequency comb can be applied as a wavelength multiplexed light source in an optical wavelength division multiplexing system or a short pulse light source for ultrafast optical transmission and optical measurement.
  • optical frequency comb generators are being studied for application to optical frequency standards for absolute frequency measurement and remote supply of local signals from microwave and millimeter wave frequency bands (W. D. Jemison et al., MWP'01, pp.169-172, 2001).
  • Optical frequency comb generators are also being considered for use as control signals for array antennas used in astronomical observation systems such as radio telescopes (J. M. Payne and W. P. Shillue, MWP'02, pp .9-12, 2002).
  • Non-Patent Documents 1 to 5 below As a method for generating an optical frequency comb, in addition to a method using a mode-locked laser using a semiconductor or an optical fiber, a method using an optical modulation technique such as a LiNbO 3 modulator has been studied (for example, Non-Patent Documents 1 to 5 below) 3).
  • the optical frequency comb has flat spectral characteristics, that is, each frequency component has equal light intensity. Even when generating an optical frequency comb using a LiNbO 3 modulator, obtaining an optical frequency comb having flat spectral characteristics is an important issue.
  • the LiNbO 3 modulator is driven using a drive signal having a large amplitude, phase-modulated light can be obtained by the electro-optic effect.
  • the light intensity of the higher-order modulation component in the generated optical signal follows a Bessel function corresponding to each order.
  • the Bessel function is a quasi-periodic function whose phase differs depending on the order. Therefore, there is a problem that the light intensity of each frequency component of the phase-modulated light greatly depends on the amplitude of the drive signal, and it is difficult to obtain flat spectral characteristics.
  • the optical phase modulator and the optical intensity modulator are driven by the synchronization signal of the same frequency, and the first-order optical phase modulator is driven by large vibrations to generate a high-order modulation component and then directly connected. Further, intensity modulation is performed by a modulator at the subsequent stage. Sideband components generated from each frequency component of the phase-modulated light interfere with adjacent order frequency components, and the unevenness of the optical spectrum is alleviated. On the time axis, only the nonlinear chirp portion of the phase-modulated light is selectively generated by controlling the light intensity.
  • the inventors of the present invention have both arms of a single Mach-Zehnder type optical modulator driven with a large amplitude with sine wave signals of different amplitudes, and a combined vector of each frequency component of the comb generated by adjusting the drive voltage.
  • this optical frequency comb generator can generate an optical frequency comb signal using only a single Mach-Zehnder type optical modulator, the apparatus is simple and extremely excellent.
  • this optical frequency comb generator also has a problem that two types of modulation signals are required because both arms of a single Maha-Zehnder type optical modulator are driven with large amplitude sine wave signals of different amplitudes.
  • the present invention uses a single optical modulator (preferably not using a phase modulator or the like, and the optical modulator is only a single Mach-Zehnder optical modulator), and the optical frequency intervals are equal by one type of modulation signal. It is another object of the present invention to generate an optical frequency comb signal having flat optical spectrum characteristics and to provide an optical frequency comb generator capable of obtaining such an optical frequency comb signal.
  • Another object of the present invention is to provide an optical pulse generator using the optical frequency comb generator as described above.
  • the present invention basically includes a first modulation electrode (15) provided along the first waveguide (4) of the Mach-Zehnder type optical modulator, and the second waveguide (5).
  • the length of the second modulation electrode (16) provided in a different manner, or the position where the modulation efficiency is maximized in one or both of the first waveguide (4) and the second waveguide (5). This is based on the knowledge that an optical frequency comb having flat spectral characteristics can be obtained even if a single modulation signal is used. Since the optical phase modulator is originally for modulating the phase of the input signal, it is expected that only a signal in which the phase of the input optical signal is modulated by a predetermined amount is output.
  • an optical spectrum having a plurality of frequencies is generated as noise in addition to a signal modulated by a predetermined amount.
  • strength of a several frequency component follows a Bessel function. Therefore, by combining the optical signals output from the two optical phase modulators, effectively using each frequency component output as noise, and appropriately supplementing the light intensity of each frequency component, a single Even if an optical modulator is used, an optical frequency comb having flat spectral characteristics can be obtained.
  • the optical signal before being combined to be an optical frequency comb signal may be adjusted.
  • a bias signal and a modulation signal are applied, and the length of the modulation electrode provided in each arm is adjusted, or the waveguide is made asymmetric.
  • the optical frequency comb generator includes an optical input unit (2), a branch unit (3) for branching light input to the input unit, and the branch unit.
  • One drive signal (9) and the second drive signal (10) are A first modulation electrode (15) provided along the first waveguide (4) and provided along the second waveguide (5).
  • the present invention relates to an optical frequency comb generator that drives the first drive signal (9), the second drive signal (10), and the bias signal (12, 13) to satisfy the following formula (I).
  • ⁇ A ⁇ ⁇ ⁇ / 2 (I)
  • ⁇ A and ⁇ are defined as ⁇ A ⁇ (A 1 -A 2 ) / 2 and ⁇ ( ⁇ 1 - ⁇ 2 ) / 2, respectively, and A 1 and A 2 are the first drive, respectively.
  • optical phase shift amplitude induced by the first drive signal and the second drive signal when the signal and the second drive signal are input to the electrodes are shown, and ⁇ 1 and ⁇ 2 are the first guides, respectively.
  • the optical phase shift amount induced in the waveguide and the second waveguide is shown).
  • the optical phase shift amplitude (A 1 ) induced by the first drive signal is also simply referred to as the amplitude of the first drive signal, and the light induced by the second drive signal.
  • the phase shift amplitude (A 2 ) is also simply referred to as the amplitude of the second drive signal.
  • amplitude of the drive signal means an optical phase shift amplitude induced by the drive signal depending on the context.
  • phase modulator is constituted by a waveguide and an electrode to which a drive signal is applied
  • optical frequency comb having flat spectral characteristics
  • the drive signal system (11) and the bias signal system (14) include the first drive signal (9) and the second drive signal.
  • the optical frequency comb generator described above is driven so that the signal (10) and the bias signal (12, 13) satisfy the following formula (II) instead of the formula (I).
  • Equation (II) satisfies Equation (I)
  • an optical frequency comb having flat spectral characteristics can be obtained by driving as in Equation (II). Further, as will be described later, an optical frequency comb having a flat spectral characteristic can be obtained efficiently by driving to satisfy the formula (II).
  • a preferred embodiment of the optical frequency comb generator according to the first aspect of the present invention is any one of the above, wherein the amplitude (A 1 ) of the first drive signal and the amplitude (A 2 ) of the second drive signal are different.
  • the amplitudes of two drive signals are the same.
  • the drive signal is set so as to obtain an optical frequency comb having flat spectral characteristics
  • the two drive signals are controlled so as to satisfy a predetermined condition. Is different.
  • a preferred embodiment of the optical frequency comb generator according to the first aspect of the present invention is the optical frequency comb generator according to any one of the above, wherein the waveguide portion (8) is a Mach-Zehnder type waveguide.
  • a Mach-Zehnder type waveguide and a light modulator (Mah-Zehnder modulator) including a Mach-Zehnder type waveguide and a drive signal system are known. Therefore, an optical frequency comb generator having a Mach-Zehnder type waveguide can be easily manufactured using a known Mach-Zehnder type waveguide and a drive signal system.
  • the two branched waveguides constituting the Maha-Zehnder type waveguide are also called arms.
  • the Mach-Zehnder waveguide includes, for example, a substantially hexagonal waveguide (which forms two arms) and includes two phase modulators arranged in parallel. A phase modulator can be achieved with electrodes along the waveguide.
  • the oscillation period of the frequency component generated in each arm with respect to the applied voltage is also different.
  • the combined vector intensity of each frequency component of the generated comb is set to a constant value, so that the combined light The frequency dependence of the light intensity in the spectrum can be reduced, and as a result, a flat optical frequency comb can be obtained.
  • the first modulation electrode (15) and the second modulation electrode (16) are electrically connected, and the drive signal system (11), a drive signal is input to the second modulation electrode (16), a modulation signal output from the second modulation electrode (16) is input to the first modulation electrode (15), Any one of the above, wherein the modulation signal applied to the second modulation electrode (16) and the modulation signal applied to the first modulation electrode (15) drive the modulation signal so as to be in phase.
  • the present invention relates to an optical frequency comb generator. Even in this case, the modulation efficiency can be adjusted by adjusting the lengths of the first modulation electrode (15) and the second modulation electrode (16).
  • the conversion efficiency can also be adjusted by adjusting the cross-sectional structure of the electrode.
  • the drive signal from the drive signal system (11) is input to the second modulation electrode (16), and the modulation signal output from the second modulation electrode (16) is converted to the first modulation electrode (15).
  • the power efficiency can be improved by about 3 dB.
  • the waveguide portion (8) is provided on a domain-inverted ferroelectric crystal substrate
  • the present invention relates to a comb generator.
  • a ferroelectric crystal (LN crystal) with domain inversion a structure in which the crystal axis is inverted
  • each waveguide can be modulated in phase and with the same sign.
  • a phase shift can be given to the electrodes at both ends, and as a result, comb generation can be performed with only one electrode.
  • a preferred mode of use of the optical frequency comb generator according to the first aspect of the present invention is the optical frequency comb generator according to any of the above, a bandpass filter to which an output from the optical frequency comb generator is input, ,
  • An optical pulse generator comprising a dispersion fiber to which an output from the bandpass filter is input. That is, an ultrashort pulse laser such as a picosecond pulse laser or a femtosecond pulse laser can be obtained simply by connecting a bandpass filter and an optical fiber to the optical frequency comb generator.
  • An optical frequency comb generator includes an optical input unit (2), a branch unit (3) for branching light input to the input unit, and a branch from the branch unit (3).
  • a waveguide portion (8) including; a drive signal for obtaining a first drive signal (9) for driving the first waveguide and a second drive signal (10) for driving the second waveguide;
  • a bias signal system (14) for obtaining a bias signal (12, 13) to be applied to the first waveguide and the second waveguide;
  • the signal (9) and the second drive signal (10) are one drive. It is obtained from the signal system (11), and any one or both of the first waveguide and the second waveguide deviates from the condition that the modulation efficiency is maximized so as to satisfy the relationship of the above formula (I).
  • the drive signal system (11) and the bias signal system (14) are configured so that the first drive signal (9), the second drive signal (10), and the bias signal (12, 13) It is an optical frequency comb generator driven to satisfy (I).
  • an optical frequency comb having flat spectral characteristics can be generated by a single optical modulator by driving the optical modulator under predetermined conditions. This simplifies the structure compared to the optical frequency comb generator using a Mach-Zehnder optical modulator that applies two types of drive signals (modulation signals), and eliminates the need for driving with two modulation signals.
  • the drive system is simple and easy to operate.
  • the present invention can provide an optical pulse generator using the optical frequency comb generator as described above, an optical pulse generator having the above effects can be provided.
  • FIG. 1 is a schematic diagram of an optical frequency comb generator according to the present invention.
  • the optical frequency comb generator (1) according to the first aspect of the present invention includes an optical input unit (2) and a branching unit (3) for splitting light input to the input unit. ), A first waveguide (4) through which light branched from the branching section (3) propagates, and a second waveguide through which light different from the above branched from the branching section (3) propagates ( 5), a multiplexing unit (6) where optical signals output from the first waveguide and the second waveguide are combined, and an optical signal combined by the multiplexing unit are output.
  • the first drive signal (9) and the second drive signal (10) are obtained from one drive signal system (11) and are provided along the first waveguide (4).
  • ⁇ A ⁇ ⁇ ⁇ / 2 (I) (Where ⁇ A and ⁇ are defined as ⁇ A ⁇ (A 1 ⁇ A 2 ) / 2 and ⁇ ( ⁇ 1 ⁇ 2 ) / 2, respectively, and A 1 and A 2 are the first drive, respectively.
  • the optical phase shift amplitude induced by the first drive signal and the second drive signal when the signal and the second drive signal are input to the electrodes are shown, and ⁇ 1 and ⁇ 2 are the first guides, respectively.
  • the optical phase shift amount induced by the optical path length difference and the bias signal in the waveguide and the second waveguide is shown).
  • the optical frequency comb generator according to the present invention includes the first drive signal (9), the second drive signal (10), and the bias signal (12, 13) as shown in the formula (I).
  • the drive can be controlled by a control unit such as a computer included in the signal system or attached to the signal system.
  • phase modulator is constituted by a waveguide and an electrode to which a drive signal is applied
  • optical frequency comb having flat spectral characteristics
  • the optical frequency comb generator of the present invention according to this aspect has the first drive signal (9), the second drive signal (10), and the bias signal (12, 13) as shown in the above formula (II).
  • Equation (II) satisfies Equation (I)
  • an optical frequency comb having flat spectral characteristics can be obtained by driving as in Equation (II). Further, as will be described later, an optical frequency comb having a flat spectral characteristic can be obtained efficiently by driving to satisfy the formula (II).
  • a preferred embodiment of the optical frequency comb generator according to the first aspect of the present invention is any one of the above, wherein the amplitude (A 1 ) of the first drive signal and the amplitude (A 2 ) of the second drive signal are different.
  • the amplitude of the drive signal can be ⁇ or more, and it can be 2 ⁇ or 3 ⁇ or more. More preferable.
  • the amplitudes of the two drive signals are different, and therefore, the value of the amplitude difference is 0 to ⁇ , and more preferably 0.5 ⁇ or 0 to 0.25 ⁇ .
  • the amplitude of the two drive signals is the same.
  • the drive signal is set so as to obtain an optical frequency comb having a flat spectral characteristic
  • the two drive signals are controlled so as to satisfy a predetermined condition. Is different.
  • a preferred embodiment of the optical frequency comb generator according to the first aspect of the present invention is the optical frequency comb generator according to any one of the above, wherein the waveguide portion (8) is a Mach-Zehnder type waveguide.
  • a Mach-Zehnder type waveguide and a light modulator (Mah-Zehnder modulator) including a Mach-Zehnder type waveguide and a drive signal system are known. Therefore, an optical frequency comb generator having a Mach-Zehnder type waveguide can be easily manufactured using a known Mach-Zehnder type waveguide and a drive signal system.
  • the two branched waveguides constituting the Maha-Zehnder type waveguide are also called arms.
  • the Mach-Zehnder waveguide includes, for example, a substantially hexagonal waveguide (which forms two arms) and includes two phase modulators arranged in parallel. A phase modulator can be achieved with electrodes along the waveguide.
  • the oscillation period of the frequency component generated in each arm with respect to the applied voltage is also different.
  • the combined vector intensity of each frequency component of the generated comb is set to a constant value, so that the combined light
  • the frequency dependence of the light intensity in the spectrum can be reduced, and as a result, a flat optical frequency comb can be obtained.
  • the optical frequency comb generator can be said to be an ultra-high precision multi-frequency optical pulse generator. That is, the present invention also provides a multi-frequency optical pulse generator appropriately including the configuration of the above-described optical frequency comb generator.
  • FIG. 2 is a schematic diagram showing a configuration of an optical frequency comb generator according to another preferred embodiment of the present invention.
  • the drive signal from the drive signal system is branched, and the branched drive signal is applied to the first modulation electrode (15) and the second modulation electrode (16), respectively.
  • the output from the drive signal applied to one of the modulation electrodes is applied to another electrode.
  • the phase may be appropriately adjusted so that the applied modulation signal has an opposite phase (or the same phase).
  • the drive signal from the drive signal system (11) is input to the second modulation electrode (16), and the modulation signal output from the second modulation electrode (16) is converted to the first modulation electrode ( 15) and driving so as to satisfy the formula (I) or the formula (II).
  • the modulation signal applied to the second modulation electrode (16) and the modulation signal applied to the first modulation electrode (15) are preferably applied so as to be in phase. Even in this case, the modulation efficiency can be adjusted by adjusting the lengths of the first modulation electrode (15) and the second modulation electrode (16). The conversion efficiency can also be adjusted by adjusting the cross-sectional structure of the electrode.
  • the drive signal from the drive signal system (11) is input to the second modulation electrode (16), and the modulation signal output from the second modulation electrode (16) is converted to the first modulation electrode (15).
  • the power efficiency can be improved by about 3 dB.
  • Examples of the light source used in the optical frequency comb generator of the present invention include a light source that can output continuous light (CW), and a distributed feedback semiconductor laser (DFB laser).
  • a constant light output operation type DFB laser is preferable because of its high single wavelength selectivity.
  • the optical band is not limited to the C-band, but may be an L-band on the long wave side or an S-band on the short wave side.
  • the light intensity is 1mW to 50mW.
  • a known waveguide used in an optical modulator can be used as appropriate. Since the preferred embodiment of the optical modulator of the present invention is a Mach-Zehnder type optical modulator, the following description will be focused on the Mach-Zehnder type optical modulator.
  • the Maha-Zehnder waveguide and electrodes are provided on the substrate.
  • the substrate and each waveguide are not particularly limited as long as they can propagate light.
  • a Ti diffusion lithium niobate waveguide may be formed on an LN (LiNbO 3 ) substrate, or a silicon dioxide (SiO 2 ) waveguide may be formed on a silicon (Si) substrate.
  • an optical semiconductor waveguide in which an InGaAsP or GaAlAs waveguide is formed on an InP or GaAs substrate may be used.
  • FIG. 3 is a schematic diagram showing a waveguide having an asymmetric cross section in the present invention.
  • the example shown in FIG. 3 is that of a Z cut.
  • the lengths of the first modulation electrode and the second modulation electrode may be the same, or the lengths of the electrodes may be different as shown in FIG. 1 or FIG. .
  • FIG. 3 shows a Z-cut LN waveguide, and a thermal electrode is provided above the waveguide. And the 2nd waveguide (5) has shifted
  • the second waveguide (5) is 0.1 l or more from the position where the modulation efficiency is maximum. 1 l or less, preferably 0.2 l or more and 0.5 l or less, more preferably 0.3 l or more and 0.4 l or less.
  • this deviation is not particularly limited as long as it can be adjusted so as to satisfy the above formula (I).
  • FIG. 4 is a schematic diagram showing a waveguide having an asymmetric cross section in the present invention.
  • the one shown in FIG. 4 is an X-cut one.
  • the polarization of the substrate may be reversed with the position of the central hot electrode as appropriate.
  • the example shown in FIG. 4 has a thermal electrode in the center, and a ground electrode is provided between two waveguides.
  • the second waveguide (5) is located at the position where the modulation efficiency is maximized. From 0.1 l to 1 l, preferably from 0.2 l to 0.5 l, more preferably from 0.3 l to 0.4 l.
  • lithium niobate (LiNbO 3 : LN) cut out so as to achieve X-cut Z-axis propagation is preferable. This is because a large electro-optic effect can be used, so that low power driving is possible and an excellent response speed can be obtained.
  • An optical waveguide is formed on the surface of the X cut surface (YZ surface) of the substrate, and the guided light propagates along the Z axis (optical axis).
  • a lithium niobate substrate other than the X-cut may be used.
  • a triaxial or hexagonal uniaxial crystal having an electro-optic effect or a material whose crystal point group is C 3V , C 3 , D 3 , C 3h , D 3h can be used.
  • These materials have a function of adjusting the refractive index so that the change in refractive index is different depending on the mode of propagating light when an electric field is applied.
  • Specific examples include lithium tantalate (LiTO 3 : LT), ⁇ -BaB 2 O 4 (abbreviation BBO), LiIO 3 and the like in addition to lithium niobate.
  • the modulation electrode is preferably connected to a high frequency electrical signal source.
  • the high-frequency electric signal source is a device for generating a signal transmitted to the modulation electrode, and a known high-frequency electric signal source can be adopted.
  • Examples of the frequency (f m ) of the high-frequency signal input to the modulation electrode include 1 GHz to 100 GHz.
  • As an output of the high frequency electric signal source a sine wave having a constant frequency can be mentioned.
  • a phase modulator is provided at the output of the high-frequency electric signal source so that the phase of the output signal can be controlled. Note that the electrical signal output from the high-frequency electrical signal source is branched, and one of the branched electrical signals is adjusted in phase by a modulator (delayor) or the like and applied to the modulation electrode.
  • the modulation electrode is made of, for example, gold or platinum.
  • the width of the modulation electrode is 1 ⁇ m to 10 ⁇ m, and specifically 5 ⁇ m.
  • the length of the modulation electrode is 0.1 to 0.9 times the wavelength (f m ) of the modulation signal, 0.18 to 0.22 times, or 0.67 to 0.70 times, and more preferably the modulation signal resonance. One that is 20-25% shorter than the point. This is because, by using such a length, the combined impedance with the stub electrode remains in an appropriate region.
  • a more specific modulation electrode length is 3250 ⁇ m.
  • the resonant electrode and the traveling wave electrode will be described.
  • the resonance type photoelectrode is an electrode that modulates using the resonance of the modulation signal.
  • Known electrodes can be used as the resonance type electrodes, for example, Japanese Patent Application Laid-Open No. 2002-268025, “Tetsuya Kawanishi, Satoshi Oikawa, Masayuki Izutsu”, “Planar Resonance Type Optical Modulator”, IEICE Technical Report, TECHNICAL REPORT OF IEICE. , IQE2001-3 (2001-05) "can be used. *
  • a traveling wave type electrode is an electrode (modulator) that modulates light while guiding and guiding light waves and electrical signals in the same direction (for example, Hiroshi Nishihara, Haruna) Masamitsu and Toshiaki Sugawara, “Optical Integrated Circuit” (Revised Supplement), Ohmsha, pp. 119-120).
  • the traveling wave type electrode known ones can be adopted.
  • JP-A-11-295674, JP-A-11-295674, JP-A-2002-169133, JP-A-2002-40381, JP-A-2000- Those disclosed in Japanese Patent No. 267056, Japanese Patent Laid-Open No. 2000-471159, Japanese Patent Laid-Open No. 10-133159, and the like can be used.
  • the traveling wave type electrode preferably employs a so-called symmetrical ground electrode arrangement (having at least a pair of ground electrodes on both sides of the traveling wave type signal electrode).
  • a so-called symmetrical ground electrode arrangement having at least a pair of ground electrodes on both sides of the traveling wave type signal electrode.
  • ⁇ 1 and ⁇ 2 should satisfy the following equation:
  • ⁇ 1 and ⁇ 2 are [rad / m] indicates (phase) modulation efficiency per unit length of each arm in the modulator, and ⁇ [rad / V] is per unit voltage with respect to the bias voltage. Shows the modulation efficiency, each of which shows the electrode length.
  • ⁇ 1 and ⁇ 2 are not particularly limited as long as they can be adjusted to satisfy the formula (I).
  • ⁇ 1 / ⁇ 2 is 1.01 or more and 3 or less, preferably 1.1 or more and 2 or less, and 1.2 or more and 1.5 or less. More preferably.
  • the optical frequency comb generator of the present invention is for obtaining a first bias signal (12) applied to the first waveguide and a second bias signal (13) applied to the second waveguide.
  • a bias signal system is provided.
  • the bias signal system is a signal system for controlling the bias voltage applied to the two arms.
  • the bias signal system includes a bias power supply system and a bias adjustment electrode.
  • the bias adjustment electrode is an electrode for controlling the phase of light propagating through the two arms by controlling the bias voltage between the two arms connected to the bias power supply system.
  • a normal direct current or low frequency signal is preferably applied to the bias adjustment electrode.
  • “low frequency” in the low frequency signal means, for example, a frequency of 0 Hz to 500 MHz.
  • a phase modulator for adjusting the phase of the electric signal is provided at the output of the signal source of the low frequency signal so that the phase of the output signal can be controlled.
  • the modulation electrode and the bias adjustment electrode may be configured separately, or one electrode may serve as both. That is, the modulation electrode may be connected to a power supply circuit (bias circuit) that supplies a mixture of a DC signal and an RF signal.
  • a power supply circuit bias circuit
  • a control electrically connected to the signal source of each electrode or by an optical signal. It is preferable that a part is provided.
  • Such a control unit functions to adjust the modulation time of the signal applied to the modulation electrode and the bias adjustment electrode. That is, adjustment is performed in consideration of the propagation time of light so that modulation by each electrode is performed on a specific signal.
  • the adjustment time may be an appropriate value depending on the distance between the electrodes.
  • the optical frequency comb generator of the present invention comprises a substrate, a waveguide provided on the substrate, an electrode, a signal source, and the like.
  • a known forming method such as an internal diffusion method such as a titanium diffusion method or a proton exchange method can be used. That is, the optical frequency comb generator of the present invention can be manufactured as follows, for example. First, titanium is patterned on a lithium niobate wafer by photolithography, and titanium is diffused by thermal diffusion to form an optical waveguide.
  • the conditions at this time may be that the thickness of titanium is 100 to 2000 angstroms, the diffusion temperature is 500 to 2000 ° C., and the diffusion time is 10 to 40 hours.
  • An insulating buffer layer (thickness 0.5 to 2 ⁇ m) of silicon dioxide is formed on the main surface of the substrate.
  • an electrode made of metal plating having a thickness of 15 to 30 ⁇ m is formed thereon.
  • the wafer is then cut. In this way, an optical modulator having a titanium diffusion waveguide is formed.
  • the optical frequency comb generator can also be manufactured, for example, as follows. First, a waveguide is formed on a substrate.
  • the waveguide can be provided by performing a proton exchange method or a titanium thermal diffusion method on the surface of the lithium niobate substrate. For example, Ti metal stripes of about several micrometers are formed on the LN substrate in a row on the LN substrate by photolithography. Thereafter, the LN substrate is exposed to a high temperature around 1000 ° C. to diffuse Ti metal into the substrate. In this way, a waveguide can be formed on the LN substrate.
  • the electrode can be manufactured in the same manner as described above.
  • the gap between the electrodes becomes about 1 to 50 micrometers with respect to both sides of many waveguides formed with the same width by photolithography technology in the same manner as the formation of the optical waveguide. Can be formed.
  • a lower cladding layer mainly composed of silicon dioxide (SiO 2 ) is deposited on a silicon (Si) substrate by flame deposition, and then silicon dioxide (SiO 2 ) doped with germanium dioxide (GeO 2 ) as a dopant is deposited.
  • a core layer as a main component is deposited. After that, it is made into transparent glass in an electric furnace.
  • an optical waveguide portion is fabricated by etching, and an upper clad layer mainly composed of silicon dioxide (SiO 2 ) is deposited again. Then, a thin film heater type thermo-optic intensity modulator and a thin film heater type thermo-optic phase modulator are formed on the upper cladding layer.
  • FIG. 5 is a diagram for explaining the concept of generation of the optical frequency comb of the optical frequency comb generator of the present invention.
  • RF signals that drive each arm of the Maha-Zehnder modulator are RF-a and RF-b, respectively.
  • Equation (2) J k (•) represents a k-th order Bessel function.
  • the conversion efficiency eta k defined as a relative ratio with respect to the input light intensity P in the k-th order frequency comb component intensity P k.
  • / A (Aber), ⁇ A, and ⁇ are respectively defined by the following equations (4).
  • / A ⁇ (A 1 + A 2 ) / 2 ⁇ A ⁇ (A 1 ⁇ A 2 ) / 2, ⁇ ( ⁇ 1 ⁇ 2 ) / 2 (4)
  • Equation (7) means that the Maha-Zehnder modulator is biased at 2 / ⁇ point, and the maximum phase difference of the phase shift induced by the driving sine wave signals RF-a and RF-b is ⁇ .
  • the basic operation of the optical frequency comb generator of the present invention is as shown in FIG.
  • the drive signals RF-a and RF-b are applied to the two arms of the Maha-Zehnder modulator, and the bias signals - ⁇ and ⁇ whose phases are reversed are applied.
  • the output optical frequency comb signal has a plurality of frequency components shifted from ⁇ 0 by a frequency corresponding to the frequency of the drive signal (ie, the wavelength). .
  • the optical frequency comb generator can also be referred to as an ultra-high precision multi-frequency optical pulse generator. That is, although a method for generating an optical pulse using an optical comb generator is known, the optical pulse generator described above uses the optical comb generator of the present invention, and thus enjoys the effects described above. It will be possible.
  • the optical pulse generator of the present invention can appropriately employ the components and steps of the above-described optical frequency comb generator and optical frequency comb generator. Although a method of generating an optical pulse using an optical comb generator is known, the optical pulse generator described above uses the optical comb generator of the present invention, so that the effects described above can be enjoyed. Become.
  • the frequency components generated by the optical comb generator are synchronized and their phase components are constant. Therefore, an ultrashort pulse train can be generated by adjusting the amplitude and phase of each frequency component.
  • arbitrary waveforms can be generated. That is, the optical frequency comb generator of the present invention can also be used as an optical pulse generator or an arbitrary waveform generator.
  • FIG. 6 is a schematic view of an optical pulse generator which is a preferred mode of use of the optical frequency comb generator of the present invention.
  • the optical pulse generator (21) includes an optical frequency comb generator (1) according to any one of the above, and a bandpass filter to which an output from the optical frequency comb generator is input ( 22) and a dispersion fiber (23) to which the output from the bandpass filter is input.
  • Each frequency component obtained by the optical comb generator can be expressed by the following equation because the output optical frequency comb is in an ultra flat mode.
  • a k represents the amplitude of the output signal
  • ⁇ k (hereinafter also referred to as ⁇ ) represents the phase of the output signal
  • k represents the order of the frequency component of the output signal.
  • the phase difference can be set to 0 by giving a phase shift of ⁇ having the opposite sign to the output of the optical comb generator.
  • the time waveform becomes an impulse function, and a short light pulse can be synthesized.
  • the phase shift given by a general single-mode fiber having chromatic dispersion is a quadratic function of the optical frequency order.
  • Can be given. Since the fiber length at that time is ideally expressed by the following equation, the length L may be appropriately adjusted based on the ideal equation.
  • ⁇ 2 represents the group velocity in the fiber.
  • an ultrashort pulse laser such as a picosecond pulse laser or a femtosecond pulse laser can be obtained simply by connecting a bandpass filter and an optical fiber to the optical frequency comb generator described above.
  • a pulse train of 2.2 ps could be obtained.
  • a 1 nm bandpass filter was used, and a 1100 m single mode fiber was used.
  • an ultrashort pulse as shown in FIG. 7 could be obtained.
  • multi-wavelength light sources in optical wavelength division multiplexing transmission systems short pulse light sources for ultra-high-speed optical transmission and optical measurement, etc. It can also be used as an optical frequency reference for absolute frequency measurement, remote supply of local signals in the microwave and millimeter wave frequency bands, and control signals for array antennas used in astronomical observation systems such as radio telescopes.
  • FIG. 1 is a schematic diagram of an optical frequency comb generator according to the present invention.
  • FIG. 2 is a schematic diagram showing a configuration of an optical frequency comb generator according to another preferred embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a waveguide having an asymmetric cross section in the present invention.
  • FIG. 4 is a schematic diagram showing a waveguide having an asymmetric cross section in the present invention.
  • FIG. 5 is a diagram for explaining the concept of generation of the optical frequency comb of the optical frequency comb generator of the present invention.
  • FIG. 6 is a schematic diagram of an optical pulse generator that is a preferred mode of use of the optical frequency comb generator of the present invention.
  • FIG. 7 is a graph replacing the drawing of the obtained picosecond pulse.
  • 1 optical frequency comb generator 2 input unit; 3 branch unit; 4 first waveguide; 5 second waveguide; 6 multiplexing unit; 7 output unit; 8 waveguide unit; 9 first drive signal; 10 2 drive signal; 11 drive signal system; 12 bias signal; 13 bias signal; 14 bias signal system; 15 first modulation electrode; 16 second modulation electrode; 21 optical pulse generator; 22 band pass filter; 23 Dispersion fiber

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】 単一の変調器を用いて平坦なスペクトル特性を有する光周波数コムを発生する光周波数コム発生装置を提供する。 【解決手段】 駆動信号系(11)及びバイアス信号系(14)が,第1の駆動信号(9),第2の駆動信号(10)及びバイアス信号(12,13)を,下記式(I)を満たすように駆動する光周波数コム発生装置。ΔA±Δθ=π/2  (I)  (ここで,ΔA及びΔθは,それぞれΔA≡(A1-A2)/2,及びΔθ≡(θ1-θ2)/2と定義され,A1及びA2はそれぞれ前記第1の駆動信号及び前記第2の駆動信号の電極への入力時における前記第1の駆動信号及び前記第2の駆動信号の振幅を示し,θ1及びθ2はそれぞれ第1の導波路及び第2の導波路に印加されるバイアス電圧の位相を示す)

Description

超平坦光周波数コム信号発生器
 本発明は,マハツェンダ型光変調器を用い,平坦性の高い光周波数コム信号を発生する超平坦光周波数コム信号発生器に関する。より詳しく説明すると,本発明は,マハツェンダ型光変調器の両アームに設けられる電極を非対称とすることにより,単一の変調信号を用いても,簡潔かつ安定に光周波数コムを発生できる光周波数コム発生器に関する。
 近年,等間隔の周波数差を有する複数の光周波数成分を同時に生成する機能を持った光周波数コム発生技術に大きな期待が集まっている。このような光周波数コムを発生できる光周波数コム発生装置は,光波長多重分割多重システムにおける波長多重光源や,超高速光伝送及び光計測のための短パルス光源として応用されうる。また,光周波数コム発生装置は,絶対周波数測定のための光周波数基準や,マイクロ波,ミリ波周波数帯の局発信号の遠隔供給に応用することが検討されている(W. D. Jemison et al., MWP’01, pp.169-172,2001)。また,光周波数コム発生装置は,無線望遠鏡などの天文観測システムで用いられるアレイアンテナの制御信号として用いることも検討されている(J. M. Payne and W. P. Shillue, MWP’02, pp.9-12, 2002)。
 光周波数コムの発生方法として,半導体や光ファイバを用いたモード同期レーザを用いるものの他,LiNbO3変調器などの光変調技術を用いたものが検討されてきた(例えば,下記非特許文献1~3)。
 光周波数コムは,平坦なスペクトル特性を持つこと,すなわち各周波数成分が等しい光強度を持つことが理想的である。LiNbO3変調器を用いて光周波数コムを生成する場合においても,平坦なスペクトル特性を有する光周波数コムを得ることは重要な課題である。大きな振幅を有する駆動信号を用いてLiNbO3変調器を駆動すると,電気光学効果により位相変調光を得ることができる。その結果,光周波数コムを得ることができるものの,発生する光信号のうち高次変調成分の光強度は各次数に応じたベッセル関数に従うこととなる。そして,ベッセル関数は,次数により位相が異なった準周期的関数である。そのため,位相変調光の各周波数成分の光強度は駆動信号の振幅に大きく依存し平坦なスペクトル特性を得ることが難しいという問題がある。
 これに対し,光位相変調器と光強度変調器とを併用し,平坦なスペクトル特性を有する光周波数コム信号を発生する方法が提案されている。この方法では,光位相変調器と光強度変調器とを同じ周波数の同期信号で駆動し,初段の光位相変調器を大振動駆動することにより,高次変調成分を発生させた後に,直結された後段の変調器により強度変調が施される。位相変調光の各周波数成分から生成される側波帯成分は,隣接次数の周波数成分と干渉し,光スペクトルの凹凸が緩和される。また,時間軸上では,光強度を制御することにより,位相変調光の非線形チャープ部のみが選択的に生成される。
 しかし,以上の従来の手法では,スペクトル平坦性の高い光周波数コムを取得できるが,二つの光変調器を直結した同期駆動が不可欠であった。したがって,光周波数コム発生装置の構成が複雑になるという問題がある。
 そこで,本発明者らは,単一のマハツェンダ型光変調器の両アームに異なる振幅の正弦波信号で大振幅駆動させ,また,駆動電圧の調整により生成されるコムの各周波数成分の合成ベクトル強度を一定値とすることで,光周波数間隔が等しく,かつ平坦な光スペクトル特性を持った,光周波数コム信号を発生する光周波数コム発生器を開発した。
 この光周波数コム発生器は単一のマハツェンダ型光変調器のみを用いて光周波数コム信号を発生できるので,装置が簡便であり,きわめて優れたものであった。しかしながら,この光周波数コム発生器においても,単一のマハツェンダ型光変調器の両アームに異なる振幅の正弦波信号で大振幅駆動させるため,2種類の変調信号が必要であるという問題がある。
M. Sugiyama et al., OFC’02, FB6, 2002. T. Sakamoto et al., MWP’04, MC16, 2004. T. Kawanishi et al., IEICE Electron Express, Vol. 1, pp.217-221, 2004
 本発明は,単一の光変調器(好ましくは位相変調器などを用いず,光変調器は単一のマハツェンダ型光変調器のみ)を用い,1種類の変調信号により,光周波数間隔が等しく,かつ平坦な光スペクトル特性を持った光周波数コム信号を発生すること,及びそのような光周波数コム信号を得ることができる光周波数コム発生器を提供することを目的とする。
 本発明は,上記のような光周波数コム発生器を用いた光パルス発生器を提供することを上記とは別の目的とする。
 本発明は,基本的には,マッハツェンダ型光変調器の第1の導波路(4)に沿って設けられた第1の変調電極(15)と,前記第2の導波路(5)に沿って設けられた第2の変調電極(16)の長さを異ならせるか,第1の導波路(4)及び第2の導波路(5)のいずれか又は両方を変調効率が最大となる位置に関して非対称となるようにずらすことで,単一の変調信号を用いても,平坦なスペクトル特性を有する光周波数コムを得ることができるという知見に基づくものである。光位相変調器は,本来,入力信号の位相を変調するためのものであるから,入力光信号の位相が所定量変調された信号のみが出力されることが期待される。しかしながら,光位相変調器では,所定量変調された信号以外に,複数の周波数の光スペクトルがノイズとして発生する。そして,複数の周波数成分の強度は,ベッセル関数に従う。よって,2つの光位相変調器から出力される光信号を合波し,ノイズとして出力される各周波数成分を効果的に利用し,各周波数成分の光強度を適切に補うことで,単一の光変調器を用いても平坦なスペクトル特性を有する光周波数コムを得ることができる。
 そして,光周波数コムを得るためには,マハツェンダ変調器の両アームからの出力が合波された場合に,光周波数コム信号となるように合波される前の光信号を調整すればよい。本発明では,そのような観点から,バイアス信号や変調信号を印加すると共に,それぞれのアームに設けられる変調電極の長さを調整するか,又は導波路を非対称とする。
 具体的には,本発明の第1の側面にかかる光周波数コム発生装置は,光の入力部(2)と,前記入力部に入力した光が分岐する分岐部(3)と,前記分岐部(3)から分岐した光が伝播する第1の導波路(4)と,前記分岐部(3)から分岐した上記とは別の光が伝播する第2の導波路(5)と,前記第1の導波路と前記第2の導波路から出力される光信号が合波される合波部(6)と,前記合波部で合波された光信号が出力される光信号の出力部(7)とを含む導波路部分(8)と;前記第1の導波路を駆動する第1の駆動信号(9)と前記第2の導波路を駆動する第2の駆動信号(10)を得るための駆動信号系(11)と;前記第1の導波路及び前記第2の導波路に印加するバイアス信号(12,13)を得るためのバイアス信号系(14)を具備し, 前記第1の駆動信号(9)及び前記第2の駆動信号(10)は一つの駆動信号系(11)から得られ,前記第1の導波路(4)に沿って設けられた第1の変調電極(15)と,前記第2の導波路(5)に沿って設けられた第2の変調電極(16)の長さをそれぞれl及びlとしたときに,lとlとは異なり,前記駆動信号系(11)及びバイアス信号系(14)は,前記第1の駆動信号(9),前記第2の駆動信号(10)及びバイアス信号(12,13)が,下記式(I)を満たすように駆動する光周波数コム発生装置などに関する。ΔA±Δθ=π/2  (I) 
(ここで,ΔA及びΔθは,それぞれΔA≡(A-A)/2,及びΔθ≡(θ-θ)/2と定義され,A及びAはそれぞれ前記第1の駆動信号及び前記第2の駆動信号の電極への入力時における前記第1の駆動信号及び前記第2の駆動信号に誘導される光位相シフト振幅を示し,θ及びθはそれぞれ第1の導波路及び第2の導波路内で誘導される光位相シフト量を示す)。なお,本明細書において,前記第1の駆動信号により誘導される光位相シフト振幅(A)を単に,前記第1の駆動信号の振幅ともよび,前記第2の駆動信号により誘導される光位相シフト振幅(A)を単に,前記第2の駆動信号の振幅ともよぶ。また,“駆動信号の振幅”とは,文脈に応じて,駆動信号により誘導される光位相シフト振幅を意味する。
 後述するように,上記式(I)を満たすように駆動することにより,合波される2つの位相変調器(導波路と駆動信号を印加する電極とにより位相変調器を構成する。)からの光信号が互いに補い合って平坦なスペクトル特性を有する光周波数コムを得ることができることとなる。
 本発明の第1の側面にかかる光周波数コム発生装置の好ましい態様は,前記駆動信号系(11)及びバイアス信号系(14)は,前記第1の駆動信号(9),前記第2の駆動信号(10)及びバイアス信号(12,13)が,前記式(I)の替わりに,下記式(II)を満たすように駆動する上記に記載の光周波数コム発生装置である。
 ΔA=Δθ=π/4 (II)
 (ただし,ΔA及びΔθは,上記と同義である。)
 式(II)は,式(I)を満たすから,式(II)のように駆動すれば,平坦なスペクトル特性を有する光周波数コムを得ることができる。また,後述するように,式(II)を満たすように駆動すれば,効率よく平坦なスペクトル特性を有する光周波数コムを得ることができる。
 本発明の第1の側面にかかる光周波数コム発生装置の好ましい態様は,前記第1の駆動信号の振幅(A)と前記第2の駆動信号の振幅(A)とが異なる上記いずれかに記載の光周波数コム発生装置である。
 一般に,デュアルドライブ型の光変調器では,2つの駆動信号の振幅を同じとする。しかし,本発明では,平坦なスペクトル特性を有する光周波数コムを得られるように駆動信号を設定するので,2つの駆動信号が所定の条件を満たすように制御されるため,2つの駆動信号の振幅が異なる。
 本発明の第1の側面にかかる光周波数コム発生装置の好ましい態様は,前記導波路部分(8)が,マハツェンダ型導波路である上記いずれかに記載の光周波数コム発生装置である。
 マハツェンダ型導波路,及びマハツェンダ型導波路と駆動信号系とを含んだ光変調器(マハツェンダ変調器)は,公知である。したがって,マハツェンダ型導波路を具備する光周波数コム発生装置であれば,公知のマハツェンダ型導波路と駆動信号系を用いて容易に光周波数コム発生装置を製造できる。なお,マハツェンダ型導波路を構成する分岐後の二つの導波路をそれぞれアームともよぶ。マハツェンダ導波路は,例えば,略六角形状の導波路(これが2つのアームを構成する)を具備し,並列する2つの位相変調器を具備するようにして構成される。位相変調器は,導波路に沿った電極により達成できる。
 マハツェンダ変調器は,両アームで誘導される光位相変移量が異なるため,各アームで生成される周波数成分の印加電圧に対する振動周期も異なる。この駆動電圧に対する振動位相差が両アーム間で90度となるよう駆動電圧を調整することにより,生成されるコムの各周波数成分の合成ベクトル強度を一定値とすることで,合波された光スペクトルにおける光強度の周波数依存性を軽減することができ,その結果,平坦な光周波数コムを得ることができる。
 本発明の第1の側面にかかる光周波数コム発生装置の好ましい態様は,第1の変調電極(15)と前記第2の変調電極(16)とは,電気的に接続され,前記駆動信号系(11)は,駆動信号が前記第2の変調電極(16)に入力され,その第2の変調電極(16)から出力された変調信号が前記第1の変調電極(15)に入力され,前記第2の変調電極(16)に印加される変調信号と,前記第1の変調電極(15)に印加される変調信号は,同相となるように変調信号を駆動する,上記いずれかに記載の光周波数コム発生装置に関する。この場合でも,第1の変調電極(15)及び第2の変調電極(16)の長さを調整することで,変調効率を調整できる。また,電極の断面構造を調整することによっても,変換効率を調整することができる。このように,駆動信号系(11)からの駆動信号が第2の変調電極(16)に入力され,その第2の変調電極(16)から出力された変調信号を第1の変調電極(15)に入力されるようにすることで,電力効率を3dB程度改善することができる。
 本発明の第1の側面にかかる光周波数コム発生装置の好ましい態様は,前記導波路部分(8)は,ドメイン反転された強誘電体結晶基板上に設けられる,上記いずれかに記載の光周波数コム発生装置に関する。このようにドメイン反転(結晶軸を反転した構造)の強誘電体結晶(LN結晶)を用いることで,各導波路に対し,同相かつ同符号の変調を施すことができるので,ひとつの電極から両端の電極に位相シフトを与えることができ,その結果,1電極のみでコム発生を行うことができることとなる。
 本発明の第1の側面にかかる光周波数コム発生装置の好ましい利用態様は,上記いずれかに記載の光周波数コム発生装置と,前記光周波数コム発生装置からの出力が入力されるバンドパスフィルタと,前記バンドパスフィルタからの出力が入力される分散ファイバとを具備する光パルス発生装置に関する。すなわち,上記した光周波数コム発生装置に,バンドパスフィルタと光ファイバとを接続するだけで,簡単にピコ秒パルスレーザ又はフェムト秒パルスレーザといった超短パルスレーザを得ることができる。
 本発明の第2の側面にかかる光周波数コム発生装置は,光の入力部(2)と,前記入力部に入力した光が分岐する分岐部(3)と,前記分岐部(3)から分岐した光が伝播する第1の導波路(4)と,前記分岐部(3)から分岐した上記とは別の光が伝播する第2の導波路(5)と,前記第1の導波路と前記第2の導波路から出力される光信号が合波される合波部(6)と,前記合波部で合波された光信号が出力される光信号の出力部(7)とを含む導波路部分(8)と;前記第1の導波路を駆動する第1の駆動信号(9)と前記第2の導波路を駆動する第2の駆動信号(10)を得るための駆動信号系(11)と;前記第1の導波路及び前記第2の導波路に印加するバイアス信号(12,13)を得るためのバイアス信号系(14)と;を具備し,前記第1の駆動信号(9)及び前記第2の駆動信号(10)は一つの駆動信号系(11)から得られ,前記第1の導波路と前記第2の導波路のいずれか又は両方が,上記式(I)の関係を満たすように,変調効率が最大となる条件からずれており,前記駆動信号系(11)及びバイアス信号系(14)は,前記第1の駆動信号(9),前記第2の駆動信号(10)及びバイアス信号(12,13)が,上記式(I)を満たすように駆動する光周波数コム発生装置である。
 本発明では,所定の条件において光変調器を駆動することにより,単一の光変調器によって,平坦なスペクトル特性を有する光周波数コムを発生することができる。これにより,2種類の駆動信号(変調信号)を印加するマハツェンダ型光変調器を用いた光周波数コム発生器に比べ,構造が簡潔になるほか,二つの変調信号により駆動する必要がなくなるので,駆動系が簡潔になるほか操作も容易になる。
 本発明は,上記のような光周波数コム発生器を用いた光パルス発生器を提供できるので,上記した効果を有する光パルス発生器を提供できることとなる。
 [光周波数コム発生装置]
 以下,図面を用いて本発明の光周波数コム発生装置について説明する。図1は,本発明の光周波数コム発生装置の概略図である。図1に示されるように,本発明の第1の側面にかかる光周波数コム発生装置(1)は,光の入力部(2)と,前記入力部に入力した光が分岐する分岐部(3)と,前記分岐部(3)から分岐した光が伝播する第1の導波路(4)と,前記分岐部(3)から分岐した上記とは別の光が伝播する第2の導波路(5)と,前記第1の導波路と前記第2の導波路から出力される光信号が合波される合波部(6)と,前記合波部で合波された光信号が出力される光信号の出力部(7)とを含む導波路部分(8)と;前記第1の導波路を駆動する第1の駆動信号(9)と前記第2の導波路を駆動する第2の駆動信号(10)を得るための駆動信号系(11)と;前記第1の導波路及び前記第2の導波路に印加するバイアス信号(12,13)を得るためのバイアス信号系(14)とを具備する。
 そして,前記第1の駆動信号(9)及び前記第2の駆動信号(10)は一つの駆動信号系(11)から得られ,前記第1の導波路(4)に沿って設けられた第1の変調電極(15)と,前記第2の導波路(5)に沿って設けられた第2の変調電極(16)の長さをそれぞれl及びlとしたときに,lとlとは異なり,前記駆動信号系(11)及びバイアス信号系(14)は,前記第1の駆動信号(9),前記第2の駆動信号(10)及びバイアス信号(12,13)が,下記式(I)を満たすように駆動する。
  ΔA±Δθ=π/2  (I) 
(ここで,ΔA及びΔθは,それぞれΔA≡(A-A)/2,及びΔθ≡(θ-θ)/2と定義され,A及びAはそれぞれ前記第1の駆動信号及び前記第2の駆動信号の電極への入力時における前記第1の駆動信号及び前記第2の駆動信号に誘導される光位相シフト振幅を示し,θ及びθはそれぞれ第1の導波路及び第2の導波路内で光路長差及びバイアス信号などにより誘導される光位相シフト量を示す)。すなわち,この態様に係る本発明の光周波数コム発生器は,上記式(I)のように前記第1の駆動信号(9),前記第2の駆動信号(10)及びバイアス信号(12,13)を駆動する前記駆動信号系(11)及びバイアス信号系(14)を具備するものである。そして,駆動の制御は,信号系に含まれるか信号系に取り付けられたコンピュータなどの制御部で制御すればよい。
 後述するように,上記式(I)を満たすように駆動することにより,合波される2つの位相変調器(導波路と駆動信号を印加する電極とにより位相変調器を構成する。)からの光信号が互いに補い合って平坦なスペクトル特性を有する光周波数コムを得ることができることとなる。
 駆動信号が式(I)を満たす場合,l及びlは,理想的には,後述する式を満たすように設計すればよい。
 本発明の第1の側面にかかる光周波数コム発生装置の好ましい態様は,前記式(I)の替わりに,下記式(II)を満たすように駆動する上記に記載の光周波数コム発生装置である。
 ΔA=Δθ=π/4 (II)
 (ただし,ΔA及びΔθは,上記と同義である。)。すなわち,この態様に係る本発明の光周波数コム発生器は,上記式(II)のように前記第1の駆動信号(9),前記第2の駆動信号(10)及びバイアス信号(12,13)を駆動する前記駆動信号系(11)及びバイアス信号系(14)を具備するものである。
 式(II)は式(I)を満たすから,式(II)のように駆動すれば,平坦なスペクトル特性を有する光周波数コムを得ることができる。また,後述するように,式(II)を満たすように駆動すれば,効率よく平坦なスペクトル特性を有する光周波数コムを得ることができる。
 本発明の第1の側面にかかる光周波数コム発生装置の好ましい態様は,前記第1の駆動信号の振幅(A)と前記第2の駆動信号の振幅(A)とが異なる上記いずれかに記載の光周波数コム発生装置である。
 駆動信号の振幅が大きい場合に,下記のとおり式(I)の条件において平坦な光周波数コムスペクトルを得ることができるので,駆動信号の振幅として,π以上があげられ,2πもしくは3π以上であればより好ましい。一方,本発明では,2つの駆動信号の振幅が異なることが好ましいので,振幅差の値として,0~πがあげられ,0.5πもしくは0~0.25πであればより好ましい。
 一般に,デュアルドライブ型の光変調器では,2つの駆動信号の振幅を同じとする。しかし,本発明では,平坦なスペクトル特性を有する光周波数コムを得られるように駆動信号を設定するので,2つの駆動信号が所定の条件を満たすように制御されるため,2つの駆動信号の振幅が異なる。
 本発明の第1の側面にかかる光周波数コム発生装置の好ましい態様は,前記導波路部分(8)が,マハツェンダ型導波路である上記いずれかに記載の光周波数コム発生装置である。
 マハツェンダ型導波路,及びマハツェンダ型導波路と駆動信号系とを含んだ光変調器(マハツェンダ変調器)は,公知である。したがって,マハツェンダ型導波路を具備する光周波数コム発生装置であれば,公知のマハツェンダ型導波路と駆動信号系を用いて容易に光周波数コム発生装置を製造できる。なお,マハツェンダ型導波路を構成する分岐後の二つの導波路をそれぞれアームともよぶ。マハツェンダ導波路は,例えば,略六角形状の導波路(これが2つのアームを構成する)を具備し,並列する2つの位相変調器を具備するようにして構成される。位相変調器は,導波路に沿った電極により達成できる。
 マハツェンダ変調器は,両アームで誘導される光位相変移量が異なるため,各アームで生成される周波数成分の印加電圧に対する振動周期も異なる。この駆動電圧に対する振動位相差が両アーム間で90度となるよう駆動電圧を調整することにより,生成されるコムの各周波数成分の合成ベクトル強度を一定値とすることで,合波された光スペクトルにおける光強度の周波数依存性を軽減することができ,その結果,平坦な光周波数コムを得ることができる。なお,光コムは,その帯域幅に応じた光パルス信号を生成することができるので,光周波数コム発生装置は,超高精度な多周波数光パルス発生器ということもできる。すなわち,本発明は,上記した光周波数コム発生装置の構成を適宜具備する多周波数光パルス発生器をも提供する。
 図2は,本発明の好ましい上記とは別の態様の光周波数コム発生装置の構成を示す概略図である。図1では,駆動信号系からの駆動信号が分岐され,分岐された駆動信号が第1の変調電極(15)と,第2の変調電極(16)とにそれぞれ印加されていた。しかしながら,この実施態様では,いずれかの変調電極に印加された駆動信号からの出力を別の電極へ印加する。その際に,例えば印加される変調信号が逆位相(又は同位相)となるように,適宜位相を調整しても良い。具体的には,駆動信号系(11)からの駆動信号が第2の変調電極(16)に入力され,その第2の変調電極(16)から出力された変調信号を第1の変調電極(15)に入力されるようにし,式(I)又は式(II)を満たすように駆動すればよい。そして,第2の変調電極(16)に印加される変調信号と,第1の変調電極(15)に印加される変調信号は,同相となるように印加することが好ましい。この場合でも,第1の変調電極(15)及び第2の変調電極(16)の長さを調整することで,変調効率を調整できる。また,電極の断面構造を調整することによっても,変換効率を調整することができる。このように,駆動信号系(11)からの駆動信号が第2の変調電極(16)に入力され,その第2の変調電極(16)から出力された変調信号を第1の変調電極(15)に入力されるようにすることで,電力効率を3dB程度改善することができる。
 [各要素の説明]
 以下,本発明の光周波数コム発生装置などの各構成について説明する。
 本発明の光周波数コム発生装置に用いられる光源として,連続光(CW)を出力できる光源があげられ,分布帰還型半導体レーザ(DFBレーザ)があげられる。定光出力動作タイプのDFBレーザが,高い単一波長選択性を有するので好ましい。光の帯域として,C-bandのみならず,その長波側のL-band 又はその短波側のS-bandであってもよい。光強度として,1mW~50mWがあげられる。
 本発明の光周波数コム発生装置に用いられる導波路として,光変調器に用いられる公知の導波路を適宜用いることができる。本発明の光変調器の好ましい態様は,マハツェンダ型光変調器であるから,以下マハツェンダ型光変調器を中心に説明する。通常,マハツェンダ導波路や電極は基板上に設けられる。基板及び各導波路は,光を伝播することができるものであれば,特に限定されない。例えば,LN(LiNbO3)基板上に,Ti拡散のニオブ酸リチウム導波路を形成しても良いし,シリコン(Si)基板上に二酸化シリコン(SiO2)導波路を形成しても良い。また,InPやGaAs基板上にInGaAsP,GaAlAs導波路を形成した光半導体導波路を用いても良い。
 図3は,本発明における非対称断面を有する導波路を示す略図である。図3に示される例は,Zカットのものである。このような断面を有する場合は第1の変調電極及び第2の変調電極の長さを同じとしても良いし,図1又は図2に示されるようにそれら電極の長さを異ならせても良い。図3に示すものは,ZカットのLN導波路であり,導波路の上方には熱電極が設けられている。そして,第2の導波路(5)は,変調効率が最大となる位置からずれている。図3において,中央に位置するグランド電極の位置から電極(16)の中央までの距離をlとした場合,第2の導波路(5)は,変調効率が最大となる位置から0.1l以上1l以下,好ましくは0.2l以上0.5l以下,より好ましくは0.3l以上0.4l以下ずれていれば良い。ただし,このずれは,上記の式(I)を満たすように調整できるものであれば特に限定されない。
 図4は,本発明における非対称断面を有する導波路を示す略図である。図4に示されるものはXカットのものである。この場合,適宜中心となる熱電極の位置を境にして基板の分極を反転させても良い。なお,図4に示す例は,中心に熱電極を有し,2つの導波路をはさんでそれぞれグランド電極が設けられている。この例においても,上記と同様,中央に位置するグランド電極の位置から電極(16)の中央までの距離をlとした場合,第2の導波路(5)は,変調効率が最大となる位置から0.1l以上1l以下,好ましくは0.2l以上0.5l以下,より好ましくは0.3l以上0.4l以下ずれていれば良い。ただし,このずれは,上記の式(I)を満たすように調整できるものであれば特に限定されない。このようにドメイン反転(結晶軸を反転した構造)の強誘電体結晶(LN結晶)を用いることで,各導波路に対し,同相かつ同符号の変調を施すことができるので,ひとつの電極から両端の電極に位相シフトを与えることができ,その結果,1電極のみでコム発生を行うことができることとなる。
基板として,XカットZ軸伝搬となるように切り出されたニオブ酸リチウム (LiNbO3:LN)が好ましい。これは大きな電気光学効果を利用できるため低電力駆動が可能であり,かつ優れた応答速度が得られるためである。この基板のXカット面(YZ面)の表面に光導波路が形成され,導波光はZ軸(光学軸)に沿って伝搬することとなる。Xカット以外のニオブ酸リチウム基板を用いても良い。また,基板として,電気光学効果を有する三方晶系,六方晶系といった一軸性結晶,又は結晶の点群がC3V,C3,D3,C3h,D3hである材料を用いることができる。これらの材料は,電界の印加によって屈折率変化が伝搬光のモードによって異符号となるような屈折率調整機能を有する。具体例としては,ニオブ酸リチウムの他に,タンタル酸リチウム (LiTO3:LT),β-BaB2O4(略称BBO),LiIO3等を用いることができる。
 変調電極は,好ましくは高周波電気信号源と接続される。高周波電気信号源は,変調電極へ伝達される信号を発生するためのデバイスであり,公知の高周波電気信号源を採用できる。変調電極に入力される高周波信号の周波数(f)として,例えば1GHz~100GHzがあげられる。高周波電気信号源の出力としては,一定の周波数を有する正弦波があげられる。なお,この高周波電気信号源の出力には位相変調器が設けられ,出力信号の位相を制御できるようにされていることが好ましい。なお,高周波電気信号源から出力された電気信号は,分岐され,分岐された一方の電気信号は変調器(遅延器)などで位相などが調整されて変調電極へ印加されるものがあげられる。
 変調電極は,たとえば金,白金などによって構成される。変調電極の幅としては,1μm~10μmがあげられ,具体的には5μmがあげられる。変調電極の長さとしては,変調信号の波長の(fm)の0.1倍~0.9倍があげられ,0.18~0.22倍,又は0.67倍~0.70倍があげられ,より好ましくは,変調信号の共振点より20~25%短いものがあげられる。このような長さとすることで,スタブ電極との合成インピーダンスが適度な領域に留まるからである。より具体的な変調電極の長さとしては,3250μmがあげられる。以下では,共振型電極と,進行波型電極について説明する。
 共振型光電極(共振型光変調器)は,変調信号の共振を用いて変調を行う電極である。共振型電極としては公知のものを採用でき,例えば特開2002-268025号公報,「川西哲也,及川哲,井筒雅之,"平面構造共振型光変調器",信学技報,TECHNICAL REPORT OF IEICE, IQE2001-3(2001-05)」に記載のものを採用できる。 
 進行波型電極(進行波型光変調器)は,光波と電気信号を同方向に導波させ導波している間に光を変調する電極(変調器)である(例えば,西原浩,春名正光,栖原敏明著,「光集積回路」(改訂増補版)オーム社,119頁~120頁)。進行波型電極は公知のものを採用でき,例えば,特開平11-295674号公報,特開平11-295674号公報,特開2002-169133号公報,特開2002-40381号公報,特開2000-267056号公報,特開2000-471159号公報,特開平10-133159号公報などに開示されたものを用いることができる。
 進行波型電極として,好ましくは,いわゆる対称型の接地電極配置(進行波型の信号電極の両側に,少なくとも一対の接地電極が設けられているもの)を採用するものがあげられる。このように,信号電極を挟んで接地電極を対称に配置することによって,信号電極から出力される高周波は,信号電極の左右に配置された接地電極に印加されやすくなるので,高周波の基板側への放射を,抑圧できる。
本発明では,第1の導波路(4)に沿って設けられた第1の変調電極(15)と,前記第2の導波路(5)に沿って設けられた第2の変調電極(16)のそれぞれの単位長さ当りの(位相)変調効率をそれぞれκ及びκとしたときに,κとκとは異なっている。
理想的にはκ及びκは,次式を満たせばよい
Figure JPOXMLDOC01-appb-M000001
ここで,κ及びκは,[rad/m]は,変調器における各アームの単位長さ当りの(位相)変調効率を示し,ε[rad/V]はバイアス電圧に対する単位電圧当りの変調効率を示し,それぞれを示し,Lは電極長を表す。
κ及びκは,式(I)を満たすように調整できる範囲であれば特に限定されるものではない。具体的なκ及びκの比として,例えば,κ/κが1.01以上3以下があげられ,1.1以上2以下であれば好ましく,1.2以上1.5以下であればより好ましい。このように電極を非対称として駆動することで,スペクトル平坦条件を満たすことができる。
 本発明の光周波数コム発生装置は,前記第1の導波路に印加する第1のバイアス信号(12)と前記第2の導波路に印加する第2のバイアス信号(13)とを得るためのバイアス信号系を具備する。バイアス信号系は,2つのアームに印加されるバイアス電圧を制御するための信号系である。バイアス信号系は,具体的には,バイアス電源系とバイアス調整電極を含む。バイアス調整電極は,バイアス電源系に接続され2つのアーム間のバイアス電圧を制御することにより,2つのアームを伝播する光の位相を制御するための電極である。バイアス調整電極へは,好ましくは通常直流または低周波信号が印加される。ここで低周波信号における「低周波」とは,例えば,0Hz~500MHzの周波数を意味する。なお,この低周波信号の信号源の出力には電気信号の位相を調整する位相変調器が設けられ,出力信号の位相を制御できるようにされていることが好ましい。
 変調電極とバイアス調整電極とは,別々に構成されてもよいし,ひとつの電極がそれらを兼ねたものでもよい。すなわち,変調電極は,DC信号とRF信号とを混合して供給する給電回路(バイアス回路)と連結されていてもよい。
 なお,本発明の光周波数コム発生装置においては,各電極に印加される信号のタイミングや位相を適切に制御するため,各電極の信号源と電気的に(又は光信号により)接続された制御部が設けられることが好ましい。そのような制御部は,変調電極及びバイアス調整電極に印加される信号の変調時間を調整するように機能する。すなわち,各電極による変調が,ある特定の信号に対して行われるように,光の伝播時間を考慮して調整する。この調整時間は,各電極間の距離などによって適切な値とすればよい。
 [光周波数コム発生装置の製造方法]
 本発明の光周波数コム発生装置は,基板,基板上に設けられた導波路,電極,信号源,などからなる。そして,導波路の形成方法としては,チタン拡散法等の内拡散法やプロトン交換法など公知の形成方法を利用できる。すなわち,本発明の光周波数コム発生装置は,例えば以下のようにして製造できる。まず,ニオブ酸リチウムのウエハー上に,フォトリソグラフィー法によって,チタンをパターニングし,熱拡散法によってチタンを拡散させ,光導波路を形成する。この際の条件は,チタンの厚さを100~2000オングストロームとし,拡散温度を500~2000℃とし,拡散時間を10~40時間とすればよい。基板の主面に,二酸化珪素の絶縁バッファ層(厚さ0.5~2μm)を形成する。次いで,これらの上に厚さ15~30μmの金属メッキからなる電極を形成する。次いでウエハーを切断する。このようして,チタン拡散導波路が形成された光変調器が形成される。
 光周波数コム発生装置は,また,たとえば以下のようにしても製造できる。まず基板上に導波路を形成する。導波路は,ニオブ酸リチウム基板表面に,プロトン交換法やチタン熱拡散法を施すことにより設けることができる。例えば,フォトリソグラフィー技術によってLN基板上に数マイクロメートル程度のTi金属のストライプを,LN基板上に列をなした状態で作製する。その後,LN基板を1000℃近辺の高温にさらしてTi金属を当該基板内部に拡散させる。このようにすれば,LN基板上に導波路を形成できる。
 また,電極は上記と同様にして製造できる。例えば,電極を形成するため,光導波路 の形成と同様にフォトリソグラフィー技術によって,同一幅で形成した多数の導波路の両脇に対して電極間ギャップが1マイクロメートル~50マイクロメートル程度になるように形成することができる。
 なお,シリコン基板を用いる場合は,たとえば以下のようにして製造できる。シリコン(Si)基板上に火炎堆積法によって二酸化シリコン(SiO2)を主成分とする下部クラッド層を堆積し,次に,二酸化ゲルマニウム(GeO2)をドーパントとして添加した二酸化シリコン(SiO2)を主成分とするコア層を堆積する。その後,電気炉で透明ガラス化する。次に,エッチングして光導波路部分を作製し,再び二酸化シリコン(SiO2)を主成分とする上部クラッド層を堆積する。そして,薄膜ヒータ型熱光学強度変調器及び薄膜ヒータ型熱光学位相変調器を上部クラッド層に形成する。
 [スペクトル平坦化条件]
 次に,図1に示す光周波数コム発生装置により,光スペクトルが平坦化された光周波数コムが得られることを示す。図5は,本発明の光周波数コム発生装置の光周波数コムが発生する概念を説明するための図である。マハツェンダ変調器の各アームを駆動するRF信号をそれぞれRF-aおよびRF-bとする。RF-aおよびRF-bは,振幅をそれぞれA(これはAに対応する。)及びA(これはAに対応する)とし,変調周波数をωとすると,以下の式(1)ように表すことができる。
RF-a=Aasinωt, RF-b=Absinωt     (1)
 一方,マハツェンダ変調器への入力光の振幅をEinとすると,マハツェンダ変調器の出力光による電界Eoutは,式(2)で表すことができる。ただし,式(2)中,J(・)は,k次のベッセル関数を表す。
Figure JPOXMLDOC01-appb-M000002
 次に,変換効率ηを,k次の周波数コム成分強度Pの入力光強度Pinに対する相対比として定義する。駆動振動が大振幅信号である時,すなわち,A(t)(i=a又はb)が十分に大きい時,変換効率ηは,下式(3)のように近似展開できる。
Figure JPOXMLDOC01-appb-M000003
 ただし,/A(エーバー),ΔA及びΔθはそれぞれ,次式(4)で定義される。
/A≡(A+A)/2, ΔA≡(A-A)/2,Δθ≡(θ-θ)/2  (4)
 ここで,平坦なスペクトル特性を得る条件は,ηがkに依存しない時,すなわち式(3)が変調次数kに対して独立となる時である。よって,平坦なスペクトル特性を得る条件は,式(5)と導かれる。
  ΔA±Δθ=π/2  (5)
 従って,平坦なスペクトル特性を持った光周波数コムを得るためには,式(5)を満たすようにマハツェンダ変調器を駆動すればよい。なお,式(5)における±は,プラスであってもマイナスであってもよい。
 [変換効率の最大化]
 次にこのスペクトル平坦化条件の下で変換効率ηが最大化される条件を求める。式(5)を式(3)に代入すると,変換効率ηは,次式(6)のように簡単な式で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 従って,式(7)を満たすときに,変換効率ηは最大化されることがわかる。
  ΔA=Δθ=π/4   (7)
 そして,式(7)を満たす時の最大変換効率ηk,maxは次式(8)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 以上から,マハツェンダ変調器により平坦光周波数コムを得るための平坦化条件式は式(5)(ΔA±Δθ=π/2)であるといえる。一方,平坦化条件式を満たしつつ光周波数コムの生成化効率が最大となるのは,最大効率平坦化条件である式(7)(ΔA=Δθ=π/4)を満たす場合である。なお,式(7)は,マハツェンダ変調器が2/π点にバイアスされ,駆動正弦波信号RF-aおよびRF-bにより誘導される位相変移の最大位相差がπであることを意味する。
 [動作説明]
 本発明の光周波数コム発生装置の基本動作は,図5に示すとおりである。すなわち,マハツェンダ変調器の二つのアームに駆動信号RF-a及びRF-bを印加するとともに,位相を反転させたバイアス信号-Δθ及びΔθを,それぞれ印加する。入力光信号の中心波長をλとすると,出力される光周波数コム信号は,λから駆動信号の周波数に応じた周波数分(すなわち波長分)だけずれた複数の周波数成分を有するものとなる。
 光コムは,その帯域幅に応じた光パルス信号を生成することができるので,光周波数コム発生装置は,超高精度な多周波数光パルス発生器ということもできる。すなわち,光コム発生器を用いて光パルスを発生する方法は,公知であるが,上記の光パルス発生装置は,本発明の光コム発生器を用いるので,先に説明したような効果を享受できることとなる。なお,本発明の光パルス発生装置は,上記した上記した光周波数コム発生装置及び光周波数コム発生方法の各構成要素や各工程を適宜採用できる。
 光コム発生器を用いて光パルスを発生する方法は,公知であるが,上記の光パルス発生装置は,本発明の光コム発生器を用いるので,先に説明したような効果を享受できることとなる。
 さらに,光コム発生装置により発生された各周波数成分は,同期が取れており,それらの位相成分は一定であるから,各周波数成分の振幅及び位相を調整することにより,超短パルス列を生成でき,また任意の波形を生成できる。すなわち,本発明の光周波数コム発生装置は,光パルス発生装置又は任意波形生成装置としても利用することができる。
 図6は,本発明の光周波数コム発生装置の好ましい利用態様である光パルス発生装置の概略図である。図6に示されるとおり,この光パルス発生装置(21)は,上記いずれかに記載の光周波数コム発生装置(1)と,前記光周波数コム発生装置からの出力が入力されるバンドパスフィルタ(22)と,前記バンドパスフィルタからの出力が入力される分散ファイバ(23)とを具備する。光コム発生装置により得られる各周波数成分は,出力される光周波数コムが超平坦モードであるから,下記式のように表現できる。
Figure JPOXMLDOC01-appb-M000006
 上記の式中,Aは,出力信号の振幅を示し,Φ(以下Φとも記載する)は,出力信号の位相を示す。kは,出力信号の周波数成分の次数を示す。
 すなわち,超平坦コム信号が発生されるので,振幅が周波数の次数kによらず一定となり,位相Φは周波数次数kの2次関数となる。そして,光コム発生器の出力に符号が逆の-Φの位相シフトを与えることにより,位相差を0とすることができる。その場合,時間波形はインパルス関数となり,短光パルスを合成できる。そして,波長分散を持った一般的な単一モードファイバの与える位相シフトは光周波数次数の2次関数であることが知られており,適切な長さのファイバを用いることで,簡単に-Φを与えることができる。そのときのファイバ長さは,理想的には下記式で示されるので,その理想式に基づき適宜調整した長さLとすればよい。
Figure JPOXMLDOC01-appb-M000007
 上記式において,βは,ファイバ中の群速度を示す。
 すなわち,上記した光周波数コム発生装置に,バンドパスフィルタと光ファイバとを接続するだけで,簡単にピコ秒パルスレーザ又はフェムト秒パルスレーザといった超短パルスレーザを得ることができる。
 実際にMZM型導波路を有する光周波数コム発生装置を用い,光コム周波数発生器の光源としてレーザダイオード(1550nm,p=5.8db),光コム周波数発生器の変調信号周波数として10GHzのものを用いたところ,2.2psのパルス列を得ることができた。そして、1nmバンドパスフィルタを用い,1100mのシングルモードファイバを用いた。その結果,図7に示されるような超短パルスを得ることができた。
 光波長多重分割多重伝送システムにおける多波長光源,超高速光伝送・光計測のための短パルス光源等への応用が期待できる。また,絶対周波数測定のための光周波数基準,マイクロ波・ミリ波周波数帯の局発信号の遠隔供給,無線望遠鏡等天文観測システムで用いられるアレイアンテナの制御信号などとしての応用できる。
図1は,本発明の光周波数コム発生装置の概略図である。 図2は,本発明の好ましい上記とは別の態様の光周波数コム発生装置の構成を示す概略図である。 図3は,本発明における非対称断面を有する導波路を示す略図である。 図4は,本発明における非対称断面を有する導波路を示す略図である。 図5は,本発明の光周波数コム発生装置の光周波数コムが発生する概念を説明するための図である。 図6は,本発明の光周波数コム発生装置の好ましい利用態様である光パルス発生装置の概略図である。 図7は,得られたピコ秒パルスの図面に替わるグラフである。
符号の説明
1 光周波数コム発生装置; 2 入力部; 3 分岐部; 4 第1の導波路;5 第2の導波路; 6 合波部; 7 出力部; 8 導波路部分; 9 第1の駆動信号;10 2の駆動信号; 11 駆動信号系; 12 バイアス信号; 13 バイアス信号; 14 バイアス信号系; 15 第1の変調電極; 16 第2の変調電極; 21 光パルス発生装置; 22 バンドパスフィルタ; 23 分散ファイバ

Claims (7)

  1.  光の入力部(2)と,前記入力部に入力した光が分岐する分岐部(3)と,前記分岐部(3)から分岐した光が伝播する第1の導波路(4)と,前記分岐部(3)から分岐した上記とは別の光が伝播する第2の導波路(5)と,前記第1の導波路と前記第2の導波路から出力される光信号が合波される合波部(6)と,前記合波部で合波された光信号が出力される光信号の出力部(7)とを含む導波路部分(8)と;
     前記第1の導波路(4)を駆動する第1の駆動信号(9)と,前記第2の導波路(5)を駆動する第2の駆動信号(10)を得るための駆動信号系(11)と;
     前記第1の導波路(4)及び前記第2の導波路(5)に印加するバイアス信号(12,13)を得るためのバイアス信号系(14)と;
     を具備し,
     前記第1の駆動信号(9)及び前記第2の駆動信号(10)は一つの駆動信号系(11)から得られ,
     前記第1の導波路(4)に沿って設けられた第1の変調電極(15)と,前記第2の導波路(5)に沿って設けられた第2の変調電極(16)の長さをそれぞれl及びlとしたときに,lとlとは異なり,
     前記駆動信号系(11)及びバイアス信号系(14)は,前記第1の駆動信号(9),前記第2の駆動信号(10)及びバイアス信号(12,13)が,下記式(I)を満たすように駆動する光周波数コム発生装置。
      ΔA±Δθ=π/2  (I) 
    (ここで,ΔA及びΔθは,それぞれΔA≡(A-A)/2,及びΔθ≡(θ-θ)/2と定義され,A及びAはそれぞれ第1の変調電極及び第2の変調電極に誘導される光位相シフト振幅を示し,θ及びθはそれぞれ第1の導波路及び第2の導波路内で誘導される光位相シフト量を示す)
  2.  前記式(I)の替わりに,下記式(II)を満たすように駆動する請求項1に記載の光周波数コム発生装置。
     ΔA=Δθ=π/4 (II)
     (ただし,ΔA及びΔθは,上記と同義である。)
  3.  前記導波路部分(8)が,マハツェンダ型導波路である請求項1に記載の光周波数コム発生装置。
  4.  前記第1の変調電極(15)と前記第2の変調電極(16)とは,電気的に接続され,
     前記駆動信号系(11)は,駆動信号が前記第2の変調電極(16)に入力され,その第2の変調電極(16)から出力された変調信号が前記第1の変調電極(15)に入力され,前記第2の変調電極(16)に印加される変調信号と,前記第1の変調電極(15)に印加される変調信号は,同相となるように変調信号を駆動する,請求項1に記載の光周波数コム発生装置。
  5.  前記導波路部分(8)は,ドメイン反転された強誘電体結晶基板上に設けられる,請求項1に記載の光周波数コム発生装置。
  6.  請求項1に記載の光周波数コム発生装置と,前記光周波数コム発生装置からの出力が入力されるバンドパスフィルタと,前記バンドパスフィルタからの出力が入力される分散ファイバとを具備する光パルス発生装置。
  7.  光の入力部(2)と,前記入力部に入力した光が分岐する分岐部(3)と,前記分岐部(3)から分岐した光が伝播する第1の導波路(4)と,前記分岐部(3)から分岐した上記とは別の光が伝播する第2の導波路(5)と,前記第1の導波路と前記第2の導波路から出力される光信号が合波される合波部(6)と,前記合波部で合波された光信号が出力される光信号の出力部(7)とを含む導波路部分(8)と;
     前記第1の導波路(4)を駆動する第1の駆動信号(9)と前記第2の導波(5)を駆動する第2の駆動信号(10)を得るための駆動信号系(11)と;
     前記第1の導波路及び前記第2の導波路に印加するバイアス信号(12,13)を得るためのバイアス信号系(14)と;
     を具備し,
     前記第1の駆動信号(9)及び前記第2の駆動信号(10)は一つの駆動信号系(11)から得られ,
     前記第1の導波路と前記第2の導波路のいずれか又は両方が,下記式(I)の関係を満たすように,変調効率が最大となる条件からずれており,
     前記駆動信号系(11)及びバイアス信号系(14)は,前記第1の駆動信号(9),前記第2の駆動信号(10)及びバイアス信号(12,13)が,下記式(I)を満たすように駆動する光周波数コム発生装置。
      ΔA±Δθ=π/2  (I) 
    (ここで,ΔA及びΔθは,それぞれΔA≡(A-A)/2,及びΔθ≡(θ-θ)/2と定義され,A及びAはそれぞれ第1の変調電極及び第2の変調電極に誘導される光位相シフト振幅を示し,θ及びθはそれぞれ第1の導波路及び第2の導波路内で誘導される光位相シフト量を示す)

     
PCT/JP2009/000301 2008-01-28 2009-01-27 超平坦光周波数コム信号発生器 WO2009096170A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/864,507 US20110097029A1 (en) 2008-01-28 2009-01-27 Super Flat Optical Frequency Comb Signal Generator
EP09706924.9A EP2239620B1 (en) 2008-01-28 2009-01-27 Optical pulse generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-015911 2008-01-28
JP2008015911A JP5299859B2 (ja) 2008-01-28 2008-01-28 超平坦光周波数コム信号発生器

Publications (1)

Publication Number Publication Date
WO2009096170A1 true WO2009096170A1 (ja) 2009-08-06

Family

ID=40912526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000301 WO2009096170A1 (ja) 2008-01-28 2009-01-27 超平坦光周波数コム信号発生器

Country Status (4)

Country Link
US (1) US20110097029A1 (ja)
EP (1) EP2239620B1 (ja)
JP (1) JP5299859B2 (ja)
WO (1) WO2009096170A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4949496B2 (ja) 2010-02-26 2012-06-06 住友大阪セメント株式会社 光周波数コム発生装置及びそれを用いた光パルス発生装置、並びに光周波数コム発生方法及びそれを用いた光パルス発生方法
JP5665038B2 (ja) * 2010-04-12 2015-02-04 独立行政法人情報通信研究機構 広帯域光コム発生装置
WO2013105649A1 (ja) * 2012-01-13 2013-07-18 住友大阪セメント株式会社 光パルス発生装置
JP5370559B2 (ja) 2012-03-14 2013-12-18 住友大阪セメント株式会社 光パルス発生装置及び光パルス発生方法
JP5823927B2 (ja) * 2012-06-25 2015-11-25 日本電信電話株式会社 光変調回路
US9209927B2 (en) * 2012-10-24 2015-12-08 Zte Corporation Method and apparatus for generation of frequency- and phase-locked subcarrier
US8970724B2 (en) 2013-03-15 2015-03-03 National Security Technologies, Llc Mach-zehnder based optical marker/comb generator for streak camera calibration
CN104236725B (zh) * 2014-09-29 2017-03-15 山西大学 一种精确测量激光波长的装置及方法
US10707837B2 (en) * 2017-07-06 2020-07-07 Analog Photonics LLC Laser frequency chirping structures, methods, and applications
CN116300151A (zh) * 2023-04-07 2023-06-23 武汉安湃光电有限公司 一种基于薄膜铌酸锂的电光频梳芯片

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886991A (ja) * 1995-10-09 1996-04-02 Fujitsu Ltd 光伝送方法、光伝送装置及び光伝送システム
JPH10133159A (ja) 1996-09-06 1998-05-22 Ngk Insulators Ltd 光導波路デバイス、進行波形光変調器および光導波路デバイスの製造方法
JPH11183946A (ja) * 1997-12-17 1999-07-09 Nippon Telegr & Teleph Corp <Ntt> パルス光発生装置
JPH11295674A (ja) 1998-04-06 1999-10-29 Nec Corp 導波路型光デバイス
JP2000047159A (ja) 1998-07-28 2000-02-18 Sumitomo Osaka Cement Co Ltd 導波路型光デバイス
JP2000267056A (ja) 1999-03-18 2000-09-29 Sumitomo Osaka Cement Co Ltd 導波路型光デバイス
JP2002040381A (ja) 2000-07-27 2002-02-06 Ngk Insulators Ltd 進行波型光変調器
JP2002169133A (ja) 2000-09-22 2002-06-14 Ngk Insulators Ltd 進行波形光変調器
JP2003202530A (ja) * 2002-01-09 2003-07-18 Sumitomo Osaka Cement Co Ltd 光変調器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776657A (en) * 1986-03-25 1988-10-11 Tektronix, Inc. Electro-optic phase shifter with reduced input capacitance
CA2011954C (en) * 1989-03-14 1994-02-22 Hiroshi Hamano Optical modulator
US5778113A (en) * 1996-11-07 1998-07-07 Northern Telecom Limited Configurable chirp Mach-Zehnder optical modulator
US6236772B1 (en) * 1997-08-01 2001-05-22 Advanced Photonics Technology, Inc. Linearized Y-fed directional coupler modulators
JP3098235B2 (ja) * 1998-08-04 2000-10-16 日本電信電話株式会社 波長分波器、光スペクトラムアナライザおよび光バンドパスフィルタ
GB2375614B (en) * 2000-04-06 2003-07-16 Bookham Technology Plc Optical modulator with pre-determined frequency chirp
US6356673B1 (en) * 2000-05-05 2002-03-12 The United States Of America As Represented By The Secretary Of The Navy Low loss coplanar waveguide horn for low drive LiNbO3 modulators
CA2352680C (en) * 2000-07-07 2006-01-10 Nippon Telegraph And Telephone Corporation Multi-wavelength generating method and apparatus based on flattening of optical spectrum
US6831774B2 (en) * 2000-07-07 2004-12-14 Nippon Telegraph And Telephone Corporation Multi-wavelength generating method and apparatus based on flattening of optical spectrum
US6760493B2 (en) * 2001-06-28 2004-07-06 Avanex Corporation Coplanar integrated optical waveguide electro-optical modulator
AU2003270175A1 (en) * 2002-09-13 2004-04-30 Avanex Corporation Lithium niobate optical modulator
JP4485218B2 (ja) * 2004-02-06 2010-06-16 富士通オプティカルコンポーネンツ株式会社 光変調器
JP4587762B2 (ja) * 2004-09-30 2010-11-24 住友大阪セメント株式会社 光変調素子モジュール
JP4555715B2 (ja) * 2005-03-18 2010-10-06 富士通株式会社 光デバイス
US7499603B1 (en) * 2006-01-19 2009-03-03 Lockheed Martin Corporation Range extended electrooptic modulator
US7522784B2 (en) * 2006-02-27 2009-04-21 Jds Uniphase Corporation Asymmetric directional coupler having a reduced drive voltage
JP4771216B2 (ja) * 2006-03-15 2011-09-14 独立行政法人情報通信研究機構 超平坦光周波数コム信号発生器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886991A (ja) * 1995-10-09 1996-04-02 Fujitsu Ltd 光伝送方法、光伝送装置及び光伝送システム
JPH10133159A (ja) 1996-09-06 1998-05-22 Ngk Insulators Ltd 光導波路デバイス、進行波形光変調器および光導波路デバイスの製造方法
JPH11183946A (ja) * 1997-12-17 1999-07-09 Nippon Telegr & Teleph Corp <Ntt> パルス光発生装置
JPH11295674A (ja) 1998-04-06 1999-10-29 Nec Corp 導波路型光デバイス
JP2000047159A (ja) 1998-07-28 2000-02-18 Sumitomo Osaka Cement Co Ltd 導波路型光デバイス
JP2000267056A (ja) 1999-03-18 2000-09-29 Sumitomo Osaka Cement Co Ltd 導波路型光デバイス
JP2002040381A (ja) 2000-07-27 2002-02-06 Ngk Insulators Ltd 進行波型光変調器
JP2002169133A (ja) 2000-09-22 2002-06-14 Ngk Insulators Ltd 進行波形光変調器
JP2003202530A (ja) * 2002-01-09 2003-07-18 Sumitomo Osaka Cement Co Ltd 光変調器

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
J. M. PAYNE; W. P. SHILLUE, MWP' 02, 2002, pages 9 - 12
M. IZUTSU ET AL.: "Picosecond pulse respose of broad-band guided-wave interferometric light modulators", IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. QE-19, no. 4, April 1983 (1983-04-01), pages 668 - 674, XP008138503 *
M. SUGIYAMA ET AL., OFC' 02, vol. FB6, 2002
T. KAWANISHI ET AL., IEICE ELECTRON EXPRESS, vol. 1, 2004, pages 217 - 221
T. SAKAMOTO ET AL., MWP' 04, vol. MC16, 2004
TAKAHIDE SAKAMOTO ET AL.: "Mach-Zehnder-gata Hikari Henchoki o Mochiita Cho Heitan Hikari Shuhasu Comb Hassei no Tameno Joken", IEICE TECHNICAL REPORT, vol. 105, no. 380, 28 October 2005 (2005-10-28), pages 49 - 53, XP008138489 *
W. D. JEMISON ET AL., MWP' 01, 2001, pages 169 - 172

Also Published As

Publication number Publication date
JP5299859B2 (ja) 2013-09-25
JP2009175576A (ja) 2009-08-06
EP2239620B1 (en) 2019-06-12
EP2239620A1 (en) 2010-10-13
US20110097029A1 (en) 2011-04-28
EP2239620A4 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4771216B2 (ja) 超平坦光周波数コム信号発生器
JP5299859B2 (ja) 超平坦光周波数コム信号発生器
JP4631006B2 (ja) Fsk変調器の自動調整システム
JP4696264B2 (ja) 強度バランス機能を有する光fsk/ssb変調器
EP1921485B1 (en) Optical amplitude modulating system capable of removing high-order component
JP4547552B2 (ja) キャリアや2次成分を消去可能なdsb−sc変調システム
EP1956427A1 (en) Optical switch system by optical interference
WO2006025333A1 (ja) 電気光学ssb光変調器及び光周波数シフタ
US10514587B2 (en) Interval control-type optical comb
JP2002062516A (ja) 周期ドメイン反転構造電気光学ssb光変調器・光周波数シフタ
JP2014066737A (ja) 光変調デバイスの制御方法
JP4793550B2 (ja) 高消光比変調可能な光搬送波抑圧両側波帯(dsb−sc)変調システム
JP2006267201A (ja) 位相連続光fsk変調方法,位相連続光fsk変調器
JP5777140B2 (ja) 高周波信号発生装置
JP4649581B2 (ja) 位相連続光周波数偏移変調器、位相連続光周波数偏移変調方法
JPWO2006100719A1 (ja) 光デバイス
JPH09288255A (ja) 光導波路素子
Murata et al. High-speed electro-optic modulators utilizing polarization-reversed structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009706924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12864507

Country of ref document: US