WO2009091037A1 - 宇宙浮遊物体の検出装置 - Google Patents

宇宙浮遊物体の検出装置 Download PDF

Info

Publication number
WO2009091037A1
WO2009091037A1 PCT/JP2009/050560 JP2009050560W WO2009091037A1 WO 2009091037 A1 WO2009091037 A1 WO 2009091037A1 JP 2009050560 W JP2009050560 W JP 2009050560W WO 2009091037 A1 WO2009091037 A1 WO 2009091037A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
floating object
space
space floating
sheet body
Prior art date
Application number
PCT/JP2009/050560
Other languages
English (en)
French (fr)
Inventor
Yukihito Kitazawa
Akira Sakurai
Original Assignee
Ihi Corporation
Institute For Q-Shu Pioneers Of Space, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihi Corporation, Institute For Q-Shu Pioneers Of Space, Inc. filed Critical Ihi Corporation
Priority to BRPI0906854-6A priority Critical patent/BRPI0906854B1/pt
Priority to US12/863,035 priority patent/US8564430B2/en
Priority to CA2712411A priority patent/CA2712411C/en
Priority to CN200980108349.4A priority patent/CN101965293B/zh
Priority to EA201070791A priority patent/EA019066B1/ru
Priority to EP09702310.5A priority patent/EP2236422B1/en
Priority to JP2009550061A priority patent/JP5492568B2/ja
Publication of WO2009091037A1 publication Critical patent/WO2009091037A1/ja
Priority to IL207062A priority patent/IL207062A0/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for
    • B64G1/68Arrangements or adaptations of apparatus or instruments, not otherwise provided for of meteoroid or space debris detectors

Definitions

  • the present invention relates to a space floating object detection device used for detecting the presence of space floating objects existing in outer space such as orbiting the earth.
  • Space floating objects such as the above space debris and cosmic dust have high speed, so if they collide with a spacecraft such as an operating satellite, manned spacecraft, or space station, they may have a serious impact on the spacecraft in operation. is there. Therefore, it is necessary to accurately grasp the existence status of space floating objects in the space environment in order to take measures to prevent the collision between space floating objects and operational spacecraft as described above. .
  • a sound or vibration generated at the time of the collision of a space-borne object is detected by a detector such as a piezo film, a piezoelectric element, or a microphone.
  • a method for measuring (for example, refer to Patent Document 1), a method for measuring light and charge when a space floating object collides into plasma and a required detector, and a piezo film serving as a detector is charged in advance.
  • a method of measuring voltage fluctuations that occur when a space-floating object collides and penetrates has been considered.
  • the light and electric charge that can be measured when a space-borne object collides to become plasma is limited to a range of about 30 cm in diameter.
  • the apparatus configuration for detecting plasma is complicated and large.
  • the size of the piezo film is naturally limited to apply the charge.
  • each of the above conventional methods requires a dedicated structure for detecting the collision of a space-borne object, and furthermore, what size particle-size space-floating object collides at what speed.
  • it is necessary to calibrate in advance by conducting experiments and calculations that simulate various collision patterns of space floating objects at ground facilities. Therefore, much labor and time are required for this calibration operation.
  • the present invention has been made in view of the above-described circumstances, can reduce the weight of the apparatus configuration as a simple configuration, can easily set a wide detection area, and particularly requires calibration. It is an object of the present invention to provide a space floating object detection device that can detect a collision of a space floating object without any problem.
  • a detection sheet body in which a large number of conductor detection lines are held at a required arrangement pitch on a nonconductor thin film that can be exposed to the space environment. And a detection circuit connected to each detection line, and when the detection line of the detection sheet body breaks due to the collision of the space floating object, the space floating object that has collided with the detection sheet body is detected by the detection circuit. Use a means to enable detection.
  • two detection sheet bodies in which a large number of conductor detection lines are held at a required arrangement pitch on a nonconductor thin film that can be exposed to the space environment are provided in the direction in which the detection lines extend. Are arranged so as to be orthogonal to each other, and further provided with a detection circuit connected to each detection line, and if the detection line of the detection sheet body breaks due to a collision with a space suspended object, the detection circuit A means is adopted that makes it possible to detect a space floating object that has collided with each of the detection sheet bodies.
  • a detection sheet body in which a large number of conductor detection lines extending in directions perpendicular to each other are held on both surfaces of a nonconductor thin film that can be exposed to the space environment at a predetermined arrangement pitch, and The detection circuit connected to each detection line is provided, and when the detection line of the detection sheet breaks due to the collision of the space floating object, the detection circuit detects the space floating object that has collided with the detection sheet body.
  • Adopt a solution that enables it.
  • a detection sheet body in which a large number of conductor detection lines are held at a predetermined arrangement pitch on a nonconductor thin film that can be exposed to the space environment is separated into two layers at a predetermined interval.
  • a detection circuit is provided so that when the detection line of the detection sheet body breaks due to the collision of the space floating object, the detection circuit can detect the space floating object that has collided with the detection sheet body.
  • the direction in which the detection lines extend includes two detection sheet bodies in which a large number of conductor detection lines are held at a required arrangement pitch on a nonconductor thin film that can be exposed to the space environment.
  • Laminates stacked in layers so as to be orthogonal to each other are arranged in two layers at a required interval, and further equipped with a detection circuit, which breaks into the detection line of the detection sheet body due to the collision of a space floating object.
  • a solution means is adopted in which the detection circuit can detect the space floating object that has collided with the detection sheet body.
  • a detection sheet body in which a large number of conductor detection lines extending in directions orthogonal to each other are held on both surfaces of a nonconductor thin film that can be exposed to the space environment at a required arrangement pitch. , Arranged in two layers at a required interval, and further provided with a detection circuit, and when the detection line of the detection sheet body breaks due to the collision of a space floating object, the detection circuit causes the detection sheet body to Adopt a solution that enables detection of colliding space floating objects.
  • the direction in which the detection lines extend includes two detection sheet bodies in which a large number of conductor detection lines are held at a required arrangement pitch on a nonconductive thin film that can be exposed to the space environment.
  • the detection circuit is provided with a detection circuit, and when the detection line of the detection sheet body breaks due to the collision of the space floating object, the detection circuit collides with the detection sheet body.
  • Adopt a solution that enables detection of space-borne objects.
  • the arrangement pitch of the detection lines may be set to a dimension corresponding to an effective diameter which is a measurement lower limit of a space floating object desired to be detected.
  • the width of the detection line may be set to a dimension corresponding to the lower limit of measurement of the effective diameter of the space floating object desired to be detected.
  • the detection sheet body in which a large number of conductor detection lines are held at a required arrangement pitch on a nonconductive thin film that can be exposed to the space environment, and a detection circuit connected to each detection line.
  • the detection circuit detects the space floating object that has collided with the detection sheet body. Based on the above, the distribution of spaceborne objects can be measured by measuring how many spaceborne objects collide per unit area.
  • the detection sheet body Since the said detection sheet body should just provide a detection line in a thin film, while being able to make it a very lightweight thing, an area can be expanded easily. Therefore, the measurement area of the space floating object can be easily expanded.
  • the detection sheet body is lightweight and can be freely deformed.
  • the detection sheet body can be installed by being attached to a thermal blanket on the outer surface of the spacecraft, or by using an antenna installed in the spacecraft. It can be arranged freely, such as unfolding or unfolding with a required mast.
  • the detection principle of the space floating object is based on a simple phenomenon that the detection line breaks due to the collision of the space floating object, the detection circuit collides with the detection sheet body from the presence or absence of conduction of each detection line. Calibration can be eliminated because the detected space-borne object can be detected.
  • the detection circuit is provided with a detection circuit connected to each detection line, and when the detection line of the detection sheet body breaks due to a collision with a space floating object, the detection circuit causes the detection sheet body to A configuration that allows detection of colliding space floating objects, or a large number of conductor detection lines that extend in directions orthogonal to each other on both sides of a non-conductive thin film that can be exposed to the space environment at the required arrangement pitch.
  • a detection circuit connected to each detection line, and when the detection line of the detection sheet breaks due to a collision with a space floating object, the detection circuit causes the detection sheet body to Collide
  • the position of the broken detection line can be specified, so the size of space floating objects that collide with the detection sheet body can be detected, and It is possible to obtain the direction (incident direction) in which the object has come.
  • a detection sheet body in which a large number of conductor detection lines are held at a required arrangement pitch on a nonconductive thin film that can be exposed to the space environment is arranged in two layers at a required interval;
  • Two detection sheet bodies in which a large number of conductor detection lines are held at a required arrangement pitch on a thin film made of a nonconductor that can be exposed to the space environment are stacked so that the directions in which the detection lines extend are perpendicular to each other
  • the laminate formed in this manner is arranged in two layers at a required interval, and further provided with a detection circuit.
  • the detection circuit That hit the detection sheet A structure in which floating objects can be detected, or a large number of conductor detection lines extending in directions perpendicular to each other are held on both sides of a non-conductive thin film that can be exposed to the space environment at a required arrangement pitch.
  • the detection sheet body is arranged in two layers at a required interval, and further provided with a detection circuit.
  • the detection circuit A structure that allows detection of a space-borne object that has collided with the detection sheet body, or two sheets of non-conductive thin film that can be exposed to the space environment to hold a large number of conductive detection lines at the required array pitch
  • the detection sheet body is arranged in two layers at a required interval, and further includes a detection circuit.
  • the detection circuit When the detection line of the detection sheet body breaks due to a collision with a floating object, the detection circuit The structure is designed to detect a space floating object that has collided with the detection sheet body, or a conductor detection line extending in a direction perpendicular to each other on both surfaces of a nonconductive thin film that can be exposed to the space environment.
  • a plurality of detection sheet bodies each held at an arrangement pitch and a detection sheet body obtained by holding a large number of conductor detection lines at a required arrangement pitch on a nonconductive thin film that can be exposed to the space environment.
  • It is arranged in two layers at intervals, and further includes a detection circuit, and when the detection line of the detection sheet body breaks due to the collision of a space floating object, the space that has collided with the detection sheet body by the detection circuit Detect floating objects
  • the width of the detection line By setting the width of the detection line to a dimension corresponding to the measurement lower limit of the effective diameter of the space floating object desired to be detected, at least the width of the detection line due to the breakage of one detection line It is possible to detect that a space suspended object having an effective diameter larger than the size collides.
  • FIG. 1 is a schematic plan view of a space floating object detection apparatus according to an embodiment of the present invention. It is a partially enlarged view of a detection sheet body in the space floating object detection device according to an embodiment of the present invention. It is a circuit diagram which shows an example of the detection circuit in FIG. 1A. It is a circuit diagram which shows another example of the detection circuit in FIG. 1A. It is a circuit diagram which shows another example of the detection circuit in FIG. 1A. It is a schematic plan view of the detection apparatus of the space floating object concerning other embodiment of this invention. It is a partially enlarged view of a detection sheet body in a space floating object detection device according to another embodiment of the present invention.
  • FIG. 8 is a second diagram illustrating an application example of the detection device illustrated in FIG. 7. It is the 1st figure which shows another application example of the detection apparatus shown in FIG. 7 a second diagram illustrating another application example of the detection device illustrated in FIG. 7.
  • FIG. 8 is a third diagram illustrating another application example of the detection device illustrated in FIG. 7. It is a figure which shows another application example of the detection apparatus shown in FIG.
  • FIG. 1A, FIG. 1B, and FIG. 2 are diagrams showing a space floating object detection device according to the present embodiment.
  • This detection apparatus has a detection line 3 as a linear, elongated conducting wire on an insulating thin film 2 that can be exposed to the space environment, with an array pitch (spatial period) corresponding to the particle size of a space floating object desired to be detected.
  • a detection circuit 4 that electrically detects the occurrence of breakage of each detection line 3 provided on the detection sheet body 1.
  • the detection sheet body 1 when it is desired to detect a space floating object having an effective diameter of about 100 ⁇ m or more, corresponds to a particle size at which the arrangement pitch of the detection lines 3 is set as a measurement lower limit of the space floating object.
  • 50 ⁇ m wide detection lines 3 made of copper foil are arranged in parallel at 50 ⁇ m intervals on one side of a thin film 2 made of polyimide or the like and having a thickness of about 50 ⁇ m by a technique such as etching so that the dimension is 100 ⁇ m. It is.
  • a detection sheet body 1 when a space floating object having an effective diameter of 100 ⁇ m or more collides, one or more detection lines 3 among the detection lines 3 arranged on one side of the thin film 2 are broken.
  • each detection line 3 in the detection sheet body 1 is equivalent to detecting the on / off states of a large number of switches because it is only necessary to detect that the conduction of each detection line 3 is lost.
  • the detection circuit 4 is a circuit that performs digital detection using a diode matrix.
  • the detection circuit 4 attaches row numbers and column numbers to all detection lines 3 arranged on the detection sheet body 1 so that each detection line 3 can be distinguished by the row number and the column number. Is connected to each bit of the column output port 5, the detection line 3 of each row is connected to each bit of the row input port 6, and each detection line 3 is isolated from the others using a diode 7. Circuit configuration.
  • FIG. 2 for convenience of illustration, a circuit configuration in which 16 detection lines are connected to the column output port 5 and the row input port 6 by 4 bits each is shown. 2 indicates a load resistance provided for each row block of the detection line 3.
  • the space floating object detection apparatus travels in a desired space environment in which the distribution of the space floating object is desired, for example, a predetermined orbit around the earth.
  • the detection sheet body 1 is deployed in a state of being mounted on a spacecraft.
  • the detection line 3 present at the collision position is broken when the space floating object penetrates the thin film 2.
  • the detection line 3 is broken in this way, the position and number of the detection lines 3 broken by the detection circuit 4 are detected. Therefore, the detection sheet body is calculated from the number of detection lines 3 broken at a time. The size of the space floating object that collided with 1 is determined.
  • the space floating object detection device of the present invention it is possible to detect the collision of the space floating object and to detect the size of the space floating object that has collided. Based on the area, it is possible to measure how many space floating objects collide per unit area.
  • the detection sheet body 1 can be made very light and can easily be enlarged in area because the detection line 3 may be provided on the thin film 2 by etching or the like. Therefore, according to such a detection sheet body 1, the measurement area of the space floating object can be easily expanded.
  • the detection circuit 4 since the detection principle of the space floating object is based on a simple phenomenon that the detection line 3 is broken due to the collision of the space floating object, the detection circuit 4 only needs to be able to monitor the presence / absence of conduction of each detection line 3. Thus, it is possible to detect the collision of the space floating object and detect the size of the colliding space floating object without requiring calibration.
  • the detection circuit 4 needs to be protected by being incorporated in the spacecraft.
  • the detection sheet body 1 is lightweight and can be freely deformed. It may be installed by being attached to a thermal blanket, or can be deployed freely by using an antenna installed in the spacecraft or by using a required mast.
  • the detection line 3 is broken by the collision of the space floating object, the subsequent collision of the space floating object cannot be detected in the region along the broken detection line 3, but the detection line 3 follows the broken detection line 3.
  • the effective detection area of space floating objects is reduced by the area of the area, that is, the effective denominator side when calculating how many space floating objects collide per unit area Only the detection area is reduced, and the function of detecting a collision of a space floating object itself is not affected at all. Therefore, it is possible to continuously detect a space floating object over a long period of time.
  • a circuit for performing digital detection using a diode matrix is shown as the detection circuit 4.
  • the current flowing through each detection line 3 provided on the detection sheet body 1 is detected by analog detection. It is good also as the detection circuit 4 provided with the circuit structure to do.
  • the detection circuit 4 shown in FIG. 3 connects each detection line 3 to which the individual current limiting resistor 9 is connected in parallel to the current / voltage conversion circuit 10 and further connects the current / voltage conversion circuit 10 to the analog / voltage conversion circuit 10.
  • the digital conversion circuit 11 As a configuration in which the digital conversion circuit 11 is connected, a constant current is caused to flow through each detection line 3 by the current limiting resistor 9, and the total sum thereof can be measured by the current / voltage conversion circuit 10 and the analog / digital conversion circuit 11.
  • the detection circuit 4 when the detection line 3 is broken, the current value flowing through the current / voltage conversion circuit 10 decreases by the number of broken lines. From the measurement result, the number of broken detection lines 3 can be known.
  • the position of the broken detection line 3 cannot be known.
  • the digital circuit shown in FIG. Compared to the configuration, the collision time can be known with higher resolution.
  • the detection circuit 4 of FIGS. 1A, 1B and 2 is shown in FIG. As shown in FIG. 4, a hybrid circuit configuration combining a digital system and an analog system may be adopted.
  • the detection circuit 4 shown in FIG. 4 attaches row numbers and column numbers to all the detection lines 3 arranged on the detection sheet body 1 in the same manner as the digital circuit shown in FIG.
  • the column detection lines 3 are output as columns through individual current limiting resistors 9 similar to those shown in FIG. 3 and individual diodes 7 for isolating each detection line 3 similar to that shown in FIG.
  • the row input side of each detection line 3 is connected to the current / voltage conversion circuit 10 similar to that shown in FIG. 3 corresponding to each row.
  • the output side of the voltage conversion circuit 10 is connected to the current change detection unit 13 via a high-pass filter 12 (shown by a capacitor symbol for convenience in the figure), and the output side of each current / voltage conversion circuit 10 is Also connected in parallel to the current detector 14 for detecting the presence or absence of current It was there as a constituent.
  • the column output is then turned on one by one in sequence, and the current detection unit determines whether or not current is present from the output of the current / voltage conversion circuit 10.
  • the current detection unit determines whether or not current is present from the output of the current / voltage conversion circuit 10.
  • the detection circuit 4 of the hybrid system it is possible to know all the break time, the break position, and the number of the break detection lines 3 of the detection lines 3. Further, although the circuit configuration is slightly complicated, the required power can be basically the same as that of the analog detection circuit 4 shown in FIG.
  • the hybrid detection circuit 4 has a circuit configuration in which each detection line 3 is insulated from the others using a diode 7, but the detection lines 3 are very finely arranged in parallel at 50 ⁇ m width and 50 ⁇ m intervals.
  • the diode 7 is a small surface mount type, the diode 7 is about 1.25 ⁇ 2.5 mm, which is larger than the detection line 3, and therefore the diode 7 is mounted for each detection line 3. This has the problem of causing difficulty in mounting and increasing the size of the mounting part.
  • each commonly connected detection line 3 is connected to the negative phase input end of the operational amplifier constituting the current / voltage conversion circuit 10 and one end of the feedback resistor.
  • the negative phase input terminal since the positive phase input terminal of the operational amplifier is grounded, the negative phase input terminal has the same potential as that of the positive phase input terminal, that is, the ground potential, and the current flowing through the detection line 3 is the other. It is possible to prevent the detection lines 3 from flowing around and to make each detection line 3 independent.
  • the most suitable detection circuit 4 is appropriately selected and used in consideration of items desired to be detected, cost and time for constructing the circuit, and available power. You can do it.
  • FIG. 5A, FIG. 5B, and FIG. 5C show a space floating object detection device according to another embodiment, and the detection sheet body 1 in the embodiment shown in FIG. 1A, FIG. 1B, and FIG.
  • the two detection sheet bodies 1a and 1b having the same configuration are arranged so as to overlap each other so that the extending directions of the detection lines 3 are orthogonal to each other.
  • Reference numerals 4a and 4b denote detection circuits for detecting the broken state of each detection line 3 for each of the detection sheet bodies 1a and 1b.
  • Other configurations are the same as those shown in FIGS. 1A, 1B, and 2, and the same components are denoted by the same reference numerals.
  • the space floating object detection device of the present embodiment when the detection line 3 breaks in the detection sheet bodies 1a and 1b due to the collision of the space floating object, detection by the detection circuits 4a and 4b is performed. Based on the detection of the break of the line 3, the collision of the space floating object can be detected.
  • the position information of the broken detection line 3 in the detection sheet body 1a detected by the detection circuit 4a connected to each detection line 3 of one detection sheet body 1a, and the other detection sheet body 1b By detecting the position of the broken detection line 3 in the detection sheet body 1b where the breakage is detected by the detection circuit 4b connected to each of the detection lines 3, the detection broken by the collision of the space floating object is detected.
  • the broken position of the line 3 can be specified on the two-dimensional plane on which the detection sheet bodies 1a and 1b are arranged.
  • the space-floating object is detected as shown by a two-dot chain line in FIG. 5B. If the shape of the hole 15 formed in each of the sheet bodies 1a and 1b due to the collision is almost circular, a space suspended object having an effective diameter of about 300 ⁇ m is placed on the plane on which the detection sheet bodies 1a and 1b are arranged. On the other hand, as shown by the two-dot chain line in FIG. 5C, the shape of the hole 15 formed in each of the sheet bodies 1a and 1b due to the collision of the space floating object can be determined.
  • the size of the colliding space floating object can be detected more accurately, and the direction (incident direction) in which the colliding space floating object has come can be obtained.
  • FIGS. 6A and 6B show a space floating object detection apparatus according to still another embodiment of the present invention.
  • the thin film 2 is the same as the thin film 2 in the embodiment of FIGS. 1A, 1B, and 2.
  • a detection sheet body 1c is configured by holding a large number of detection lines 3 as elongated conductive wires extending linearly in directions orthogonal to each other at the same arrangement pitch as shown in FIGS. 1A and 1B. . Further, the detection sheet body 1c is configured to include a detection circuit 4c connected to all the detection lines 3 on the front surface side and the back surface side.
  • FIGS. 1A, 1B, and 2 Other configurations are the same as those shown in FIGS. 1A, 1B, and 2, and the same components are denoted by the same reference numerals.
  • the detection sheet body is caused by the collision of the space floating object.
  • the detection line 3 breaks on the front surface side and the back surface side of 1c, the collision of the space floating object can be detected based on detection of the breakage of the detection line 3 by the detection circuit 4c.
  • the broken position can be specified on the two-dimensional plane on which the detection sheet body 1c is arranged.
  • FIG. 7 shows a space floating object detection apparatus according to still another embodiment of the present invention, and two detection sheet bodies 1a and 1b are shown in the same manner as shown in FIGS. 5A, 5B, and 5C.
  • Two sets of detection sheet bodies 1a and 1b (laminations) formed by overlapping the detection lines 3 so that the extending directions of the detection lines 3 are orthogonal to each other with a required interval t, for example, an interval t of about 10 cm.
  • the structure is provided in parallel (in two layers).
  • One set formed by the two sets of detection sheet bodies 1a and 1b and the other set are, for example, maintained at intervals of a frame structure (not shown) having a height dimension corresponding to the desired interval t. What is necessary is just to hold
  • FIGS. 5A, 5B, and 5C Other configurations are the same as those shown in FIGS. 5A, 5B, and 5C, and the same components are denoted by the same reference numerals.
  • the space floating Since the position where the object collides can be specified on a two-dimensional plane on which the detection sheet bodies 1a and 1b are arranged, the set of two sets of detection sheet bodies 1a and 1b arranged with the required interval t therebetween.
  • the collision position information of the space floating object specified by the detection sheet bodies 1a and 1b in the upper set in FIG. 7 and the detection in the lower set in FIG. 7 as the other set From the collision position information of the space floating object specified by the sheet bodies 1a and 1b, the direction (incident direction) in which the colliding space floating object has come can be detected more accurately.
  • the collision position information of the space floating object specified by the detection sheet bodies 1a and 1b in the upper set in FIG. 7 and the detection sheet bodies 1a and 1b in the lower set in FIG. 7 as the other set are specified.
  • the moving sheet of the space floating object between each set calculated from the collision position information of the space floating object and the distance t between each set, and the detection sheet body in the upper set in FIG. 7 as one set
  • the set of two detection sheet bodies 1a and 1b is shown as two sets arranged in parallel with a required interval t. As shown in FIG. 8B, any one of the sets may be replaced with one detection sheet body 1 similar to that shown in FIGS. 1A and 1B.
  • Detection circuits 4a and 4b (FIG. 5A, FIG. 5B) corresponding to breakage of the detection line 3 (see FIGS.
  • the detection sheet body 1c may be replaced.
  • the detection sheet body 1c is arranged in parallel in two layers with a required interval t, for example, an interval t of about 10 cm. Similar effects can be obtained. Further, as shown in FIGS. 9B and 9C, one of the detection sheet bodies 1c arranged in two layers in FIG. 9A is replaced with one detection sheet body 1 similar to that shown in FIGS. 1A and 1B. For example, the same effects as those of the embodiment of FIGS. 8A and 8B can be obtained.
  • two detection sheet bodies 1 similar to those shown in FIGS. 1A and 1B may be arranged in parallel with a required interval t therebetween.
  • the same effect as that of the embodiment of FIGS. 1A, 1B and 2 can be obtained, and the two detection sheet bodies 1 arranged with the required interval t therebetween.
  • the present invention is not limited only to the above embodiments, and the arrangement pitch of the detection lines 3 arranged on the detection sheet bodies 1, 1a, 1b is the lower limit of measurement of the space floating object desired to be detected.
  • the effective diameter may be appropriately changed according to the dimension.
  • one detection line 3 is broken, it becomes possible to detect that a space suspended object having an effective diameter equal to or larger than the width of the detection line 3 has collided.
  • the width dimension may be appropriately changed according to the lower limit of measurement of the effective diameter of the space floating object desired to be detected.
  • the length dimension of the thin film 2 for constituting the detection sheet bodies 1, 1 a, 1 b may be appropriately changed according to the length dimension set for the detection line 3.
  • the number of the detection lines 3 provided on one detection sheet body 1, 1 a, 1 b may be appropriately changed according to the arrangement pitch of the detection lines 3.
  • the width dimension of the thin film 2 may be appropriately changed according to the number and the arrangement pitch of the detection lines 3 desired to be provided on one detection sheet body 1, 1a, 1b.
  • the thin film 2 may be made of any material as long as it is a nonconductor that can be exposed to the space environment.
  • the detection line 3 may be made of any material other than copper as long as it is a conductor, and may be installed on the thin film 2 by any method other than etching.
  • a plurality of detection circuits 4 are used to detect breakage of the detection line 3 provided on one detection sheet body 1, 1a, 1b, 1c according to the processing capability of the detection circuits 4, 4a, 4b to be used.
  • 4a, 4b, 4c may be used, the embodiment of FIGS. 5A, 5B, 5C, the embodiment of FIG. 7, the embodiment of FIGS. 8A, 8B, and FIG. 9A, FIG.
  • the detection lines 3 of the plurality of detection sheet bodies 1, 1a, 1b, 1c are detected by one detection circuit 4, 4a, 4b, 4c. You may make it do.
  • the detection circuits 4, 4 a, 4 b, and 4 c constantly monitor the conduction of the detection line 3, and if the detection line 3 is broken, if the circuit configuration is such that the number of the broken detection lines 3 can be detected, Any circuit configuration other than those shown in FIGS. 2, 3 and 4 may be employed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本発明は、装置構成を簡単なものとし、較正を不要にできるようにすることを目的とする。そして、本発明では、この目的を達成するために、宇宙環境に曝露可能な不導体の薄膜(2)に、エッチング等により導線となる検出線(3)を、所要の配列ピッチで多数設けて検出シート体(1)を形成する。検出シート体(1)の各検出線(3)に接続された検出回路(4)を備える。宇宙浮遊物体が、検出シート体(1)に衝突すると、検出シート体(1)に設けてある検出線(3)が破断するようになるため、検出回路(4)にて検出線(3)の導通を常時監視して、検出線(3)が破断されたときに、検出シート体(1)に衝突した宇宙浮遊物体を検出させる。又、切れた検出線(3)の本数から、衝突した宇宙浮遊物体の有効直径を検出させる、という解決手段を採用する。

Description

宇宙浮遊物体の検出装置
 本発明は、地球周回軌道上等の宇宙空間に存在する宇宙浮遊物体の存在を検出するために用いる宇宙浮遊物体の検出装置に関するものである。
 宇宙空間のうち、地球周回軌道上には、役目を終えた人工衛星やロケットの残骸、あるいは、これらが爆発したときの破片等の人工的な飛翔物体であるスペースデブリが多く存在している。又、天然岩石や鉱物・金属等からなる宇宙塵(微小な隕石)も存在している。
 上記スペースデブリや宇宙塵の如き宇宙浮遊物体は、速度が速いため、運用中の人工衛星や有人宇宙船、宇宙ステーション等の宇宙機に衝突すると該運用中の宇宙機に重大な影響を与える虞がある。そのために、上記のような宇宙浮遊物体と運用中の宇宙機との衝突を防止するための対策を講じる上で、宇宙環境における宇宙浮遊物体の存在状況を正確に把握することが必要とされる。
 そのために、上記のような宇宙浮遊物体のうち、比較的大きなスペースデブリについては、地上から光学望遠鏡やレーダーを用いての観測が行われている。しかし、この種の観測方法では、直径数センチメートル以上のサイズを有するスペースデブリしか検出できないため、それ以下のサイズの宇宙浮遊物体については、衛星等により実際に衝突する宇宙浮遊物体を検出して、その分布等を調べる必要がある。
 この種の宇宙浮遊物体との衝突に基いて宇宙浮遊物体の検出を行うための手法としては、従来、ピエゾフィルムやピエゾ素子やマイクロフォン等の検出器により宇宙浮遊物体の衝突時に生じる音響や振動を計測する方式(たとえば、特許文献1参照)、宇宙浮遊物体が衝突してプラズマ化する際の光や電荷を所要の検出器で測定する方式、検出器となるピエゾフィルムに電荷を予めかけておき、宇宙浮遊物体が衝突して貫通する際に生じる電圧変動を測定する方式等が考えられてきている。
 更には、小さな缶体にガスを詰めておき、宇宙浮遊物体が上記缶体に衝突してガスが抜けることで生じる該缶体内部の圧力変動を測定することで、宇宙浮遊物体との衝突を検出する手法も検討されている。
特開平5-286500号公報
ところが、上記したような宇宙浮遊物体の衝突を検出するために検討されている従来の手法では、いずれも検出領域を広く設定することが難しいというのが実状である。すなわち、宇宙浮遊物体の衝突時に生じる音響や振動を計測する手法を実施するためには、宇宙浮遊物体の衝突によって振動や音響を生じるようなある程度の硬さを有するものが必要であり、更に、この宇宙浮遊物体の衝突によって生じる音響や振動が伝わる範囲ごとに検出器を設けなければならないため、多くの検出器が必要とされる。
 又、宇宙浮遊物体が衝突してプラズマ化する際の光や電荷を測定できるのは、直径30cm程度の範囲に限られる。しかも、プラズマを検出するための装置構成が複雑で大型化してしまう。
 ピエゾフィルムに電荷を予めかけておき、宇宙浮遊物体が衝突して貫通する際に生じる電圧変動を測定する手法では、電荷をかけるためにピエゾフィルムの大きさに自ずから制限が生じてしまう。
 小さな缶体にガスを詰めておく手法では、検出領域を広くするためには、上記缶体を多数設けなければならず、装置が複雑化すると共に、重量が増大する虞もある。
 しかも、上記従来の各手法では、いずれも、宇宙浮遊物体の衝突を検出するための専用の構造物が必要とされ、更には、どの程度の粒径の宇宙浮遊物体がどの程度の速度で衝突したときに、電気的にどのくらいの信号強度が出るかということを知るために、予め、地上の施設で宇宙浮遊物体の様々な衝突パターンを模した実験や計算を行って、較正を行う必要があるため、この較正作業のために多くの手間及び時間が必要とされる。
本発明は、上述した事情に鑑みてなされたものであり、装置構成を簡単な構成として軽量化することができると共に、検出領域を広く設定することが容易であり、しかも較正を特に必要とすることなく宇宙浮遊物体の衝突を検出することができる宇宙浮遊物体の検出装置を提供することを目的とする。
上記目的を達成するために、本発明では、第1の解決手段として、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体と、各検出線に接続した検出回路を備えてなり、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにする、という手段を採用する。
 また、第2の解決手段として、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる2枚の検出シート体を、検出線の延びる方向が互いに直交するように重ねて配置し、更に、各検出線に接続した検出回路を備えてなり、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記各検出シート体に衝突した宇宙浮遊物体を検出できるようにする、という手段を採用する。
 また、第3の解決手段として、宇宙環境に曝露可能な不導体製の薄膜の両面に互いに直交する方向に延びる導体製の検出線を所要の配列ピッチでそれぞれ多数保持させてなる検出シート体と、各検出線に接続した検出回路を備えてなり、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにする、という解決手段を採用する。
 また、第4の解決手段として、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体を、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにする、という解決手段を採用する。
 また、第5の解決手段として、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる2枚の検出シート体を検出線の延びる方向が互いに直交するように重ねて配置してなる積層物を、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにする、という解決手段を採用する。
 また、第6の解決手段として、宇宙環境に曝露可能な不導体製の薄膜の両面に互いに直交する方向に延びる導体製の検出線を所要の配列ピッチでそれぞれ多数保持させてなる検出シート体を、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにする、という解決手段を採用する。
 また、第7の解決手段として、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる2枚の検出シート体を検出線の延びる方向が互いに直交するように重ねて配置してなる積層物と、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体とを、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにする、という解決手段を採用する。
また、第8の解決手段として、宇宙環境に曝露可能な不導体製の薄膜の両面に互いに直交する方向に延びる導体製の検出線を所要の配列ピッチでそれぞれ多数保持させてなる検出シート体と、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体とを、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにする、という解決手段を採用する。
 また、上記第1~第8の解決手段において、検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定しても良い。
 さらに、これに加えて、検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定しても良い。
本発明によれば、以下のような優れた効果を発揮する。
(1)宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体と、各検出線に接続した検出回路を備えてなり、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにした構成としてあるので、上記検出シート体の面積を基に、単位面積当たりに宇宙浮遊物体が何個衝突するかを計測することで、宇宙浮遊物体の分布を測定できる。
(2)上記検出シート体は、薄膜に検出線を設ければよいため、ごく軽量なものとすることができると共に、容易に面積を拡大することができる。よって、宇宙浮遊物体の計測領域を容易に拡大することができる。又、上記検出シート体は、軽量であると共に自在に変形させることが可能なため、たとえば、宇宙機外面のサーマルブランケットに貼り付けて設置したり、宇宙機に装備されているアンテナを利用して展開させたり、所要のマストを用いて展開させる等、自在に配置することが可能となる。
(3)更に、宇宙浮遊物体の検出原理は、宇宙浮遊物体の衝突による検出線の破断という単純な現象に基づいているため、検出回路は、各検出線の導通の有無から検出シート体に衝突した宇宙浮遊物体を検出できることから、較正を不要とすることができる。
(4)宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる2枚の検出シート体を、検出線の延びる方向が互いに直交するように重ねて配置し、更に、各検出線に接続した検出回路を備えてなり、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記各検出シート体に衝突した宇宙浮遊物体を検出できるようにしてある構成、又は、宇宙環境に曝露可能な不導体製の薄膜の両面に互いに直交する方向に延びる導体製の検出線を所要の配列ピッチでそれぞれ多数保持させてなる検出シート体と、各検出線に接続した検出回路を備えてなり、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてある構成とすることにより、破断した検出線の位置が特定できるようになるため、検出シート体に衝突した宇宙浮遊物体の大きさの検出や、衝突した宇宙浮遊物体の飛来した方向(入射方向)を求めることが可能になる。
(5)宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体を、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてある構成、又は、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる2枚の検出シート体を検出線の延びる方向が互いに直交するように重ねて配置してなる積層物を、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてある構成、又は、宇宙環境に曝露可能な不導体製の薄膜の両面に互いに直交する方向に延びる導体製の検出線を所要の配列ピッチでそれぞれ多数保持させてなる検出シート体を、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてある構成、又は、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる2枚の検出シート体を検出線の延びる方向が互いに直交するように重ねて配置してなる積層物と、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体とを、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてある構成、又は、宇宙環境に曝露可能な不導体製の薄膜の両面に互いに直交する方向に延びる導体製の検出線を所要の配列ピッチでそれぞれ多数保持させてなる検出シート体と、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体とを、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてある構成とすることにより、検出シート体に衝突した宇宙浮遊物体の速度と飛来方向を検出することが可能になる。
(6)検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した構成とすることにより、測定下限の有効直径を有する宇宙浮遊物体が衝突すると、少なくとも1本の検出線を破断させることができるため、上記宇宙浮遊物体の検出を確実に行なうことができる。更に、破断した検出線の本数に基いて、検出シート体に衝突した宇宙浮遊物体の有効直径を判断することが可能になる。
(7)検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した構成とすることにより、一本の検出線の破断により、少なくとも該検出線の幅寸法以上の有効直径を有する宇宙浮遊物体が衝突したことを検出することができる。
本発明の一実施形態に係わる宇宙浮遊物体の検出装置の概略平面図である。 本発明の一実施形態に係わる宇宙浮遊物体の検出装置における検出シート体の一部拡大図である。 図1Aにおける検出回路の一例を示す回路図である。 図1Aにおける検出回路の別の例を示す回路図である。 図1Aにおける検出回路の更に別の例を示す回路図である。 本発明の他の実施形態に係わる宇宙浮遊物体の検出装置の概略平面図である。 本発明の他の実施形態に係わる宇宙浮遊物体の検出装置における検出シート体の一部拡大図である。 本発明の他の実施形態に係わる宇宙浮遊物体の検出装置における検出シート体の一部拡大図である。 本発明の更に他の実施形態に係わる宇宙浮遊物体の検出装置の表面側から見た図である。 本発明の更に他の実施形態に係わる宇宙浮遊物体の検出装置の裏面側から見た図である。 本発明の更に他の実施形態に係わる宇宙浮遊物体の検出装置の形態を示す概略側面図である。 図7に示す検出装置の応用例を示す第1の図である。 図7に示す検出装置の応用例を示す第2の図である。 図7に示す検出装置の別の応用例を示す第1の図である。 図7に示す検出装置の別の応用例を示す第2の図である。 図7に示す検出装置の別の応用例を示す第3の図である。 図7に示す検出装置の更に別の応用例を示す図である。
符号の説明
 1,1a,1b,1c…検出シート体、2…薄膜、3…検出線、4,4a,4b,4c…検出回路
 以下、図面を参照して、本発明の一実施形態について説明する。
 図1A、図1B及び図2は、本実施形態に係る宇宙浮遊物体の検出装置を示す図である。
 この検出装置は、宇宙環境に曝露可能な絶縁体製の薄膜2上に、検出を所望する宇宙浮遊物体の粒径に対応した配列ピッチ(空間周期)で直線状の細長い導線としての検出線3を多数平行に設けてなる検出シート体1と、この検出シート体1に設けられた各検出線3の破断の発生を電気的に検出する検出回路4とを備えている。
 具体例として、100μm程度以上の有効直径を有する宇宙浮遊物体の検出を所望する場合、上記検出シート体1は、各検出線3の配列ピッチが宇宙浮遊物体の測定下限とする粒径に対応した寸法である100μmとなるように、たとえば、ポリイミド等を材質とする厚さ50μm程度の薄膜2の片面にエッチング等の技法により銅箔による50μm幅の検出線3を50μm間隔で平行に配列したものである。このような検出シート体1では、100μm以上の有効直径を有する宇宙浮遊物体が衝突すると、薄膜2の片面に配列してある検出線3のうち、1本以上の検出線3が破断される。
上記検出シート体1における各検出線3の破断は、各検出線3の導通がなくなることを検出すればよいので、多数のスイッチのオン/オフ状態を検出することに等しい。
検出回路4は、図2に示すように、ダイオードマトリクスによるデジタル検出を行う回路である。
 この検出回路4は、検出シート体1に配設してある全検出線3に行番号と列番号を付して、各検出線3を上記行番号と列番号によって区別できるようにし、各列の検出線3を列出力ポート5の各ビットに接続すると共に、各行の検出線3を行入力ポート6の各ビットに接続し、更に、ダイオード7を用いて各検出線3を、他から絶縁した回路構成となっている。
 このような検出回路4では、行番号と列番号の組み合わせに基いて、全検出線3について導通の有無を個別に監視することができる。したがって、たとえば、8ビットの入出力ポートを8個備えてなるシングルチップコンピュータを用いれば、32ビット×32ビットで1024本の検出線3の破断状態を監視することが可能となる。
なお、図2では、図示する便宜上、16本の検出線を、それぞれ4ビットずつ列出力ポート5と行入力ポート6に接続した回路構成が示してある。又、図2における符号8は検出線3の行ブロックごとに設けた負荷抵抗を示す。
このように構成された宇宙浮遊物体の検出装置を使用する場合は、該宇宙浮遊物体の検出装置を、宇宙浮遊物体の分布の計測を望む所望の宇宙環境、たとえば、所定の地球周回軌道を回る宇宙機に搭載した状態で上記検出シート体1を展開させるようにする。この状態で上記検出シート体1に宇宙浮遊物体が衝突すると、該宇宙浮遊物体が薄膜2を貫通する際に該衝突位置に存在する検出線3が破断される。このようにして検出線3が破断されると、上記検出回路4により破断された検出線3の位置と本数が検知されるため、一度に破断された検出線3の本数から、上記検出シート体1に衝突した宇宙浮遊物体の大きさが判断される。
 このように、本発明の宇宙浮遊物体の検出装置によれば、宇宙浮遊物体の衝突を検出できると共に、該衝突した宇宙浮遊物体の大きさを検出することができるため、上記検出シート体1の面積を基に、単位面積当たりにどの程度の大きさの宇宙浮遊物体が何個衝突するかを計測することができる。
 又、上記検出シート体1は、薄膜2にエッチング等により検出線3を設ければよいため、ごく軽量なものとすることができると共に、容易に面積を拡大することができる。よって、このような検出シート体1によれば、宇宙浮遊物体の計測領域を容易に拡大することができる。
 しかも、宇宙浮遊物体の検出原理は、宇宙浮遊物体の衝突による検出線3の破断という単純な現象に基づいているため、検出回路4は、各検出線3の導通の有無を監視できればよく、したがって、較正を必要とすることなく宇宙浮遊物体の衝突の検出と、該衝突した宇宙浮遊物体の大きさの検出を行うことができる。
 更に、上記検出回路4は、宇宙機に内蔵する等して保護する必要があるが、上記検出シート体1は、軽量であると共に自在に変形させることが可能なため、たとえば、宇宙機外面のサーマルブランケットに貼り付けて設置してもよく、又、宇宙機に装備されているアンテナを利用して展開させたり、所要のマストを用いて展開させる等、自在に配置することが可能となる。
なお、宇宙浮遊物体の衝突により検出線3が破断されると、該破断された検出線3に沿う領域では、以降の宇宙浮遊物体の衝突が検出できなくなるが、該破断した検出線3に沿う領域の面積分だけ宇宙浮遊物体の有効検出面積が小さくなるのみ、すなわち、単位面積当たりにどの程度の大きさの宇宙浮遊物体が何個衝突するかということを算出する場合に分母側となる有効検出面積が小さくなるのみであって、宇宙浮遊物体の衝突を検出する機能自体には何ら影響を受けることない。したがって、長期に亘り宇宙浮遊物体の検出を継続して行うことができる。
ところで、上記実施の形態では、検出回路4として、ダイオードマトリクスによるデジタル検出を行う回路を示したが、図3に示す如く、検出シート体1に設けてある各検出線3を流れる電流をアナログ検出する回路構成を備えた検出回路4としてもよい。
すなわち、図3に示す検出回路4は、個別の電流制限抵抗9を接続した各検出線3を、並列に電流/電圧変換回路10に接続し、更に、該電流/電圧変換回路10にアナログ/デジタル変換回路11を接続した構成として、電流制限抵抗9により各検出線3に一定の電流を流し、それらの総和を電流/電圧変換回路10とアナログ/デジタル変換回路11により測定することができる。上記検出回路4では、検出線3の破断が生じると、上記電流/電圧変換回路10に流れる電流値が、破断した本数の分だけ減少するようになることから、上記アナログ/デジタル変換回路11の測定結果から、破断した検出線3の本数を知ることができるようにしてある。
 アナログ/デジタル変換回路11として広く一般的に用いられている12ビットのアナログ/デジタル変換回路11によれば、フルスケールで1/4096の変化を検出することができるため、たとえば、その1/4にあたる1024本の検出線3の破断状態を監視することは容易に実現可能である。なお、図3では、図示する便宜上、16本の検出線3に対応する回路構成が示してある。
以上の構成としてある検出回路4によれば、破断した検出線3の位置を知ることはできないが、電流/電圧変換回路10に高速度な素子を用いれば、図2に示したデジタル方式の回路構成に比較して、衝突時間をより高い分解能で知ることが可能になる。
 更に、宇宙浮遊物体の衝突による検出線3の破断がまれに(少なくとも数秒以上の間隔をおいて)しか発生しないことを考慮すれば、図1A、図1B及び図2の検出回路4を、図4に示す如きデジタル方式とアナログ方式を組み合わせたハイブリッド方式の回路構成としてもよい。
すなわち、図4に示す検出回路4は、図2に示したデジタル方式の回路と同様に、検出シート体1に配設してある全検出線3に行番号と列番号を付して、各列の検出線3を、図3に示したと同様の個別の電流制限抵抗9と、図2に示したと同様の各検出線3を他から絶縁するための個別のダイオード7とを介して列出力ポート5の各ビットに並列に接続すると共に、各検出線3の行入力側を、各行ごとに対応する図3に示したと同様の電流/電圧変換回路10に接続し、更に、該各電流/電圧変換回路10の出力側を、ハイパスフィルタ12(図では便宜上、コンデンサ記号で示してある)を介して電流変化分検出部13に接続すると共に、各電流/電圧変換回路10の出力側を、電流の有無を検出するための電流検出部14にも並列に接続した構成としてある。
これにより、常時はすべての列出力をオンにしておき、行ごとに設けた電流/電圧変換回路10の出力を、ハイパスフィルタ13に通して電流変化分検出部13で監視するようにしておく。この状態で、検出線3の破断が生じると、1個以上の行に対応する電流変化分検出部13にて電流変化が観測されることにより、検出線3の破断の検出と、その破断時刻を知ることができるようになる。
更に、上記のようにして検出線3の破断が検出された場合は、その後、列出力を順次1列ずつオンにし、電流/電圧変換回路10の出力からそのときの電流の有無を電流検出部14で検出することにより、デジタル方式の検出回路と同様に検出線3の破断位置を知ることができるようになる。
 したがって、上記ハイブリッド方式の検出回路4によれば、検出線3の破断時刻、破断位置、及び、破断した検出線3の本数をすべて知ることができる。又、回路構成はやや複雑となるが、必要電力を、図3に示したアナログ方式の検出回路4と基本的に同一とすることができる。
なお、上記ハイブリッド方式の検出回路4は、ダイオード7を用いて各検出線3を他から絶縁した回路構成となっているが、検出線3は50μm幅かつ50μm間隔で平行に配列した非常に微細なものであり、これに対してダイオード7は小型表面実装型のものでも1.25×2.5mm程度と検出線3に比較して大型であり、よって検出線3毎にダイオード7を実装することは、実装上の困難と実装部分の大形化をもたらすという問題がある。
 このような問題を考慮し、電流/電圧変換回路10を入力オフセット電圧が比較的小さい低オフセット型の演算増幅器(OPアンプ)を用いることが考えられる。このような低オフセット型の演算増幅器を電流/電圧変換回路10に用いることにより、ダイオード7が無くても検出線3間での回り込み電流の影響を極めて小さなものとすることができる。
すなわち、図4に示すように、共通接続された各検出線3の一端(出力端)は、電流/電圧変換回路10を構成する演算増幅器の逆相入力端と帰還抵抗器の一端とに接続されているが、演算増幅器の正相入力端は接地されているので、上記逆相入力端は、正相入力端の電位と同電位つまり接地電位となり、ある検出線3を流れた電流が他の検出線3に回り込んで流れることを防止して各検出線3を独立した状態とすることができる。
以上、図2に示したデジタル方式、図3に示したアナログ方式、図4に示したハイブリッド方式のそれぞれの方式の検出回路4の得失は以下の表のようになる。
Figure JPOXMLDOC01-appb-T000001
 したがって、検出することが所望される項目と、回路を構築する上でのコストや時間と、利用可能な電力とを勘案して、最も適した方式の検出回路4を適宜選択して使用するようにすればよい。
次に、図5A、図5B、図5Cは、他の実施形態に係る宇宙浮遊物体の検出装置を示すもので、図1A、図1B及び図2に示した実施の形態における検出シート体1とそれぞれ同様の構成としてある2枚の検出シート体1a,1bを、検出線3の延びる方向が互いに直交するように重ねて配置した構成としたものである。
 なお、4aと4bは上記各検出シート体1aと1bについて各々の検出線3の破断状態をそれぞれ検出するための検出回路である。その他の構成は図1A,図1B及び図2に示したものと同様であり、同一のものには同一の符号が付してある。
 本実施の形態の宇宙浮遊物体の検出装置によれば、宇宙浮遊物体の衝突により上記各検出シート体1aと1bにて検出線3の破断がそれぞれ生じると、上記各検出回路4aと4bによる検出線3の破断の検知に基いて、上記宇宙浮遊物体の衝突を検出できる。
 更に、一方の検出シート体1aの各検出線3に接続してある検出回路4aによって破断が検出された該検出シート体1aにおける破断された検出線3の位置情報と、他方の検出シート体1bの各検出線3に接続してある検出回路4bによって破断が検出された該検出シート体1bにおける破断された検出線3の位置情報を併せることで、上記宇宙浮遊物体の衝突により破断された検出線3について、その破断された位置を、上記各検出シート体1a,1bが配してある二次元平面上で特定することができる。
 これにより、たとえば、上記各検出シート体1aと1bにてそれぞれ3本ずつの検出線3の破断が検出された場合であっても、図5Bに二点鎖線で示すように、宇宙浮遊物体が衝突することで上記各シート体1a,1bに形成される孔15の形状がほぼ円形であれば、有効直径300μm程度の宇宙浮遊物体が、上記各検出シート体1a,1bの配された平面に対してほぼ垂直な方向から衝突したと判断でき、一方、図5Cに二点鎖線で示すように、宇宙浮遊物体が衝突することで上記各シート体1a,1bに形成される孔15の形状が長い楕円形をしていれば、有効直径がより小さい宇宙浮遊物体が、上記各検出シート体1a,1bの配された平面に対して浅い角度で斜め方向から衝突したと判断することが可能となる。
したがって、衝突した宇宙浮遊物体の大きさをより正確に検出することが可能になると共に、衝突した宇宙浮遊物体の飛来した方向(入射方向)を求めることも可能になる。
更に、いずれか片方の検出シート体1a又は1bにて宇宙浮遊物体の衝突によって既に破断している検出線3に沿う領域であっても、衝突位置が同一でなければ、宇宙浮遊物体の新たな衝突を、もう片方の検出シート体1b又は1aの検出線3の破断によって検出できるため、破断現象の検出回数を大幅に増加させることができる。したがって、宇宙浮遊物体の衝突による有効検出領域の減少を抑制して、長期に亘り宇宙浮遊物体の検出を行うことが可能になる。
次いで、図6A,図6Bは、本発明の更に他の実施形態に係る宇宙浮遊物体の検出装置を示すもので、図1A、図1B及び図2の実施の形態における薄膜2と同様の薄膜2の表面と裏面に、互いに直交する方向に直線状に延びる細長い導線としての検出線3を、それぞれ図1A、図1Bに示したと同様の配列ピッチでそれぞれ多数保持させて検出シート体1cを構成する。更に、上記検出シート体1cの表面側と裏面側の全ての検出線3に接続した検出回路4cを備えてなる構成としてある。
その他の構成は図1A、図1B及び図2に示したものと同様であり、同一のものには同一の符号が付してある。
このような宇宙浮遊物体の検出装置によれば、検出シート体1cの表面側と裏面側に互いに直交する方向に延びる検出線3が配してあるため、宇宙浮遊物体の衝突により上記検出シート体1cの表面側と裏面側にて検出線3の破断がそれぞれ生じると、上記検出回路4cによる検出線3の破断の検知に基いて、上記宇宙浮遊物体の衝突を検出できる。
 更に、表面側と裏面側のうちの一方の面側で破断が検出された検出線3の位置情報と、他方の面側で破断が検出された検出線3の位置情報を併せることで、上記宇宙浮遊物体の衝突により破断された検出線3について、その破断された位置を、上記検出シート体1cが配してある二次元平面上で特定することができる。
よって、本実施の形態によれば、図5A,図5B、図5Cに示した実施の形態と同様の効果を得ることができる。
 次いで、図7は、本発明の更に他の実施形態に係る宇宙浮遊物体の検出装置を示すもので、図5A,図5B、図5Cに示したと同様に、2枚の検出シート体1a,1bを検出線3の延びる方向が互いに直交するように重ねて配置してなる検出シート体1aと1bの組(積層物)を、所要の間隔t、たとえば、10cm程度の間隔tを隔てて二組平行に(2層に)設けてなる構成としたものである。
上記2枚一組の検出シート体1a,1bにより形成してある一方の組と、他方の組同士は、たとえば、上記所望する間隔tに応じた高さ寸法を有する図示しない骨組構造の間隔保持部材の両側に取り付ける等により、上記所望する間隔tを保持させるようにすればよい。
 その他の構成は図5A,図5B、図5Cに示したものと同様であり、同一のものには同一の符号が付してある。
本実施の形態によれば、上記図5A,図5B、図5Cの宇宙浮遊物体の検出装置と同様の効果を得ることができる。
 更に、上記所要の間隔tを隔てて配置してある2枚一組の検出シート体1aと1bの各組では、それぞれ上記図5A,図5B、図5Cに示したものと同様に、宇宙浮遊物体の衝突した位置を各検出シート体1aと1bが配してある二次元平面上で特定できるため、上記所要の間隔tを隔てて配置してある二組の検出シート体1aと1bの組のうち、片方の組、たとえば、図7の上側の組における検出シート体1a,1bによって特定される宇宙浮遊物体の衝突位置情報と、もう片方の組としての図7の下側の組における検出シート体1a,1bによって特定される宇宙浮遊物体の衝突位置情報とから、衝突した宇宙浮遊物体の飛来した方向(入射方向)をより正確に検出することができる。
 又、図7の上側の組における検出シート体1a,1bによって特定される宇宙浮遊物体の衝突位置情報と、もう片方の組としての図7の下側の組における検出シート体1a,1bによって特定される宇宙浮遊物体の衝突位置情報と、各組の間隔tとから算出される各組間での宇宙浮遊物体の移動距離、及び、片方の組としての図7の上側の組における検出シート体1a,1bに宇宙浮遊物体が衝突して生じた検出線3の破断がそれぞれ対応する検出回路4a,4bにより検知された時点と、もう片方の組としての図7の下側の組における検出シート体1a,1bに宇宙浮遊物体が衝突して生じた検出線3の破断がそれぞれ対応する検出回路4a,4bにより検知された時点との時間差から、上記宇宙浮遊物体の速度を検出することができる。
 なお、上記図7の実施の形態では、検出シート体1aと1bとからなる2枚一組のものを、所要の間隔tを隔てて二組平行に設けたものとして示したが、図8A、図8Bに示すように、いずれか一方の組を、図1A、図1Bに示したと同様の1枚の検出シート体1に置き換えるようにしてもよい。
 このような構成とした場合は、2枚一組で重ねて配置してある検出シート体1aと1bの組にて、図5A,図5B、図5Cに示したものと同様に、該各シート体1aと1bの組に衝突した宇宙浮遊物体の飛来した方向(入射方向)を求めることが可能なため、この入射方向と、2枚一組の検出シート体1a,1bと1枚の検出シート体1の間隔tとから、2枚一組の検出シート体1a,1bと1枚の検出シート体1の間における宇宙浮遊物体の移動距離が算出でき、この算出された移動距離と、上記2枚一組の検出シート体1a,1bに宇宙浮遊物体が衝突して生じた検出線3(図5A,図5B、図5C参照)の破断がそれぞれ対応する検出回路4a,4b(図5A,図5B、図5C参照)により検知された時点と、上記1枚の検出シート体1に宇宙浮遊物体が衝突して生じた検出線3(図1A、図1B参照)の破断が対応する検出回路1(図1A、図1B参照)により検知された時点との時間差から、上記宇宙浮遊物体の速度を検出することが可能になる。したがって、図7の実施の形態と同様の効果を得ることができる。
 図7の宇宙浮遊物体の検出装置及び図8A、図8Bの宇宙浮遊物体の検出装置では、いずれも2枚の検出シート体1a,1bを重ねて配置してなる検出シート体1aと1bの組(積層物)を用いるようにしているが、この検出シート体1aと1bの組を、図6A、図6Bに示したと同様の表面側と裏面側に互いに直交する方向に延びる検出線3を設けてなる検出シート体1cに置き換えるようにしてもよい。
すなわち、図9Aに示す如く、上記検出シート体1cを、所要の間隔t、たとえば、10cm程度の間隔tを隔てて2層に平行に配置した構成とすることにより、図7の実施の形態と同様の効果を得ることができる。又、図9B、図9Cに示すように、図9Aにおける2層に配置した検出シート体1cの一方を、図1A、図1Bに示したと同様の1枚の検出シート体1に置き換えるようにすれば、図8A、図8Bの実施の形態と同様の効果を得ることができる。
更には、図10に示すように、図1A、図1Bに示したと同様の検出シート体1を、所要の間隔tを隔てて2枚平行に配置するようにしてもよい。かかる構成とした場合には、図1A、図1B及び図2の実施の形態と同様の効果を得ることができると共に、上記所要の間隔tを隔てて配置してある2枚の検出シート体1のそれぞれにて、宇宙浮遊物体の衝突により検出線3(図1A、図1B参照)が破断するときの時間差と、上記間隔tとから、宇宙浮遊物体の速度を概算することが可能になる。
 なお、本発明は上記各実施の形態のみに限定されるものではなく、上記検出シート体1,1a,1bに配設する検出線3の配列ピッチは、検出を所望する宇宙浮遊物体の測定下限となる有効直径の寸法に応じて適宜変更してよい。
更に、一本の検出線3が破断することで、少なくとも該検出線3の幅寸法以上の有効直径を有する宇宙浮遊物体が衝突したことを検出することができるようになることから、検出線3の幅寸法を、検出を所望する宇宙浮遊物体の有効直径の測定下限に応じて適宜変更してもよい。
 検出回路4,4a,4bにより該検出シート体1,1a,1b上に設けてある各検出線3に破断が生じた場合に直ちに検出できるようにしてあれば、検出線3の長さ寸法は適宜変更してもよい。したがって、検出線3に設定される長さ寸法に応じて検出シート体1,1a,1bを構成するための薄膜2の長さ寸法は適宜変更してよい。更に、1枚の検出シート体1,1a,1bに設ける検出線3の本数は、検出線3の配列ピッチに応じて適宜変更してもよい。又、1枚の検出シート体1,1a,1bに設けることが望まれる検出線3の本数及び配列ピッチに応じて薄膜2の幅寸法は適宜変更してもよい。
薄膜2は宇宙環境に曝露可能な不導体であれば、任意の材質のものを用いてよい。
 検出線3は導体であれば、銅以外の任意の材質としてよく、又、エッチング以外のいかなる手法により薄膜2に設置するようにしてもよい。
 更に、使用する検出回路4,4a,4bの処理能力に応じて、1枚の検出シート体1,1a,1b,1cに設けてある検出線3の破断を検出するために複数の検出回路4,4a,4b,4cを用いるようにしてもよく、又、図5A,図5B、図5Cの実施の形態、図7の実施の形態、図8A、図8Bの実施の形態、図9A,図9B、図9Cの実施の形態、図10の実施の形態にて、複数の検出シート体1,1a,1b,1cの検出線3の破断を1つの検出回路4,4a,4b,4cで検出するようにしてもよい。
検出回路4,4a,4b,4cは、検出線3の導通を常時監視して、検出線3に破断が生じると、該破断した検出線3の本数を検出できるような回路構成としてあれば、図2及び図3及び図4に示した以外のいかなる回路構成を採用してもよい。
 その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。

Claims (24)

  1.  宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体と、各検出線に接続した検出回路を備えてなり、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
  2.  宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる2枚の検出シート体を、検出線の延びる方向が互いに直交するように重ねて配置し、更に、各検出線に接続した検出回路を備えてなり、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記各検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
  3.  宇宙環境に曝露可能な不導体製の薄膜の両面に互いに直交する方向に延びる導体製の検出線を所要の配列ピッチでそれぞれ多数保持させてなる検出シート体と、各検出線に接続した検出回路を備えてなり、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
  4.  宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体を、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
  5.  宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる2枚の検出シート体を検出線の延びる方向が互いに直交するように重ねて配置してなる積層物を、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
  6.  宇宙環境に曝露可能な不導体製の薄膜の両面に互いに直交する方向に延びる導体製の検出線を所要の配列ピッチでそれぞれ多数保持させてなる検出シート体を、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
  7.  宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる2枚の検出シート体を検出線の延びる方向が互いに直交するように重ねて配置してなる積層物と、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体とを、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
  8.  宇宙環境に曝露可能な不導体製の薄膜の両面に互いに直交する方向に延びる導体製の検出線を所要の配列ピッチでそれぞれ多数保持させてなる検出シート体と、宇宙環境に曝露可能な不導体製の薄膜に導体製の検出線を所要の配列ピッチで多数保持させてなる検出シート体とを、所要の間隔を隔てて2層に配置し、更に、検出回路を備えて、宇宙浮遊物体の衝突により上記検出シート体の検出線に破断が生じると、上記検出回路にて上記検出シート体に衝突した宇宙浮遊物体を検出できるようにしてあることを特徴とする宇宙浮遊物体の検出装置。
  9.  検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項1記載の宇宙浮遊物体の検出装置。
  10.  検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項2記載の宇宙浮遊物体の検出装置。
  11.  検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項3記載の宇宙浮遊物体の検出装置。
  12.  検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項4記載の宇宙浮遊物体の検出装置。
  13.  検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項5記載の宇宙浮遊物体の検出装置。
  14.  検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項6記載の宇宙浮遊物体の検出装置。
  15.  検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項7記載の宇宙浮遊物体の検出装置。
  16.  検出線の配列ピッチを、検出を所望する宇宙浮遊物体の測定下限となる有効直径に対応した寸法に設定した請求項8記載の宇宙浮遊物体の検出装置。
  17.  検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項1記載の宇宙浮遊物体の検出装置。
  18.  検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項2記載の宇宙浮遊物体の検出装置。
  19.  検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項3記載の宇宙浮遊物体の検出装置。
  20.  検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項4記載の宇宙浮遊物体の検出装置。
  21.  検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項5記載の宇宙浮遊物体の検出装置。
  22.  検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項6記載の宇宙浮遊物体の検出装置。
  23.  検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項7記載の宇宙浮遊物体の検出装置。
  24.  検出線の幅を、検出を所望する宇宙浮遊物体の有効直径の測定下限に対応した寸法に設定した請求項8記載の宇宙浮遊物体の検出装置。
PCT/JP2009/050560 2008-01-17 2009-01-16 宇宙浮遊物体の検出装置 WO2009091037A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BRPI0906854-6A BRPI0906854B1 (pt) 2008-01-17 2009-01-16 Aparelho de detecção para um objeto voador no espaço
US12/863,035 US8564430B2 (en) 2008-01-17 2009-01-16 Device for detecting space objects
CA2712411A CA2712411C (en) 2008-01-17 2009-01-16 Device for detecting space objects
CN200980108349.4A CN101965293B (zh) 2008-01-17 2009-01-16 宇宙悬浮物体的检测装置
EA201070791A EA019066B1 (ru) 2008-01-17 2009-01-16 Устройство для обнаружения космических объектов
EP09702310.5A EP2236422B1 (en) 2008-01-17 2009-01-16 Device for detecting space floating matters
JP2009550061A JP5492568B2 (ja) 2008-01-17 2009-01-16 宇宙浮遊物体の検出装置
IL207062A IL207062A0 (en) 2008-01-17 2010-07-18 Device for detecting space objects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-008452 2008-01-17
JP2008008452 2008-01-17

Publications (1)

Publication Number Publication Date
WO2009091037A1 true WO2009091037A1 (ja) 2009-07-23

Family

ID=40885419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050560 WO2009091037A1 (ja) 2008-01-17 2009-01-16 宇宙浮遊物体の検出装置

Country Status (11)

Country Link
US (1) US8564430B2 (ja)
EP (2) EP2236422B1 (ja)
JP (1) JP5492568B2 (ja)
KR (1) KR20100102678A (ja)
CN (1) CN101965293B (ja)
BR (1) BRPI0906854B1 (ja)
CA (1) CA2712411C (ja)
EA (1) EA019066B1 (ja)
IL (1) IL207062A0 (ja)
UA (1) UA94873C2 (ja)
WO (1) WO2009091037A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068193A1 (ja) * 2009-12-04 2011-06-09 株式会社Ihi スペースデブリ除去方法
JP2012116349A (ja) * 2010-12-01 2012-06-21 Ihi Corp 宇宙浮遊物体検出装置
RU2457986C1 (ru) * 2011-04-12 2012-08-10 Федеральное государственное унитарное предприятие "Научно-производственное объединение им. С.А. Лавочкина" Датчик для регистрации и замера параметров метеороидных и техногенных частиц, межзвездной и межпланетной пыли, воздействующих на космический аппарат
RU183905U1 (ru) * 2018-04-10 2018-10-08 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" Устройство для измерения параметров хаотических техногенных и метеоритных космических частиц
RU190327U1 (ru) * 2019-01-09 2019-06-26 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" Устройство для измерения параметров космических метеороидных и техногенных частиц и исследования их влияния на свойства материалов спутникостроения
US20190193874A1 (en) * 2017-12-22 2019-06-27 Japan Aerospace Exploration Agency Multi-layer insulation, spacecraft, damage diagnosis device, and method of detecting object to be detected
WO2021149553A1 (ja) * 2020-01-22 2021-07-29 国立研究開発法人宇宙航空研究開発機構 導電性可撓導体と宇宙用導電性テザーとデブリ検出器及び宇宙用テザーセット
RU2761957C1 (ru) * 2020-12-02 2021-12-14 Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Способ импульсной лазерной очистки космического пространства от одиночных мелких объектов космического мусора и импульсная лазерная система для его реализации

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8788218B2 (en) 2011-01-21 2014-07-22 The United States Of America As Represented By The Secretary Of The Navy Event detection system having multiple sensor systems in cooperation with an impact detection system
RU2476908C2 (ru) * 2011-06-10 2013-02-27 Государственное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Устройство регистрации микрометеороидов и частиц космического мусора
RU2485548C2 (ru) * 2011-06-30 2013-06-20 Государственное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Устройство измерения оптических характеристик ударносжатых прозрачных материалов элементов конструкции космического аппарата
DE102012000260B3 (de) 2012-01-10 2013-01-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solargenerator
RU2583251C2 (ru) * 2014-06-24 2016-05-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Способ определения координат места пробоя корпуса гермоотсека космического объекта частицей природного или техногенного происхождения и устройство для его реализации
NL1041292B1 (nl) * 2015-05-07 2017-01-26 Rudolfus Johannes Maria Van Der Meer Ir Werkwijze en configuratie voor het bepalen van de richting van waaruit een kogel komt.
GB2541391B (en) * 2015-08-14 2018-11-28 Thermo Fisher Scient Bremen Gmbh Detector and slit configuration in an isotope ratio mass spectrometer
RU2610342C1 (ru) * 2015-11-05 2017-02-09 федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Устройство для исследования потоков микрометеороидов и частиц космического мусора
RU2618962C1 (ru) * 2016-03-09 2017-05-11 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Датчик для исследования потоков метеороидных и техногенных частиц в космическом пространстве
DE102016104725B4 (de) * 2016-03-15 2019-01-17 Technische Hochschule Köln Verfahren zur Überwachung der Struktur eines faserverstärkten Verbundwerkstoffs mit einer Sensoranordnung aus einer Mehrzahl von Sensoren zur Strukturüberwachung des Verbund- werkstoffs
RU172272U1 (ru) * 2016-11-24 2017-07-03 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" Прибор для изучения параметров микрометеоритов и частиц космического мусора
DE102016125874B3 (de) 2016-12-29 2018-02-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Erfassungseinrichtung
DE102016125853B3 (de) * 2016-12-29 2018-02-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Erfassungssystem
RU2673128C1 (ru) * 2017-09-25 2018-11-22 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ обнаружения кометного вещества и идентификации его с источником происхождения
DE102019124397B4 (de) 2019-09-11 2021-11-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Erfassungssystem
DE102021124635B3 (de) 2021-09-23 2022-12-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Raumobjekt-Aufprallsensor, Raumobjekt-Aufpralleinrichtung, Raumflugobjekt und Raumobjekt-Solarpanel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286500A (ja) 1992-04-13 1993-11-02 Ishikawajima Harima Heavy Ind Co Ltd スペースデブリ観測衛星
JPH06219399A (ja) * 1993-01-22 1994-08-09 Ishikawajima Harima Heavy Ind Co Ltd 宇宙漂流物体の観測・捕獲装置
JP2516204Y2 (ja) * 1990-09-07 1996-11-06 石川島播磨重工業株式会社 流星検出器
JPH10300395A (ja) * 1997-02-28 1998-11-13 Daikin Ind Ltd 飛翔体の検出装置及び識別装置
JPH11227699A (ja) * 1998-02-17 1999-08-24 Ishikawajima Harima Heavy Ind Co Ltd 宇宙漂流物体の捕獲装置
JP3870349B2 (ja) * 1997-03-10 2007-01-17 株式会社アイ・エイチ・アイ・エアロスペース 宇宙漂流物体の捕獲装置
JP3870350B2 (ja) * 1997-03-10 2007-01-17 株式会社アイ・エイチ・アイ・エアロスペース 宇宙漂流物体の計測装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL58159C (ja) * 1939-07-31
US3277724A (en) * 1964-04-17 1966-10-11 Boeing Co Meteoroid particle measuring device
US3407304A (en) * 1965-11-19 1968-10-22 Nasa Usa Micrometeoroid penetration measuring device
JPS6172999A (ja) 1984-09-14 1986-04-15 富士重工業株式会社 えい航標的の命中表示装置
JPH0748948Y2 (ja) 1987-08-21 1995-11-08 大成建設株式会社 防犯用建築部材
US4964300A (en) * 1989-06-21 1990-10-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for determining time, direction and composition of impacting space particles
JPH07267200A (ja) 1994-04-01 1995-10-17 Mitsubishi Heavy Ind Ltd 宇宙塵防御バンパ
JP2973315B1 (ja) 1998-07-16 1999-11-08 日本電気株式会社 単点観測による宇宙デブリ検出装置および検出方法
JP2006064551A (ja) * 2004-08-27 2006-03-09 Oht Inc 検査装置及び検査方法並びに検査装置用センサ
JP5286500B2 (ja) 2007-03-30 2013-09-11 株式会社コルグ ピアノ用電子基板の取り付け装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516204Y2 (ja) * 1990-09-07 1996-11-06 石川島播磨重工業株式会社 流星検出器
JPH05286500A (ja) 1992-04-13 1993-11-02 Ishikawajima Harima Heavy Ind Co Ltd スペースデブリ観測衛星
JPH06219399A (ja) * 1993-01-22 1994-08-09 Ishikawajima Harima Heavy Ind Co Ltd 宇宙漂流物体の観測・捕獲装置
JPH10300395A (ja) * 1997-02-28 1998-11-13 Daikin Ind Ltd 飛翔体の検出装置及び識別装置
JP3870349B2 (ja) * 1997-03-10 2007-01-17 株式会社アイ・エイチ・アイ・エアロスペース 宇宙漂流物体の捕獲装置
JP3870350B2 (ja) * 1997-03-10 2007-01-17 株式会社アイ・エイチ・アイ・エアロスペース 宇宙漂流物体の計測装置
JPH11227699A (ja) * 1998-02-17 1999-08-24 Ishikawajima Harima Heavy Ind Co Ltd 宇宙漂流物体の捕獲装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2236422A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068193A1 (ja) * 2009-12-04 2011-06-09 株式会社Ihi スペースデブリ除去方法
RU2524325C2 (ru) * 2009-12-04 2014-07-27 АйЭйчАй КОРПОРЕЙШН Способ для очистки от космического мусора
US9302789B2 (en) 2009-12-04 2016-04-05 Ihi Corporation Method for clearing space debris
JP2012116349A (ja) * 2010-12-01 2012-06-21 Ihi Corp 宇宙浮遊物体検出装置
RU2457986C1 (ru) * 2011-04-12 2012-08-10 Федеральное государственное унитарное предприятие "Научно-производственное объединение им. С.А. Лавочкина" Датчик для регистрации и замера параметров метеороидных и техногенных частиц, межзвездной и межпланетной пыли, воздействующих на космический аппарат
US20190193874A1 (en) * 2017-12-22 2019-06-27 Japan Aerospace Exploration Agency Multi-layer insulation, spacecraft, damage diagnosis device, and method of detecting object to be detected
US11492149B2 (en) * 2017-12-22 2022-11-08 Japan Aerospace Exploration Agency Multi-layer insulation of spacecraft structure for cosmic dust impact damage monitoring
RU183905U1 (ru) * 2018-04-10 2018-10-08 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" Устройство для измерения параметров хаотических техногенных и метеоритных космических частиц
RU190327U1 (ru) * 2019-01-09 2019-06-26 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" Устройство для измерения параметров космических метеороидных и техногенных частиц и исследования их влияния на свойства материалов спутникостроения
WO2021149553A1 (ja) * 2020-01-22 2021-07-29 国立研究開発法人宇宙航空研究開発機構 導電性可撓導体と宇宙用導電性テザーとデブリ検出器及び宇宙用テザーセット
RU2761957C1 (ru) * 2020-12-02 2021-12-14 Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Способ импульсной лазерной очистки космического пространства от одиночных мелких объектов космического мусора и импульсная лазерная система для его реализации

Also Published As

Publication number Publication date
CA2712411A1 (en) 2009-07-23
EP2236422A4 (en) 2012-10-03
UA94873C2 (ru) 2011-06-10
EP2236422B1 (en) 2015-07-29
IL207062A0 (en) 2010-12-30
US8564430B2 (en) 2013-10-22
KR20100102678A (ko) 2010-09-24
EP2236422A1 (en) 2010-10-06
JPWO2009091037A1 (ja) 2011-05-26
EP2607241B1 (en) 2017-09-13
CA2712411C (en) 2014-04-01
CN101965293A (zh) 2011-02-02
BRPI0906854A2 (pt) 2015-10-20
EA019066B1 (ru) 2013-12-30
EA201070791A1 (ru) 2011-02-28
EP2607241A3 (en) 2016-06-08
EP2607241A2 (en) 2013-06-26
US20110050258A1 (en) 2011-03-03
CN101965293B (zh) 2014-03-19
BRPI0906854B1 (pt) 2019-04-02
JP5492568B2 (ja) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5492568B2 (ja) 宇宙浮遊物体の検出装置
JP6189344B2 (ja) クラックセンサおよびクラック監視装置
US11740142B2 (en) Piezoelectric thin-film sensor and use thereof
JP5556210B2 (ja) センサおよび電子機器
US12066339B2 (en) System and method of detecting force applied to an object using pressure-sensitive sheets
US20230288444A1 (en) Acceleration transducer
CN108459351A (zh) 电阻型的空间碎片探测装置及探测方法
JP6950427B2 (ja) 位置検出装置
CN112304349B (zh) 一种空间碎片的探测装置及方法
RU2618962C1 (ru) Датчик для исследования потоков метеороидных и техногенных частиц в космическом пространстве
JP2015090296A (ja) 力検出装置、ロボットおよび電子部品搬送装置
Zhen et al. Double Layered 2-D PVDF Film Based Flexible Sensor for Detection of Micro-Space-Debris: Impact Velocity, Angle, and Spot
Doyle et al. Design and development of DRAGONS in-situ orbital debris detection and characterization payload
Liou et al. DRAGONS-A Micrometeoroid and Orbital Debris Impact Sensor
JP7529198B2 (ja) 減速装置
WO2024185094A1 (ja) 空間電界検出装置、空間電界検出方法および空間電界検出システム
Kitazawa et al. Development of a new type sensor for in-situ space debris measurement
US4412114A (en) Electrical switch
US9882374B2 (en) Lightning protection component
Kitazawa et al. Development and Flight Demonstration of Space Debris Monitor (SDM)
JP2019111936A (ja) 多層断熱材、宇宙機、損傷診断装置、及び被検出物の検出方法
WO2019059049A1 (ja) 振動検出器
Faure et al. Use of elemental materials for the creation of an in-situ space dust impacts detector

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108349.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09702310

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550061

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12863035

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2712411

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 207062

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5269/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107016511

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201070791

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2009702310

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0906854

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100713