WO2009093512A1 - シール構造 - Google Patents

シール構造 Download PDF

Info

Publication number
WO2009093512A1
WO2009093512A1 PCT/JP2009/050439 JP2009050439W WO2009093512A1 WO 2009093512 A1 WO2009093512 A1 WO 2009093512A1 JP 2009050439 W JP2009050439 W JP 2009050439W WO 2009093512 A1 WO2009093512 A1 WO 2009093512A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
abradable
axial direction
film
fin
Prior art date
Application number
PCT/JP2009/050439
Other languages
English (en)
French (fr)
Inventor
Yuichi Hirakawa
Hidekazu Uehara
Takashi Nakano
Shin Nishimoto
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to EP09703871.5A priority Critical patent/EP2233803B1/en
Priority to US12/667,568 priority patent/US8240675B2/en
Priority to CN200980100022.2A priority patent/CN101765736B/zh
Publication of WO2009093512A1 publication Critical patent/WO2009093512A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/445Free-space packings with means for adjusting the clearance
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • F16J15/453Labyrinth packings characterised by the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other

Definitions

  • the present invention relates to a seal structure used for a rotating shaft portion of a rotating machine.
  • the labyrinth seal structure includes a fin that protrudes in a ring shape on a rotating shaft or a stationary portion that faces the rotating shaft, and a plurality of fins that are provided along the axial direction, and a surface (facing surface) that faces the fin.
  • the fins are processed with a pointed tip of about 0.2mm in order to mitigate the effects of contact with the opposing surfaces.
  • they are essentially metal-to-metal contacts, the amount of heat generated during sliding is heavy. May cause shaft vibration, and the clearance between the fin and the facing surface cannot be easily narrowed.
  • the sealing performance in other words, the performance of the rotating machine is determined by the number of fins and the clearance between the fin and the facing surface, to improve the performance of the rotating machine, it is necessary to reduce the clearance between the fin and the facing surface. It has been demanded.
  • an active clearance control (ACC) seal is applied, and the clearance changes using a differential pressure between a transition period at startup and a rated operation.
  • an abradable portion that is easily cut is applied to the contact surface of the stationary portion facing the fin to reduce heat generation during contact.
  • Rotating machines are generally designed so that the rotating shaft rotates at a constant rotational speed in the rated rotational speed range.
  • the speed range where the vibration level of the rotating shaft reaches its maximum while the rotational speed is increasing soon after startup (hereinafter referred to as the critical speed). There is an area).
  • the rotating shaft reaches the rated rotational speed range through this critical speed range.
  • the stationary part may be deformed unevenly due to the temperature difference at the time of start-up, and the clearance may be transiently minimized due to the difference in thermal expansion between the upper and lower sides.
  • the abradable material has a great merit in designing the clearance, and various materials are known as the abradable material.
  • a member such as a turbine member that requires a uniform film thickness with a ring shape
  • coating (film) of an abradable material by inner diameter spraying is considered effective.
  • the sprayed semi-molten particles adhere to the base material (opposite surface of the fin) and then shrink when solidified, resulting in the generation of residual stress.
  • This residual stress increases as the film becomes thicker.
  • the film peels off at the boundary between the substrate and the film (boundary peeling occurs). This becomes remarkable especially when constructing on a curved surface like a ring member of a turbine.
  • the present invention provides a seal structure in which a thick abradable film can be obtained, thereby improving the sealing performance.
  • the present invention employs the following means. That is, according to one aspect of the present invention, the seal member includes at least one fin that protrudes in a ring shape from the peripheral surface of the rotating member and is provided along the axial direction, and an annular seal surface that faces the fin. And a seal member formed with an abradable film sprayed with an abradable material, and a seal structure in which an inclined portion inclined in the radial direction is provided at an axial end portion of the seal surface. .
  • the abradable film of the inclined portion is inclined along the shape of the inclined portion, that is, in the radial direction. Formed into a shape. Therefore, since the abradable film formed on the inclined part is laminated in a different direction from the abradable film formed on the intermediate part in the axial direction, the abradable film has a structure in which the lamination direction changes in the inclined part. Become. When the laminating direction of the abradable film is changed, the acting directions of the residual stress are different from each other, so that the influence can be divided.
  • the influence of the intermediate portion in the axial direction can be separated, it is possible to effectively suppress boundary peeling at the inclined portion which is an end portion that is particularly easily peeled off. Therefore, even if there is a large residual stress, the occurrence of boundary peeling can be suppressed, so that the thickness of the abradable film can be increased. If the film thickness of the abradable film can be increased, for example, the clearance between the fin and the seal surface (in other words, the abradable film surface) in the rated rotational speed range can be set small, so that the sealing performance of the seal structure is improved. Can do. Thereby, the reliability improvement and performance improvement of a rotary machine can be aimed at, for example.
  • the inclined portion is provided in a range that does not affect the sealing action and the film thickness of the abradable film is made thin. In this way, since the residual stress in the inclined portion can be further reduced, the thickness of the abradable film at the axially intermediate portion that performs the sealing action can be further increased.
  • an inclination part you may chamfer an edge part, for example, and you may form a bank-like convex part in the fin side. Further, it may be formed in a flat shape or a curved shape.
  • the said aspect WHEREIN It is preferable that the unevenness
  • the side surface of the unevenness becomes parallel to the spraying direction and contributes to weakening the adhesion of the coating. It is desirable to incline appropriately in the direction so as to have an appropriate angle with respect to the spraying direction.
  • the end surface of the seal member in the axial direction is masked at a distance from the seal surface to form the abradable film.
  • the masking since the masking does not engage with the interface between the seal surface and the abradable film, it is possible to prevent the occurrence of microcracks due to the masking at this interface.
  • this microcrack is eliminated, it is no longer a starting point for peeling, so that the occurrence of peeling can be further suppressed. Thereby, the film thickness of an abradable membrane
  • the said sealing member may be comprised by the division
  • the circumferential end portion of the split seal member is formed by cutting off the abradable film by machining from the abradable film side toward the seal surface after the abradable film is overlaid. It is preferable.
  • the abradable film In order to maintain the desired film thickness of the abradable film up to the circumferential end of the divided seal member, it is necessary to increase the abradable film beyond the circumferential end to some extent, that is, to perform extra-scaling. Since the extra-filled portion becomes an obstacle during assembly, it is cut out by machining. In this case, since the surplus portion is cut by machining from the abradable film side to the seal surface side, no force acts on the abradable film in a direction away from the seal surface. In this way, since no force acts in the direction of peeling the abradable film during machining, peeling (cracking) of the abradable film by machining can be suppressed. Thereby, the thickness of the abradable film can be increased without being restricted by machining. As the machining, for example, file grinding, lathe processing or the like is used.
  • the abradable material preferably contains a resin material.
  • the resin material is contained in the abradable material, after the abradable film is formed by thermal spraying, the resin material portion can be removed by heat treatment.
  • the abradable film has a porous structure, the amount of heat generated by sliding when the abradable film comes into contact with the fins can be reduced.
  • the hardness and porosity of the abradable film can be adjusted by adjusting the content of the resin material. If the resin material part is removed, the contact area between the abradable film and the seal surface decreases, the adhesive strength between them decreases, and peeling may occur. It is necessary to be within a range that does not cause such a situation. Further, an abradable film and an undercoat that improves the adhesion of the seal surface may be applied to the seal surface in order to compensate for the decrease in adhesive strength.
  • the thickness of the abradable film can be increased to, for example, 3 mm or more without peeling.
  • the clearance between the fin and the seal surface (in other words, the abradable film surface) in the rated rotational speed region can be set small, the seal performance can be improved.
  • the reliability improvement and performance improvement of a rotary machine can be aimed at, for example.
  • FIG. 1 is a longitudinal sectional view of a seal structure 1 according to this embodiment.
  • the seal structure 1 includes a plurality of fins 5 protruding in a ring shape on the peripheral surface of a rotating shaft (rotating member) 3 and a donut shape that is held by a stationary part 7 such as a housing so as to cover the outer peripheral side of the fins 5. And a sealing member 9 having the above structure.
  • the plurality of fins 5 are installed at intervals along the axial direction L.
  • the fin 5 is integrated with the rotating shaft 3 and formed by cutting.
  • the fins 5 may be formed separately from the rotating shaft 3 and fixed to the rotating shaft 3 by means such as implantation.
  • the seal member 9 has a substantially rectangular cross section along the axial direction L.
  • the end faces 11 on both sides in the axial direction L of the seal member 9 are provided with fitting grooves 13 extending over substantially the entire circumference.
  • a circumferential groove 15 is provided on the inner surface of the stationary portion 7 so as to extend over substantially the entire circumference.
  • a projecting portion 17 projecting inward of the circumferential groove 15 is provided at an inner circumferential side end of the circumferential groove 15 so as to extend over substantially the entire circumference.
  • the seal member 9 is fitted into the circumferential groove 15 so that the fitting groove 13 engages with the protruding portion 17, and is held by the stationary portion 7.
  • the seal member 9 may be configured so that the position in the radial direction K can be adjusted.
  • a seal surface 19 which is a surface on the inner peripheral side of the seal member 9 is positioned so as to face the fin 5.
  • a taper portion (inclined portion) 21 that is largely chamfered is provided at the end in the axial direction L of the seal member 9.
  • the radial direction K position of the end portion in the axial direction L of the taper portion 21 is positioned on the outer peripheral side as compared with that on the central side. That is, the taper portion 21 is inclined in the radial direction K.
  • a plurality of, for example, three, protruding portions 23 extending in the axial direction L are provided at an intermediate portion in the axial direction L of the seal member 9 and projecting toward the inner peripheral side. . Therefore, the sealing surface 19 is uneven along the axial direction L.
  • An abradable layer (abradable film) 25 formed by spraying an abradable material is formed on the seal surface 19 with a substantially uniform film thickness T1 over substantially the entire surface.
  • the side surface portion of the convex portion 23 is provided with a convex portion inclined portion 24 that is appropriately inclined in the radial direction so as to have an appropriate angle with respect to the spraying direction.
  • the abradable layer 25 is formed along the seal surface 19, the abradable layer 25 is formed discontinuously along the axial direction L. That is, the tapered portion 21 is inclined in the radial direction K, and the convex portion 23 is in an uneven state in the intermediate portion in the axial direction L. Further, as shown in FIG. 3, the film thickness T2 of the abradable layer 25 in the taper portion 21 is made thinner than the film thickness T1 in other portions.
  • a bank-like protrusion (inclined portion) 31 as shown in FIG. 4 may be provided at the end in the axial direction L of the seal member 9 instead of the tapered portion 21.
  • the abradable layer 25 is formed discontinuously along the axial direction L at the protrusion 31.
  • the film thickness T2 of the abradable layer 25 in the protrusion part 31 is made thinner than the film thickness T1 in other parts.
  • the seal member 9 is composed of a plurality of, for example, six divided seal members 27 divided in the circumferential direction C.
  • the number to be divided is appropriately determined in consideration of various conditions such as the size of the seal member 9, the manufacturing equipment, the structure of the rotating machine, and the like.
  • FIG. 2 is a perspective view showing the split seal member 27.
  • a circumferential end surface 29 is provided at the end in the circumferential direction C of the split seal member 27 so as to extend in the radial direction K.
  • the seal member 9 may be formed as an integral unit instead of assembling the split seal member 27.
  • the manufacture of the seal member 9 in the seal structure 1 configured as described above will be described.
  • the main body of the split seal member 27 is processed into a shape as shown in FIG. 2 by, for example, machining. This processing is performed as follows, for example. A long plate is cut into a predetermined length and width.
  • the sealing surface 19 is cut so that the convex portion 23 remains, and the fitting groove 13 and the tapered portion 21 are processed in the end surface 11. Thereafter, bending is performed so as to form an arc having a predetermined radius of curvature.
  • an abradable layer 25 is formed on the seal surface 19.
  • masking 33 is performed so that a sprayed coating is not formed on the end face 11, and a blasting process is performed for making a base before spraying.
  • the end of the masking 33 on the seal surface 19 side is spaced from the seal surface 19. This interval is set to 2 to 3 mm, for example.
  • an abradable material is sprayed onto the seal surface 19 using atmospheric pressure plasma spraying (APS).
  • the abradable material mainly comprises a metal component including cobalt, nickel, chromium, aluminum, yttrium (hereinafter referred to as CoNiCrAlY), boron nitride (h-BN) as a solid lubricant, and polyester (for controlling porosity) ( A material containing a resin material) is used. Note that this is an example of an abradable material, and materials can be used as appropriate.
  • Thermal spraying was performed over a long period of time in order to reduce the melting amount as much as possible, and was set with an appropriate current-voltage so that the adhesion could be maintained. Thereby, the residual stress in the abradable layer 25 can be reduced.
  • the melted abradable material is rapidly cooled, solidified and contracted at the moment when it adheres to the seal surface 19. For this reason, residual stress is generated in the formed abradable layer 25.
  • the abradable layer 25 is formed discontinuously along the axial direction L by the taper portion 21 and the convex portion 23 in the abradable layer 25, the acting directions of the residual stress are different from each other, and the influence thereof. Can be divided.
  • the abradable layers 25 having different thicknesses are provided. Formed and visually inspected for the presence of boundary delamination. This situation is shown in Table 1.
  • the influence of the intermediate portion in the axial direction can be separated by the taper portion 21 particularly at the end portion where the residual stress tends to concentrate, boundary peeling can be effectively suppressed. Furthermore, in the taper part 21, since the film thickness of the abradable layer 25 is made smaller than other parts, the generated residual stress can be further reduced. Thereby, the film thickness of the abradable layer 25 of the part which performs a sealing effect can be made still thicker.
  • the convex portion 23 may not be formed, for example, when the length along the axial direction L of the intermediate portion in the axial direction L is short or when the required film thickness is thin.
  • the film thickness T1 of the abradable layer 25 can be increased, for example, the clearance between the fin 5 and the abradable layer 25 in the rated rotational speed region can be set small, so that the sealing performance of the seal structure 1 is improved. be able to. Thereby, the reliability improvement and performance improvement of a rotary machine can be aimed at, for example.
  • the masking 33 on the seal surface 19 side since the end of the masking 33 on the seal surface 19 side is spaced from the seal surface 19, the masking 33 does not engage with the interface between the seal surface 19 and the abradable layer 25. For this reason, generation
  • the coating is raised beyond the circumferential end face 29 as shown in FIG.
  • This surplus portion 35 is cut off by machining, for example, file grinding, lathe machining, or the like, in a machining direction 37 from the abradable layer 25 side toward the seal surface 19 side.
  • the processing surface 39 is inclined slightly inward from the extension surface 41 of the circumferential end surface 29. This inclination is, for example, such that the position of the surface end portion of the processed surface 39 is separated from the extended surface 41 within 0.05 mm.
  • the polyester contained in the abradable layer 25 disappears due to the amount of heat. Thereby, since the abradable layer 25 becomes a porous structure, the amount of sliding heat generated when contacting the fin 5 can be reduced.
  • the porosity of the abradable layer 25 can be adjusted by adjusting the polyester content.
  • a sliding test was performed in which a test piece 47 having a fin 45 attached to the tip of a rotating rotor 43 and an abradable film 49 applied to the tip was brought into contact with the fin 45 at a constant feed rate.
  • Test conditions were as follows: test temperature: 550 ° C., peripheral speed of rotor 43: 70 m / S, feed speed of test piece 47: 10 ⁇ m / S: feed amount: 0.5 mm.
  • abradable film 49 having a porosity of 0%, about 15%, and about 40% was used. Note that a 12Cr steel test piece is used as a criterion for the amount of heat generated. Then, the temperature near the tip of the test piece at the time of sliding, the drag force, and the cutting force were obtained by a 3-component force sensor, and the heat generation amount was calculated from the average cutting force at the time of sliding.
  • the polyester portion is removed, the contact area between the abradable layer 25 and the seal surface 19 is reduced, the adhesive strength between the two is reduced, and peeling may occur. It is necessary to keep it in a range that does not cause a serious situation. Further, an undercoat for improving the adhesion between the abradable layer 25 and the seal surface 19 may be applied to the seal surface 19 in order to compensate for a decrease in the adhesive strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 厚いアブレーダブル皮膜を得られ、それによりシール性能を向上させ得るシール構造を提供する。回転軸(3)の周面からリング状に突出し、軸線方向(L)に沿って少なくとも1個設けられたフィン(5)と、フィン(5)に対向する環状のシール面(19)を有し、シール面(19)にアブレーダブル材を溶射したアブレーダブル層(25)が形成されているシール部材(9)と、を備えるシール構造(1)であって、シール面(19)の軸線方向(L)端部に半径方向(K)に傾斜したテーパ部(21)が備えられている。

Description

シール構造
 本発明は、回転機械の回転軸部に用いられるシール構造に関するものである。
 蒸気タービン、ガスタービン、圧縮機等の回転機械では、回転軸部のシール構造として、たとえば、特許文献1および特許文献2に示されるような、いわゆる、ラビリンスシール構造が広く用いられている。
 ラビリンスシール構造は、回転軸あるいはこれと対向する静止部に、リング状に突出し、軸線方向に沿って複数設けられたフィンと、このフィンと対向する面(対向面)とで構成されている。フィンは、対向する面との接触による影響を緩和するため、先端を0.2mm程度に尖らせて加工しているが、本質的に金属同士の接触であるため、重接触時には摺動発熱量が大きく、軸振動を引き起こしてしまうことがあり、安易にフィンと対向面とのクリアランスを狭めることができない。
 シール性能、言い換えると回転機械の性能は、フィンの数およびフィンと対向面とのクリアランスで決定されるので、回転機械の性能を向上させるには、フィンと対向面とのクリアランスを低減することが求められている。たとえば、特許文献1では、アクティブクリアランスコントロール(ACC)シールを適用し、起動時の過渡期と定格運転時とで差圧を利用してクリアランスが変化する構造としている。また、特許文献2では、静止部のフィンとの対向面の接触面に安易に切削されるアブレーダブル部分を適用し、接触時の発熱の低減を図っている。
 回転機械では、一般に定格回転速度域で回転軸が静定回転するように設計されており、起動後間もなく回転速度が上昇中に回転軸の振動レベルが最大になる速度域(以下これを危険速度域と呼ぶ)が存在する。回転軸はこの危険速度域を経て定格回転速度域に達することになる。また、起動時の温度差により静止部が不均一に変形し、上下の熱伸び差によりクリアランスが過渡的に最小となることがある。このように起動時にクリアランスが最小となった際にフィンと対向面が重接触すると、過度の摺動発熱により回転軸側が局所的に加熱されて軸曲がりが発生し、さらに重接触を引き起こすといった、悪循環を繰り返してしまう可能性がある。この点で、アブレーダブル材を適用すると、摺動発熱量そのものが小さく、ある程度まで接触を許容できる設計とすることができる。
特開2002-228013号公報 特開2003-65076号公報
 上述のようにアブレーダブル材を適用することによりクリアランス設計上のメリットが大きく、アブレーダブル材としては種々の材料が知られている。タービン部材のようなリング形状で均一な膜厚が要求される部材では、たとえば内径溶射によるアブレーダブル材のコーティング(皮膜)が有効と考えられる。溶射プロセスでは、溶射された半溶融の粒子が基材(フィンの対向面)に付着した後、凝固する際に収縮するので、それに伴い残留応力が発生する。この残留応力は、皮膜が厚いほど大きくなる。この残留応力が大きくなると、基材と皮膜との境界で皮膜が剥離する(境界剥離が発生する)ことになる。これは、特に、タービンのリング部材のように曲面に施工する場合に顕著となる。また、皮膜の端部で影響が大きくなる傾向がある。
 したがって、十分な厚さの皮膜を形成することが現実的に困難である。このため、安全性を重視し、定格回転速度域でのクリアランスを広げ、シール性能を制限せざるを得ないのが現状である。
 本発明は、上記課題に鑑み、厚いアブレーダブル皮膜が得られ、それによりシール性能を向上させ得るシール構造を提供するものである。
 上記課題を解決するために、本発明は以下の手段を採用する。
 すなわち、本発明の一態様は、回転部材の周面からリング状に突出し、軸線方向に沿って少なくとも1個設けられたフィンと、該フィンに対向する環状のシール面を有し、該シール面にアブレーダブル材を溶射したアブレーダブル皮膜が形成されているシール部材と、を備えるシール構造であって、前記シール面の軸線方向端部に半径方向に傾斜した傾斜部が備えられているシール構造である。
 本態様によれば、シール面の軸線方向端部に半径方向に傾斜した傾斜部が備えられているので、傾斜部のアブレータブル皮膜は傾斜部の形状に沿って、すなわち、半径方向に傾斜した形に形成される。
 したがって、傾斜部に形成されるアブレーダブル皮膜は、軸線方向中間部分に形成されるアブレーダブル皮膜とは異なる方向に積層されることになるので、アブレーダブル皮膜は、積層方向が傾斜部において変化する組織構造となる。
 アブレーダブル皮膜の積層方向が変化すると、残留応力の作用方向が相互に異なることになるので、その影響を分断することができる。
 このように、軸線方向中間部分の影響を分離できるので、特に剥離し易い端部である傾斜部における境界剥離を効果的に抑制することができる。したがって、大きな残留応力があっても境界剥離の発生を抑制できるので、アブレーダブル皮膜の膜厚を厚くすることができる。
 アブレーダブル皮膜の膜厚を厚くできると、たとえば、定格回転速度域におけるフィンとシール面(言い換えると、アブレーダブル皮膜面)とのクリアランスを小さく設定することができるので、シール構造のシール性能を向上させることができる。
 これにより、たとえば、回転機械の信頼性向上および性能向上を図ることができる。
 この場合、傾斜部はシール作用に影響しない範囲に設け、そのアブレーダブル皮膜の膜厚を薄くするようにすることが好ましい。
 このようにすると、傾斜部における残留応力を一層低減させることができるので、シール作用を行う軸線方向中間部分のアブレーダブル皮膜の膜厚を一層厚くすることができる。
 なお、傾斜部としては、たとえば、端部を面取りして形成してもよいし、フィン側に土手状の凸部を形成してもよい。また、平面状に形成しても、曲面状に形成してもよい。
 上記態様において、前記シール面の前記軸線方向中間部分には、前記軸線方向に沿って凹凸が形成されていることが好ましい。
 このようにすると、軸線方向中間部分においてアブレーダブル皮膜の積層方向が変化するので、残留応力の影響を分断することができる。
 したがって、軸線方向中間部分のアブレーダブル皮膜に作用する残留応力を低減することができるので、アブレーダブル皮膜の膜厚を一層厚くすることができる。
 これは、たとえば、軸線方向中間部分の軸線方向の長さが長い場合に特に有効である。
 なお、軸線方向中間部分における凹凸が軸線方向に対して直角の場合、凹凸の側面部が溶射方向に対して平行となり皮膜の密着力を弱める一因となってしまうため、凹凸の側面部は半径方向に適度に傾斜させて、溶射方向に対して適度な角度を有するようにしておくことが望ましい。
 上記態様において、前記軸線方向における前記シール部材の端面では、前記シール面より間隔を空けてマスキングを施されて前記アブレーダブル皮膜が形成されていることが好ましい。
 このようにすると、マスキングがシール面とアブレーダブル皮膜との界面に係合しなくなるので、この界面におけるマスキングによる微視き裂の発生を防止することができる。
 この微視き裂がなくなると、剥離の起点となることがなくなるので、剥離の発生をより抑制することができる。これにより、アブレーダブル皮膜の膜厚を一層厚くすることができる。
 上記態様において、前記シール部材は、周方向に分割された分割シール部材によって構成されていてもよい。
 このようにすると、シール部材は分割シール部材を製造した後で、それらを組み立てて製造することができるので、たとえば、大型のシール部材であっても製造設備の巨大化を抑制することができる。
 上記態様において、前記分割シール部材の周方向端部は、前記アブレーダブル皮膜が余盛された後、該余盛部が前記アブレーダブル皮膜側から前記シール面側に向けた機械加工によって切除して形成されていることが好ましい。
 分割シール部材の周方向端部までアブレーダブル皮膜の所望の膜厚を維持しようとすると、ある程度周方向端部を越えてアブレーダブル皮膜を盛り上げる、すなわち、余盛を行う必要がある。
 この余盛された余盛部は、組み立ての際邪魔になるので、機械加工によって切除される。この場合、余盛部は、アブレーダブル皮膜側からシール面側に向けた機械加工によって切除されるので、アブレーダブル皮膜にシール面から離れる方向に力が作用しない。
 このように、機械加工中にアブレーダブル皮膜を剥離する方向に力が作用しないので、機械加工によるアブレーダブル皮膜の剥離(割れ)を抑制することができる。これにより、機械加工に制約されずにアブレーダブル皮膜の厚膜化を行うことができる。
 なお、機械加工としては、たとえば、ヤスリ研削、旋盤加工等が用いられる。
 また、上記態様において、前記アブレーダブル材に、樹脂製材料が含有されていることが好ましい。
 このように、アブレーダブル材に、樹脂製材料が含有されているので、溶射によってアブレーダブル皮膜を形成した後、熱処理を行うことにより樹脂製材料の部分を取り除くことができる。
 これによりアブレーダブル皮膜は多孔質組織となるので、アブレーダブル皮膜がフィンと接触した際の摺動発熱量を低減することができる。
 樹脂製材料の含有率を調節することによって、アブレーダブル皮膜の硬度および気孔率を調節することができる。なお、樹脂製材料の部分が取り除かれると、アブレーダブル皮膜とシール面との接触面積が減少して両者の接着力が低下し、剥離が発生することも考えられるので、樹脂製材料の含有率はそのような事態とならない範囲に収めることが必要である。また、接着力の低下を補うためにシール面にアブレーダブル皮膜およびシール面の密着性を向上するアンダーコートを施工するようにしてもよい。
 本発明によれば、シール面の軸線方向端部に半径方向に傾斜した傾斜部が備えられているので、アブレーダブル皮膜の膜厚を厚く、たとえば、剥離することなく3mm以上にすることができる。
 このため、定格回転速度域におけるフィンとシール面(言い換えると、アブレーダブル皮膜面)とのクリアランスを小さく設定することができるので、シール性能を向上させることができる。
 これにより、たとえば、回転機械の信頼性向上および性能向上を図ることができる。
本発明の一実施形態にかかるシール構造の縦断面図である。 本発明の一実施形態にかかる分割シール部材を示す斜視図である。 本発明の一実施形態にかかるテーパ部近傍におけるアブレーダブル層の形成状態を示す部分断面図である。 本発明の一実施形態にかかる突起部近傍におけるアブレーダブル層の形成状態を示す部分断面図である。 本発明の一実施形態にかかるマスキングの状態を示す部分正面図である。 本発明の一実施形態にかかる周方向端部に形成された余盛部を示す部分側面図である。 本発明の一実施形態にかかるアブレーダブル層の摺動試験装置を示す概略部分正面図である。
符号の説明
1 シール構造
3 回転軸
5 フィン
9 シールリング
11 端面
19 シール面
21 テーパ部
23 凸部
24 凸部傾斜部
25 アブレーダブル層
27 分割シール部材
29 周方向端面
31 突起部
33 マスキング
35 余盛部
C 周方向
K 半径方向
L 軸線方向
 以下、本発明の一実施形態にかかる蒸気タービン、ガスタービン、圧縮機等の回転機械の回転軸部に用いられるシール構造1について、図1~図7を参照しながら説明する。
 図1は、本実施形態にかかるシール構造1の縦断面図である。
 シール構造1は、回転軸(回転部材)3の周面にリング状に突出した複数のフィン5と、たとえば、ハウジング等の静止部7にフィン5の外周側を覆うように保持されたドーナツ形状をしたシール部材9とを備えている。
 複数のフィン5は、軸線方向Lに沿って間隔を空けて設置されている。フィン5は、回転軸3と一体で、削り出しによって形成されている。
 なお、フィン5は、回転軸3とは別体で形成し、回転軸3に、たとえば、植え込む等の手段によって固定するようにしてもよい。
 シール部材9は、軸線方向Lに沿った断面が略矩形状をしている。シール部材9の軸線方向Lにおける両側の端面11には、略全周に亘り延在する嵌合溝13が設けられている。
 静止部7の内面には、周溝15が略全周に亘り延在するように設けられている。周溝15の内周側端部には、周溝15の内側に突出する突出部17が略全周に亘り延在するように設けられている。
 シール部材9は、嵌合溝13が突出部17に係合するようにして周溝15に嵌合され、静止部7に保持されている。
 シール部材9は、半径方向Kの位置を調節できるようにしてもよい。
 シール部材9の内周側の面であるシール面19は、フィン5に対向するように位置させられている。
 シール部材9の軸線方向L端部には、それぞれ大きく面取りされたテーパ部(傾斜部)21が設けられている。テーパ部21の軸線方向L端部の半径方向K位置は、中央側のそれに比べて外周側に位置するようにされている。すなわち、テーパ部21は、半径方向Kに傾斜している。
 シール部材9の軸線方向L中間部分には、略全周に亘り延在し、内周側に突出した凸部23が軸線方向Lに間隔を空けて複数、たとえば、3個、設けられている。
 したがって、シール面19は、軸線方向Lに沿って凹凸が形成されていることになる。
 シール面19には、アブレーダブル材を溶射して形成したアブレーダブル層(アブレーダブル皮膜)25が略全面に亘り略均一な膜厚T1で形成されている。
 凸部23の側面部には、溶射方向に対して適度な角度を有するように半径方向に適度に傾斜させた凸部傾斜部24が備えられている。
 アブレーダブル層25は、シール面19に沿うように形成されるので、アブレーダブル層25は、軸線方向Lに沿って不連続に形成されている。
 すなわち、テーパ部21では半径方向Kに傾斜し、軸線方向L中間部分では凸部23によって凹凸状態とされている。
 また、図3に示されるように、テーパ部21におけるアブレーダブル層25の膜厚T2はその他の部分における膜厚T1よりも薄くされている。
 なお、シール部材9の軸線方向L端部には、テーパ部21に替えて図4に示されるような土手状をした突起部(傾斜部)31を設けるようにしてもよい。
 この場合も、アブレーダブル層25は突起部31のところで軸線方向Lに沿って不連続に形成されている。
 そして、突起部31におけるアブレーダブル層25の膜厚T2はその他の部分における膜厚T1よりも薄くされている。
 シール部材9は、周方向Cに複数、たとえば、6個に分割された分割シール部材27で構成されている。この分割する数は、シール部材9の大きさ、製造設備、回転機械の構造等、種々の条件を勘案して適宜決められる。
 図2は分割シール部材27を示す斜視図である。分割シール部材27の周方向C端部には、周方向端面29が半径方向Kに延在するように設けられている。
 シール部材9は、分割シール部材27を組み立てるのではなく、一体として形成されるようにしてもよい。
 以上のように構成されるシール構造1におけるシール部材9の製造について説明する。
 まず、分割シール部材27の本体が、たとえば、機械加工によって図2に示されるような形状に加工される。
 この加工は、たとえば、次ぎのように行われる。
 長尺の板材を所定の長さおよび幅に切断する。次いで、シール面19を凸部23が残るように切削し、端面11に嵌合溝13およびテーパ部21を加工する。その後、所定の曲率半径を有する円弧を形成するように折り曲げ加工を行う。
 次いで、シール面19にアブレーダブル層25を形成する。
 まず、図5に示されるように端面11に溶射皮膜が形成されないようにマスキング33を行い、溶射前の下地作りのためにブラスト処理が施される。
 このとき、マスキング33のシール面19側端部はシール面19から間隔を空けるようにされている。この間隔は、たとえば、2~3mmとされている。
 この状態で、たとえば、大気圧プラズマ溶射(APS:Atmosphric Plasma Spraying)を用いてアブレーダブル材をシール面19に噴射する。
 アブレーダブル材としては、コバルト、ニッケル、クロム、アルミニウム、イットリウム(以後はCoNiCrAlYと呼ぶ)を含む金属成分を主体とし、固体潤滑材としての窒化ホウ素(h-BN)および気孔率制御のためのポリエステル(樹脂製材料)を含有したものが用いられる。
 なお、これはアブレーダブル材の一例を示したものであり、適宜材料を用いることができる。
 溶射は、溶融量を極力低減するために時間をかけて施工し、かつ密着力を維持できるように適切な電流-電圧を設定して施工した。
 これにより、アブレーダブル層25における残留応力を低減することができる。
 この溶射施工時に、溶融されたアブレーダブル材はシール面19に付着した瞬間に急速に冷却されて凝固し、収縮する。このため、形成されたアブレーダブル層25には残留応力が生じる。
 本実施形態では、アブレーダブル層25は、シール面19は、テーパ部21および凸部23によって軸線方向Lに沿って不連続に形成されているので、残留応力の作用方向が相互に異なり、その影響を分断することができる。
 このように、軸線方向Lにおける残留応力の影響を分断できるので、大きな残留応力が特定の場所に集中することがない。言い換えると、境界剥離を発生させる残留応力を低減させることができる。
 したがって、境界剥離の発生を抑制できるので、アブレーダブル層25の膜厚を厚くすることができる。
 図3に示すテーパ部21を有する分割シール部材27、図4に示す突起部31を有する分割シール部材27およびこれらを有しないフラットな形状の分割シール部材27について、厚さの異なるアブレーダブル層25を形成し、境界剥離の有無を目視検査した。この状況を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 
 
 表1を見ると、図3に示すテーパ部21や、図4に示す突起部31を有する分割シール部材27の場合、膜厚3mmを超えても境界剥離が発生していないが、フラットな分割シール部材27の場合、膜厚3mmを超えると境界剥離が発生している。
 また、特に残留応力が集中し易い端部では、テーパ部21によって軸線方向中間部分の影響を分離できるので、境界剥離を効果的に抑制することができる。
 さらに、テーパ部21では、アブレーダブル層25の膜厚をその他の部分よりも小さくしているので、発生する残留応力を一層低減させることができる。これにより、シール作用を行う部分のアブレーダブル層25の膜厚を一層厚くすることができる。
 なお、凸部23は、たとえば、軸線方向L中間部分の軸線方向Lに沿った長さが短い場合あるいは必要な膜厚が薄い場合には、形成しないようにしてもよい。
 このように、アブレーダブル層25の膜厚T1を厚くできると、たとえば、定格回転速度域におけるフィン5とアブレーダブル層25とのクリアランスを小さく設定することができるので、シール構造1のシール性能を向上させることができる。
 これにより、たとえば、回転機械の信頼性向上および性能向上を図ることができる。
 また、マスキング33のシール面19側端部はシール面19から間隔を空けるようにされているので、マスキング33がシール面19とアブレーダブル層25との界面に係合しない。このため、この界面におけるマスキング33による微視き裂の発生を防止することができる。
 この微視き裂がなくなると、剥離の起点となることがなくなるので、剥離の発生をより抑制することができる。これにより、アブレーダブル層25の膜厚T1を一層厚くすることができる。
 溶射による所定膜厚T1のアブレーダブル層25の形成が終わると、後処理を行う。
 分割シール部材27の周方向C端部では、端までアブレーダブル層25の所望の膜厚T1を維持するため、図6に示されるように周方向端面29を越えて皮膜が盛り上げられている。
 この余盛部35は、アブレーダブル層25側からシール面19側に向けた加工方向37で、機械加工、たとえば、ヤスリ研削、旋盤加工等によって切除される。このとき、加工面39は、周方向端面29の延長面41上よりも若干内側に傾斜させられている。この傾斜は、たとえば、加工面39の表面端部の位置が、延長面41から0.05mm以内離隔している程度とされている。
 このように、余盛部35は、切除される際、加工方向37にしか力が作用しないので、この機械加工中アブレーダブル層25にはシール面19から離れる方向に力が作用しない。
 このように、機械加工中にアブレーダブル層25を剥離する方向に力が作用しないので、機械加工によるアブレーダブル層25の剥離(割れ)を抑制することができる。これにより、機械加工に制約されずにアブレーダブル層25の厚膜化を行うことができる。
 このようにして形成されたアブレーダブル層25を、500~650℃で熱処理を行うと、この熱量によってアブレーダブル層25に含まれるポリエステルが消失する。
 これによりアブレーダブル層25は多孔質組織となるので、フィン5と接触した際の摺動発熱量を低減することができる。
 ポリエステルの含有率を調節することによって、アブレーダブル層25の気孔率を調節することができる。
 図7に示されるように、回転するロータ43の先端にフィン45を取り付け、先端にアブレーダブル皮膜49を施工した試験片47をフィン45に一定の送り速度で接触させる摺動試験を行なった。試験条件としては、試験温度:550℃、ロータ43の周速:70m/S、試験片47の送り速度:10μm/S:送り量:0.5mmで行った。
 また、試験片としては、アブレーダブル皮膜49の気孔率が0%、約15%、約40%のものを使用した。なお、発熱量の規準として12Cr鋼の試験片を用いている。
 そして、摺動時の供試片先端近傍温度および抗力、切削力を3分力センサにて取得し、摺動時の平均切削力より発熱量を算出した。
 この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 
 
 表2を見ると、気孔率の増大とともに、摺動発熱量を低減できることがわかる。
 なお、ポリエステルの部分が取り除かれると、アブレーダブル層25とシール面19との接触面積が減少して両者の接着力が低下し、剥離が発生することも考えられるので、ポリエステルの含有率はそのような事態とならない範囲に収めることが必要である。
 また、接着力の低下を補うためにシール面19にアブレーダブル層25およびシール面19の密着性を向上するアンダーコートを施工するようにしてもよい。
 なお、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。

Claims (4)

  1.  回転部材の周面からリング状に突出し、軸線方向に沿って少なくとも1個設けられたフィンと、
     該フィンに対向する環状のシール面を有し、該シール面にアブレーダブル材を溶射したアブレーダブル皮膜が形成されているシール部材と、を備えるシール構造であって、
     前記シール面の軸線方向端部に半径方向に傾斜した傾斜部が備えられているシール構造。
  2.  前記シール面の前記軸線方向中間部分には、前記軸線方向に沿って凹凸が形成され、該凹凸の側面部には半径方向に傾斜した凹凸傾斜部が備えられている請求項1に記載のシール構造。
  3.  前記シール部材は、周方向に分割された分割シール部材によって構成されている請求項1または請求項2に記載のシール構造。
  4.  前記アブレーダブル材として、金属基材中に樹脂製材料を含有させ、熱処理により高気孔率材料としたもので、かつ3mm以上の膜厚を有する請求項1から請求項3のいずれか1項に記載のシール構造。
PCT/JP2009/050439 2008-01-25 2009-01-15 シール構造 WO2009093512A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09703871.5A EP2233803B1 (en) 2008-01-25 2009-01-15 Seal structure
US12/667,568 US8240675B2 (en) 2008-01-25 2009-01-15 Seal structure
CN200980100022.2A CN101765736B (zh) 2008-01-25 2009-01-15 密封结构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-014865 2008-01-25
JP2008014865A JP5101317B2 (ja) 2008-01-25 2008-01-25 シール構造

Publications (1)

Publication Number Publication Date
WO2009093512A1 true WO2009093512A1 (ja) 2009-07-30

Family

ID=40901020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050439 WO2009093512A1 (ja) 2008-01-25 2009-01-15 シール構造

Country Status (5)

Country Link
US (1) US8240675B2 (ja)
EP (1) EP2233803B1 (ja)
JP (1) JP5101317B2 (ja)
CN (1) CN101765736B (ja)
WO (1) WO2009093512A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506243B2 (en) * 2009-11-19 2013-08-13 United Technologies Corporation Segmented thermally insulating coating
CN102506179A (zh) * 2011-10-10 2012-06-20 沈阳理工大学 一种超微泄漏量的压缩机迷宫密封结构
US9022743B2 (en) * 2011-11-30 2015-05-05 United Technologies Corporation Segmented thermally insulating coating
JP5518032B2 (ja) * 2011-12-13 2014-06-11 三菱重工業株式会社 タービン、及びシール構造
JP5308548B2 (ja) * 2012-02-06 2013-10-09 三菱重工業株式会社 シール構造及びこれを備える回転機械
US9151174B2 (en) * 2012-03-09 2015-10-06 General Electric Company Sealing assembly for use in a rotary machine and methods for assembling a rotary machine
JP5951449B2 (ja) * 2012-11-02 2016-07-13 株式会社東芝 蒸気タービン
CN104357792B (zh) * 2014-11-14 2017-01-25 北京矿冶研究总院 钛合金耐高温氧化抗微动磨损涂层材料、涂层及制备方法
JP6601677B2 (ja) 2016-02-16 2019-11-06 三菱日立パワーシステムズ株式会社 シール装置及び回転機械
US9995397B2 (en) * 2016-07-12 2018-06-12 United Technologies Corporation Coated seal housing
US10598038B2 (en) 2017-11-21 2020-03-24 Honeywell International Inc. Labyrinth seal with variable tooth heights
US10954803B2 (en) * 2019-01-17 2021-03-23 Rolls-Royce Corporation Abrasive coating for high temperature mechanical systems
FR3122493B1 (fr) * 2021-04-30 2023-03-17 Safran Aircraft Engines Dispositif de test d'etancheite muni d'un systeme de reglage continu de jeu entre deux elements d'un joint à labyrinthe
DE102021211656A1 (de) 2021-10-15 2023-04-20 Siemens Energy Global GmbH & Co. KG Dichtungsbereich zwischen rotierenden und stehenden Komponenten, Verfahren zur Herstellung und Maschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298604A (ja) * 1989-05-11 1990-12-11 Toshiba Corp 軸流々体機械の翼端漏洩防止装置
JP2002228013A (ja) 2001-02-01 2002-08-14 Mitsubishi Heavy Ind Ltd Acc型ラビリンスシール
JP2003065076A (ja) 2001-06-18 2003-03-05 General Electric Co <Ge> タービンシール及び回転機械
WO2004033755A1 (ja) * 2002-10-09 2004-04-22 Ishikawajima-Harima Heavy Industries Co., Ltd. 回転体及びそのコーティング方法
JP2006312937A (ja) * 2005-05-04 2006-11-16 General Electric Co <Ge> アブレイダブル皮膜及び/又はアブレイシブ皮膜並びにブラシシール構成
JP2007170302A (ja) * 2005-12-22 2007-07-05 Toshiba Corp シール装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339933A (en) * 1965-02-24 1967-09-05 Gen Electric Rotary seal
US3519282A (en) * 1966-03-11 1970-07-07 Gen Electric Abradable material seal
US3880550A (en) * 1974-02-22 1975-04-29 Us Air Force Outer seal for first stage turbine
US4060250A (en) * 1976-11-04 1977-11-29 De Laval Turbine Inc. Rotor seal element with heat resistant alloy coating
US4207024A (en) * 1977-05-27 1980-06-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Composite seal for turbomachinery
US4257735A (en) * 1978-12-15 1981-03-24 General Electric Company Gas turbine engine seal and method for making same
DE3316535A1 (de) * 1983-05-06 1984-11-08 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Turboverdichter mit einlaufbelag
JP3567064B2 (ja) * 1997-06-23 2004-09-15 株式会社 日立インダストリイズ ラビリンスシール装置及びそれを備えた流体機械
EP1152124A1 (de) 2000-05-04 2001-11-07 Siemens Aktiengesellschaft Dichtungsanordnung
US6887530B2 (en) 2002-06-07 2005-05-03 Sulzer Metco (Canada) Inc. Thermal spray compositions for abradable seals
US6969231B2 (en) 2002-12-31 2005-11-29 General Electric Company Rotary machine sealing assembly
JP4285134B2 (ja) * 2003-07-04 2009-06-24 株式会社Ihi シュラウドセグメント
US7025356B1 (en) * 2004-12-20 2006-04-11 Pratt & Whitney Canada Corp. Air-oil seal
US7645117B2 (en) * 2006-05-05 2010-01-12 General Electric Company Rotary machines and methods of assembling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298604A (ja) * 1989-05-11 1990-12-11 Toshiba Corp 軸流々体機械の翼端漏洩防止装置
JP2002228013A (ja) 2001-02-01 2002-08-14 Mitsubishi Heavy Ind Ltd Acc型ラビリンスシール
JP2003065076A (ja) 2001-06-18 2003-03-05 General Electric Co <Ge> タービンシール及び回転機械
WO2004033755A1 (ja) * 2002-10-09 2004-04-22 Ishikawajima-Harima Heavy Industries Co., Ltd. 回転体及びそのコーティング方法
JP2006312937A (ja) * 2005-05-04 2006-11-16 General Electric Co <Ge> アブレイダブル皮膜及び/又はアブレイシブ皮膜並びにブラシシール構成
JP2007170302A (ja) * 2005-12-22 2007-07-05 Toshiba Corp シール装置

Also Published As

Publication number Publication date
EP2233803B1 (en) 2016-11-09
JP2009174655A (ja) 2009-08-06
CN101765736B (zh) 2015-04-15
US8240675B2 (en) 2012-08-14
CN101765736A (zh) 2010-06-30
US20100164179A1 (en) 2010-07-01
JP5101317B2 (ja) 2012-12-19
EP2233803A1 (en) 2010-09-29
EP2233803A4 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5101317B2 (ja) シール構造
EP1299663B1 (en) Rotary face seal assembly
EP2932112B1 (en) Thrust washer
US8021120B2 (en) Turbine blade with a cover plate and a protective layer applied to the cover plate
US7178808B2 (en) Layer system for the rotor/stator seal of a turbomachine
EP2141328A1 (en) Sealing system between a shroud segment and a rotor blade tip and manufacturing method for such a segment
US9016692B2 (en) Sealing rings for a labyrinth seal
US11105216B2 (en) Method of manufacturing a component of a turbomachine, component of a turbomachine and turbomachine
US10458254B2 (en) Abradable coating composition for compressor blade and methods for forming the same
WO2017065181A1 (ja) フォイル軸受
EP2957727B1 (en) Manufacturing method for segmented abradable coating and preformed sheet
EP2952341A1 (en) Blade outer air seal and method of manufacture
US8956700B2 (en) Method for adhering a coating to a substrate structure
US20170370238A1 (en) Thickened radially outer annular portion of a sealing fin
EP2969260B1 (en) Anti-fret coating system
CN110997966B (zh) 具有喷丸磨合层的活塞环及其制造方法
JP2001193742A (ja) 空気軸受における構成
JP5781150B2 (ja) 皮膜を有さないクラッシュリリーフを備えた軸受
JP6650347B2 (ja) ターボチャージャ及びその製造方法
EP3553333B1 (en) Air bearing with surface layer
EP3269839B1 (en) Coated seal housing
JP2006077944A (ja) 電食防止用絶縁転がり軸受
CN115516189A (zh) 用于涡轮发动机的密封组件
JP2022147351A (ja) フォイル軸受
WO2017051658A1 (ja) フォイル軸受及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100022.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09703871

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009703871

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009703871

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12667568

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE