WO2009093310A1 - 2サイクルエンジン - Google Patents

2サイクルエンジン Download PDF

Info

Publication number
WO2009093310A1
WO2009093310A1 PCT/JP2008/050867 JP2008050867W WO2009093310A1 WO 2009093310 A1 WO2009093310 A1 WO 2009093310A1 JP 2008050867 W JP2008050867 W JP 2008050867W WO 2009093310 A1 WO2009093310 A1 WO 2009093310A1
Authority
WO
WIPO (PCT)
Prior art keywords
scavenging passage
passage
mixed gas
scavenging
combustion chamber
Prior art date
Application number
PCT/JP2008/050867
Other languages
English (en)
French (fr)
Inventor
Taiji Matsubara
Shinya Hattori
Kenji Suzuki
Original Assignee
Shindaiwa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindaiwa Corporation filed Critical Shindaiwa Corporation
Priority to PCT/JP2008/050867 priority Critical patent/WO2009093310A1/ja
Publication of WO2009093310A1 publication Critical patent/WO2009093310A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/24Pistons  having means for guiding gases in cylinders, e.g. for guiding scavenging charge in two-stroke engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/14Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/20Means for reducing the mixing of charge and combustion residues or for preventing escape of fresh charge through outlet ports not provided for in, or of interest apart from, subgroups F02B25/02 - F02B25/18
    • F02B25/22Means for reducing the mixing of charge and combustion residues or for preventing escape of fresh charge through outlet ports not provided for in, or of interest apart from, subgroups F02B25/02 - F02B25/18 by forming air cushion between charge and combustion residues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/22Other cylinders characterised by having ports in cylinder wall for scavenging or charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Definitions

  • the present invention relates to a two-cycle engine used for a small working machine such as a brush cutter or a blower.
  • the two-cycle engine includes a piston slidably mounted in the cylinder, an exhaust passage communicating with the combustion chamber formed in the upper portion of the cylinder, and a scavenging passage communicating the combustion chamber and the crank chamber. .
  • the mixed gas of fuel and air filled in the crank chamber flows into the combustion chamber through the scavenging passage, and the piston is moved into the cylinder by the expansion force when the mixed gas is burned in the combustion chamber. Is reciprocating.
  • the combustion gas in the exhaust passage flows into the scavenging passage through the communication groove while the scavenging passage is blocked by the side surface of the piston, and burns to the combustion chamber side of the scavenging passage Gas stagnates.
  • the scavenging passage opens to the upper part of the cylinder, the combustion gas staying in the scavenging passage flows into the cylinder ahead of the mixed gas. Therefore, in the scavenging stroke, the combustion gas that flows into the cylinder from the scavenging passage reaches the exhaust passage before the mixed gas that flows into the cylinder from the scavenging passage. The amount of hydrocarbons in the exhaust gas can be reduced.
  • JP 11-287124 A (paragraph 0012, FIG. 1)
  • the filling amount of the mixed gas into the cylinder is increased.
  • the amount of combustion gas flowing into the cylinder from the scavenging passage is exhausted from the exhaust passage, and the amount of unburned mixed gas is reduced.
  • the amount of unburned mixed gas exhausted from the exhaust passage increases, and the amount of hydrocarbons contained in the exhaust gas increases.
  • an object of the present invention is to provide a two-cycle engine that solves the above-described problems and can significantly reduce the unburned gas contained in the exhaust gas and increase the output of the engine. .
  • the present invention provides a first sweep that connects a piston that is slidably mounted in a cylinder, an exhaust passage that communicates with a combustion chamber formed in the cylinder, and a crank chamber and the combustion chamber.
  • An air passage and a second scavenging passage, and a mixed gas of fuel and air filled in the crank chamber flows into the combustion chamber through each scavenging passage, and the mixed gas is burned in the combustion chamber, whereby the piston is cylinder
  • the exhaust passage and the second scavenging passage are provided on the side surface of the piston with the exhaust passage and each scavenging passage blocked by the side surface of the piston.
  • a communicating groove is formed, the first scavenging passage is provided with a partition, and the mixed gas flowing from the first scavenging passage into the combustion chamber is mixed with the mixed gas flowing from the second scavenging passage into the combustion chamber.
  • Yo It is also characterized by being configured to flow into the opposite side of the exhaust passage in the combustion chamber.
  • the mixed gas flowing into the combustion chamber from the first scavenging passage is directed to flow into the opposite side of the exhaust passage in the combustion chamber from the mixed gas flowing into the combustion chamber from the second scavenging passage. Therefore, the combustion gas flowing into the combustion chamber from the second scavenging passage is pushed out to the exhaust passage by the mixed gas flowing into the combustion chamber from the first scavenging passage. Therefore, in the scavenging stroke, first, the gas flowing into the combustion chamber from the second scavenging passage is exhausted to the exhaust passage, but the combustion gas flows into the combustion chamber ahead of the mixed gas from the second scavenging passage. Therefore, in the scavenging process, the amount of unburned mixed gas discharged into the exhaust passage is reduced.
  • the mixed gas flowing into the combustion chamber from the first scavenging passage passes through the opposite side of the exhaust passage in the combustion chamber and reaches the exhaust passage, rather than the gas flowing into the combustion chamber from the second scavenging passage. That is, the mixed gas flowing into the combustion chamber from the first scavenging passage goes farther than the gas flowing into the combustion chamber from the second scavenging passage and reaches the exhaust passage. The amount of the mixed gas discharged into the exhaust passage is reduced.
  • the mixed gas that has flowed into the combustion chamber from the first scavenging passage flows to the opposite side of the exhaust passage in the combustion chamber from the mixed gas that flows into the combustion chamber from the second scavenging passage.
  • the combustion gas flowing into the combustion chamber from the second scavenging passage is pushed out into the exhaust passage by the mixed gas flowing into the combustion chamber from the passage, so that the combustion gas is smoothly exhausted from the combustion chamber.
  • the amount of unburned mixed gas exhausted into the exhaust passage is reduced, so that the unburned gas contained in the exhaust gas can be greatly reduced.
  • the combustion gas remaining in the combustion chamber is reduced and the amount of gas mixture charged in the combustion chamber is increased, so that the output of the engine can be increased.
  • a crankshaft that rotates in conjunction with the reciprocating motion of the piston is provided in the crank chamber, and a corner portion on the first scavenging passage side is formed in a counterweight formed on the crankshaft.
  • the corner on the first scavenging passage side is chamfered so that the mixed gas flowing from the crank chamber into the first scavenging passage is transferred from the crank chamber to the second scavenging passage.
  • the flow rate of the mixed gas flowing from the crank chamber into the first scavenging passage is larger than the flow rate of the mixed gas flowing from the crank chamber into the second scavenging passage.
  • the flow velocity of the mixed gas flowing into the combustion chamber from the air passage becomes higher than the flow velocity of the mixed gas flowing into the combustion chamber from the second scavenging passage.
  • the mixed gas flowing from the first scavenging passage into the combustion chamber is mixed with the mixed gas flowing from the second scavenging passage into the combustion chamber. It can comprise so that it may flow more easily.
  • the mixed gas flowing into the combustion chamber from the first scavenging passage flows more than the mixed gas flowing into the combustion chamber from the second scavenging passage.
  • the flow rate of the mixed gas flowing from the first scavenging passage into the combustion chamber becomes higher than the flow velocity of the mixed gas flowing from the second scavenging passage into the combustion chamber.
  • the mixed gas flowing into the first scavenging passage from the crank chamber is transferred from the crank chamber to the second scavenging passage. It can be configured to be easier to flow than the mixed gas flowing in.
  • the mixed gas flowing from the crank chamber into the first scavenging passage flows into the second scavenging passage from the crank chamber.
  • the mixed gas flows more easily than the mixed gas, that is, the flow rate of the mixed gas flowing from the crank chamber into the first scavenging passage is larger than the flow rate of the mixed gas flowing from the crank chamber into the second scavenging passage, and the first scavenging passage
  • the flow rate of the mixed gas flowing from the second chamber into the combustion chamber becomes higher than the flow velocity of the mixed gas flowing from the second scavenging passage into the combustion chamber.
  • the mixed gas flowing from the first scavenging passage into the combustion chamber flows more than the mixed gas flowing from the second scavenging passage into the combustion chamber. It can be configured to be easy.
  • the mixed gas flowing into the combustion chamber from the first scavenging passage becomes easier to flow than the mixed gas flowing into the combustion chamber from the second scavenging passage,
  • the flow velocity of the mixed gas flowing into the combustion chamber from the first scavenging passage is higher than the flow velocity of the mixed gas flowing into the combustion chamber from the second scavenging passage.
  • the amount of unburned mixed gas discharged into the exhaust passage is reduced, so that the unburned gas contained in the exhaust gas can be greatly reduced.
  • the combustion gas remaining in the combustion chamber is reduced, and the filling amount of the mixed gas in the combustion chamber is increased, so that the output of the engine can be increased.
  • FIG. 2 is a cross-sectional view of the two-cycle engine of the present embodiment as viewed from the AA direction of FIG. It is the figure which showed the 2-cycle engine of this embodiment, and is a sectional side view in an intake and compression stroke.
  • FIG. 4 is a cross-sectional view of the two-cycle engine of the present embodiment as viewed from the BB direction in FIG. 3.
  • FIG. 4 is a cross-sectional view of the two-cycle engine of the present embodiment as viewed from the CC direction of FIG. 3. It is the perspective view which showed the crankshaft in the 2-cycle engine of this embodiment.
  • a two-cycle engine 1 according to this embodiment shown in FIG. 1 is used for a small work machine such as a brush cutter or a blower.
  • the two-cycle engine 1 has a piston 50 that is slidably mounted in a cylinder 60, and allows a mixed gas of fuel and air filled in the crank chamber 10 to pass through two scavenging passages 20 and 30.
  • the piston 50 is reciprocated in the cylinder 60 by an expansion force when the mixed gas is burned in the combustion chamber 40 formed in the upper portion of the cylinder 60 (see FIG. 2).
  • various power mechanisms in the two-cycle engine 1 of the present embodiment have the same configuration as that of a known two-cycle engine, and thus detailed description thereof is omitted except for the characteristic configuration constituting the present invention.
  • the two-cycle engine 1 includes a piston 50 slidably mounted in a cylinder 60, a suction passage 70 communicating with the crank chamber 10, and a combustion chamber 40 formed in the cylinder 60.
  • the exhaust passage 80 communicated with, the first scavenging passage 20 and the second scavenging passage 30 (see FIG. 2) communicating the crank chamber 10 and the combustion chamber 40, and the reciprocating motion of the piston 50 in the crank chamber 10 A rotating crankshaft 90.
  • the suction passage 70 is formed in a side portion of the cylinder block 61, one end is opened in the lower portion of the cylinder 60, and the other end is connected to a fuel supply passage (not shown).
  • the opening on the cylinder 60 side of the suction passage 70 is blocked by the side surface of the piston 50 when the piston 50 is located at the bottom dead center in the cylinder 60.
  • the opening on the cylinder 60 side of the suction passage 70 opens to the lower portion of the cylinder 60 and communicates with the crank chamber 10. .
  • the exhaust passage 80 is formed on the side of the cylinder block 61 at a position opposite to the suction passage 70, with one end opening at the top of the cylinder 60 and the other end not shown. Connected to the exhaust pipe. As shown in FIG. 1, the opening on the cylinder 60 side of the exhaust passage 80 opens to the upper part of the cylinder 60 and communicates with the combustion chamber 40 when the piston 50 is located at the bottom dead center in the cylinder 60. Further, as shown in FIG. 3, the opening on the cylinder 60 side of the exhaust passage 80 is blocked by the side surface of the piston 50 when the piston 50 is located at the top dead center in the cylinder 60.
  • the first scavenging passage 20 and the second scavenging passage 30 are formed in the cylinder block 61 at positions on the left and right sides of the cylinder 60 in FIG. That is, the first scavenging passage 20 and the second scavenging passage 30 are formed at positions shifted by 90 degrees in the circumferential direction of the cylinder 60 with respect to the suction passage 70 and the exhaust passage 80 as shown in FIG. . As shown in FIG. 2, one end of the first scavenging passage 20 and the second scavenging passage 30 opens at the top of the cylinder 60 at substantially the same height as the exhaust passage 80, and the other end opens into the crank chamber 10. .
  • the openings of the first scavenging passage 20 and the second scavenging passage 30 on the cylinder 60 side are respectively opened on both sides of the opening of the exhaust passage 80 and sandwich the center portion of the cylinder 60. Are confronting each other.
  • the opening part by the side of the cylinder 60 of the 1st scavenging passage 20 and the 2nd scavenging passage 30 is opened toward the wall surface on the opposite side to the wall surface by the side of the exhaust passage 80 in the cylinder 60.
  • a partition part 21 is formed in the center part in the width direction.
  • the partition 21 is a vertical wall that divides the opening into two at the center in the width direction, and extends in the cylinder 60 toward the wall on the side opposite to the wall on the exhaust passage 80 side.
  • the opening on the cylinder 60 side of the first scavenging passage 20 and the second scavenging passage 30 opens above the cylinder 60 when the piston 50 is located at the bottom dead center in the cylinder 60.
  • the opening on the cylinder 60 side of the first scavenging passage 20 and the second scavenging passage 30 is formed by the side surface of the piston 50 when the piston 50 is located at the top dead center in the cylinder 60 as shown in FIG. Blocked.
  • the piston 50 is a member that reciprocates in the vertical direction in the cylinder 60, and has a circular cross-sectional shape in plan view.
  • the suction passage 70 is closed by the side surface of the piston 50, and the exhaust passage 80 and the scavenging passages 20, 30 (see FIG. 2)
  • the cylinder 50 is opened above the piston 50 and communicates with the combustion chamber 40.
  • the exhaust passage 80 and the scavenging passages 20 and 30 are closed by the side surface of the piston 50, and the suction passage 70 is
  • the cylinder 50 is opened below the piston 50 and communicates with the crank chamber 10.
  • a concave communication groove 51 is formed in the circumferential direction of the piston 50 at the lower side on the second scavenging passage 30 side on the side surface of the piston 50.
  • the communication groove 51 is configured such that the piston 50 is located at the top dead center in the cylinder 60, and the exhaust passage 80 and the second scavenging passage are closed by the side surfaces of the piston 50. 30 to communicate with each other (see FIG. 5).
  • the crankshaft 90 has output shafts 91 a and 92 a that are rotatably supported by the crankcase 11, and the piston 50 is connected via a connecting rod 93, and the piston 50 reciprocates. In conjunction with the rotation in the crank chamber 10.
  • a first crankshaft 91 disposed on the right side in FIG. 2 and a second crankshaft 92 disposed on the left side in FIG. 2 are assembled.
  • an output shaft 91a extended toward the right side of FIG. 4 and a crank pin extended toward the left side of FIG. 4 at a position eccentric to the axis of the output shaft 91a.
  • 91b and a counterweight 91c formed at a position symmetrical to the crank pin 91b across the output shaft 91a.
  • the counterweight 91c of the first crankshaft 91 is a semicircular plate-like member protruding around the output shaft 91a.
  • the tip corner portion on the first scavenging passage 20 side (the right side in FIG. 6) is chamfered to form a flat inclined surface 91d (see FIG. 4).
  • the connecting portion 91e that connects the output shaft 91a and the crank pin 91b is chamfered at the tip corner on the first scavenging passage 20 side (right side in FIG. 6), and is flat.
  • An inclined surface 91f is formed (see FIG. 4).
  • an output shaft 92a extending toward the left side in FIG. 4, a through hole 92b formed at a position eccentric to the axis of the output shaft 92a, and the output shaft 91a are sandwiched.
  • the second crankshaft 92 has a left-right contrast with the first crankshaft 91 except for the portion where the through hole 92b is formed.
  • the tip corner portion on the second scavenging passage 30 side is chamfered, but the counterweight 91c of the first crankshaft 91 and the tip corner portion of the connecting portion 91e In comparison, since the tip corner is chamfered in a very small dimension, it is a substantially perpendicular corner.
  • crank pin 91 b of the first crankshaft 91 is rotatably inserted in a through hole 93 a formed in the lower end portion of the connecting rod 93, and the tip portion thereof is the second crankshaft.
  • 92 is fixed by being fitted into the through hole 92b.
  • the connecting rod 93 has an upper end portion that is swingably connected to the piston 50, and a lower end portion that is connected to a crank pin 91 b of the crankshaft 90.
  • the two-cycle engine 1 configured as described above operates as follows and exhibits the effects of the present invention.
  • the crank chamber 10 In the intake / compression stroke, as shown in FIG. 3, when the piston 50 rises in the cylinder 60, the crank chamber 10 is in a negative pressure state, and is generated by a carburetor or a fuel injection device provided in a fuel supply passage (not shown). The mixed gas of fuel and air is filled into the crank chamber 10 through the suction passage 70.
  • the exhaust passage 80 opens to the top of the cylinder 60 and communicates with the combustion chamber 40, and the combustion gas generated by the combustion of the mixed gas is exhausted. 80 is exhausted (exhaust stroke). Further, the gas mixture filled in the crank chamber 10 is compressed by the lowering of the piston 50.
  • the first scavenging passage 20 and the second scavenging passage 30 are located above the cylinder 60 as shown in FIG. Open to the combustion chamber 40.
  • the mixed gas compressed in the crank chamber 10 flows into the cylinder 60 through the first scavenging passage 20 and the second scavenging passage 30 (scavenging stroke).
  • the staying combustion gas precedes the mixed gas in the second scavenging passage 30.
  • the mixed gas flowing into the cylinder 60 from the first scavenging passage 20 flows into the opposite side of the exhaust passage 80 in the cylinder 60 from the mixed gas flowing into the cylinder 60 from the second scavenging passage 30. Since the gas is directed by the partition portion 21, the combustion gas and the mixed gas flowing into the cylinder 60 from the second scavenging passage 30 wrap around to the opposite side of the exhaust passage 80 in the cylinder 60.
  • the corners on the first scavenging passage 20 side are chamfered to form inclined surfaces 91d and 91f.
  • the mixed gas flowing into the first scavenging passage 20 from 10 flows more easily than the mixed gas flowing into the second scavenging passage 30 from the crank chamber 10. That is, the flow rate of the mixed gas flowing from the crank chamber 10 into the first scavenging passage 20 is larger than the flow rate of the mixed gas flowing from the crank chamber 10 into the second scavenging passage 30, and The flow rate of the mixed gas flowing into the 60 becomes higher than the flow rate of the mixed gas flowing into the cylinder 60 from the second scavenging passage 30.
  • the mixed gas flowing into the cylinder 60 from the first scavenging passage 20 flows into the cylinder 60 more vigorously than the combustion gas flowing into the cylinder 60 from the second scavenging passage 30.
  • the direction of the mixed gas flowing into the cylinder 60 from the passage 20 is reliably performed.
  • the mixed gas flowing into the cylinder 60 from the first scavenging passage 20 is more in the cylinder 60 than the mixed gas flowing into the cylinder 60 from the second scavenging passage 30.
  • the combustion gas flowing into the cylinder 60 from the second scavenging passage 30 is pushed out into the exhaust passage 80 by the mixed gas flowing into the cylinder 60 from the first scavenging passage 20. It is.
  • the piston 50 that has reached the bottom dead center in the cylinder 60 is raised again in the cylinder 60 by the rotational force of the crankshaft 90, and the suction and compression strokes are repeated.
  • the gas flowing into the cylinder 60 from the second scavenging passage 30 is exhausted to the exhaust passage 80. Since the combustion gas flows from the scavenging passage 30 into the cylinder 60 prior to the mixed gas, the amount of unburned mixed gas discharged into the exhaust passage 80 in the scavenging process is reduced. Further, the mixed gas flowing into the cylinder 60 from the first scavenging passage 20 passes through the opposite side of the exhaust passage 80 in the cylinder 60 from the gas flowing into the cylinder 60 from the second scavenging passage 30 and is exhausted. Reach passage 80.
  • the mixed gas that has flowed into the cylinder 60 from the first scavenging passage 20 goes farther than the gas that has flowed into the cylinder 60 from the second scavenging passage 30 and reaches the exhaust passage 80, the final stage of the scavenging process , The amount of unburned mixed gas discharged into the exhaust passage 80 is reduced. Further, the mixed gas flowing into the cylinder 60 from the first scavenging passage 20 flows into the cylinder 60 on the opposite side of the exhaust passage 80 from the mixed gas flowing into the cylinder 60 from the second scavenging passage 30. Thus, the combustion gas that has flowed into the cylinder 60 from the second scavenging passage 30 is pushed out into the exhaust passage 80 by the mixed gas that has flowed into the cylinder 60 from the first scavenging passage 20. Exhausted.
  • the amount of unburned mixed gas exhausted to the exhaust passage 80 is reduced, so that the unburned gas contained in the exhaust gas
  • the combustion gas remaining in the combustion chamber 40 (in the cylinder 60) is reduced and the amount of mixed gas filling in the combustion chamber 40 is increased, so that the engine output can be increased. it can.
  • the present invention has been described above. However, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the spirit of the present invention.
  • a mesh-shaped shielding plate 31 such as a punching metal sheet or a metal mesh at the opening of the second scavenging passage 30 on the cylinder 60 side, the first scavenging passage 20 to the cylinder 60.
  • the mixed gas flowing in can be configured to flow more easily than the mixed gas flowing into the cylinder 60 from the second scavenging passage 30.
  • the flow rate of the mixed gas flowing from the first scavenging passage 20 into the cylinder 60 is higher than the flow velocity of the mixed gas flowing from the second scavenging passage 30 into the cylinder 60.
  • the mixed gas flowing into the cylinder 60 from the cylinder 20 can flow into the cylinder 60 more vigorously than the combustion gas flowing into the second scavenging passage 30 or the cylinder 60.
  • the mixed gas flowing into the gas can be reliably directed.
  • the shielding plate 31 is provided only at the opening on the cylinder 60 side of the second scavenging passage 30, but further on a part of the opening on the cylinder 60 side of the first scavenging passage 20. Also, a shielding plate may be provided.
  • the mixed gas flowing from the crank chamber 10 into the first scavenging passage 20 is It can be configured to flow more easily than the mixed gas flowing into the second scavenging passage 30 from the crank chamber 10.
  • the flow rate of the mixed gas flowing from the crank chamber 10 into the first scavenging passage 20 is larger than the flow rate of the mixed gas flowing from the crank chamber 10 into the second scavenging passage 30, and the first scavenging passage 20 From the second scavenging passage 30 into the cylinder 60 becomes higher than the flow velocity of the mixed gas flowing into the cylinder 60 from the second scavenging passage 30.
  • the mixed gas flowing into the cylinder 60 from the first scavenging passage 20 can flow into the cylinder 60 more vigorously than the combustion gas flowing into the cylinder 60 from the second scavenging passage 30. It is possible to reliably direct the mixed gas flowing into the cylinder 60 from the scavenging passage 20.
  • the mixed gas flowing into the cylinder 60 from the first scavenging passage 20 is allowed to flow into the cylinder 60 from the second scavenging passage 30. It can be configured to be easier to flow than the mixed gas flowing in. In this configuration, the flow velocity of the mixed gas flowing into the cylinder 60 from the first scavenging passage 20 is higher than the flow velocity of the mixed gas flowing into the cylinder 60 from the second scavenging passage 30. As a result, the mixed gas flowing into the cylinder 60 from the first scavenging passage 20 can flow into the cylinder 60 more vigorously than the combustion gas flowing into the cylinder 60 from the second scavenging passage 30.
  • the protruding portion 32 is provided at the boundary between the crank chamber 10 and the second scavenging passage 30.
  • the protruding portion 32 may be provided in the middle or upper portion of the second scavenging passage 30. The position is not limited.
  • the partition part 21 is provided only in the first scavenging passage 20, but the partition part is also provided in the second scavenging passage 30 in addition to the first scavenging passage 20. May be provided.
  • the partition part 21 formed in the opening part by the side of the cylinder 60 of the 1st scavenging passage 20 is comprised by the vertical wall,
  • the 1st scavenging passage 20 The shape of the partition portion is not limited as long as the mixed gas flowing into the cylinder 60 can be reliably directed.
  • the tip end corner portion on the first scavenging passage 20 side is chamfered and a flat inclined surface 91d, 91f is formed, but the mixed gas flowing from the crank chamber 10 into the first scavenging passage 20 is processed by processing the tip end corners of the counterweight 91c and the connecting portion 91e into a gentle arcuate inclined surface. It can also be configured to flow more easily than the mixed gas flowing into the second scavenging passage 30 from the crank chamber 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

 シリンダ(60)内に装着されたピストン(50)と、燃焼室(40)に通じる排気通路(80)と、クランク室(10)と燃焼室(40)とを連通させる第一掃気通路(20)及び第二掃気通路とを備えた2サイクルエンジン(1)であって、ピストン(50)には、排気通路(80)と各掃気通路(20)とがピストン(50)によって閉塞された状態で、排気通路(80)と第二掃気通路とを連通する連通溝(51)が形成され、第一掃気通路(20)から流入する混合ガスが、第二掃気通路(30)から流入する混合ガスよりも、燃焼室(40)内において排気通路(80)の反対側に流れ込むように構成されている。この構成では、未燃焼ガスが排気される量を大幅に低減させるとともに、燃焼室(40)内から燃焼ガスがスムーズに排気され、燃焼室(40)内における混合ガスの充填量が増加するため、エンジンの出力を高めることができる。

Description

2サイクルエンジン
 本発明は、刈払機やブロワなどの小型作業機械に用いられる2サイクルエンジンに関する。
 2サイクルエンジンは、シリンダ内に摺動自在に装着されたピストンと、シリンダの上部に形成された燃焼室に通じる排気通路と、燃焼室とクランク室とを連通させる掃気通路と、を備えている。このような2サイクルエンジンでは、クランク室内に充填された燃料と空気の混合ガスを、掃気通路を通じて燃焼室内に流入させ、混合ガスを燃焼室内で燃焼させたときの膨張力によって、ピストンをシリンダ内で往復動させている。
 2サイクルエンジンでは、混合ガスの燃焼後にピストンが下降すると、排気通路がシリンダの上部に開口し、燃焼室内の燃焼ガスが排気通路に排気される(排気行程)。また、排気行程の後に、さらにピストンが下降すると、掃気通路がシリンダの上部に開口し、クランク室内の混合ガスが掃気通路を通じてシリンダの上部に流入する(掃気行程)。掃気行程では、排気通路と掃気通路の両方がシリンダの上部に開口しているため、燃焼室内の燃焼ガスとともに、掃気通路からシリンダ内に流入した未燃焼の混合ガスも排気通路に排気される「吹き抜け」が生じてしまう。そして、エンジンから排出される排気ガスに含まれる未燃焼ガスが増加すると、排気ガスに含まれる炭化水素量が増加してしまう。
 そこで、排気通路及び掃気通路がピストンの側面によって閉塞された状態で、排気通路と掃気通路とを連通する連通溝をピストンの側面に形成することで、排気ガスに含まれる未燃焼ガスを低減している2サイクルエンジンがある(例えば、特許文献1参照)。
 ピストンに連通溝を設けた2サイクルエンジンでは、掃気通路がピストンの側面によって閉塞された状態で、掃気通路には連通溝を通じて排気通路内の燃焼ガスが流入し、掃気通路の燃焼室側に燃焼ガスが滞留する。そして、掃気通路がシリンダの上部に開口すると、掃気通路内に滞留していた燃焼ガスが混合ガスよりも先行してシリンダ内に流入する。したがって、掃気行程では、掃気通路からシリンダ内に流入した燃焼ガスが、掃気通路からシリンダ内に流入した混合ガスよりも先に排気通路に達するため、未燃焼の混合ガスが排気される量を大幅に低減することができ、排気ガス中の炭化水素量を低減することができる。
特開平11-287124号公報(段落0012、図1)
 しかしながら、ピストンに連通溝を設けた2サイクルエンジンでは、エンジンの出力を高めるために、例えば、クランク室内において圧縮された混合ガスの圧力を高めることで、シリンダ内への混合ガスの充填量を増加させた場合には、掃気工程の初めの段階では、掃気通路からシリンダ内に流入した燃焼ガスが排気通路から排気され、未燃焼の混合ガスが排気される量を低減することができるが、掃気工程の最後の段階では、排気通路から未燃焼の混合ガスが排気される量が増加し、排気ガスに含まれる炭化水素量が増加してしまうという問題がある。
 そこで、本発明では、前記した問題を解決し、排気ガスに含まれる未燃焼ガスを大幅に低減させることができるとともに、エンジンの出力を高めることができる2サイクルエンジンを提供することを課題とする。
 前記課題を解決するため、本発明は、シリンダ内に摺動自在に装着されたピストンと、シリンダ内に形成された燃焼室に通じる排気通路と、クランク室と燃焼室とを連通させる第一掃気通路及び第二掃気通路と、を備え、クランク室内に充填された燃料と空気の混合ガスを、各掃気通路を通じて燃焼室内に流入させ、混合ガスを燃焼室内で燃焼させることで、ピストンをシリンダ内で往復動させるように構成された2サイクルエンジンであって、ピストンの側面には、排気通路と各掃気通路とがピストンの側面によって閉塞された状態で、排気通路と第二掃気通路とを連通する連通溝が形成されており、第一掃気通路には仕切り部が設けられ、第一掃気通路から燃焼室に流入する混合ガスが、第二掃気通路から燃焼室に流入する混合ガスよりも、燃焼室内において排気通路の反対側に流れ込むように構成されていることを特徴としている。
 この構成では、各掃気通路がピストンの側面によって閉塞された状態で、第二掃気通路には連通溝を通じて排気通路内の燃焼ガスが流入し、第二掃気通路の燃焼室側に燃焼ガスが滞留する。掃気行程において、第一掃気通路及び第二掃気通路が燃焼室に通じると、第二掃気通路からは、滞留していた燃焼ガスが混合ガスよりも先行して燃焼室内に流入し、第一掃気通路からは混合ガスが燃焼室内に流入する。このとき、第一掃気通路から燃焼室に流入する混合ガスは、第二掃気通路から燃焼室に流入する混合ガスよりも、燃焼室内において排気通路の反対側に流れ込むように方向付けされているため、第一掃気通路から燃焼室内に流入した混合ガスによって、第二掃気通路から燃焼室内に流入した燃焼ガスが排気通路に押し出される。したがって、掃気行程では、まず、第二掃気通路から燃焼室に流入したガスが排気通路に排気されるが、第二掃気通路からは燃焼ガスが混合ガスよりも先行して燃焼室に流入しているため、掃気工程において、未燃焼の混合ガスが排気通路に排気される量が少なくなる。また、第一掃気通路から燃焼室に流入した混合ガスは、第二掃気通路から燃焼室に流入したガスよりも、燃焼室内において排気通路の反対側を通過して排気通路に達する。すなわち、第一掃気通路から燃焼室に流入した混合ガスは、第二掃気通路から燃焼室に流入したガスよりも遠回りして排気通路に達するため、掃気工程の最後の段階において、未燃焼の混合ガスが排気通路に排気される量が少なくなる。
 また、第一掃気通路から燃焼室に流入した混合ガスが、第二掃気通路から燃焼室に流入する混合ガスよりも、燃焼室内において排気通路の反対側に流入することで、第一掃気通路から燃焼室内に流入した混合ガスによって、第二掃気通路から燃焼室内に流入した燃焼ガスが排気通路に押し出されるため、燃焼室内から燃焼ガスがスムーズに排気される。
 このように、本発明では、掃気工程の最後の段階において、未燃焼の混合ガスが排気通路に排気される量が少なくなるため、排気ガスに含まれる未燃焼ガスを大幅に低減させることができるとともに、燃焼室内に残留する燃焼ガスが低減され、燃焼室内における混合ガスの充填量が増加するため、エンジンの出力を高めることができる。
 前記した2サイクルエンジンにおいて、クランク室内には、ピストンの往復動に連動して回転するクランクシャフトが設けられており、クランクシャフトに形成されたカウンターウェイトにおいて、第一掃気通路側の角部が面取りされることで、クランク室から第一掃気通路に流入する混合ガスが、クランク室から第二掃気通路に流入する混合ガスよりも流れ易くなるように構成することができる。
 この構成では、クランクシャフトのカウンターウェイトにおいて、第一掃気通路側の角部が面取りされることで、クランク室から第一掃気通路に流入する混合ガスが、クランク室から第二掃気通路に流入する混合ガスよりも流れ易く、すなわち、クランク室から第一掃気通路に流入する混合ガスの流量が、クランク室から第二掃気通路に流入する混合ガスの流量よりも多くなり、第一掃気通路から燃焼室に流入する混合ガスの流速が、第二掃気通路から燃焼室に流入する混合ガスの流速よりも高くなる。これにより、第一掃気通路から燃焼室内に流入する混合ガスを、第二掃気通路から燃焼室内に流入する燃焼ガスよりも勢いよく燃焼室に流入させることができ、第一掃気通路から燃焼室に流入する混合ガスの方向付けを確実に行うことができる。
 前記した2サイクルエンジンにおいて、第二掃気通路内に網目状の遮板を設けることで、第一掃気通路から燃焼室に流入する混合ガスが、第二掃気通路から燃焼室に流入する混合ガスよりも流れ易くなるように構成することができる。
 この構成では、第二掃気通路内に網目状の遮板を設けることで、第一掃気通路から燃焼室に流入する混合ガスが、第二掃気通路から燃焼室に流入する混合ガスよりも流れ易くなり、第一掃気通路から燃焼室に流入する混合ガスの流速が、第二掃気通路から燃焼室に流入する混合ガスの流速よりも高くなる。これにより、第一掃気通路から燃焼室内に流入する混合ガスを、第二掃気通路から燃焼室内に流入する燃焼ガスよりも勢いよく燃焼室に流入させることができ、第一掃気通路から燃焼室に流入する混合ガスの方向付けを確実に行うことができる。
 前記した2サイクルエンジンにおいて、ピストンの下端部の第一掃気通路側に切り欠き部を形成することで、クランク室から第一掃気通路に流入する混合ガスが、クランク室から第二掃気通路に流入する混合ガスよりも流れ易くなるように構成することができる。
 この構成では、ピストンの下端部の第一掃気通路側に切り欠き部を形成することで、クランク室から第一掃気通路に流入する混合ガスが、クランク室から第二掃気通路に流入する混合ガスよりも流れ易く、すなわち、クランク室から第一掃気通路に流入する混合ガスの流量が、クランク室から第二掃気通路に流入する混合ガスの流量よりも多くなり、第一掃気通路から燃焼室に流入する混合ガスの流速が、第二掃気通路から燃焼室に流入する混合ガスの流速よりも高くなる。これにより、第一掃気通路から燃焼室内に流入する混合ガスを、第二掃気通路から燃焼室内に流入する燃焼ガスよりも勢いよく燃焼室に流入させることができ、第一掃気通路から燃焼室に流入する混合ガスの方向付けを確実に行うことができる。
 前記した2サイクルエンジンにおいて、第二掃気通路内に突出部を設けることで、第一掃気通路から燃焼室に流入する混合ガスが、第二掃気通路から燃焼室に流入する混合ガスよりも流れ易くなるように構成することができる。
 この構成では、第二掃気通路内に突出部を設けることで、第一掃気通路から燃焼室に流入する混合ガスが、第二掃気通路から燃焼室に流入する混合ガスよりも流れ易くなり、第一掃気通路から燃焼室に流入する混合ガスの流速が、第二掃気通路から燃焼室に流入する混合ガスの流速よりも高くなる。これにより、第一掃気通路から燃焼室内に流入する混合ガスを、第二掃気通路から燃焼室内に流入する燃焼ガスよりも勢いよく燃焼室に流入させることができ、第一掃気通路から燃焼室に流入する混合ガスの方向付けを確実に行うことができる。
 本発明の2サイクルエンジンによれば、掃気工程の最後の段階において、未燃焼の混合ガスが排気通路に排気される量が少なくなるため、排気ガスに含まれる未燃焼ガスを大幅に低減させることができるとともに、燃焼室内に残留する燃焼ガスが低減され、燃焼室内における混合ガスの充填量が増加するため、エンジンの出力を高めることができる。
本実施形態の2サイクルエンジンを示した図で、掃気行程における側断面図である。 本実施形態の2サイクルエンジンを、図1のA-A方向から見た断面図である。 本実施形態の2サイクルエンジンを示した図で、吸入・圧縮行程における側断面図である。 本実施形態の2サイクルエンジンを、図3のB-B方向から見た断面図である。 本実施形態の2サイクルエンジンを、図3のC-C方向から見た断面図である。 本実施形態の2サイクルエンジンにおけるクランクシャフトを示した斜視図である。 本実施形態の2サイクルエンジンにおいて、掃気行程の燃焼ガス及び混合ガスの流れを示した説明図である。 他の実施形態の2サイクルエンジンを示した図で、第二掃気通路内に遮板を設けた構成の平面断面図である。 他の実施形態の2サイクルエンジンを示した図で、ピストンの下端部に切り欠き部を形成した構成の側断面図である。 他の実施形態の2サイクルエンジンを示した図で、第二掃気通路内に突出部を形成した構成の側断面図である。
符号の説明
 1   2サイクルエンジン
 10  クランク室
 11  クランクケース
 20  第一掃気通路
 21  仕切り部
 30  第二掃気通路
 40  燃焼室
 50  ピストン
 51  連通溝
 60  シリンダ
 70  吸入通路
 80  排気通路
 90  クランクシャフト
 91  第一クランクシャフト
 91c カウンターウェイト
 91d 傾斜面
 91e 連結部
 91f 傾斜面
 92  第二クランクシャフト
 次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
 図1に示す本実施形態の2サイクルエンジン1は、刈払機やブロワなどの小型作業機械に用いられるものである。この2サイクルエンジン1は、シリンダ60内に摺動自在に装着されたピストン50を有しており、クランク室10内に充填された燃料と空気の混合ガスを、二つの掃気通路20,30を通じてシリンダ60の上部に流入させ(図2参照)、シリンダ60の上部に形成された燃焼室40内で混合ガスを燃焼させたときの膨張力によって、ピストン50をシリンダ60内で往復動させている。
 なお、本実施形態の2サイクルエンジン1における各種の動力機構は、公知の2サイクルエンジンと同様の構成であるため、本発明を構成する特徴的な構成以外は詳細な説明を省略する。
 2サイクルエンジン1は、図1に示すように、シリンダ60内に摺動自在に装着されたピストン50と、クランク室10内に通じる吸入通路70と、シリンダ60内に形成された燃焼室40に通じる排気通路80と、クランク室10と燃焼室40とを連通させる第一掃気通路20及び第二掃気通路30(図2参照)と、クランク室10内でピストン50の往復動に連動して回転するクランクシャフト90と、を備えている。
 吸入通路70は、図1に示すように、シリンダブロック61の側部に形成されており、一端はシリンダ60の下部に開口し、他端は図示しない燃料供給通路に接続されている。
 吸入通路70のシリンダ60側の開口部は、図1に示すように、シリンダ60内でピストン50が下死点に位置したときには、ピストン50の側面によって閉塞される。また、吸入通路70のシリンダ60側の開口部は、図3に示すように、シリンダ60内でピストン50が上死点に位置したときには、シリンダ60の下部に開口してクランク室10内に通じる。
 排気通路80は、図1に示すように、シリンダブロック61の側部において、吸入通路70の反対側となる位置に形成されており、一端はシリンダ60の上部に開口し、他端は図示しない排気管に接続されている。
 排気通路80のシリンダ60側の開口部は、図1に示すように、シリンダ60内でピストン50が下死点に位置したときには、シリンダ60の上部に開口して燃焼室40に通じる。また、排気通路80のシリンダ60側の開口部は、図3に示すように、シリンダ60内でピストン50が上死点に位置したときには、ピストン50の側面によって閉塞される。
 第一掃気通路20及び第二掃気通路30は、図2においてシリンダ60の左右側方となる位置で、シリンダブロック61内に形成されている。すなわち、第一掃気通路20及び第二掃気通路30は、図5に示すように、吸入通路70及び排気通路80に対して、シリンダ60の周方向に90度ずれた位置に形成されている。図2に示すように、第一掃気通路20及び第二掃気通路30の一端は排気通路80と略同じ高さでシリンダ60の上部に開口し、他端はクランク室10に開口している。
 第一掃気通路20及び第二掃気通路30のシリンダ60側の開口部は、図5に示すように、排気通路80の開口部の両側にそれぞれ開口しており、シリンダ60の中心部を挟んで対峙している。また、第一掃気通路20及び第二掃気通路30のシリンダ60側の開口部は、シリンダ60内において排気通路80側の壁面とは反対側の壁面に向けて開口している。
 さらに、第一掃気通路20のシリンダ60側の開口部では、幅方向の中央部に仕切り部21が形成されている。この仕切り部21は、開口部を幅方向の中央部で二分割している縦壁であり、シリンダ60内において排気通路80側の壁面とは反対側の壁面に向けて延びている。
 第一掃気通路20及び第二掃気通路30のシリンダ60側の開口部は、図2に示すように、シリンダ60内でピストン50が下死点に位置したときには、シリンダ60の上部に開口して燃焼室40に通じる。また、第一掃気通路20及び第二掃気通路30のシリンダ60側の開口部は、図4に示すように、シリンダ60内でピストン50が上死点に位置したときには、ピストン50の側面によって閉塞される。
 ピストン50は、図1及び図2に示すように、シリンダ60内で上下方向に往復動する部材であり、平面視で断面形状が円形となっている。
 図1に示すように、シリンダ60内でピストン50が下死点に位置したときには、ピストン50の側面によって吸入通路70が閉塞され、排気通路80及び各掃気通路20,30(図2参照)は、ピストン50よりも上方でシリンダ60に開口して燃焼室40に通じている。
 図3に示すように、シリンダ60内でピストン50が上死点に位置したときには、ピストン50の側面によって排気通路80及び各掃気通路20,30(図4参照)が閉塞され、吸入通路70は、ピストン50よりも下方でシリンダ60に開口してクランク室10に通じている。
 図3に示すように、ピストン50の側面において、第二掃気通路30側の下部には、凹状の連通溝51がピストン50の周方向に形成されている。連通溝51は、シリンダ60内でピストン50が上死点に位置し、排気通路80と各掃気通路20,30とがピストン50の側面によって閉塞された状態で、排気通路80と第二掃気通路30とを連通するように構成されている(図5参照)。
 クランクシャフト90は、図4に示すように、クランクケース11に回転自在に軸支される出力軸91a,92aを有しており、コンロッド93を介してピストン50が連結され、ピストン50の往復動に連動してクランク室10内で回転する。クランクシャフト90では、図2の右側に配設された第一クランクシャフト91と、図2の左側に配設された第二クランクシャフト92とが組み付けられている。
 第一クランクシャフト91では、図4の右側に向けて延ばされた出力軸91aと、この出力軸91aの軸線に対して偏心した位置で、図4の左側に向けて延ばされたクランクピン91bと、出力軸91aを挟んでクランクピン91bと対称な位置に形成されたカウンターウェイト91cと、が形成されている。
 図6に示すように、第一クランクシャフト91のカウンターウェイト91cは、出力軸91aの軸周りに突出した半円形の板状部材である。第一クランクシャフト91のカウンターウェイト91cにおいて、第一掃気通路20側(図6の右側)の先端角部が面取りされており、平坦な傾斜面91dが形成されている(図4参照)。
 また、第一クランクシャフト91において、出力軸91aとクランクピン91bとを連結する連結部91eでは、第一掃気通路20側(図6の右側)の先端角部が面取りされており、平坦な傾斜面91fが形成されている(図4参照)。
 第二クランクシャフト92では、図4の左側に向けて延ばされた出力軸92aと、この出力軸92aの軸線に対して偏心した位置に形成された貫通孔92bと、出力軸91aを挟んで貫通孔92bと対称な位置に形成されたカウンターウェイト92cと、が形成されている。なお、第二クランクシャフト92は、貫通孔92bが形成されている部分以外は、第一クランクシャフト91と左右対照な形状となっている。
 第二クランクシャフト92のカウンターウェイト92c及び連結部92eでは、第二掃気通路30側の先端角部が面取りされているが、第一クランクシャフト91のカウンターウェイト91c及び連結部91eの先端角部と比較して、先端角部が面取りされている寸法が非常に小さいため、略直角な角部となっている。
 図2及び図4に示すように、第一クランクシャフト91のクランクピン91bは、コンロッド93の下端部に形成された貫通孔93aに回転自在な状態で挿通され、その先端部は第二クランクシャフト92の貫通孔92bに嵌め込まれて固着されている。
 また、コンロッド93は、上端部がピストン50に揺動自在に連結され、下端部はクランクシャフト90のクランクピン91bに連結されている。
 そして、シリンダ60内でピストン50が上下方向に往復動すると、コンロッド93がピストン50の往復動に連動して昇降し、コンロッド93の下端部に連結されたクランクピン91bが引き上げ、及び押し下げられることで、ピストン50の往復動がクランクシャフト90の回転運動に変換され、各出力軸91a,92aが軸線回りに回転する。
 以上のように構成された2サイクルエンジン1は、次のように動作して本発明の作用効果を奏する。
 吸入・圧縮行程において、図3に示すように、シリンダ60内でピストン50が上昇すると、クランク室10内が負圧状態となり、図示しない燃料供給通路に設けられたキャブレター又は燃料噴射装置で生成された燃料と空気の混合ガスが、吸入通路70を通じてクランク室10内に充填される。
 吸入・圧縮行程において、ピストン50がシリンダ60内で上死点に達すると、排気通路80及び各掃気通路20,30(図4参照)が、ピストン50の側面によって閉塞される。このとき、図5に示すように、ピストン50の側面に形成された連通溝51を通じて排気通路80と第二掃気通路30とが連通した状態となる。なお、排気通路80内には、前回の排気行程で排気された燃焼ガスが滞留している。したがって、第二掃気通路30には連通溝51を通じて排気通路80内の燃焼ガスが流入し、第二掃気通路30のシリンダ60側に開口部に燃焼ガスが滞留する。
 また、シリンダ60内でピストン50が上死点に達すると、図3に示すように、前回の掃気行程でシリンダ60内に流入していた混合ガスが燃焼室40内で圧縮される。そして、燃焼室40内に突出した点火プラグ41によって、燃焼室40内で混合ガスに着火されると、その膨張力によってシリンダ60内でピストン50が押し下げられる。
 シリンダ60内でピストン50が下降すると、図1に示すように、排気通路80がシリンダ60の上部に開口して燃焼室40に通じた状態となり、混合ガスの燃焼によって生じた燃焼ガスが排気通路80に排気される(排気行程)。また、ピストン50の下降することで、クランク室10に充填された混合ガスが圧縮される。
 排気行程の後に、さらにピストン50が下降し、シリンダ60内でピストン50が下死点に達すると、図2に示すように、第一掃気通路20及び第二掃気通路30がシリンダ60の上部に開口して燃焼室40に通じる。そして、クランク室10内で圧縮された混合ガスは、第一掃気通路20及び第二掃気通路30を通じてシリンダ60内に流入する(掃気行程)。
 図7に示すように、掃気行程において、第一掃気通路20及び第二掃気通路30がシリンダ60に開口すると、第二掃気通路30では、滞留していた燃焼ガスが混合ガスよりも先行してシリンダ60内に流入する。一方、第一掃気通路20からシリンダ60内に流入する混合ガスは、第二掃気通路30からシリンダ60内に流入する混合ガスよりも、シリンダ60内において排気通路80の反対側に流れ込むように、仕切り部21によって方向付けされているため、第二掃気通路30からシリンダ60内に流入した燃焼ガス及び混合ガスよりも、シリンダ60内において排気通路80の反対側に回り込むことになる。
 なお、図2に示すように、クランクシャフト90のカウンターウェイト91c及び連結部91eでは、第一掃気通路20側の角部が面取りされて傾斜面91d,91fが形成されているため、クランク室10から第一掃気通路20に流入する混合ガスが、クランク室10から第二掃気通路30に流入する混合ガスよりも流れ易くなっている。すなわち、クランク室10から第一掃気通路20に流入する混合ガスの流量が、クランク室10から第二掃気通路30に流入する混合ガスの流量よりも多くなり、第一掃気通路20からシリンダ60内に流入する混合ガスの流速が、第二掃気通路30からシリンダ60内に流入する混合ガスの流速よりも高くなる。これにより、第一掃気通路20からシリンダ60内に流入する混合ガスが、第二掃気通路30からシリンダ60内に流入する燃焼ガスよりも勢いよくシリンダ60内に流入するため、第一掃気通路20からシリンダ60内に流入する混合ガスの方向付けが確実に行われている。
 したがって、掃気行程では、図7に示すように、第一掃気通路20からシリンダ60内に流入した混合ガスが、第二掃気通路30からシリンダ60内に流入する混合ガスよりも、シリンダ60内において排気通路80の反対側に流入することで、第一掃気通路20からシリンダ60内に流入した混合ガスによって、第二掃気通路30からシリンダ60内に流入した燃焼ガスが排気通路80に押し出される。
 シリンダ60内で下死点に達したピストン50は、クランクシャフト90の回転力によってシリンダ60内で再び上昇し、吸入・圧縮行程が繰り返される。
 本実施形態の2サイクルエンジン1によれば、図7に示すように、掃気行程では、まず、第二掃気通路30からシリンダ60内に流入したガスが排気通路80に排気されるが、第二掃気通路30からは燃焼ガスが混合ガスよりも先行してシリンダ60内に流入しているため、掃気工程において、未燃焼の混合ガスが排気通路80に排気される量が少なくなる。また、第一掃気通路20からシリンダ60内に流入した混合ガスは、第二掃気通路30からシリンダ60内に流入したガスよりも、シリンダ60内において排気通路80の反対側を通過して排気通路80に達する。すなわち、第一掃気通路20からシリンダ60内に流入した混合ガスは、第二掃気通路30からシリンダ60内に流入したガスよりも遠回りして排気通路80に達するため、掃気工程の最後の段階において、未燃焼の混合ガスが排気通路80に排気される量が少なくなる。
 また、第一掃気通路20からシリンダ60内に流入した混合ガスが、第二掃気通路30からシリンダ60内に流入する混合ガスよりも、シリンダ60内において排気通路80の反対側に流入することで、第一掃気通路20からシリンダ60内に流入した混合ガスによって、第二掃気通路30からシリンダ60内に流入した燃焼ガスが排気通路80に押し出されるため、シリンダ60内から燃焼ガスがスムーズに排気される。
 以上のように、本実施形態の2サイクルエンジン1では、掃気工程の最後の段階において、未燃焼の混合ガスが排気通路80に排気される量が少なくなるため、排気ガスに含まれる未燃焼ガスを大幅に低減させることができるとともに、燃焼室40内(シリンダ60内)に残留する燃焼ガスが低減され、燃焼室40内における混合ガスの充填量が増加するため、エンジンの出力を高めることができる。
 以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されることなく、その趣旨を逸脱しない範囲で適宜に設計変更が可能である。
 例えば、図8に示すように、第二掃気通路30のシリンダ60側の開口部にパンチングメタルシートや金属メッシュ等の網目状の遮板31を設けることで、第一掃気通路20からシリンダ60内に流入する混合ガスが、第二掃気通路30からシリンダ60内に流入する混合ガスよりも流れ易くなるように構成することができる。
 この構成では、第一掃気通路20からシリンダ60内に流入する混合ガスの流速が、第二掃気通路30からシリンダ60内に流入する混合ガスの流速よりも高くなるため、第一掃気通路20からシリンダ60内に流入する混合ガスを、第二掃気通路30かシリンダ60内に流入する燃焼ガスよりも勢いよくシリンダ60内に流入させることができ、第一掃気通路20からシリンダ60内に流入する混合ガスの方向付けを確実に行うことができる。
 なお、図8に示す構成では、第二掃気通路30のシリンダ60側の開口部のみに遮板31を設けているが、更に第一掃気通路20のシリンダ60側の開口部の一部にも遮板を設けてもよい。
 また、図9に示すように、ピストン50の下端部の第一掃気通路20側に切り欠き部52を形成することで、クランク室10から第一掃気通路20に流入する混合ガスが、クランク室10から第二掃気通路30に流入する混合ガスよりも流れ易くなるように構成することができる。
 この構成では、クランク室10から第一掃気通路20に流入する混合ガスの流量が、クランク室10から第二掃気通路30に流入する混合ガスの流量よりも多くなり、第一掃気通路20からシリンダ60内に流入する混合ガスの流速が、第二掃気通路30からシリンダ60内に流入する混合ガスの流速よりも高くなる。これにより、第一掃気通路20からシリンダ60内に流入する混合ガスを、第二掃気通路30からシリンダ60内に流入する燃焼ガスよりも勢いよくシリンダ60内に流入させることができ、第一掃気通路20からシリンダ60内に流入する混合ガスの方向付けを確実に行うことができる。
 また、図10に示すように、第二掃気通路30内に突出部32を設けることで、第一掃気通路20からシリンダ60内に流入する混合ガスが、第二掃気通路30からシリンダ60内に流入する混合ガスよりも流れ易くなるように構成することができる。
 この構成では、第一掃気通路20からシリンダ60内に流入する混合ガスの流速が、第二掃気通路30からシリンダ60内に流入する混合ガスの流速よりも高くなる。これにより、第一掃気通路20からシリンダ60内に流入する混合ガスを、第二掃気通路30からシリンダ60内に流入する燃焼ガスよりも勢いよくシリンダ60内に流入させることができ、第一掃気通路20からシリンダ60内に流入する混合ガスの方向付けを確実に行うことができる。
 なお、図10に示す構成では、クランク室10と第二掃気通路30との境界部に突出部32を設けているが、第二掃気通路30の中間部や上部でもよく、突出部32を設ける位置は限定されるものではない。
 また、本実施形態では、図7に示すように、第一掃気通路20のみに仕切り部21を設けているが、第一掃気通路20に加えて、第二掃気通路30にも仕切り部を設けてもよい。
 また、本実施形態では、図5に示すように、第一掃気通路20のシリンダ60側の開口部に形成された仕切り部21を縦壁によって構成しているが、第一掃気通路20からシリンダ60内に流入する混合ガスを確実に方向付けすることができるのであれば、仕切り部の形状は限定されるものではない。
 また、本実施形態では、図6に示すように、第一クランクシャフト91のカウンターウェイト91c及び連結部91eにおいて、第一掃気通路20側の先端角部が面取りされて平坦な傾斜面91d,91fが形成されているが、カウンターウェイト91c及び連結部91eの先端角部を緩やかな円弧状の傾斜面に加工することで、クランク室10から第一掃気通路20に流入する混合ガスが、クランク室10から第二掃気通路30に流入する混合ガスよりも流れ易くなるように構成することもできる。

Claims (5)

  1.  シリンダ内に摺動自在に装着されたピストンと、
     前記シリンダ内に形成された燃焼室に通じる排気通路と、
     クランク室と前記燃焼室とを連通させる第一掃気通路及び第二掃気通路と、を備え、
     前記クランク室内に充填された燃料と空気の混合ガスを、前記各掃気通路を通じて前記燃焼室内に流入させ、前記混合ガスを前記燃焼室内で燃焼させることで、前記ピストンを前記シリンダ内で往復動させるように構成された2サイクルエンジンであって、
     前記ピストンの側面には、前記排気通路と前記各掃気通路とが前記ピストンの側面によって閉塞された状態で、前記排気通路と前記第二掃気通路とを連通する連通溝が形成されており、
     前記第一掃気通路には仕切り部が設けられ、前記第一掃気通路から前記燃焼室に流入する前記混合ガスが、前記第二掃気通路から前記燃焼室に流入する前記混合ガスよりも、前記燃焼室内において前記排気通路の反対側に流れ込むように構成されていることを特徴とする2サイクルエンジン。
  2.  前記クランク室内には、前記ピストンの往復動に連動して回転するクランクシャフトが設けられており、
     前記クランクシャフトに形成されたカウンターウェイトにおいて、前記第一掃気通路側の角部が面取りされることで、前記クランク室から前記第一掃気通路に流入する前記混合ガスが、前記クランク室から前記第二掃気通路に流入する前記混合ガスよりも流れ易くなるように構成されていることを特徴とする請求の範囲第1項に記載の2サイクルエンジン。
  3.  前記第二掃気通路内に網目状の遮板を設けることで、前記第一掃気通路から前記燃焼室に流入する前記混合ガスが、前記第二掃気通路から前記燃焼室に流入する前記混合ガスよりも流れ易くなるように構成されていることを特徴とする請求の範囲第1項に記載の2サイクルエンジン。
  4.  前記ピストンの下端部の前記第一掃気通路側に切り欠き部を形成することで、前記クランク室から前記第一掃気通路に流入する前記混合ガスが、前記クランク室から前記第二掃気通路に流入する前記混合ガスよりも流れ易くなるように構成されていることを特徴とする請求の範囲第1項に記載の2サイクルエンジン。
  5.  前記第二掃気通路内に突出部を設けることで、前記第一掃気通路から前記燃焼室に流入する前記混合ガスが、前記第二掃気通路から前記燃焼室に流入する前記混合ガスよりも流れ易くなるように構成されていることを特徴とする請求の範囲第1項に記載の2サイクルエンジン。
PCT/JP2008/050867 2008-01-23 2008-01-23 2サイクルエンジン WO2009093310A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/050867 WO2009093310A1 (ja) 2008-01-23 2008-01-23 2サイクルエンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/050867 WO2009093310A1 (ja) 2008-01-23 2008-01-23 2サイクルエンジン

Publications (1)

Publication Number Publication Date
WO2009093310A1 true WO2009093310A1 (ja) 2009-07-30

Family

ID=40900828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/050867 WO2009093310A1 (ja) 2008-01-23 2008-01-23 2サイクルエンジン

Country Status (1)

Country Link
WO (1) WO2009093310A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133370A (ja) * 2008-12-08 2010-06-17 Yamabiko Corp 2サイクルエンジン
EP2415987B1 (en) * 2010-08-02 2018-12-12 Yamabiko Corporation Loop scavenged two-stroke internal combustion engine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194312U (ja) * 1975-01-27 1976-07-29
JPS59134323A (ja) * 1983-01-19 1984-08-02 Nippon Clean Engine Res 時間差衝突層状掃気2サイクル機関
JPH07279674A (ja) * 1994-04-12 1995-10-27 Daihatsu Motor Co Ltd 二サイクル内燃機関における掃気装置
JPH11287124A (ja) * 1998-04-01 1999-10-19 Maruyama Mfg Co Ltd 2サイクルガソリンエンジン
JPH11315722A (ja) * 1998-04-30 1999-11-16 Tanaka Kogyo Kk 2サイクルエンジン
JP2000186558A (ja) * 1998-12-22 2000-07-04 Mitsubishi Heavy Ind Ltd 層状掃気2サイクルエンジン
JP2001027122A (ja) * 1999-07-15 2001-01-30 Maruyama Mfg Co Ltd 2サイクルエンジン
JP2001323816A (ja) * 2000-05-16 2001-11-22 Kioritz Corp 2サイクル内燃エンジン
JP2007077942A (ja) * 2005-09-16 2007-03-29 Shin Daiwa Kogyo Co Ltd クランク室圧縮型2サイクルエンジン及び燃料粒子微細化装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194312U (ja) * 1975-01-27 1976-07-29
JPS59134323A (ja) * 1983-01-19 1984-08-02 Nippon Clean Engine Res 時間差衝突層状掃気2サイクル機関
JPH07279674A (ja) * 1994-04-12 1995-10-27 Daihatsu Motor Co Ltd 二サイクル内燃機関における掃気装置
JPH11287124A (ja) * 1998-04-01 1999-10-19 Maruyama Mfg Co Ltd 2サイクルガソリンエンジン
JPH11315722A (ja) * 1998-04-30 1999-11-16 Tanaka Kogyo Kk 2サイクルエンジン
JP2000186558A (ja) * 1998-12-22 2000-07-04 Mitsubishi Heavy Ind Ltd 層状掃気2サイクルエンジン
JP2001027122A (ja) * 1999-07-15 2001-01-30 Maruyama Mfg Co Ltd 2サイクルエンジン
JP2001323816A (ja) * 2000-05-16 2001-11-22 Kioritz Corp 2サイクル内燃エンジン
JP2007077942A (ja) * 2005-09-16 2007-03-29 Shin Daiwa Kogyo Co Ltd クランク室圧縮型2サイクルエンジン及び燃料粒子微細化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133370A (ja) * 2008-12-08 2010-06-17 Yamabiko Corp 2サイクルエンジン
EP2415987B1 (en) * 2010-08-02 2018-12-12 Yamabiko Corporation Loop scavenged two-stroke internal combustion engine

Similar Documents

Publication Publication Date Title
JP5922569B2 (ja) 層状掃気2ストロークエンジン
US6640755B2 (en) Two-cycle internal combustion engine
JP4585920B2 (ja) 2サイクル内燃エンジン
JP4606966B2 (ja) 層状掃気2サイクル内燃エンジン
JP2012092846A (ja) 層状掃気2ストロークエンジン
EP2309107B1 (en) Two-stroke engine
WO2009093310A1 (ja) 2サイクルエンジン
US6173683B1 (en) Two-stroke cycle engine
JP3773507B2 (ja) 2サイクル内燃エンジン
EP1069294B1 (en) Two-stroke cycle engine
EP2770180B1 (en) Two-stroke internal combustion engine
US9719416B2 (en) Stratified scavenging two-stroke engine
JP5060459B2 (ja) 2サイクルエンジン
US9726070B2 (en) Stratified scavenging two-stroke engine
JP7493539B2 (ja) 2ストロークエンジン及び手持ち式の動力工具
JP2008274804A (ja) 2サイクルエンジン
WO2002075129A2 (en) Two-cycle engine
JP2001329844A (ja) 2サイクルエンジン
CN203730130U (zh) 无死点往复式内燃机
CN219910970U (zh) 一种扫气道具有限流结构的二冲程发动机
JP2012107552A (ja) 層状掃気2ストロークエンジン
JP5594026B2 (ja) 2サイクルエンジンおよびそれを備えたエンジン作業機
JP2023019609A (ja) 2サイクルエンジン
WO2012132658A1 (ja) 2ストロークエンジン
JP2014114697A (ja) 2ストロークエンジン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08703708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08703708

Country of ref document: EP

Kind code of ref document: A1