WO2009091037A1 - 宇宙浮遊物体の検出装置 - Google Patents
宇宙浮遊物体の検出装置 Download PDFInfo
- Publication number
- WO2009091037A1 WO2009091037A1 PCT/JP2009/050560 JP2009050560W WO2009091037A1 WO 2009091037 A1 WO2009091037 A1 WO 2009091037A1 JP 2009050560 W JP2009050560 W JP 2009050560W WO 2009091037 A1 WO2009091037 A1 WO 2009091037A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- detection
- floating object
- space
- space floating
- sheet body
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/66—Arrangements or adaptations of apparatus or instruments, not otherwise provided for
- B64G1/68—Arrangements or adaptations of apparatus or instruments, not otherwise provided for of meteoroid or space debris detectors
Definitions
- the present invention relates to a space floating object detection device used for detecting the presence of space floating objects existing in outer space such as orbiting the earth.
- Space floating objects such as the above space debris and cosmic dust have high speed, so if they collide with a spacecraft such as an operating satellite, manned spacecraft, or space station, they may have a serious impact on the spacecraft in operation. is there. Therefore, it is necessary to accurately grasp the existence status of space floating objects in the space environment in order to take measures to prevent the collision between space floating objects and operational spacecraft as described above. .
- a sound or vibration generated at the time of the collision of a space-borne object is detected by a detector such as a piezo film, a piezoelectric element, or a microphone.
- a method for measuring (for example, refer to Patent Document 1), a method for measuring light and charge when a space floating object collides into plasma and a required detector, and a piezo film serving as a detector is charged in advance.
- a method of measuring voltage fluctuations that occur when a space-floating object collides and penetrates has been considered.
- the light and electric charge that can be measured when a space-borne object collides to become plasma is limited to a range of about 30 cm in diameter.
- the apparatus configuration for detecting plasma is complicated and large.
- the size of the piezo film is naturally limited to apply the charge.
- each of the above conventional methods requires a dedicated structure for detecting the collision of a space-borne object, and furthermore, what size particle-size space-floating object collides at what speed.
- it is necessary to calibrate in advance by conducting experiments and calculations that simulate various collision patterns of space floating objects at ground facilities. Therefore, much labor and time are required for this calibration operation.
- the present invention has been made in view of the above-described circumstances, can reduce the weight of the apparatus configuration as a simple configuration, can easily set a wide detection area, and particularly requires calibration. It is an object of the present invention to provide a space floating object detection device that can detect a collision of a space floating object without any problem.
- a detection sheet body in which a large number of conductor detection lines are held at a required arrangement pitch on a nonconductor thin film that can be exposed to the space environment. And a detection circuit connected to each detection line, and when the detection line of the detection sheet body breaks due to the collision of the space floating object, the space floating object that has collided with the detection sheet body is detected by the detection circuit. Use a means to enable detection.
- two detection sheet bodies in which a large number of conductor detection lines are held at a required arrangement pitch on a nonconductor thin film that can be exposed to the space environment are provided in the direction in which the detection lines extend. Are arranged so as to be orthogonal to each other, and further provided with a detection circuit connected to each detection line, and if the detection line of the detection sheet body breaks due to a collision with a space suspended object, the detection circuit A means is adopted that makes it possible to detect a space floating object that has collided with each of the detection sheet bodies.
- a detection sheet body in which a large number of conductor detection lines extending in directions perpendicular to each other are held on both surfaces of a nonconductor thin film that can be exposed to the space environment at a predetermined arrangement pitch, and The detection circuit connected to each detection line is provided, and when the detection line of the detection sheet breaks due to the collision of the space floating object, the detection circuit detects the space floating object that has collided with the detection sheet body.
- Adopt a solution that enables it.
- a detection sheet body in which a large number of conductor detection lines are held at a predetermined arrangement pitch on a nonconductor thin film that can be exposed to the space environment is separated into two layers at a predetermined interval.
- a detection circuit is provided so that when the detection line of the detection sheet body breaks due to the collision of the space floating object, the detection circuit can detect the space floating object that has collided with the detection sheet body.
- the direction in which the detection lines extend includes two detection sheet bodies in which a large number of conductor detection lines are held at a required arrangement pitch on a nonconductor thin film that can be exposed to the space environment.
- Laminates stacked in layers so as to be orthogonal to each other are arranged in two layers at a required interval, and further equipped with a detection circuit, which breaks into the detection line of the detection sheet body due to the collision of a space floating object.
- a solution means is adopted in which the detection circuit can detect the space floating object that has collided with the detection sheet body.
- a detection sheet body in which a large number of conductor detection lines extending in directions orthogonal to each other are held on both surfaces of a nonconductor thin film that can be exposed to the space environment at a required arrangement pitch. , Arranged in two layers at a required interval, and further provided with a detection circuit, and when the detection line of the detection sheet body breaks due to the collision of a space floating object, the detection circuit causes the detection sheet body to Adopt a solution that enables detection of colliding space floating objects.
- the direction in which the detection lines extend includes two detection sheet bodies in which a large number of conductor detection lines are held at a required arrangement pitch on a nonconductive thin film that can be exposed to the space environment.
- the detection circuit is provided with a detection circuit, and when the detection line of the detection sheet body breaks due to the collision of the space floating object, the detection circuit collides with the detection sheet body.
- Adopt a solution that enables detection of space-borne objects.
- the arrangement pitch of the detection lines may be set to a dimension corresponding to an effective diameter which is a measurement lower limit of a space floating object desired to be detected.
- the width of the detection line may be set to a dimension corresponding to the lower limit of measurement of the effective diameter of the space floating object desired to be detected.
- the detection sheet body in which a large number of conductor detection lines are held at a required arrangement pitch on a nonconductive thin film that can be exposed to the space environment, and a detection circuit connected to each detection line.
- the detection circuit detects the space floating object that has collided with the detection sheet body. Based on the above, the distribution of spaceborne objects can be measured by measuring how many spaceborne objects collide per unit area.
- the detection sheet body Since the said detection sheet body should just provide a detection line in a thin film, while being able to make it a very lightweight thing, an area can be expanded easily. Therefore, the measurement area of the space floating object can be easily expanded.
- the detection sheet body is lightweight and can be freely deformed.
- the detection sheet body can be installed by being attached to a thermal blanket on the outer surface of the spacecraft, or by using an antenna installed in the spacecraft. It can be arranged freely, such as unfolding or unfolding with a required mast.
- the detection principle of the space floating object is based on a simple phenomenon that the detection line breaks due to the collision of the space floating object, the detection circuit collides with the detection sheet body from the presence or absence of conduction of each detection line. Calibration can be eliminated because the detected space-borne object can be detected.
- the detection circuit is provided with a detection circuit connected to each detection line, and when the detection line of the detection sheet body breaks due to a collision with a space floating object, the detection circuit causes the detection sheet body to A configuration that allows detection of colliding space floating objects, or a large number of conductor detection lines that extend in directions orthogonal to each other on both sides of a non-conductive thin film that can be exposed to the space environment at the required arrangement pitch.
- a detection circuit connected to each detection line, and when the detection line of the detection sheet breaks due to a collision with a space floating object, the detection circuit causes the detection sheet body to Collide
- the position of the broken detection line can be specified, so the size of space floating objects that collide with the detection sheet body can be detected, and It is possible to obtain the direction (incident direction) in which the object has come.
- a detection sheet body in which a large number of conductor detection lines are held at a required arrangement pitch on a nonconductive thin film that can be exposed to the space environment is arranged in two layers at a required interval;
- Two detection sheet bodies in which a large number of conductor detection lines are held at a required arrangement pitch on a thin film made of a nonconductor that can be exposed to the space environment are stacked so that the directions in which the detection lines extend are perpendicular to each other
- the laminate formed in this manner is arranged in two layers at a required interval, and further provided with a detection circuit.
- the detection circuit That hit the detection sheet A structure in which floating objects can be detected, or a large number of conductor detection lines extending in directions perpendicular to each other are held on both sides of a non-conductive thin film that can be exposed to the space environment at a required arrangement pitch.
- the detection sheet body is arranged in two layers at a required interval, and further provided with a detection circuit.
- the detection circuit A structure that allows detection of a space-borne object that has collided with the detection sheet body, or two sheets of non-conductive thin film that can be exposed to the space environment to hold a large number of conductive detection lines at the required array pitch
- the detection sheet body is arranged in two layers at a required interval, and further includes a detection circuit.
- the detection circuit When the detection line of the detection sheet body breaks due to a collision with a floating object, the detection circuit The structure is designed to detect a space floating object that has collided with the detection sheet body, or a conductor detection line extending in a direction perpendicular to each other on both surfaces of a nonconductive thin film that can be exposed to the space environment.
- a plurality of detection sheet bodies each held at an arrangement pitch and a detection sheet body obtained by holding a large number of conductor detection lines at a required arrangement pitch on a nonconductive thin film that can be exposed to the space environment.
- It is arranged in two layers at intervals, and further includes a detection circuit, and when the detection line of the detection sheet body breaks due to the collision of a space floating object, the space that has collided with the detection sheet body by the detection circuit Detect floating objects
- the width of the detection line By setting the width of the detection line to a dimension corresponding to the measurement lower limit of the effective diameter of the space floating object desired to be detected, at least the width of the detection line due to the breakage of one detection line It is possible to detect that a space suspended object having an effective diameter larger than the size collides.
- FIG. 1 is a schematic plan view of a space floating object detection apparatus according to an embodiment of the present invention. It is a partially enlarged view of a detection sheet body in the space floating object detection device according to an embodiment of the present invention. It is a circuit diagram which shows an example of the detection circuit in FIG. 1A. It is a circuit diagram which shows another example of the detection circuit in FIG. 1A. It is a circuit diagram which shows another example of the detection circuit in FIG. 1A. It is a schematic plan view of the detection apparatus of the space floating object concerning other embodiment of this invention. It is a partially enlarged view of a detection sheet body in a space floating object detection device according to another embodiment of the present invention.
- FIG. 8 is a second diagram illustrating an application example of the detection device illustrated in FIG. 7. It is the 1st figure which shows another application example of the detection apparatus shown in FIG. 7 a second diagram illustrating another application example of the detection device illustrated in FIG. 7.
- FIG. 8 is a third diagram illustrating another application example of the detection device illustrated in FIG. 7. It is a figure which shows another application example of the detection apparatus shown in FIG.
- FIG. 1A, FIG. 1B, and FIG. 2 are diagrams showing a space floating object detection device according to the present embodiment.
- This detection apparatus has a detection line 3 as a linear, elongated conducting wire on an insulating thin film 2 that can be exposed to the space environment, with an array pitch (spatial period) corresponding to the particle size of a space floating object desired to be detected.
- a detection circuit 4 that electrically detects the occurrence of breakage of each detection line 3 provided on the detection sheet body 1.
- the detection sheet body 1 when it is desired to detect a space floating object having an effective diameter of about 100 ⁇ m or more, corresponds to a particle size at which the arrangement pitch of the detection lines 3 is set as a measurement lower limit of the space floating object.
- 50 ⁇ m wide detection lines 3 made of copper foil are arranged in parallel at 50 ⁇ m intervals on one side of a thin film 2 made of polyimide or the like and having a thickness of about 50 ⁇ m by a technique such as etching so that the dimension is 100 ⁇ m. It is.
- a detection sheet body 1 when a space floating object having an effective diameter of 100 ⁇ m or more collides, one or more detection lines 3 among the detection lines 3 arranged on one side of the thin film 2 are broken.
- each detection line 3 in the detection sheet body 1 is equivalent to detecting the on / off states of a large number of switches because it is only necessary to detect that the conduction of each detection line 3 is lost.
- the detection circuit 4 is a circuit that performs digital detection using a diode matrix.
- the detection circuit 4 attaches row numbers and column numbers to all detection lines 3 arranged on the detection sheet body 1 so that each detection line 3 can be distinguished by the row number and the column number. Is connected to each bit of the column output port 5, the detection line 3 of each row is connected to each bit of the row input port 6, and each detection line 3 is isolated from the others using a diode 7. Circuit configuration.
- FIG. 2 for convenience of illustration, a circuit configuration in which 16 detection lines are connected to the column output port 5 and the row input port 6 by 4 bits each is shown. 2 indicates a load resistance provided for each row block of the detection line 3.
- the space floating object detection apparatus travels in a desired space environment in which the distribution of the space floating object is desired, for example, a predetermined orbit around the earth.
- the detection sheet body 1 is deployed in a state of being mounted on a spacecraft.
- the detection line 3 present at the collision position is broken when the space floating object penetrates the thin film 2.
- the detection line 3 is broken in this way, the position and number of the detection lines 3 broken by the detection circuit 4 are detected. Therefore, the detection sheet body is calculated from the number of detection lines 3 broken at a time. The size of the space floating object that collided with 1 is determined.
- the space floating object detection device of the present invention it is possible to detect the collision of the space floating object and to detect the size of the space floating object that has collided. Based on the area, it is possible to measure how many space floating objects collide per unit area.
- the detection sheet body 1 can be made very light and can easily be enlarged in area because the detection line 3 may be provided on the thin film 2 by etching or the like. Therefore, according to such a detection sheet body 1, the measurement area of the space floating object can be easily expanded.
- the detection circuit 4 since the detection principle of the space floating object is based on a simple phenomenon that the detection line 3 is broken due to the collision of the space floating object, the detection circuit 4 only needs to be able to monitor the presence / absence of conduction of each detection line 3. Thus, it is possible to detect the collision of the space floating object and detect the size of the colliding space floating object without requiring calibration.
- the detection circuit 4 needs to be protected by being incorporated in the spacecraft.
- the detection sheet body 1 is lightweight and can be freely deformed. It may be installed by being attached to a thermal blanket, or can be deployed freely by using an antenna installed in the spacecraft or by using a required mast.
- the detection line 3 is broken by the collision of the space floating object, the subsequent collision of the space floating object cannot be detected in the region along the broken detection line 3, but the detection line 3 follows the broken detection line 3.
- the effective detection area of space floating objects is reduced by the area of the area, that is, the effective denominator side when calculating how many space floating objects collide per unit area Only the detection area is reduced, and the function of detecting a collision of a space floating object itself is not affected at all. Therefore, it is possible to continuously detect a space floating object over a long period of time.
- a circuit for performing digital detection using a diode matrix is shown as the detection circuit 4.
- the current flowing through each detection line 3 provided on the detection sheet body 1 is detected by analog detection. It is good also as the detection circuit 4 provided with the circuit structure to do.
- the detection circuit 4 shown in FIG. 3 connects each detection line 3 to which the individual current limiting resistor 9 is connected in parallel to the current / voltage conversion circuit 10 and further connects the current / voltage conversion circuit 10 to the analog / voltage conversion circuit 10.
- the digital conversion circuit 11 As a configuration in which the digital conversion circuit 11 is connected, a constant current is caused to flow through each detection line 3 by the current limiting resistor 9, and the total sum thereof can be measured by the current / voltage conversion circuit 10 and the analog / digital conversion circuit 11.
- the detection circuit 4 when the detection line 3 is broken, the current value flowing through the current / voltage conversion circuit 10 decreases by the number of broken lines. From the measurement result, the number of broken detection lines 3 can be known.
- the position of the broken detection line 3 cannot be known.
- the digital circuit shown in FIG. Compared to the configuration, the collision time can be known with higher resolution.
- the detection circuit 4 of FIGS. 1A, 1B and 2 is shown in FIG. As shown in FIG. 4, a hybrid circuit configuration combining a digital system and an analog system may be adopted.
- the detection circuit 4 shown in FIG. 4 attaches row numbers and column numbers to all the detection lines 3 arranged on the detection sheet body 1 in the same manner as the digital circuit shown in FIG.
- the column detection lines 3 are output as columns through individual current limiting resistors 9 similar to those shown in FIG. 3 and individual diodes 7 for isolating each detection line 3 similar to that shown in FIG.
- the row input side of each detection line 3 is connected to the current / voltage conversion circuit 10 similar to that shown in FIG. 3 corresponding to each row.
- the output side of the voltage conversion circuit 10 is connected to the current change detection unit 13 via a high-pass filter 12 (shown by a capacitor symbol for convenience in the figure), and the output side of each current / voltage conversion circuit 10 is Also connected in parallel to the current detector 14 for detecting the presence or absence of current It was there as a constituent.
- the column output is then turned on one by one in sequence, and the current detection unit determines whether or not current is present from the output of the current / voltage conversion circuit 10.
- the current detection unit determines whether or not current is present from the output of the current / voltage conversion circuit 10.
- the detection circuit 4 of the hybrid system it is possible to know all the break time, the break position, and the number of the break detection lines 3 of the detection lines 3. Further, although the circuit configuration is slightly complicated, the required power can be basically the same as that of the analog detection circuit 4 shown in FIG.
- the hybrid detection circuit 4 has a circuit configuration in which each detection line 3 is insulated from the others using a diode 7, but the detection lines 3 are very finely arranged in parallel at 50 ⁇ m width and 50 ⁇ m intervals.
- the diode 7 is a small surface mount type, the diode 7 is about 1.25 ⁇ 2.5 mm, which is larger than the detection line 3, and therefore the diode 7 is mounted for each detection line 3. This has the problem of causing difficulty in mounting and increasing the size of the mounting part.
- each commonly connected detection line 3 is connected to the negative phase input end of the operational amplifier constituting the current / voltage conversion circuit 10 and one end of the feedback resistor.
- the negative phase input terminal since the positive phase input terminal of the operational amplifier is grounded, the negative phase input terminal has the same potential as that of the positive phase input terminal, that is, the ground potential, and the current flowing through the detection line 3 is the other. It is possible to prevent the detection lines 3 from flowing around and to make each detection line 3 independent.
- the most suitable detection circuit 4 is appropriately selected and used in consideration of items desired to be detected, cost and time for constructing the circuit, and available power. You can do it.
- FIG. 5A, FIG. 5B, and FIG. 5C show a space floating object detection device according to another embodiment, and the detection sheet body 1 in the embodiment shown in FIG. 1A, FIG. 1B, and FIG.
- the two detection sheet bodies 1a and 1b having the same configuration are arranged so as to overlap each other so that the extending directions of the detection lines 3 are orthogonal to each other.
- Reference numerals 4a and 4b denote detection circuits for detecting the broken state of each detection line 3 for each of the detection sheet bodies 1a and 1b.
- Other configurations are the same as those shown in FIGS. 1A, 1B, and 2, and the same components are denoted by the same reference numerals.
- the space floating object detection device of the present embodiment when the detection line 3 breaks in the detection sheet bodies 1a and 1b due to the collision of the space floating object, detection by the detection circuits 4a and 4b is performed. Based on the detection of the break of the line 3, the collision of the space floating object can be detected.
- the position information of the broken detection line 3 in the detection sheet body 1a detected by the detection circuit 4a connected to each detection line 3 of one detection sheet body 1a, and the other detection sheet body 1b By detecting the position of the broken detection line 3 in the detection sheet body 1b where the breakage is detected by the detection circuit 4b connected to each of the detection lines 3, the detection broken by the collision of the space floating object is detected.
- the broken position of the line 3 can be specified on the two-dimensional plane on which the detection sheet bodies 1a and 1b are arranged.
- the space-floating object is detected as shown by a two-dot chain line in FIG. 5B. If the shape of the hole 15 formed in each of the sheet bodies 1a and 1b due to the collision is almost circular, a space suspended object having an effective diameter of about 300 ⁇ m is placed on the plane on which the detection sheet bodies 1a and 1b are arranged. On the other hand, as shown by the two-dot chain line in FIG. 5C, the shape of the hole 15 formed in each of the sheet bodies 1a and 1b due to the collision of the space floating object can be determined.
- the size of the colliding space floating object can be detected more accurately, and the direction (incident direction) in which the colliding space floating object has come can be obtained.
- FIGS. 6A and 6B show a space floating object detection apparatus according to still another embodiment of the present invention.
- the thin film 2 is the same as the thin film 2 in the embodiment of FIGS. 1A, 1B, and 2.
- a detection sheet body 1c is configured by holding a large number of detection lines 3 as elongated conductive wires extending linearly in directions orthogonal to each other at the same arrangement pitch as shown in FIGS. 1A and 1B. . Further, the detection sheet body 1c is configured to include a detection circuit 4c connected to all the detection lines 3 on the front surface side and the back surface side.
- FIGS. 1A, 1B, and 2 Other configurations are the same as those shown in FIGS. 1A, 1B, and 2, and the same components are denoted by the same reference numerals.
- the detection sheet body is caused by the collision of the space floating object.
- the detection line 3 breaks on the front surface side and the back surface side of 1c, the collision of the space floating object can be detected based on detection of the breakage of the detection line 3 by the detection circuit 4c.
- the broken position can be specified on the two-dimensional plane on which the detection sheet body 1c is arranged.
- FIG. 7 shows a space floating object detection apparatus according to still another embodiment of the present invention, and two detection sheet bodies 1a and 1b are shown in the same manner as shown in FIGS. 5A, 5B, and 5C.
- Two sets of detection sheet bodies 1a and 1b (laminations) formed by overlapping the detection lines 3 so that the extending directions of the detection lines 3 are orthogonal to each other with a required interval t, for example, an interval t of about 10 cm.
- the structure is provided in parallel (in two layers).
- One set formed by the two sets of detection sheet bodies 1a and 1b and the other set are, for example, maintained at intervals of a frame structure (not shown) having a height dimension corresponding to the desired interval t. What is necessary is just to hold
- FIGS. 5A, 5B, and 5C Other configurations are the same as those shown in FIGS. 5A, 5B, and 5C, and the same components are denoted by the same reference numerals.
- the space floating Since the position where the object collides can be specified on a two-dimensional plane on which the detection sheet bodies 1a and 1b are arranged, the set of two sets of detection sheet bodies 1a and 1b arranged with the required interval t therebetween.
- the collision position information of the space floating object specified by the detection sheet bodies 1a and 1b in the upper set in FIG. 7 and the detection in the lower set in FIG. 7 as the other set From the collision position information of the space floating object specified by the sheet bodies 1a and 1b, the direction (incident direction) in which the colliding space floating object has come can be detected more accurately.
- the collision position information of the space floating object specified by the detection sheet bodies 1a and 1b in the upper set in FIG. 7 and the detection sheet bodies 1a and 1b in the lower set in FIG. 7 as the other set are specified.
- the moving sheet of the space floating object between each set calculated from the collision position information of the space floating object and the distance t between each set, and the detection sheet body in the upper set in FIG. 7 as one set
- the set of two detection sheet bodies 1a and 1b is shown as two sets arranged in parallel with a required interval t. As shown in FIG. 8B, any one of the sets may be replaced with one detection sheet body 1 similar to that shown in FIGS. 1A and 1B.
- Detection circuits 4a and 4b (FIG. 5A, FIG. 5B) corresponding to breakage of the detection line 3 (see FIGS.
- the detection sheet body 1c may be replaced.
- the detection sheet body 1c is arranged in parallel in two layers with a required interval t, for example, an interval t of about 10 cm. Similar effects can be obtained. Further, as shown in FIGS. 9B and 9C, one of the detection sheet bodies 1c arranged in two layers in FIG. 9A is replaced with one detection sheet body 1 similar to that shown in FIGS. 1A and 1B. For example, the same effects as those of the embodiment of FIGS. 8A and 8B can be obtained.
- two detection sheet bodies 1 similar to those shown in FIGS. 1A and 1B may be arranged in parallel with a required interval t therebetween.
- the same effect as that of the embodiment of FIGS. 1A, 1B and 2 can be obtained, and the two detection sheet bodies 1 arranged with the required interval t therebetween.
- the present invention is not limited only to the above embodiments, and the arrangement pitch of the detection lines 3 arranged on the detection sheet bodies 1, 1a, 1b is the lower limit of measurement of the space floating object desired to be detected.
- the effective diameter may be appropriately changed according to the dimension.
- one detection line 3 is broken, it becomes possible to detect that a space suspended object having an effective diameter equal to or larger than the width of the detection line 3 has collided.
- the width dimension may be appropriately changed according to the lower limit of measurement of the effective diameter of the space floating object desired to be detected.
- the length dimension of the thin film 2 for constituting the detection sheet bodies 1, 1 a, 1 b may be appropriately changed according to the length dimension set for the detection line 3.
- the number of the detection lines 3 provided on one detection sheet body 1, 1 a, 1 b may be appropriately changed according to the arrangement pitch of the detection lines 3.
- the width dimension of the thin film 2 may be appropriately changed according to the number and the arrangement pitch of the detection lines 3 desired to be provided on one detection sheet body 1, 1a, 1b.
- the thin film 2 may be made of any material as long as it is a nonconductor that can be exposed to the space environment.
- the detection line 3 may be made of any material other than copper as long as it is a conductor, and may be installed on the thin film 2 by any method other than etching.
- a plurality of detection circuits 4 are used to detect breakage of the detection line 3 provided on one detection sheet body 1, 1a, 1b, 1c according to the processing capability of the detection circuits 4, 4a, 4b to be used.
- 4a, 4b, 4c may be used, the embodiment of FIGS. 5A, 5B, 5C, the embodiment of FIG. 7, the embodiment of FIGS. 8A, 8B, and FIG. 9A, FIG.
- the detection lines 3 of the plurality of detection sheet bodies 1, 1a, 1b, 1c are detected by one detection circuit 4, 4a, 4b, 4c. You may make it do.
- the detection circuits 4, 4 a, 4 b, and 4 c constantly monitor the conduction of the detection line 3, and if the detection line 3 is broken, if the circuit configuration is such that the number of the broken detection lines 3 can be detected, Any circuit configuration other than those shown in FIGS. 2, 3 and 4 may be employed.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Geophysics And Detection Of Objects (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
さらに、これに加えて、検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定しても良い。
(1)宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体と、各検出線に接続した検出回路を備えてなり、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにした構成としてあるので、上記検出シート体の面積を基に、単位面積当たりに宇宙浮遊物体が何個衝突するかを計測することで、宇宙浮遊物体の分布を測定できる。
図1A、図1B及び図2は、本実施形態に係る宇宙浮遊物体の検出装置を示す図である。
Claims (24)
- 宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体と、各検出線に接続した検出回路を備えてなり、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
- 宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる2枚の検出シート体を、検出線の延びる方向が互いに直交するように重ねて配置し、更に、各検出線に接続した検出回路を備えてなり、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記各検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
- 宇宙環境に曝露可能な不導体製の薄膜の両面に互いに直交する方向に延びる導体製の検出線を所要の配列ピッチでそれぞれ多数保持させてなる検出シート体と、各検出線に接続した検出回路を備えてなり、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
- 宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体を、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
- 宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる2枚の検出シート体を検出線の延びる方向が互いに直交するように重ねて配置してなる積層物を、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
- 宇宙環境に曝露可能な不導体製の薄膜の両面に互いに直交する方向に延びる導体製の検出線を所要の配列ピッチでそれぞれ多数保持させてなる検出シート体を、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
- 宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる2枚の検出シート体を検出線の延びる方向が互いに直交するように重ねて配置してなる積層物と、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体とを、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
- 宇宙環境に曝露可能な不導体製の薄膜の両面に互いに直交する方向に延びる導体製の検出線を所要の配列ピッチでそれぞれ多数保持させてなる検出シート体と、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体とを、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
- 検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項1記載の宇宙浮遊物体の検出装置。
- 検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項2記載の宇宙浮遊物体の検出装置。
- 検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項3記載の宇宙浮遊物体の検出装置。
- 検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項4記載の宇宙浮遊物体の検出装置。
- 検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項5記載の宇宙浮遊物体の検出装置。
- 検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項6記載の宇宙浮遊物体の検出装置。
- 検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項7記載の宇宙浮遊物体の検出装置。
- 検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項8記載の宇宙浮遊物体の検出装置。
- 検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項1記載の宇宙浮遊物体の検出装置。
- 検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項2記載の宇宙浮遊物体の検出装置。
- 検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項3記載の宇宙浮遊物体の検出装置。
- 検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項4記載の宇宙浮遊物体の検出装置。
- 検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項5記載の宇宙浮遊物体の検出装置。
- 検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項6記載の宇宙浮遊物体の検出装置。
- 検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項7記載の宇宙浮遊物体の検出装置。
- 検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項8記載の宇宙浮遊物体の検出装置。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0906854-6A BRPI0906854B1 (pt) | 2008-01-17 | 2009-01-16 | Aparelho de detecção para um objeto voador no espaço |
US12/863,035 US8564430B2 (en) | 2008-01-17 | 2009-01-16 | Device for detecting space objects |
CA2712411A CA2712411C (en) | 2008-01-17 | 2009-01-16 | Device for detecting space objects |
CN200980108349.4A CN101965293B (zh) | 2008-01-17 | 2009-01-16 | 宇宙悬浮物体的检测装置 |
EA201070791A EA019066B1 (ru) | 2008-01-17 | 2009-01-16 | Устройство для обнаружения космических объектов |
EP09702310.5A EP2236422B1 (en) | 2008-01-17 | 2009-01-16 | Device for detecting space floating matters |
JP2009550061A JP5492568B2 (ja) | 2008-01-17 | 2009-01-16 | 宇宙浮遊物体の検出装置 |
IL207062A IL207062A0 (en) | 2008-01-17 | 2010-07-18 | Device for detecting space objects |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-008452 | 2008-01-17 | ||
JP2008008452 | 2008-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009091037A1 true WO2009091037A1 (ja) | 2009-07-23 |
Family
ID=40885419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/050560 WO2009091037A1 (ja) | 2008-01-17 | 2009-01-16 | 宇宙浮遊物体の検出装置 |
Country Status (11)
Country | Link |
---|---|
US (1) | US8564430B2 (ja) |
EP (2) | EP2236422B1 (ja) |
JP (1) | JP5492568B2 (ja) |
KR (1) | KR20100102678A (ja) |
CN (1) | CN101965293B (ja) |
BR (1) | BRPI0906854B1 (ja) |
CA (1) | CA2712411C (ja) |
EA (1) | EA019066B1 (ja) |
IL (1) | IL207062A0 (ja) |
UA (1) | UA94873C2 (ja) |
WO (1) | WO2009091037A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011068193A1 (ja) * | 2009-12-04 | 2011-06-09 | 株式会社Ihi | スペースデブリ除去方法 |
JP2012116349A (ja) * | 2010-12-01 | 2012-06-21 | Ihi Corp | 宇宙浮遊物体検出装置 |
RU2457986C1 (ru) * | 2011-04-12 | 2012-08-10 | Федеральное государственное унитарное предприятие "Научно-производственное объединение им. С.А. Лавочкина" | Датчик для регистрации и замера параметров метеороидных и техногенных частиц, межзвездной и межпланетной пыли, воздействующих на космический аппарат |
RU183905U1 (ru) * | 2018-04-10 | 2018-10-08 | федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" | Устройство для измерения параметров хаотических техногенных и метеоритных космических частиц |
RU190327U1 (ru) * | 2019-01-09 | 2019-06-26 | федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" | Устройство для измерения параметров космических метеороидных и техногенных частиц и исследования их влияния на свойства материалов спутникостроения |
US20190193874A1 (en) * | 2017-12-22 | 2019-06-27 | Japan Aerospace Exploration Agency | Multi-layer insulation, spacecraft, damage diagnosis device, and method of detecting object to be detected |
WO2021149553A1 (ja) * | 2020-01-22 | 2021-07-29 | 国立研究開発法人宇宙航空研究開発機構 | 導電性可撓導体と宇宙用導電性テザーとデブリ検出器及び宇宙用テザーセット |
RU2761957C1 (ru) * | 2020-12-02 | 2021-12-14 | Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) | Способ импульсной лазерной очистки космического пространства от одиночных мелких объектов космического мусора и импульсная лазерная система для его реализации |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8788218B2 (en) | 2011-01-21 | 2014-07-22 | The United States Of America As Represented By The Secretary Of The Navy | Event detection system having multiple sensor systems in cooperation with an impact detection system |
RU2476908C2 (ru) * | 2011-06-10 | 2013-02-27 | Государственное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) | Устройство регистрации микрометеороидов и частиц космического мусора |
RU2485548C2 (ru) * | 2011-06-30 | 2013-06-20 | Государственное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) | Устройство измерения оптических характеристик ударносжатых прозрачных материалов элементов конструкции космического аппарата |
DE102012000260B3 (de) | 2012-01-10 | 2013-01-17 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Solargenerator |
RU2583251C2 (ru) * | 2014-06-24 | 2016-05-10 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) | Способ определения координат места пробоя корпуса гермоотсека космического объекта частицей природного или техногенного происхождения и устройство для его реализации |
NL1041292B1 (nl) * | 2015-05-07 | 2017-01-26 | Rudolfus Johannes Maria Van Der Meer Ir | Werkwijze en configuratie voor het bepalen van de richting van waaruit een kogel komt. |
GB2541391B (en) * | 2015-08-14 | 2018-11-28 | Thermo Fisher Scient Bremen Gmbh | Detector and slit configuration in an isotope ratio mass spectrometer |
RU2610342C1 (ru) * | 2015-11-05 | 2017-02-09 | федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) | Устройство для исследования потоков микрометеороидов и частиц космического мусора |
RU2618962C1 (ru) * | 2016-03-09 | 2017-05-11 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации | Датчик для исследования потоков метеороидных и техногенных частиц в космическом пространстве |
DE102016104725B4 (de) * | 2016-03-15 | 2019-01-17 | Technische Hochschule Köln | Verfahren zur Überwachung der Struktur eines faserverstärkten Verbundwerkstoffs mit einer Sensoranordnung aus einer Mehrzahl von Sensoren zur Strukturüberwachung des Verbund- werkstoffs |
RU172272U1 (ru) * | 2016-11-24 | 2017-07-03 | федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" | Прибор для изучения параметров микрометеоритов и частиц космического мусора |
DE102016125874B3 (de) | 2016-12-29 | 2018-02-15 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Erfassungseinrichtung |
DE102016125853B3 (de) * | 2016-12-29 | 2018-02-15 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Erfassungssystem |
RU2673128C1 (ru) * | 2017-09-25 | 2018-11-22 | Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" | Способ обнаружения кометного вещества и идентификации его с источником происхождения |
DE102019124397B4 (de) | 2019-09-11 | 2021-11-18 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Erfassungssystem |
DE102021124635B3 (de) | 2021-09-23 | 2022-12-08 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Raumobjekt-Aufprallsensor, Raumobjekt-Aufpralleinrichtung, Raumflugobjekt und Raumobjekt-Solarpanel |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05286500A (ja) | 1992-04-13 | 1993-11-02 | Ishikawajima Harima Heavy Ind Co Ltd | スペースデブリ観測衛星 |
JPH06219399A (ja) * | 1993-01-22 | 1994-08-09 | Ishikawajima Harima Heavy Ind Co Ltd | 宇宙漂流物体の観測・捕獲装置 |
JP2516204Y2 (ja) * | 1990-09-07 | 1996-11-06 | 石川島播磨重工業株式会社 | 流星検出器 |
JPH10300395A (ja) * | 1997-02-28 | 1998-11-13 | Daikin Ind Ltd | 飛翔体の検出装置及び識別装置 |
JPH11227699A (ja) * | 1998-02-17 | 1999-08-24 | Ishikawajima Harima Heavy Ind Co Ltd | 宇宙漂流物体の捕獲装置 |
JP3870349B2 (ja) * | 1997-03-10 | 2007-01-17 | 株式会社アイ・エイチ・アイ・エアロスペース | 宇宙漂流物体の捕獲装置 |
JP3870350B2 (ja) * | 1997-03-10 | 2007-01-17 | 株式会社アイ・エイチ・アイ・エアロスペース | 宇宙漂流物体の計測装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL58159C (ja) * | 1939-07-31 | |||
US3277724A (en) * | 1964-04-17 | 1966-10-11 | Boeing Co | Meteoroid particle measuring device |
US3407304A (en) * | 1965-11-19 | 1968-10-22 | Nasa Usa | Micrometeoroid penetration measuring device |
JPS6172999A (ja) | 1984-09-14 | 1986-04-15 | 富士重工業株式会社 | えい航標的の命中表示装置 |
JPH0748948Y2 (ja) | 1987-08-21 | 1995-11-08 | 大成建設株式会社 | 防犯用建築部材 |
US4964300A (en) * | 1989-06-21 | 1990-10-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method and apparatus for determining time, direction and composition of impacting space particles |
JPH07267200A (ja) | 1994-04-01 | 1995-10-17 | Mitsubishi Heavy Ind Ltd | 宇宙塵防御バンパ |
JP2973315B1 (ja) | 1998-07-16 | 1999-11-08 | 日本電気株式会社 | 単点観測による宇宙デブリ検出装置および検出方法 |
JP2006064551A (ja) * | 2004-08-27 | 2006-03-09 | Oht Inc | 検査装置及び検査方法並びに検査装置用センサ |
JP5286500B2 (ja) | 2007-03-30 | 2013-09-11 | 株式会社コルグ | ピアノ用電子基板の取り付け装置 |
-
2009
- 2009-01-16 BR BRPI0906854-6A patent/BRPI0906854B1/pt not_active IP Right Cessation
- 2009-01-16 CN CN200980108349.4A patent/CN101965293B/zh active Active
- 2009-01-16 KR KR1020107016511A patent/KR20100102678A/ko active Search and Examination
- 2009-01-16 EP EP09702310.5A patent/EP2236422B1/en active Active
- 2009-01-16 EP EP13160127.0A patent/EP2607241B1/en active Active
- 2009-01-16 EA EA201070791A patent/EA019066B1/ru not_active IP Right Cessation
- 2009-01-16 CA CA2712411A patent/CA2712411C/en active Active
- 2009-01-16 US US12/863,035 patent/US8564430B2/en active Active
- 2009-01-16 UA UAA201009125A patent/UA94873C2/ru unknown
- 2009-01-16 WO PCT/JP2009/050560 patent/WO2009091037A1/ja active Application Filing
- 2009-01-16 JP JP2009550061A patent/JP5492568B2/ja active Active
-
2010
- 2010-07-18 IL IL207062A patent/IL207062A0/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2516204Y2 (ja) * | 1990-09-07 | 1996-11-06 | 石川島播磨重工業株式会社 | 流星検出器 |
JPH05286500A (ja) | 1992-04-13 | 1993-11-02 | Ishikawajima Harima Heavy Ind Co Ltd | スペースデブリ観測衛星 |
JPH06219399A (ja) * | 1993-01-22 | 1994-08-09 | Ishikawajima Harima Heavy Ind Co Ltd | 宇宙漂流物体の観測・捕獲装置 |
JPH10300395A (ja) * | 1997-02-28 | 1998-11-13 | Daikin Ind Ltd | 飛翔体の検出装置及び識別装置 |
JP3870349B2 (ja) * | 1997-03-10 | 2007-01-17 | 株式会社アイ・エイチ・アイ・エアロスペース | 宇宙漂流物体の捕獲装置 |
JP3870350B2 (ja) * | 1997-03-10 | 2007-01-17 | 株式会社アイ・エイチ・アイ・エアロスペース | 宇宙漂流物体の計測装置 |
JPH11227699A (ja) * | 1998-02-17 | 1999-08-24 | Ishikawajima Harima Heavy Ind Co Ltd | 宇宙漂流物体の捕獲装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2236422A4 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011068193A1 (ja) * | 2009-12-04 | 2011-06-09 | 株式会社Ihi | スペースデブリ除去方法 |
RU2524325C2 (ru) * | 2009-12-04 | 2014-07-27 | АйЭйчАй КОРПОРЕЙШН | Способ для очистки от космического мусора |
US9302789B2 (en) | 2009-12-04 | 2016-04-05 | Ihi Corporation | Method for clearing space debris |
JP2012116349A (ja) * | 2010-12-01 | 2012-06-21 | Ihi Corp | 宇宙浮遊物体検出装置 |
RU2457986C1 (ru) * | 2011-04-12 | 2012-08-10 | Федеральное государственное унитарное предприятие "Научно-производственное объединение им. С.А. Лавочкина" | Датчик для регистрации и замера параметров метеороидных и техногенных частиц, межзвездной и межпланетной пыли, воздействующих на космический аппарат |
US20190193874A1 (en) * | 2017-12-22 | 2019-06-27 | Japan Aerospace Exploration Agency | Multi-layer insulation, spacecraft, damage diagnosis device, and method of detecting object to be detected |
US11492149B2 (en) * | 2017-12-22 | 2022-11-08 | Japan Aerospace Exploration Agency | Multi-layer insulation of spacecraft structure for cosmic dust impact damage monitoring |
RU183905U1 (ru) * | 2018-04-10 | 2018-10-08 | федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" | Устройство для измерения параметров хаотических техногенных и метеоритных космических частиц |
RU190327U1 (ru) * | 2019-01-09 | 2019-06-26 | федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" | Устройство для измерения параметров космических метеороидных и техногенных частиц и исследования их влияния на свойства материалов спутникостроения |
WO2021149553A1 (ja) * | 2020-01-22 | 2021-07-29 | 国立研究開発法人宇宙航空研究開発機構 | 導電性可撓導体と宇宙用導電性テザーとデブリ検出器及び宇宙用テザーセット |
RU2761957C1 (ru) * | 2020-12-02 | 2021-12-14 | Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) | Способ импульсной лазерной очистки космического пространства от одиночных мелких объектов космического мусора и импульсная лазерная система для его реализации |
Also Published As
Publication number | Publication date |
---|---|
CA2712411A1 (en) | 2009-07-23 |
EP2236422A4 (en) | 2012-10-03 |
UA94873C2 (ru) | 2011-06-10 |
EP2236422B1 (en) | 2015-07-29 |
IL207062A0 (en) | 2010-12-30 |
US8564430B2 (en) | 2013-10-22 |
KR20100102678A (ko) | 2010-09-24 |
EP2236422A1 (en) | 2010-10-06 |
JPWO2009091037A1 (ja) | 2011-05-26 |
EP2607241B1 (en) | 2017-09-13 |
CA2712411C (en) | 2014-04-01 |
CN101965293A (zh) | 2011-02-02 |
BRPI0906854A2 (pt) | 2015-10-20 |
EA019066B1 (ru) | 2013-12-30 |
EA201070791A1 (ru) | 2011-02-28 |
EP2607241A3 (en) | 2016-06-08 |
EP2607241A2 (en) | 2013-06-26 |
US20110050258A1 (en) | 2011-03-03 |
CN101965293B (zh) | 2014-03-19 |
BRPI0906854B1 (pt) | 2019-04-02 |
JP5492568B2 (ja) | 2014-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5492568B2 (ja) | 宇宙浮遊物体の検出装置 | |
JP6189344B2 (ja) | クラックセンサおよびクラック監視装置 | |
US11740142B2 (en) | Piezoelectric thin-film sensor and use thereof | |
JP5556210B2 (ja) | センサおよび電子機器 | |
US12066339B2 (en) | System and method of detecting force applied to an object using pressure-sensitive sheets | |
US20230288444A1 (en) | Acceleration transducer | |
CN108459351A (zh) | 电阻型的空间碎片探测装置及探测方法 | |
JP6950427B2 (ja) | 位置検出装置 | |
CN112304349B (zh) | 一种空间碎片的探测装置及方法 | |
RU2618962C1 (ru) | Датчик для исследования потоков метеороидных и техногенных частиц в космическом пространстве | |
JP2015090296A (ja) | 力検出装置、ロボットおよび電子部品搬送装置 | |
Zhen et al. | Double Layered 2-D PVDF Film Based Flexible Sensor for Detection of Micro-Space-Debris: Impact Velocity, Angle, and Spot | |
Doyle et al. | Design and development of DRAGONS in-situ orbital debris detection and characterization payload | |
Liou et al. | DRAGONS-A Micrometeoroid and Orbital Debris Impact Sensor | |
JP7529198B2 (ja) | 減速装置 | |
WO2024185094A1 (ja) | 空間電界検出装置、空間電界検出方法および空間電界検出システム | |
Kitazawa et al. | Development of a new type sensor for in-situ space debris measurement | |
US4412114A (en) | Electrical switch | |
US9882374B2 (en) | Lightning protection component | |
Kitazawa et al. | Development and Flight Demonstration of Space Debris Monitor (SDM) | |
JP2019111936A (ja) | 多層断熱材、宇宙機、損傷診断装置、及び被検出物の検出方法 | |
WO2019059049A1 (ja) | 振動検出器 | |
Faure et al. | Use of elemental materials for the creation of an in-situ space dust impacts detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980108349.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09702310 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009550061 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12863035 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2712411 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 207062 Country of ref document: IL |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5269/DELNP/2010 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20107016511 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201070791 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009702310 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0906854 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100713 |