WO2009096037A1 - 硬貨識別装置 - Google Patents

硬貨識別装置 Download PDF

Info

Publication number
WO2009096037A1
WO2009096037A1 PCT/JP2008/051657 JP2008051657W WO2009096037A1 WO 2009096037 A1 WO2009096037 A1 WO 2009096037A1 JP 2008051657 W JP2008051657 W JP 2008051657W WO 2009096037 A1 WO2009096037 A1 WO 2009096037A1
Authority
WO
WIPO (PCT)
Prior art keywords
coin
sensor
shape
jagged
light
Prior art date
Application number
PCT/JP2008/051657
Other languages
English (en)
French (fr)
Inventor
Masaya Fukui
Hidekazu Tanaka
Original Assignee
Glory Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glory Ltd. filed Critical Glory Ltd.
Priority to PCT/JP2008/051657 priority Critical patent/WO2009096037A1/ja
Publication of WO2009096037A1 publication Critical patent/WO2009096037A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/02Testing the dimensions, e.g. thickness, diameter; Testing the deformation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/10Testing the rim, e.g. the milling of the rim

Definitions

  • the present invention relates to a coin discriminating apparatus that identifies a coin based on the shape of a coin side face, and more particularly to a coin discriminating apparatus that can detect various shapes of a coin side face with high accuracy.
  • a coin identifying device that detects a striped groove (hereinafter referred to as “giza”) formed on the outer peripheral surface of a coin and identifies the type or authenticity of the coin based on the detection result is known.
  • a serration includes variations such as a vertical serration provided in the axial direction of the coin and an oblique serration inclined by a predetermined angle from the axial direction.
  • Patent Document 1 irradiates a coin with light and provides two sensors by shifting the position in the axial direction of the coin, and detects an oblique serration based on the phase difference of reflected light acquired by each sensor.
  • Technology is disclosed.
  • Patent Document 1 has a problem that although it can discriminate between vertical and oblique serrations, it cannot discriminate other serrated shapes.
  • coins with side-faced characters and coins with ⁇ K ''-shaped gussets on the side have also appeared, and in order to improve the coin identification accuracy, It is required to detect the side shape.
  • jagged pitch In recent years, coins adopting a narrow jagged pitch have also appeared, and it is necessary to improve the accuracy of detecting the jagged or side shape.
  • the present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a coin discriminating apparatus that can detect various shapes of coin side surfaces with high accuracy.
  • the present invention is a coin identifying device that identifies a coin based on the shape of the coin side surface, and includes three or more linear sensors that detect reflected light from the coin side surface. And detecting means for determining the shape of the coin side surface based on the phase difference of the reflected light detected by each sensor of the detecting means.
  • the present invention further includes a diffractive unit that distributes the light beam emitted from the light source to three or more paths included in the same plane in the above invention, wherein each sensor of the detection unit is distributed by the diffractive unit. Each of the light beams is detected by the reflected light reflected by the coin side surface.
  • the present invention is characterized in that, in the above-mentioned invention, the sensors of the detecting means are arranged at equal intervals.
  • the present invention is characterized in that, in the above-mentioned invention, the determination means determines that the shape of the coin side surface is at least one of a vertical jagged line, a diagonal jagged line, and an irregular shape.
  • the present invention is characterized in that, in the above-mentioned invention, the determination means determines the shape of the coin side surface based on a jagged pitch indicating a gap between the jagged surfaces provided on the coin side surface.
  • the shape of the coin side surface is determined based on the detection means in which three or more sensors for detecting the reflected light from the coin side surface are linearly arranged, and the phase difference of the reflected light detected by each sensor of the detection means. Since it has provided the determination means to do, there exists an effect that the side surface shape of a coin can be detected with high precision.
  • diffractive means for distributing the beam light emitted from the light source to three or more paths included in the same plane, and each sensor of the detection means is configured such that each light beam distributed by the diffractive means is a coin. Since the reflected light reflected by the side surfaces is detected, the irradiation light and the reflected light are made coaxial (in the same plane), so that even if there is a fluctuation in the coin position, the fluctuation of the irradiation light is changed. There exists an effect that it can control.
  • the sensors of the detection means are arranged at equal intervals, there is an effect that the processing load related to the determination process can be reduced.
  • the determination means determines that the shape of the coin side surface is at least one of a vertical jagged line, a diagonal jagged line, or an irregular shape, and thus specifically detects the shape of the coin side surface. There is an effect that can be.
  • the determination means determines the shape of the coin side surface based on the jagged pitch indicating the interval of the jaggedness provided on the coin side surface, it can identify coins having different jagged pitches. There is an effect.
  • FIG. 1 is a diagram of a coin identifying device according to the present embodiment as viewed from the top and side.
  • FIG. 2 is a block diagram showing a configuration of the coin identifying device.
  • FIG. 3 is a diagram illustrating an outline of the determination process performed by the determination unit.
  • FIG. 4 is a diagram illustrating an outline of the deterioration detection process performed by the deterioration detection unit.
  • FIG. 5 is a flowchart illustrating a processing procedure of determination processing performed by the determination unit.
  • FIG. 6 is a diagram illustrating variations in the sensor interval.
  • FIG. 7 is a diagram illustrating a variation of the coin side surface shape and a sensor arrangement example.
  • the coin identification apparatus shown below shall have a function which identifies the classification of a coin.
  • FIG. 1 is a diagram of a coin identifying device 10 according to the present embodiment as viewed from the top and side.
  • (1) of the same figure shows the top view of the coin identification device 10
  • (2) of the same figure shows the side view of the coin identification device 10, respectively.
  • the feature point of the coin identification apparatus 10 is mainly demonstrated using the side view shown to (2) of the figure.
  • the light beam emitted from the light source 1 is distributed to the three paths by the diffraction plate 3 via the collimator lens 2.
  • the light source 1 an LD (Laser Diode) capable of narrowing the beam width to the ⁇ m order is used.
  • Each light beam distributed by the diffractive plate 3 is converted into parallel light by the convex lens 4 and then transmitted through the beam splitter 5 having the role of a half mirror and reflected by the side surface of the coin 100 to be identified.
  • the light reflected by the coin 100 is reflected by the beam splitter 5 (see the broken arrow in the figure) and reaches each sensor 6 (6a, 6b and 6c shown in the figure).
  • the guide surface 7 is made of a transparent material such as glass, for example, and transmits the irradiation light and the reflected light.
  • Sensor 6a, sensor 6b and sensor 6c are arranged at equal intervals, and receive the reflected light from the coin side surface at equal intervals in the axial direction of the coin. Then, by diffracting the output of each sensor 6, it is determined whether the shape of the coin side surface is vertical, oblique, or irregular. The details of the determination contents will be described later with reference to FIG.
  • the irradiation light having a beam width of the order of ⁇ m is distributed to at least three or more paths in the same plane by the diffraction plate 3 and reflected by the side surfaces of the coin 100. Since each reflected light is received by each sensor 6, the side shape of the coin 100 can be detected with high accuracy.
  • the irradiation light to the coin 100 and the reflected light from the coin 100 can be coaxial (in the same plane), so that the coin 100 is separated from the guide surface 7. Even so, there is little deviation of reflected light. Therefore, the output signal fluctuation of each sensor 6 can be suppressed small.
  • the coin identifying device 10 also detects a decrease in the output value of each sensor 6 due to the influence of dirt on the guide surface 7, which will be described later with reference to FIG. 4. I will do it.
  • FIG. 2 is a block diagram showing a configuration of the coin identifying device 10.
  • FIG. 2 is a block diagram showing a configuration of the coin identifying device 10.
  • only components necessary for explaining the features of the coin identification device 10 are shown, and general components such as a transport mechanism of the coin 100 are not shown.
  • the coin identifying device 10 includes a light source 1, a diffraction plate 3, a sensor 6, and a control unit 11.
  • the control unit 11 further includes a sensor value input unit 11a, a determination unit 11b, a deterioration detection unit 11c, and a notification unit 11d.
  • the light source 1 is composed of an LD (Laser Diode). Since the beam width of the beam light emitted from the light source 1 can be reduced to the ⁇ m order as described above, for example, by setting it to be smaller than the jagged width of the coin 100 to be identified, the shape of the coin side surface Can be detected in detail.
  • LD Laser Diode
  • the diffraction plate 3 distributes the beam light from the light source 1 via the collimator lens 2 according to the arrangement of the sensors 6. For example, as shown in FIG. 1, when the sensors 6a, 6b, and 6c are arranged at equal intervals, the light beams from the light source 1 are distributed so as to become three light beams at equal intervals.
  • the sensor 6 is an optical sensor composed of, for example, a photodiode array detector (PDA: Photo Diode Array).
  • PDA Photo Diode Array
  • the coin identifying device 10 is provided with three or more sensors 6 in a straight line. The intervals between the sensors 6 may be equal intervals as shown in FIG. 1 or may be predetermined intervals that match the side shape of the coin 100 to be identified.
  • the control unit 11 is a processing unit that receives a signal from each sensor 6, performs a process of determining the side shape of the coin 100 based on the received signal, and performs a process of detecting and notifying deterioration of the signal value. .
  • the sensor value input unit 11a is a processing unit that receives a signal (sensor value) from each sensor 6 and performs a process of passing each received sensor value to the determination unit 11b and the deterioration detection unit 11c.
  • the determination part 11b is a process part which performs the process which determines the side surface shape of the coin 100 based on each sensor value received from the sensor value input part 11a.
  • FIG. 3 is a diagram showing an outline of the determination process performed by the determination unit 11b.
  • (1) of the figure shows the time change of each signal value when the side surface shape of the coin 100 is vertical jagged
  • (2) of the same figure shows the side shape of diagonal jagged. The time change of each signal value in the case is shown.
  • (3) in the figure shows the time change of each signal value when the side surface shape is an irregular shape.
  • the determination unit 11b determines that the side shape of the coin 100 is vertical jagged. In this case, the determination unit 11 b acquires the vertical jagged interval (pitch) based on the conveyance speed of the coin 100.
  • the determination unit 11b determines that the side surface shape of the coin 100 is diagonally serrated.
  • the determination unit 11b determines that the side surface shape of the coin 100 is an irregular shape.
  • the coin identifying device 10 can identify coins 100 having various side shapes by changing the number of sensors 6 or the sensor interval. This will be described later with reference to FIGS.
  • the deterioration detection unit 11c performs processing for detecting a decrease in signal level due to contamination of the guide surface 7 (see FIG. 1) based on fluctuations in peak values relating to the respective signal values received from the sensor value input unit 11a. It is.
  • the deterioration detection unit 11c also performs a process of notifying the notification unit 11d that the deterioration has been detected.
  • FIG. 4 is a diagram illustrating an outline of the deterioration detection process performed by the deterioration detection unit 11c.
  • (1) of the figure shows a graph showing the sensor output value when coins pass
  • (2) of the figure shows a graph showing the relationship between the sensor output value and the degree of contamination. Yes.
  • the output value of the sensor 7 that receives the reflected light from the conveyed coin 100 has a peak value 41, and this peak value decreases due to contamination of the guide surface 6. There is a tendency to go. Therefore, by using the peak value 41, it is possible to detect the degree of contamination of the guide surface 7.
  • the coin identification device 10 performs denomination identification with a denomination identification unit (not shown), the peak value 41 for a predetermined denomination can be used.
  • each peak value when a predetermined number of coins 100 are identified has a predetermined variation as shown in 42a of FIG. Therefore, when the average of the peak values (42b in the figure) is taken and the obtained average value falls below the predetermined threshold value 42c, the deterioration detection unit 11c notifies the notification unit 11d that the deterioration has been detected. Notice.
  • the threshold value 42c is set as a value in which a predetermined margin is provided to a value that fails to identify the coin 100 (42d in the figure).
  • the contamination of the guide surface 6 can be detected before the guide surface 6 becomes dirty to the extent that the identification of the coin 100 fails and the identification failure (rejection) occurs.
  • the deterioration detection process by the deterioration detection part 11c is performed at the time of normal operation of the coin identification device 10.
  • the notification unit 11d is a processing unit that performs a process of outputting an alarm to a notification lamp, a speaker, a display unit, and the like (not shown) when receiving a notification that the deterioration is detected from the deterioration detection unit 11c.
  • FIG. 5 is a flowchart illustrating a processing procedure of determination processing performed by the determination unit 11b.
  • the determination unit 11b receives each sensor value from the sensor value input unit 11a (step S101), it determines whether there is a phase difference between the sensor values (step S102). . If there is no phase difference (No in step S102), the side surface shape is determined to be vertical jagged (step S103), a jagged pitch is acquired (step S104), and the process is terminated.
  • step S102 If there is a phase difference (step S102, Yes), it is determined whether the phase difference has regularity (step S105). If the phase difference has regularity (step S105, Yes), the side surface shape is determined to be diagonally serrated (step S106), and the process is terminated. On the other hand, if the phase difference is not regular (step S102, No), the side surface shape is determined to be an irregular shape (step S107), and the process is terminated.
  • FIG. 6 is a diagram illustrating variations in the sensor interval.
  • the case shown in (1) of the figure is a case where the distance A between the sensor 6a / sensor 6b and the distance B between the sensor 6b / sensor 6c are equal.
  • (2) in the figure shows a case where the distance A between the sensor 6a / sensor 6b and the distance B between the sensor 6b / sensor 6c are set to unequal intervals such as 1: 2. . In this way, by changing the sensor interval, it is possible to cope with various side shapes of the coin 100.
  • FIG. 7 is a diagram illustrating a variation of the coin side surface shape and a sensor arrangement example.
  • (1) and (2) in the same figure show a case where the entire side surface of the coin 100 is provided with a serration.
  • FIG. 1 it is possible to discriminate between vertical and oblique ridges by arranging three sensors 6 (sensor 6a, sensor 6b and sensor 6c) at equal intervals. it can.
  • (3) and (4) in the same figure show a case where a jagged edge is provided only at the center of the side surface of the coin 100.
  • 73a and 73c have no jaggedness, and a vertical jaggedness is provided only at 73b.
  • 74a and 74c have no jaggedness, and oblique jaggedness is provided only at 74b.
  • the case shown in (5) of the same figure is a case where a “ku” -shaped giza is provided on the side surface of the coin 100. Even in such a case, as shown in the figure, by providing four sensors 6 (sensor 6a, sensor 6b, sensor 6c and sensor 6d), (1) to (4), (5) Can be distinguished.
  • (6) shown in the figure is a case where different knurls or patterns are provided in the central portion of the side surface of the coin 100 and portions other than the central portion. Also in such a case, the pattern with other side surfaces is formed with four sensors or with five sensors (sensor 6a, sensor 6b, sensor 6c, sensor 6d and sensor 6e) as shown in FIG. Differences can be detected.
  • the number of sensors 6 shown in the figure is an exemplification.
  • the interval between the three sensors 6 is set after adjusting all the types of coins 100 to be identified. It is good to do.
  • the coin is based on the detection means in which three or more sensors for detecting the reflected light from the side surface of the coin are linearly arranged, and the phase difference of the reflected light detected by each sensor of the detecting means.
  • the coin discriminating apparatus is configured to include determination means for determining the shape of the side surface.
  • a diffractive unit that distributes the beam light emitted from the light source to three or more paths included in the same plane is provided, and each sensor of the detection unit is a reflected light in which each beam light distributed by the diffractive unit is reflected by the coin side surface.
  • the coin discriminating device was configured to detect each. Therefore, various shapes of the coin side surface can be detected with high accuracy.
  • the sensors are arranged in a straight line in the axial direction of the coin.
  • the sensors may be arranged in a straight line in a direction that forms a predetermined angle with the axial direction of the coin. .
  • the direction in which the diffraction plate distributes the beam light is also shifted by the same angle.
  • the coin identification device is useful for detecting the side shape of a coin, and is particularly suitable when it is desired to detect the side shape of a coin with high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Coins (AREA)

Abstract

 硬貨側面による反射光を検出するセンサを3つ以上直線状に配置した検知手段と、検出手段の各センサが検出した反射光の位相差に基づいて硬貨側面の形状を判定する判定手段とを備えるように硬貨識別装置を構成する。また、光源が発するビーム光を同一平面に含まれる3つ以上の経路へ振り分ける回折手段を備え、検知手段の各センサは、回折手段によって振り分けられた各ビーム光が硬貨側面によって反射された反射光をそれぞれ検出するように硬貨識別装置を構成する。

Description

硬貨識別装置
 本発明は、硬貨側面の形状に基づいて硬貨を識別する硬貨識別装置に関し、特に、硬貨側面のさまざまな形状を高精度に検出することができる硬貨識別装置に関するものである。
 硬貨の外周面に形成された縞状の溝(以下、「ギザ」と記載する)を検出し、検出結果に基づいて硬貨の種別あるいは真偽を識別する硬貨識別装置が知られている。かかるギザには、硬貨の軸線方向に設けられた縦ギザや、軸線方向から所定角度だけ傾けられた斜めギザなどのバリエーションがある。
 このような硬貨識別装置でギザの有無を検出する場合には、硬貨の外周面(側面)に光を照射し、側面によって反射された反射光を光センサで取得することが行われている。そして、光センサの出力値が、ギザを構成する凹凸によって変動することに基づいてギザの有無を識別する。
 また、縦ギザと斜めギザとを判別する手法についても提案されている。たとえば、特許文献1には、硬貨に光を照射するとともに、硬貨の軸線方向に位置をずらして2個のセンサを設け、各センサが取得した反射光の位相差に基づいて斜めギザを検出する技術が開示されている。
特許第3566161号公報
 しかしながら、特許文献1の技術は、縦ギザと斜めギザとを判別することはできるものの、その他のギザ形状を判別することができないという問題がある。特に、近年では、側面に文字が刻印された硬貨や、側面に「く」の字型のギザが設けられた硬貨なども登場してきており、硬貨の識別精度を向上させるためには、さまざまな側面形状を検出することが求められる。
 また、ギザ間隔(以下、「ギザピッチ」と記載する)についても、近年では、狭小なギザピッチを採用した硬貨も登場してきており、ギザあるいは側面形状の検出精度を向上させる必要もある。
 これらのことから、硬貨側面のさまざまな形状を高精度に検出することができる硬貨識別装置をいかにして実現するかが大きな課題となっている。
 本発明は、上述した従来技術の課題を解決するためになされたものであり、硬貨側面のさまざまな形状を高精度に検出することができる硬貨識別装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、硬貨側面の形状に基づいて硬貨を識別する硬貨識別装置であって、硬貨側面による反射光を検出するセンサを3つ以上直線状に配置した検知手段と、前記検出手段の各センサが検出した反射光の位相差に基づいて硬貨側面の形状を判定する判定手段とを備えたことを特徴とする。
 また、本発明は、上記の発明において、光源が発するビーム光を同一平面に含まれる3つ以上の経路へ振り分ける回折手段をさらに備え、前記検知手段の各センサは、前記回折手段によって振り分けられた各ビーム光が硬貨側面によって反射された前記反射光をそれぞれ検出することを特徴とする。
 また、本発明は、上記の発明において、前記検知手段の各センサは、等間隔に配置されたことを特徴とする。
 また、本発明は、上記の発明において、前記判定手段は、硬貨側面の形状を少なくとも縦ギザ、斜めギザあるいは不規則形状のいずれかであると判定することを特徴とする。
 また、本発明は、上記の発明において、前記判定手段は、硬貨側面に設けられたギザの間隔を示すギザピッチに基づいて硬貨側面の形状を判定することを特徴とする。
 本発明によれば、硬貨側面による反射光を検出するセンサを3つ以上直線状に配置した検知手段と、検出手段の各センサが検出した反射光の位相差に基づいて硬貨側面の形状を判定する判定手段とを備えることとしたので、硬貨の側面形状を高精度に検出することができるという効果を奏する。
 また、本発明によれば、光源が発するビーム光を同一平面に含まれる3つ以上の経路へ振り分ける回折手段をさらに備え、検知手段の各センサは、回折手段によって振り分けられた各ビーム光が硬貨側面によって反射された反射光をそれぞれ検出することとしたので、照射光および反射光を同軸(同一平面内)にすることによって、硬貨位置の変動がある場合であっても、照射光の変動を抑制することができるという効果を奏する。
 また、本発明によれば、検知手段の各センサは、等間隔に配置されることとしたので、判定処理に係る処理負荷を低減することができるという効果を奏する。
 また、本発明によれば、判定手段は、硬貨側面の形状を少なくとも縦ギザ、斜めギザあるいは不規則形状のいずれかであると判定することとしたので、硬貨側面の形状を具体的に検出することができるという効果を奏する。
 また、本発明によれば、判定手段は、硬貨側面に設けられたギザの間隔を示すギザピッチに基づいて硬貨側面の形状を判定することとしたので、ギザピッチが異なる硬貨を識別することができるという効果を奏する。
図1は、本実施例に係る硬貨識別装置を上面および側面からみた図である。 図2は、硬貨識別装置の構成を示すブロック図である。 図3は、判定部が行う判定処理の概要を示す図である。 図4は、劣化検出部が行う劣化検出処理の概要を示す図である。 図5は、判定部が行う判定処理の処理手順を示すフローチャートである。 図6は、センサ間隔のバリエーションを示す図である。 図7は、硬貨側面形状のバリエーションおよびセンサ配置例を示す図である。
符号の説明
   1  光源
   2  コリメータレンズ
   3  回折板
   4  凸レンズ
   5  ビームスプリッタ
   6、6a、6b、6c、6d、6e センサ
   7  ガイド面
  10  硬貨識別装置
  11  制御部
  11a センサ値入力部
  11b 判定部
  11c 劣化検出部
  11d 報知部
 100  硬貨
 以下に、添付図面を参照して、本発明に係る硬貨識別装置の好適な実施例を詳細に説明する。なお、以下に示す硬貨識別装置は、硬貨の種別を識別する機能を有するものとする。
 まず、本実施例に係る硬貨識別装置10の特徴点について図1を用いて説明する。図1は、本実施例に係る硬貨識別装置10を上面および側面から見た図である。なお、同図の(1)には硬貨識別装置10の上面図を、同図の(2)には硬貨識別装置10の側面図を、それぞれ示している。以下では、主に、同図の(2)に示した側面図を用いて硬貨識別装置10の特徴点について説明する。
 同図の(2)に示したように、光源1から発せられたビーム光は、コリメータレンズ2を経由し、回折板3によって3つの経路に振り分けられる。ここで、光源1としては、ビーム幅をμmオーダーに絞ることが可能なLD(Laser Diode)が用いられる。
 そして、回折板3によって振り分けられた各ビーム光は、凸レンズ4で平行光とされた後、ハーフミラーの役割をもつビームスプリッタ5を透過して識別対象となる硬貨100の側面で反射される。硬貨100による反射光はビームスプリッタ5で反射されて(同図の破線矢印参照)各センサ6(同図に示す6a、6bおよび6c)へ到達する。なお、ガイド面7は、たとえば、ガラスなどの透明な材質で構成されており、照射光および反射光を透過させる。
 センサ6a、センサ6bおよびセンサ6cは、等間隔で配置されており、硬貨側面からの反射光を、硬貨の軸線方向について等間隔で受光する。そして、各センサ6の出力を回折することによって、硬貨側面の形状が、縦ギザであるか、斜めギザであるか、不規則形状であるかが判定される。なお、判定内容の詳細については、図2等を用いて後述することとする。
 このように、本実施例に係る硬貨識別装置10では、ビーム幅をμmオーダーとした照射光を、回折板3で同一平面内の少なくとも3つ以上の経路に振り分け、硬貨100の側面でそれぞれ反射された各反射光を各センサ6で受光することとしたので、硬貨100の側面形状を高精度に検出することができる。
 また、同図の(1)に示したように、硬貨100に対する照射光および硬貨100からの反射光を同軸(同一平面内)とすることができるので、硬貨100がガイド面7から離れた場合であっても、反射光のずれが少ない。したがって、各センサ6の出力信号変動を小さく抑えることができる。
 なお、本実施例に係る硬貨識別装置10は、ガイド面7の汚れなどの影響による各センサ6の出力値の低下を検出することも行うが、この点については、図4を用いて後述することとする。
 次に、本実施例に係る硬貨識別装置10の構成について図2を用いて説明する。図2は、硬貨識別装置10の構成を示すブロック図である。なお、同図では、硬貨識別装置10の特徴を説明するために必要な構成要素のみを示しており、硬貨100の搬送機構などの一般的な構成要素については記載を省略している。
 同図に示すように、硬貨識別装置10は、光源1と、回折板3と、センサ6と、制御部11とを備えている。また、制御部11は、センサ値入力部11aと、判定部11bと、劣化検出部11cと、報知部11dとをさらに備えている。
 光源1は、LD(Laser Diode)で構成される。なお、光源1が発するビーム光のビーム幅は、上記したように、μmオーダーに絞ることができるので、たとえば、識別対象となる硬貨100のギザ幅よりも小さく設定することで、硬貨側面の形状を詳細に検出することができる。
 回折板3は、コリメータレンズ2を経由した光源1からのビーム光を、各センサ6の配置に合わせて振り分ける。たとえば、図1に示したように、センサ6a、センサ6bおよびセンサ6cが等間隔で配置されている場合には、光源1からのビーム光が等間隔の3つのビーム光になるように振り分ける。
 センサ6は、たとえば、フォトダイオードアレイ検出器(PDA:Photo Diode Array)で構成される光センサである。また、硬貨識別装置10には、3個以上のセンサ6が直線状に設けられる。なお、各センサ6の間隔は、図1に示したように等間隔とする他、識別対象となる硬貨100の側面形状に合わせた所定の間隔とすることもできる。
 制御部11は、各センサ6からの信号を受け取り、受け取った信号に基づいて硬貨100の側面形状を判定する処理を行うとともに、信号値の劣化を検出して報知する処理を行う処理部である。
 センサ値入力部11aは、各センサ6からの信号(センサ値)を受け取り、受け取った各センサ値を判定部11bおよび劣化検出部11cへ渡す処理を行う処理部である。また、判定部11bは、センサ値入力部11aから受け取った各センサ値に基づいて硬貨100の側面形状を判定する処理を行う処理部である。ここで、この判定部11bが行う判定処理の概要について図3を用いて説明しておく。
 図3は、判定部11bが行う判定処理の概要を示す図である。なお、同図の(1)には、硬貨100の側面形状が縦ギザである場合の各信号値の時間変化を示しており、同図の(2)には、側面形状が斜めギザである場合の各信号値の時間変化を示している。また、同図の(3)には、側面形状が不規則形状である場合の各信号値の時間変化を示している。
 図3の(1)に示したように、硬貨100の側面形状が縦ギザである場合には、センサ6aの信号値31aと、センサ6bの信号値31bと、センサ6cの信号値とは、それぞれ同期する。したがって、このような場合には、判定部11bは、硬貨100の側面形状が縦ギザであると判定する。なお、この場合、判定部11bは、硬貨100の搬送速度に基づいて縦ギザの間隔(ピッチ)を取得する。
 また、同図の(2)に示したように、硬貨100の側面形状が斜めギザである場合には、センサ6aの信号値32aと、センサ6bの信号値32bと、センサ6cの信号値32cとは規則的な位相ずれを起こす。したがって、このような場合には、判定部11bは、硬貨100の側面形状が斜めギザであると判定する。
 また、同図の(3)に示したように、硬貨100の側面形状が不規則である場合(たとえば、側面に文字が刻印されている場合)には、センサ6aの信号値33a、センサ6bの信号値33b、あるいは、センサ6cの信号値33cには、非周期的なピークが現れる。したがって、このような場合には、判定部11bは、硬貨100の側面形状が不規則形状であると判定する。
 なお、本実施例に係る硬貨識別装置10は、各センサ6の個数あるいはセンサ間隔を変えることで、さまざまな側面形状を有する硬貨100を識別対象とすることができるが、この点については、図6および図7を用いて後述することとする。
 図2の説明に戻り、劣化検出部11cについて説明する。劣化検出部11cは、センサ値入力部11aから受け取った各信号値に係るピーク値の変動に基づき、ガイド面7(図1参照)等の汚れによる信号レベルの低下を検出する処理を行う処理部である。また、この劣化検出部11cは、劣化を検出した旨を報知部11dに対して通知する処理を併せて行う。
 ここで、劣化検出部11cが行う劣化検出処理の概要について図4を用いて説明しておく。図4は、劣化検出部11cが行う劣化検出処理の概要を示す図である。なお、同図の(1)には、硬貨通過時のセンサ出力値をあらわすグラフを示しており、同図の(2)には、センサ出力値と汚れ度合いとの関係をあらわすグラフを示している。
 図4の(1)に示すように、搬送される硬貨100からの反射光を受光するセンサ7の出力値は、ピーク値41をもつが、このピーク値は、ガイド面6の汚れによって減少していく傾向にある。したがって、ピーク値41を用いることで、ガイド面7の汚れ度合いを検出することが可能となる。なお、硬貨識別装置10は、図示しない金種識別部で金種識別を行うため、所定の金種についてのピーク値41を用いることができる。
 図4の(2)に示すように、所定枚数の硬貨100を識別した際の各ピーク値は、同図の42aに示すように、所定のばらつきがある。このため、各ピーク値の平均(同図の42b)をとり、求めた平均値が所定の閾値42cを下回った場合に、劣化検出部11cは、劣化を検出した旨を報知部11dに対して通知する。なお、閾値42cは、硬貨100の識別に失敗する値(同図の42d)に、所定のマージンを設けた値として設定される。
 このように、硬貨100の識別に失敗する程度までガイド面6が汚れて識別失敗(リジェクト)が発生する以前に、ガイド面6の汚れを検出することができる。なお、劣化検出部11cによる劣化検出処理は、硬貨識別装置10の通常稼働時に行われる。
 図2の説明に戻り、報知部11dについて説明する。報知部11dは、劣化検出部11cから劣化を検出した旨の通知を受けた場合に、図示しない報知ランプ、スピーカー、表示部などに警報を出力させる処理を行う処理部である。
 次に、図2に示した判定部11bが行う判定処理の処理手順について図5を用いて説明する。図5は、判定部11bが行う判定処理の処理手順を示すフローチャートである。同図に示すように、判定部11bが、センサ値入力部11aから各センサ値を入力されると(ステップS101)、各センサ値間に位相差があるか否かを判定する(ステップS102)。そして、位相差がない場合には(ステップS102,No)、側面形状を縦ギザと判定したうえで(ステップS103)、ギザピッチを取得して(ステップS104)処理を終了する。
 また、位相差がある場合には(ステップS102,Yes)、位相差に規則性があるか否かを判定する(ステップS105)。そして、位相差に規則性がある場合には(ステップS105,Yes)、側面形状を斜めギザと判定して(ステップS106)処理を終了する。一方、位相差に規則性がない場合には(ステップS102,No)、側面形状を不規則形状と判定して(ステップS107)処理を終了する。
 ところで、これまでは、各センサ6を等間隔で配置した場合について説明してきたが、各センサの間隔を任意のものとすることもできる。図6は、センサ間隔のバリエーションを示す図である。同図の(1)に示したのは、センサ6a/センサ6bの間隔Aと、センサ6b/センサ6cの間隔Bとを等間隔にした場合である。
 一方、同図の(2)に示したのは、センサ6a/センサ6bの間隔Aと、センサ6b/センサ6cの間隔Bとを、たとえば、1:2などの不等間隔にした場合である。このように、センサ間隔を変えることで、さまざまな硬貨100の側面形状に対応することが可能となる。
 また、図6では、センサ間隔を変える場合について説明したが、センサ6の個数についても3つ以上の任意の個数とすることができる。図7は、硬貨側面形状のバリエーションおよびセンサ配置例を示す図である。
 同図の(1)および(2)に示したのは、硬貨100の側面全体にわたってギザが設けられている場合である。このような場合には、図1に示したように、3個のセンサ6(センサ6a、センサ6bおよびセンサ6c)を等間隔で配置することで、縦ギザあるいは斜めギザの判別を行うことができる。
 また、同図の(3)および(4)に示したのは、硬貨100の側面中央部のみにギザが設けられている場合である。同図の(3)の場合、73aおよび73cにはギザがなく、73bの部分にのみ縦ギザが設けられている。また、同図の(4)の場合、74aおよび74cにはギザがなく、74bの部分にのみ斜めギザが設けられている。
 このような場合には、たとえば、同図に示したように、4個のセンサ6(センサ6a、センサ6b、センサ6cおよびセンサ6d)を設けることで、(3)と(4)との区別、(1)と(3)との区別、(2)と(4)との区別、をそれぞれ行うことができる。
 また、同図の(5)に示したのは、硬貨100の側面に「く」の字型のギザが設けられている場合である。このような場合にも、同図に示したように4個のセンサ6(センサ6a、センサ6b、センサ6cおよびセンサ6d)を設けることで、(1)~(4)と、(5)とを区別することができる。
 また、同図の(6)に示したのは、硬貨100の側面の中央部と中央部以外の部分とに異なるギザあるいは模様が設けられている場合である。このような場合にも4個のセンサで、あるいは、同図に示したような5個のセンサ(センサ6a、センサ6b、センサ6c、センサ6dおよびセンサ6e)で、他の側面形状とのパターン差を検出することができる。
 なお、同図で示したセンサ6の個数は例示であり、たとえば、3個のセンサ6の間隔を、識別対象となる硬貨100のすべての種別を区別することができるように調整したうえで設定することとしてもよい。
 上述してきたように、本実施例では、硬貨側面による反射光を検出するセンサを3つ以上直線状に配置した検知手段と、検出手段の各センサが検出した反射光の位相差に基づいて硬貨側面の形状を判定する判定手段とを備えるように硬貨識別装置を構成した。また、光源が発するビーム光を同一平面に含まれる3つ以上の経路へ振り分ける回折手段を備え、検知手段の各センサは、回折手段によって振り分けられた各ビーム光が硬貨側面によって反射された反射光をそれぞれ検出するように硬貨識別装置を構成した。したがって、硬貨側面のさまざまな形状を高精度に検出することができる。
 なお、上述した実施例では、硬貨の軸線方向に、各センサを直線上に並べる場合について説明したが、硬貨の軸線方向と所定の角度をなす方向に各センサを直線上に並べることとしてもよい。この場合、回折板がビーム光を振り分ける向きについても同様の角度だけずらすこととなる。
 以上のように、本発明に係る硬貨識別装置は、硬貨の側面形状の検出に有用であり、特に、硬貨の側面形状を高精度に検出したい場合に適している。

Claims (5)

  1.  硬貨側面の形状に基づいて硬貨を識別する硬貨識別装置であって、
     硬貨側面による反射光を検出するセンサを3つ以上直線状に配置した検知手段と、
     前記検出手段の各センサが検出した反射光の位相差に基づいて硬貨側面の形状を判定する判定手段と
     を備えたことを特徴とする硬貨識別装置。
  2.  光源が発するビーム光を同一平面に含まれる3つ以上の経路へ振り分ける回折手段
     をさらに備え、
     前記検知手段の各センサは、
     前記回折手段によって振り分けられた各ビーム光が硬貨側面によって反射された前記反射光をそれぞれ検出することを特徴とする請求項1に記載の硬貨識別装置。
  3.  前記検知手段の各センサは、
     等間隔に配置されたことを特徴とする請求項1または2に記載の硬貨識別装置。
  4.  前記判定手段は、
     硬貨側面の形状を少なくとも縦ギザ、斜めギザあるいは不規則形状のいずれかであると判定することを特徴とする請求項1、2または3に記載の硬貨識別装置。
  5.  前記判定手段は、
     硬貨側面に設けられたギザの間隔を示すギザピッチに基づいて硬貨側面の形状を判定することを特徴とする請求項1~4のいずれか一つに記載の硬貨識別装置。
PCT/JP2008/051657 2008-02-01 2008-02-01 硬貨識別装置 WO2009096037A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/051657 WO2009096037A1 (ja) 2008-02-01 2008-02-01 硬貨識別装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/051657 WO2009096037A1 (ja) 2008-02-01 2008-02-01 硬貨識別装置

Publications (1)

Publication Number Publication Date
WO2009096037A1 true WO2009096037A1 (ja) 2009-08-06

Family

ID=40912404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051657 WO2009096037A1 (ja) 2008-02-01 2008-02-01 硬貨識別装置

Country Status (1)

Country Link
WO (1) WO2009096037A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197865A (ja) * 2010-03-18 2011-10-06 Laurel Machinery Co Ltd 硬貨処理機用の硬貨判別装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006013A (ja) * 1999-06-18 2001-01-12 Laurel Bank Mach Co Ltd 硬貨判別装置
JP2001175914A (ja) * 1999-12-15 2001-06-29 Laurel Bank Mach Co Ltd 硬貨判別装置
JP2002032811A (ja) * 2000-07-13 2002-01-31 Nippon Conlux Co Ltd 硬貨識別装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006013A (ja) * 1999-06-18 2001-01-12 Laurel Bank Mach Co Ltd 硬貨判別装置
JP2001175914A (ja) * 1999-12-15 2001-06-29 Laurel Bank Mach Co Ltd 硬貨判別装置
JP2002032811A (ja) * 2000-07-13 2002-01-31 Nippon Conlux Co Ltd 硬貨識別装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197865A (ja) * 2010-03-18 2011-10-06 Laurel Machinery Co Ltd 硬貨処理機用の硬貨判別装置

Similar Documents

Publication Publication Date Title
US7005661B2 (en) Optical object identification apparatus, and printing apparatus and object classification apparatus using same
JPS5882372A (ja) 書類の真偽検査装置
JP6167821B2 (ja) 検査装置
JP2007187570A (ja) 反射型光学センサ及び測定面の表面粗さ検出方法
JP6186913B2 (ja) 計測装置
JP2007249656A (ja) ホログラム検査装置
JP2002288604A (ja) カードの真贋判定装置
JP6535480B2 (ja) レーザ加工状態判別方法及び装置
WO2009096037A1 (ja) 硬貨識別装置
JP5347692B2 (ja) 識別装置及び識別方法
JP3469038B2 (ja) 紙幣判別装置
US7012691B2 (en) Optical moving information measuring apparatus and carrier system incorporating the same
JP5638081B2 (ja) 紙葉類識別装置
JP2014077660A (ja) 検出装置
JP2009133743A (ja) ホログラム検査装置
WO2019059218A1 (ja) 偽造防止構造体、偽造防止媒体及び偽造防止構造体の検査方法
EP1336163A1 (en) Document handling apparatus
JP4033781B2 (ja) 光学式物体識別装置および処理システムおよび搬送処理システム
JP3012128B2 (ja) 硬貨判別装置
JP4062200B2 (ja) 紙葉類の鑑別装置および鑑別方法
JP4377872B2 (ja) 表面検査装置
JP6505512B2 (ja) 光学識別装置
JP2009140334A (ja) 紙葉類識別装置
JP2006113198A (ja) 焦点検出装置
WO2023248798A1 (ja) レーザレーダ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08710701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08710701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP