WO2009086959A1 - Leitschaufel für eine variable turbinengeometrie - Google Patents

Leitschaufel für eine variable turbinengeometrie Download PDF

Info

Publication number
WO2009086959A1
WO2009086959A1 PCT/EP2008/064594 EP2008064594W WO2009086959A1 WO 2009086959 A1 WO2009086959 A1 WO 2009086959A1 EP 2008064594 W EP2008064594 W EP 2008064594W WO 2009086959 A1 WO2009086959 A1 WO 2009086959A1
Authority
WO
WIPO (PCT)
Prior art keywords
sections
guide vane
section
curvature
region
Prior art date
Application number
PCT/EP2008/064594
Other languages
English (en)
French (fr)
Inventor
Ralf Böning
Tobias Dettmann
Holger Fäth
Andre Kaufmann
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to US12/812,499 priority Critical patent/US20100296924A1/en
Priority to EP08869779.2A priority patent/EP2245275B1/de
Priority to CN200880124892.9A priority patent/CN101910565B/zh
Priority to JP2010541722A priority patent/JP2011509371A/ja
Publication of WO2009086959A1 publication Critical patent/WO2009086959A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/713Shape curved inflexed

Definitions

  • the invention relates to a guide vane for a variable turbine geometry of a turbocharger.
  • a turbocharger generally consists of an exhaust gas turbine in the exhaust stream, which is connected via a shaft with a compressor in An ⁇ aug Th.
  • the turbine is set in rotation by the exhaust gas flow of the engine and thus drives the compressor.
  • the pressure in the intake tract of the engine is increased via the compressor, so that a larger amount of air enters the cylinder during the intake stroke than in a naturally aspirated engine. In this way, more oxygen is available for burning a correspondingly larger amount of fuel.
  • bypass or wastegate the hot exhaust gas is partly passed by the turbine and thus the performance of the turbine is reduced.
  • the turbine is designed so large that it works well well below the rated operating point of the engine.
  • turbochargers are known from the prior art, which are provided with a variable turbine geometry VTG, in order to better adapt the power output and the response to different operating conditions, such as load changes.
  • VTG variable turbine geometry
  • high peripheral components of the flow velocity and a high enthalpy gradient lead to a high turbine output and thus to a high boost pressure.
  • full open position of the vanes in turn, the maximum throughput of the turbine opens up high centripetal fraction of the velocity vector of the flow.
  • the advantage of this power control over a bypass control is that always the full exhaust gas mass flow is routed through the turbine and used for power conversion.
  • the shape of the blade profile is the main influencing factor for the thermodynamic efficiency, the control characteristics and the required radial space.
  • the profile of the adjusting blade there are a variety of shapes for the profile of the adjusting blade. In general, it is important to combine the optimum of efficiency, control characteristics and the smallest possible pitch circle (installation space).
  • the shape is described by the line of curvature that extends between the center of the head radius and the center of the end radius of the pitch blade. This curvature line is created by assuming tangential circles within the profile to the top and bottom. The connecting line of the circle centers here describes the curvature line.
  • curvature lines have a continuous course, i.
  • the individual curve pieces merge tangentially.
  • the curvature line has no kink.
  • a guide vane is provided, in particular for a turbocharger, wherein the manifold ment line of the guide vane has at least one or more areas with a discontinuous course.
  • the guide vane is particularly advantageous in the design of a flow profile.
  • the efficiency can be improved with unchanged control behavior and space requirements.
  • the line of curvature has at least one region with two sections which are connected to one another, the two sections discontinuously or not tangentially merging at their connection point.
  • the sections form a kink at their junction.
  • the line of curvature of the guide vane has, in addition to at least one region with a bend or with a non-tangential transition between two sections, at least one region whose two sections merge continuously or tangentially into one another at their junction.
  • the line of curvature of a guide vane can be varied as desired with continuously and discontinuously extending regions, depending on which flow profile is to be achieved.
  • At least one, several or all portions of the line of curvature are identical or different, for example with respect to their shape, position and / or dimension.
  • the guide vane for example consists of four sections, wherein the first and second section form a first region, with a continuous course.
  • a second region is formed by the second portion and a third portion, wherein the second and third portions at their junction discontinuously into each other or form a kink.
  • Such a vane is an example in which the curvature line has a kink.
  • the sections of the first or third area may in this case be curved, for example, both or at least one of them upwards or downwards.
  • the portions of which the curvature line is composed for example, arcuate or straight.
  • the sections can be curved upwards or downwards or, if the sections are straight, for example horizontally, vertically, or obliquely upwards or obliquely downwards.
  • the sections can be combined as desired with each other, wherein at least one area which is formed by the sections has a discontinuous course. In this way, a variety of flow profiles, depending on the desired function or desired application can be realized.
  • FIG. 2 shows a second embodiment of a guide vane according to the prior art
  • FIG. 3 shows a third embodiment of a guide vane according to the prior art
  • Fig. 5 shows a second embodiment of a vane according to the invention.
  • FIG. 1 a first embodiment of a guide vane 10 according to the prior art is shown.
  • the vane 10 is shown in a diagram, wherein the diagram has an X-axis and a Y-axis. This illustration applies to all guide vanes 10 as shown in FIGS. 1 to 5.
  • the shape of a vane 10 is normally described by the line of curvature 12 that extends between the midpoint 14 of the head radius and the midpoint 16 of the end radius of the vane 10.
  • This curvature line 12 is formed by 20 tangential circles are assumed within the profile of the guide vane 10 to the top and bottom 18 ,.
  • the connecting line of the circular center points describes the curvature line 12.
  • the curvature line 12 is wavy.
  • the curvature line 12 consists of four sections al to a4 together.
  • the first and second sections a1, a2, which form a first area b1 are in each case arched upwards in a curved shape, wherein the two sections a1, a2 of the curve 12 merge tangentially into one another at their connection point 22.
  • the area bl forms a continuous course without a kink.
  • the third portion a3 is also arcuate, being curved downward, in contrast to the first and second portions al, a2.
  • the second and third sections a2, a3 also merge tangentially into one another at their connection point 22, so that the second region b2, which is formed from the second and third sections a2, a3, has a continuous profile.
  • the two sections a3, a4 of the curvature line 12 merge tangentially into one another, ie the region b3 has a continuous course, without a kink being formed at the transition 22 between the two sections a3, a4.
  • All three areas bl to b3 extend above the X axis in the diagram in FIG. 1, furthermore, the first area bl is significantly longer and more curved than the third area b3.
  • the line of curvature 12 is also composed of four sections al to a4.
  • the curvature line 12 in this case runs above the X axis and in this case initially rises in an arc upwards, before it slowly drops towards the other end.
  • the first section al of the line of curvature 12 is arched downward in a downward arc and the adjoining section a2 is curved upward.
  • the two sections al and a2 tangentially merge into each other, so that the first area bl, by the first and second portion al, a2 has a continuous course.
  • the third section a3 is also curved arcuately upwards, wherein he and the second section a2 at their junction 22 tangentially merge into each other, without causing a kink arises.
  • the third region b3 of the curvature line 12 is formed from the third section a3 and a fourth section a4.
  • the fourth section a4 is arched downward in an arc shape, with the third and fourth sections a3, a4 merging tangentially into one another at their connection point 22.
  • Fig. 3 Further shown in Fig. 3 is a third embodiment of a prior art vane form.
  • the guide vane 10 consists, as in the first and second embodiment of four sections al to a4.
  • the curvature line 12 runs in a waveform initially in an arc above the X axis and then in an arc below the X axis.
  • the first and second sections al, a2 of the curvature line 12 is arcuate and extends upwardly curved. At their connection point 22, the two first and second sections al, a2 merge tangentially into one another.
  • the second region b2 of the curvature line 12 is formed by the second section a2 and a third section a3.
  • the third section a3 is also arcuate and curved downwards.
  • the two sections a2 and a3 pass tangentially into one another at their connection point 22, so that no sharp kink occurs in this area.
  • the fourth region b4 is formed by the third section a3 and a fourth section a4.
  • the fourth section a4 is likewise arched in an arcuate manner.
  • the guide vane 10 here consists for example of four sections al to a4.
  • a first region, consisting of the first and second sections al, a2, has a continuous course.
  • the first and second sections al, a2 is here arc-shaped and curved upwards.
  • the first section al passes tangentially into the second section a2, so that a continuous course is created without a kink.
  • a second region b2 is formed by the second portion a2 and a third portion a3, wherein the second and third portions a2, a3 are each arcuate and are curved upward.
  • the sections a2 and a3 do not tangentially merge into one another at their connection point 22 but form a kink 24.
  • the second area b2 does not form a continuous course as in the prior art but has a discontinuous course or has a sharp kink 24 at the Junction 22 of the two sections a2, a3.
  • the third area b3 consists of the third section a3 and a fourth section a4 and forms a continuous course.
  • the fourth section a4 is arc-shaped and arched upwards. At their connection point 22, the third and fourth sections a3, a4 merge tangentially into one another.
  • the guide vane 10 has a region b2 with a discontinuous course of the curvature line 12, in which the second and third sections a2, a3 at their junction 22 form a kind of kink 24 or not tangentially into each other.
  • the other areas b1 and b3 have a continuous course of the curvature line 12, without one of the areas forming a bend.
  • the curvature line 12 in the present case forms two arcs, once an upwardly arched arc of the sections al and a2 and another compared to a very much shallow arched arc consisting of the sections a3 and a4. Both bends form at their junction 22 the kink 24th
  • FIG. 5 a second embodiment of a guide blade 10 according to the invention is shown in FIG. 5.
  • the curvature line 12 of the guide vane 10 consists of four sections al to a4.
  • the first and second sections al, a2 is arc-shaped and arched upwards.
  • the first and second sections al, a2 merge tangentially into one another, so that the area b1, which is formed from the two sections al, a2, has a continuous course.
  • the second region b2 is formed from the second portion a2 and a third portion a3, wherein the third portion a3 is also curved upwards.
  • the two sections a2, a3 do not merge tangentially into one another at their connection point 22, but form a kind of kink 24, as shown in FIG.
  • the second area b2 has a discontinuous course.
  • the two third and fourth sections a3, a4 are here arc-shaped and curved upwards. At their junction 22 they go tangentially into each other.
  • the curvature line 12 of the guide vane 10 according to the invention has a discontinuous course at least in the region b2, while the two other regions b1 and b3 have a continuous course without buckling.
  • the first area bl is formed longer, or the stretched from the sections al and a2 arch.
  • the third area b3, or the arc stretched from the sections a3 and a4 is shorter in the second embodiment than in the first embodiment.
  • a guide vane may comprise at least one region consisting of two sections or a plurality of sections, for example two, three, four, five, six and more sections.
  • sections having an arbitrary shape, arrangement and / or dimensioning can be combined with one another.
  • the areas that are formed from the sections are formed from the sections.
  • the areas b 1 to b 3 are each arranged substantially above the x-axis in the diagrams.
  • the regions or sections of the curvature line 12 can run as desired, for example at least partially below the X axis, as is illustrated, for example, in FIG. 3 with reference to the prior art.
  • the portions of the line of curvature 12 may also extend entirely below or partially along the X-axis.
  • straight and arcuate portions at the curve line 12 of a vane 10 can be varied as desired.
  • the guide blade 10 can have at least one kink 24 or a plurality of kinks 24 or points at which the individual curve pieces of the curve line 12 do not merge tangentially into one another.
  • the curvature line 12 can have one, two, three, four or more of these so-called kinks 24 or non-tangential transitions, wherein the kinks 24 can be provided at arbitrary positions of the curvature line 12, depending on the function or intended use.

Abstract

Die Erfindung betrifft eine Leitschauf el (10), insbesondere für einen Turbolader, wobei die Krümmungslinie (12) der Leitschaufel (10) wenigstens einen oder mehrere Bereiche (61, 62, 63) mit einem diskontinuierlichen Verlauf aufweist.

Description

Beschreibung
Leitschaufel für eine variable Turbinengeometrie
Die Erfindung betrifft eine Leitschaufel für eine variable Turbinengeometrie eines Turboladers.
Ein Turbolader besteht im Allgemeinen aus einer Abgasturbine im Abgasstrom, die über eine Welle mit einem Verdichter im Anεaugtrakt verbunden ist. Dabei wird die Turbine vom Abgasstrom des Motors in Rotation versetzt und treibt so den Verdichter an. Über den Verdichter wird hierbei der Druck im Ansaugtrakt des Motors erhöht, so dass während des Ansaugtaktes eine größere Menge Luft in den Zylinder gelangt als bei einem Saugmotor. Auf diese Weise steht mehr Sauerstoff zur Verbrennung einer entsprechend größeren Kraftstoffmenge zur Verfügung.
Bei herkömmlichen Turboladern wird der Ladedruck, wenn not- wendig, dadurch begrenzt, dass mit einem Abblasventil bzw.
Bypass oder Wastegate das heiße Abgas zum Teil an der Turbine vorbeigeführt und damit die Leistung der Turbine reduziert wird. Dafür wird die Turbine so groß ausgelegt, dass sie schon weit unterhalb des Nennarbeitspunktes des Motors gut arbeitet.
Aus dem Stand der Technik sind des Weiteren Turbolader bekannt, die mit einer variablen Turbinengeometrie VTG versehen sind, um die Leistungsabgabe und das Ansprechverhalten an un- terschiedliche Betriebsbedingungen, wie beispielsweise Lastwechsel, besser anpassen zu können. Um das zu erreichen, befinden sich verstellbare, nicht rotierende Leitschaufeln im Turbineneintritt oder im Turbinengehäuse. In geschlossener Leitschaufel-Position führen dabei hohe Umfangskomponenten der Strömungsgeschwindigkeit und ein hohes Enthalpiegefälle zu einer hohen Turbinenleistung und damit einem hohen Ladedruck. In voll geöffneter Position der Leitschaufeln erschließt sich wiederum der maximale Durchsatz der Turbine bei hohem zentripetalem Anteil des Geschwindigkeitsvektors der Strömung. Der Vorteil dieser Leistungsregelung gegenüber einer Bypass-Regelung liegt darin, dass immer der volle Abgasmassenstrom über die Turbine geleitet und zur Leistungsumset- zung genutzt wird.
Für die variable Turbinengeometrie ist die Form des Schaufelprofils Haupteinflussfaktor für die thermodynamische Effizienz, die Regelcharakteristik und den benötigten radialen Bauraum.
Im Stand der Technik gibt es die verschiedensten Formen für das Profil der Verstellschaufel. Generell gilt es, das Optimum an Wirkungsgrad, Regelcharakteristik und möglichst klei- nem Teilkreis (Bauraum) zusammenzuführen. Üblicherweise wird die Form über die Krümmungslinie beschrieben, die zwischen dem Mittelpunkt des Kopfradius und dem Mittelpunkt des Endradius der Verstellschaufel verläuft. Diese Krümmungslinie entsteht indem innerhalb des Profils zu Ober- und Unterseite tangentiale Kreise angenommen werden. Die Verbindungslinie der Kreismittelpunkte beschreibt hierbei die Krümmungslinie.
Dabei gibt es rein gerade, gekrümmte oder aus beiden Möglichkeiten zusammengesetzte Varianten. Allen diesen Varianten ist gemein, dass die Krümmungslinien einen kontinuierlichen Verlauf besitzen, d.h. die einzelnen Kurvenstücke gehen tangential ineinander über. Mit anderen Worten die Krümmungslinie weist keinen Knick auf.
Demnach ist es die Aufgabe der vorliegenden Erfindung, eine verbesserte Leitschaufelgeometrie für einen Turbolader mit einer variablen Turbinengeometrie bereitzustellen.
Diese Aufgabe wird durch eine Leitschaufel mit den Merkmalen des Patentanspruchs 1 gelöst.
Demgemäß wird erfindungsgemäß eine Leitschaufel bereitgestellt, insbesondere für einen Turbolader, wobei die Krüm- mungslinie der Leitschaufel wenigstens einen oder mehrere Bereiche mit einem diskontinuierlichen Verlauf aufweist.
Die Leitschaufel ist besonders vorteilhaft bei der Ausgestal- tung eines Strömungsprofils. Hierbei kann der Wirkungsgrad verbessert werden bei unverändertem Regelungsverhalten und Bauraumbedarf .
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfin- düng ergeben sich aus den Unteransprüchen sowie der Beschreibung unter Bezugnahme auf die Zeichnungen.
In einer erfindungsgemäßen Ausführungsform weist die Krümmungslinie wenigstens einen Bereich mit zwei Abschnitten auf, die miteinander verbunden sind, wobei die beiden Abschnitte an ihrer Verbindungsstelle diskontinuierlich bzw. nicht tangential ineinander übergehen. Mit anderen Worten, die Abschnitte bilden an ihrer Verbindungsstelle einen Knick aus. Dies hat den Vorteil, dass durch eine solche Gestaltung der Leitschaufel, beispielsweise bei einer variablen Turbinengeometrie, der Wirkungsgrad eines Turboladers verbessert werden kann .
In einer weiteren erfindungsgemäßen Ausführungsform weist die Krümmungslinie der Leitschaufel neben wenigstens einem Bereich mit einem Knick bzw. mit einem nicht tangentialen Übergang zwischen zwei Abschnitten wenigstens einen Bereich auf, dessen beide Abschnitte an ihrer Verbindungsstelle kontinuierlich bzw. tangential ineinander übergehen. Auf diese Weise kann die Krümmungslinie einer Leitschaufel beliebig geeignet variiert werden mit kontinuierlich und diskontinuierlich verlaufenden Bereichen, je nachdem welches Strömungsprofil erzielt werden soll.
Gemäß einer weiteren erfindungsgemäßen Ausführungsform sind wenigstens ein, mehrere oder alle Abschnitte der Krümmungslinie identisch oder unterschiedlich beispielsweise in Bezug auf ihre Form, Position und/oder Abmessung. Entsprechendes gilt für die Bereich der Krümmungslinie die durch die Abschnitte gebildet werden. So lassen sich unterschiedlichste Bauformen von Leitschaufeln realisieren, die alle wenigstens einen Bereich mit einem diskontinuierlichen Verlauf aufwei- sen .
In einer weiteren erfindungsgemäßen Ausführungsform besteht die Leitschaufel beispielsweise aus vier Abschnitten, wobei der erste und zweite Abschnitt einen ersten Bereich bilden, mit einem kontinuierlichen Verlauf. Ein zweiter Bereich wird durch den zweiten Abschnitt und einen dritten Abschnitt gebildet, wobei der zweite und dritte Abschnitt an ihrer Verbindungsstelle diskontinuierlich ineinander übergehen bzw. einen Knick bilden. Ein dritte Bereich, bestehend aus dem dritten Abschnitt und einem vierten Abschnitt, weist wiederum einen kontinuierlich Verlauf auf. Eine solche Leitschaufel stellt ein Beispiel dar, bei welchem die Krümmungslinie einen Knick aufweist. Die Abschnitte des erste bzw. dritten Bereichs können hierbei beispielsweise beide oder wenigstens einer davon nach oben bzw. unten gewölbt sein.
In einer weiteren erfindungsgemäßen Ausführungsform können die Abschnitte aus denen die Krümmungslinie zusammengesetzt ist beispielsweise bogenförmig oder gerade ausgebildet sein. Die Abschnitte können hierbei nach oben oder unten gewölbt bzw. wenn die Abschnitte gerade sind, beispielsweise horizontal, senkrecht, oder schräg nach oben oder schräg nach unten gerichtet sein. Die Abschnitte können hierbei beliebig miteinander kombiniert werden, wobei wenigstens ein Bereich der durch die Abschnitte gebildet wird einen diskontinuierlichen Verlauf aufweist. Auf diese Weise können eine Vielzahl von Strömungsprofilen, je nach gewünschter Funktion bzw. gewünschtem Einsatzzweck realisiert werden.
Die Erfindung wird nachfolgend anhand der in den schemati- sehen Figuren der Zeichnungen angegebenen Ausführungsbeispiele näher erläutert. Es zeigen: Fig. 1 eine erste Ausführungsform einer Leitschaufel gemäß dem Stand der Technik;
Fig. 2 eine zweite Ausführungsform einer Leitschaufel gemäß dem Stand der Technik;
Fig. 3 eine dritte Ausführungsform einer Leitschaufel gemäß dem Stand der Technik;
Fig. 4 eine ersten Ausführungsform einer Leitschaufel gemäß der Erfindung; und
Fig. 5 eine zweite Ausführungsform einer Leitschaufel gemäß der Erfindung.
In den Figuren bezeichnen gleiche Bezugszeichen gleiche oder funktionsgleiche Komponenten, soweit nichts Gegenteiliges angegeben ist.
In Fig. 1 ist eine erste Ausführungsform einer Leitschaufel 10 gemäß dem Stand der Technik gezeigt. Die Leitschaufel 10 ist dabei in einem Diagramm eingezeichnet, wobei das Diagramm eine X-Achse und eine Y-Achse aufweist. Diese Darstellung gilt für alle Leitschaufeln 10 wie sie in den Fig. 1 bis 5 gezeigt sind.
Wie zuvor beschrieben, wird die Form einer Leitschaufel 10 normalerweise über die Krümmungslinie 12 beschrieben, die zwischen dem Mittelpunkt 14 des Kopfradius und dem Mittelpunkt 16 des Endradius der Leitschaufel 10 verläuft. Diese Krümmungslinie 12 entsteht indem innerhalb des Profils der Leitschaufel 10 zu Ober- und Unterseite 18, 20 tangentiale Kreise angenommen werden. Die Verbindungslinie der Kreismit- telpunkte beschreibt dabei die Krümmungslinie 12.
Im vorliegenden Fall, wie er in Fig. 1 gezeigt ist, verläuft die Krümmungslinie 12 wellenförmig. Die Krümmungslinie 12 setzt sich dabei aus vier Abschnitten al bis a4 zusammen. Der erste und zweite Abschnitt al, a2, die einen ersten Bereich bl bilden, ist hierbei jeweils bogenförmig nach oben gewölbt ausgebildet, wobei die beiden Abschnitte al, a2 der Krüm- mungslinie 12 an ihrer Verbindungsstelle 22 tangential ineinander übergehen. Der Bereich bl bildet hierbei einen kontinuierlichen Verlauf ohne einen Knick. Des Weiteren ist der dritte Abschnitt a3 ebenfalls bogenförmig ausgebildet, wobei er nach unten gewölbt ist, im Gegensatz zu dem ersten und zweiten Abschnitt al, a2. Der zweite und dritte Abschnitt a2, a3 gehen an ihrer Verbindungsstelle 22 ebenfalls tangential ineinander über, so dass der zweite Bereich b2, der aus dem zweiten und dritten Abschnitt a2, a3 gebildet wird, einen kontinuierlichen Verlauf aufweist. Entsprechendes gilt auch für den dritten Bereich b3. Dieser wird aus dem dritten Abschnitt a3 und einem vierten Abschnitt a4 gebildet, wobei beide Abschnitte a3, a4 bogenförmig ausgebildet sind und nach unten gewölbt sind. An ihrer Verbindungsstelle 22 gehen die beiden Abschnitte a3, a4 der Krümmungslinie 12 tangential in- einander über, d.h. der Bereich b3 weist einen kontinuierlichen Verlauf auf, ohne dass ein Knick am Übergang 22 der beiden Abschnitte a3, a4 entsteht. Alle drei Bereich bl bis b3 verlaufen oberhalb der X-Achse in dem Diagramm in Fig. 1, des Weiteren ist der erste bereich bl deutlich länger und stärker gewölbt als der dritte Bereich b3.
In der zweiten Ausführungsform einer Leitschaufel 10 gemäß dem Stand der Technik, wie sie in Fig. 2 gezeigt ist, setzt sich die Krümmungslinie 12 ebenfalls aus vier Abschnitten al bis a4 zusammen. Die Krümmungslinie 12 verläuft hierbei oberhalb der X-Achse und steigt hierbei zunächst in einem Bogen nach oben an, bevor sie zum anderen Ende hin langsam abfällt.
Der erste Abschnitt al der Krümmungslinie 12 ist hierbei bo- genförmig nach unten gewölbt und der daran anschließende Abschnitt a2 bogenförmig nach oben. An ihrer Verbindungsstelle 22 gehen die beiden Abschnitte al und a2 tangential ineinander über, so dass der erste Bereich bl, der durch den ersten und zweiten Abschnitt al, a2 gebildet wird, einen kontinuierlichen Verlauf aufweist. Der zweite Bereich b2, der sich aus dem zweiten Abschnitt a2 und einem dritten Abschnitt a3 zusammensetzt, weist ebenfalls einen kontinuierlichen Verlauf auf. So ist der dritte Abschnitt a3 ebenfalls bogenförmig nach oben gewölbt, wobei er und der zweite Abschnitt a2 an ihrer Verbindungsstelle 22 tangential ineinander übergehen, ohne dass dabei ein Knick entsteht. Der dritte Bereich b3 der Krümmungslinie 12 wird aus dem dritten Abschnitt a3 und einem vierten Abschnitt a4 gebildet. Der vierte Abschnitt a4 ist dabei bogenförmig nach unten gewölbt, wobei der dritte und vierte Abschnitt a3, a4 an ihrer Verbindungsstelle 22 tangential ineinander übergehen.
Weiter ist in Fig. 3 eine dritte Ausführungsform einer Leitschaufelform des Standes der Technik gezeigt. Die Leitschaufel 10 besteht dabei, wie in der ersten und zweiten Ausführungsform aus vier Abschnitten al bis a4. Dabei verläuft die Krümmungslinie 12 in einer Wellenform zunächst in einem Bogen oberhalb der X-Achse und dann in einem Bogen unterhalb der X- Achse .
Der erste und zweite Abschnitt al, a2 der Krümmungslinie 12 ist bogenförmig ausgebildet und verläuft nach oben gewölbt. An ihrer Verbindungsstelle 22 gehen die beiden ersten und zweiten Abschnitte al, a2 tangential ineinander über. Der zweite Bereich b2 der Krümmungslinie 12 wird durch den zweiten Abschnitt a2 und einen dritten Abschnitt a3 gebildet. Der dritte Abschnitt a3 ist ebenfalls bogenförmig ausgebildet und nach unten gewölbt. Die beiden Abschnitte a2 und a3 gehen an ihrer Verbindungsstelle 22 dabei tangential ineinander über, so dass kein scharfer Knick in diesem Bereich entsteht. Des Weiteren wird der vierte Bereich b4 durch den dritten Abschnitt a3 und einen vierten Abschnitt a4 gebildet. Der vier- te Abschnitt a4 ist ebenfalls bogenförmig nach unten gewölbt ausgebildet. Im Bereich ihrer Verbindungsstelle 22 gehen der dritte und vierte Abschnitt a3, a4 tangential ineinander ü- ber. Damit bilden die Bereiche bl bis b4 bzw. die Krümmungs- linie 12 insgesamt einen kontinuierlichen Verlauf, wie die beiden anderen zuvor beschriebenen Ausführungsformen einer Leitschaufel 10 gemäß dem Stand der Technik.
In Fig. 4 ist nun eine erste Ausführungsform einer Leitschaufel 10 gemäß der Erfindung gezeigt. Die Leitschaufel 10 besteht hierbei beispielsweise aus vier Abschnitten al bis a4. Ein erster Bereich, bestehend aus dem ersten und zweiten Abschnitt al, a2, weist dabei einen kontinuierlichen Verlauf auf. Der erste und zweite Abschnitt al, a2 ist hierbei bogenförmig ausgebildet und nach oben gewölbt. An ihrem Verbindungsabschnitt bzw. ihrer Verbindungsstelle 22 geht der erste Abschnitt al dabei tangential in den zweiten Abschnitt a2 ü- ber, so dass ein kontinuierlicher Verlauf entsteht ohne einen Knick. Ein zweiter Bereich b2 wird durch den zweiten Abschnitt a2 und einen dritten Abschnitt a3 gebildet, wobei der zweite und dritte Abschnitt a2, a3 jeweils bogenförmig ausgebildet sind und nach oben gewölbt sind. Dabei gehen die Abschnitte a2 und a3 an ihrem Verbindungspunkt 22 jedoch nicht tangential ineinander über sondern bilden einen Knick 24. Der zweite Bereich b2 bildet hierzu nicht wie im Stand der Technik einen kontinuierlichen Verlauf sondern einen diskontinuierlichen Verlauf bzw. weist einen scharfen Knick 24 an der Verbindungsstelle 22 der beiden Abschnitte a2, a3 auf. Der dritte Bereich b3 besteht aus dem dritten Abschnitt a3 und einem vierten Abschnitt a4 und bildet hierbei einen kontinuierlichen Verlauf. Der vierte Abschnitt a4 ist dabei bogenförmig ausgebildet und nach oben gewölbt. An ihrer Verbindungsstelle 22 gehen der dritte und vierte Abschnitt a3, a4 tangential ineinander über. Das bedeutet, dass in dem vorliegenden Beispiel, die Leitschaufel 10 einen Bereich b2 aufweist mit einem diskontinuierlichen Verlauf der Krümmungslinie 12, bei welchem der zweite und dritte Abschnitt a2, a3 an ihrer Verbindungsstelle 22 eine Art Knick 24 bilden bzw. nicht tangential ineinander übergehen. Die anderen Bereiche bl und b3 weisen dagegen einen kontinuierlichen Verlauf der Krümmungslinie 12 auf, ohne dass hierbei einer der Bereiche einen Knick ausbildet. Die Krümmungslinie 12 bildet im vorliegenden Fall zwei Bögen, einmal einen nach oben gewölbten Bogen aus den Abschnitten al und a2 und einen weiteren im Vergleich dazu sehr viel flacher gewölbten Bogen bestehend aus den Abschnitten a3 und a4. Beide Bögen bilden an ihrer Verbindungsstelle 22 den Knick 24.
Des Weiteren ist in Fig. 5 eine zweite Ausführungsform einer erfindungsgemäßen Leitschaufel 10 dargestellt. Die Krümmungs- linie 12 der Leitschaufel 10 besteht dabei aus vier Abschnitten al bis a4. Der erste und zweite Abschnitt al, a2 ist dabei bogenförmig ausgebildet und nach oben gewölbt. An ihrer Verbindungsstelle 22 gehend der erste und zweite Abschnitt al, a2 tangential ineinander über, so dass der Bereich bl, der aus den beiden Abschnitten al, a2 gebildet wird, einen kontinuierlichen Verlauf aufweist. Der zweite Bereich b2 wird aus dem zweiten Abschnitt a2 und einem dritten Abschnitt a3 gebildet, wobei der dritte Abschnitt a3 ebenfalls nach oben gewölbt ist. Die beiden Abschnitt a2, a3 gehen jedoch an ih- rer Verbindungsstelle 22 nicht tangential ineinander über, sondern bilden eine Art Knick 24, wie in Fig. 5 gezeigt ist. Damit weist der zweite Bereich b2 einen diskontinuierlichen Verlauf auf. Der dritte Bereich b3, der aus dem dritten Abschnitt a3 und einem vierten Abschnitt a4 gebildet wird weist wiederum einen kontinuierlichen Verlauf auf. Die beiden dritten und vierten Abschnitte a3, a4 sind hierbei bogenförmig ausgebildet und nach oben gewölbt. An ihrer Verbindungsstelle 22 gehen sie tangential ineinander über. Damit weist die Krümmungslinie 12 der erfindungsgemäßen Leitschaufel 10 zu- mindest in dem Bereich b2 einen diskontinuierlichen verlauf auf, während die beiden anderen Bereiche bl und b3 einen kontinuierlichen Verlauf ohne Knickbildung aufweisen. Im Gegensatz zu der ersten Ausführungsform der Erfindung ist bei der zweiten Ausführungsform der Erfindung der erste Bereich bl länger ausgebildet, bzw. der aus den Abschnitten al und a2 gespannt Bogen. Der dritte Bereich b3, bzw. der aus den Abschnitten a3 und a4 gespannte Bogen ist dafür in der zweiten Ausführungsform kürzer als wie in der ersten Ausführungsform. Obwohl die vorliegende Erfindung vorstehend anhand zweier bevorzugter Ausführungsbeispiele beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Art und Wei- se modifizierbar. Insbesondere ist auch denkbar, dass statt bogenförmiger Abschnitte auch Abschnitte mit beispielsweise einer geraden Form (nicht dargestellt) miteinander und/oder mit den bogenförmigen Abschnitten kombiniert werden, je nach beispielsweise anzustrebendem Strömungsprofil der jeweiligen Leitschaufel. Des Weiteren kann eine Leitschaufel wenigstens einen Bereich bestehend aus zwei Abschnitten aufweisen oder eine Vielzahl von Bereichen bzw. Abschnitten, beispielsweise zwei, drei, vier, fünf, sechs und mehr Bereiche bzw. Abschnitte. Dabei können Abschnitte mit einer beliebigen Form, Anordnung und/oder Dimensionierung miteinander kombiniert werden. Entsprechendes gilt auch für die Bereiche, die aus den Abschnitten gebildet werden. In den beiden erfindungsgemäßen Ausführungsformen, wie sie in den Fig. 4 und 5 gezeigt sind, sind die Bereiche bl bis b3 jeweils im Wesentlichen o- berhalb der X-Achse in den Diagrammen angeordnet. Grundsätzlich können die Bereiche bzw. Abschnitte der Krümmungslinie 12 beliebig verlaufen, beispielsweise zumindest teilweise unterhalb der X-Achse, wie zum Beispiel in Fig. 3 mit Bezug auf den Stand der Technik dargestellt ist. Wahlweise können die Bereiche bzw. Abschnitte der Krümmungslinie 12 auch vollständig unterhalb oder zum Teil auf der X-Achse verlaufen. Des Weiteren können gerade und bogenförmige Abschnitte bei der Krümmungslinie 12 einer Leitschaufel 10 beliebig variiert werden. Grundsätzlich kann die Leitschaufel 10 hierbei we- nigstens einen Knick 24 oder eine Vielzahl von Knicken 24 aufweisen bzw. Stellen an welchen die einzelnen Kurvenstücke der Krümmungslinie 12 nicht tangential ineinander übergehen. Beispielsweise kann die Krümmungslinie 12 eins, zwei, drei, vier und mehr dieser sog. Knicke 24 bzw. nicht tangentialen Übergänge aufweisen, wobei die Knicke 24 an beliebigen Positionen der Krümmungslinie 12 vorgesehen werden können je nach Funktion bzw. Einsatzzweck.

Claims

Patentansprüche
1. Leitschaufel (10), insbesondere für einen Turbolader, wobei die Krümmungslinie (12) der Leitschaufel (10) wenigstens einen oder mehrere Bereiche (bl, b2, b3) mit einem diskontinuierlichen Verlauf aufweist.
2. Leitschaufel nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Krümmungslinie (12) wenigstens einen Bereich (b2) mit zwei Abschnitten (a2, a3) aufweist, die miteinander verbunden sind, wobei die beiden Abschnitte (a2, a3) an ihrer Verbindungsstelle (22) diskontinuierlich bzw. nicht tangential ineinander übergehen.
3. Leitschaufel nach wenigstens einem der Ansprüche 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass die Krümmungslinie (12) wenigstens einen Bereich (bl, b3) mit zwei Abschnitten (al, a2; a3, a4) aufweist, die mit- einander verbunden sind, wobei die beiden Abschnitte (al, a2; a3, a4) an ihrer Verbindungsstelle (22) kontinuierlich bzw. tangential ineinander übergehen.
4. Leitschaufel nach wenigstens einem der Ansprüche 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , dass wenigstens einer, mehrere oder alle Abschnitte (al, a2, a3, a4) jeweils dieselbe oder eine unterschiedliche Form und/oder Dimensionierung aufweisen.
5. Leitschaufel nach wenigstens einem der Ansprüche 2 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass wenigsten einer, mehrere oder alle Bereiche (bl, b2, b3) jeweils dieselbe oder eine unterschiedliche Form und/oder Dimensionierung aufweisen.
6. Leitschaufel nach wenigstens einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , dass die Leitschaufel (10) aus vier Abschnitten (al, a2, a3, a4) besteht, wobei der erste Abschnitt (al) und der zweite Abschnitt (a2) den ersten Bereich (bl) bilden, wobei beide Abschnitte (al, a2) an ihrer Verbindungsstelle (22) kontinuierlich ineinander übergehen, wobei ein zweiter Bereich (b2) durch den zweiten Abschnitt (a2) und einen dritten Abschnitt (a3) gebildet wird, wobei der zweite und dritte Abschnitt (a2, a3) an ihrer Verbindungsstelle (22) diskontinuierlich ineinander übergehen bzw. einen Knick (24) bilden und wobei ein dritte Bereich (b3) durch den dritten Abschnitt (a3) und einen vierten Abschnitt (a4) gebildet wird und der dritte und vierte Abschnitt (a3, a4) an ihrer Verbindungsstelle (22) kontinuierlich ineinander übergehen.
7. Leitschaufel nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , dass der erste und dritte Bereich (bl, b3) jeweils nach oben oder nach unten gewölbt sind oder einer der Bereiche (bl, b3) nach oben und der andere nach unten gewölbt ist.
8. Leitschaufel nach wenigstens einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass ein oder beide Abschnitte (al, a2, a3, a4) eines Bereichs (bl, b2, b3) beispielsweise bogenförmig oder gerade ausgebildet sind und nach oben oder unten gewölbt bzw. ge- richtet sind.
9. Turbolader mit einer variablen Turbinengeometrie, wobei die variable Turbinengeometrie wenigstens eine oder mehrere Leitschaufeln (10) gemäß wenigstens einem der Ansprüche 1 bis 8 aufweist.
10. Turbolader nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , dass wenigstens eine mehrere oder alle Leitschaufeln (10) der variablen Turbinengeometrie die gleiche oder eine unterschiedliche Form aufweisen.
PCT/EP2008/064594 2008-01-11 2008-10-28 Leitschaufel für eine variable turbinengeometrie WO2009086959A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/812,499 US20100296924A1 (en) 2008-01-11 2008-10-28 Guide Vane for a Variable Turbine Geometry
EP08869779.2A EP2245275B1 (de) 2008-01-11 2008-10-28 Leitschaufel einer variablen turbinengeometrie eines turboladers
CN200880124892.9A CN101910565B (zh) 2008-01-11 2008-10-28 用于可变涡轮几何形状的导向叶片
JP2010541722A JP2011509371A (ja) 2008-01-11 2008-10-28 可変のタービンジオメトリのためのガイドベーン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008004014A DE102008004014A1 (de) 2008-01-11 2008-01-11 Leitschaufel für eine variable Turbinengeometrie
DE102008004014.2 2008-01-11

Publications (1)

Publication Number Publication Date
WO2009086959A1 true WO2009086959A1 (de) 2009-07-16

Family

ID=40193669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/064594 WO2009086959A1 (de) 2008-01-11 2008-10-28 Leitschaufel für eine variable turbinengeometrie

Country Status (7)

Country Link
US (1) US20100296924A1 (de)
EP (1) EP2245275B1 (de)
JP (2) JP2011509371A (de)
KR (1) KR20100110867A (de)
CN (1) CN101910565B (de)
DE (1) DE102008004014A1 (de)
WO (1) WO2009086959A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009057987A1 (de) * 2009-12-11 2011-06-16 Bosch Mahle Turbo Systems Gmbh & Co. Kg Ladeeinrichtung
CN102296995A (zh) * 2010-06-25 2011-12-28 霍尼韦尔国际公司 用于向涡轮引导废气的叶片
WO2016062531A1 (de) * 2014-10-21 2016-04-28 Siemens Aktiengesellschaft Profilierung von leitschaufeln von leitapparaten bei turbomaschinen, insbesondere verdichtern
EP3412892A4 (de) * 2016-03-31 2019-01-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Rotierende maschinenschaufel, superlader und verfahren zur bildung eines strömungsfeldes davon
EP3470627A1 (de) * 2017-10-12 2019-04-17 United Technologies Corporation Gasturbinenmotorschaufel
EP3073063B1 (de) * 2015-03-23 2020-12-09 BMTS Technology GmbH & Co. KG Ladeeinrichtung und zugehörige leitschaufel

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2787181B1 (de) 2011-11-30 2019-01-09 Mitsubishi Heavy Industries, Ltd. Radialturbine
JP5964081B2 (ja) * 2012-02-29 2016-08-03 三菱重工業株式会社 可変容量ターボチャージャ
FR2991373B1 (fr) * 2012-05-31 2014-06-20 Snecma Aube de soufflante pour turboreacteur d'avion a profil cambre en sections de pied
US9790796B2 (en) * 2013-09-19 2017-10-17 General Electric Company Systems and methods for modifying a pressure side on an airfoil about a trailing edge
DE102013224572A1 (de) * 2013-11-29 2015-06-03 Bosch Mahle Turbo Systems Gmbh & Co. Kg Abgasturbolader, insbesondere für ein Kraftfahrzeug
DE102013225642B4 (de) * 2013-12-11 2020-09-17 Vitesco Technologies GmbH Abgasturbolader mit einem verstellbaren Leitgitter
WO2015134351A1 (en) * 2014-03-04 2015-09-11 Borgwarner Inc. A cast turbocharger turbine housing having guide vanes
US10935041B2 (en) 2016-06-29 2021-03-02 Rolls-Royce Corporation Pressure recovery axial-compressor blading
CN112154260B (zh) * 2018-12-19 2022-10-14 三菱重工发动机和增压器株式会社 喷嘴叶片

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE522531C (de) * 1929-01-12 1931-04-10 Bbc Brown Boveri & Cie Verfahren zur Anpassung des freien Durchgangsquerschnittes verstellbar eingesetzter Leitschaufeln von Turbinen, insbesondere Abgasturbinen
CH351065A (de) * 1957-02-21 1960-12-31 Ingenieurbureau W Hausammann & Laufrad für Turbomaschinen, speziell Axialkompressoren
DE1096536B (de) * 1953-08-17 1961-01-05 Rheinische Maschinen Und App G Zentrifugalverdichter, aus dessen Laufrad das Foerdermittel mit UEberschallgeschwindigkeit in eine das Laufrad konzentrisch umschliessende Leitvorrichtung eintritt
EP0056669A1 (de) * 1981-01-21 1982-07-28 ATELIERS DE CONSTRUCTIONS ELECTRIQUES DE CHARLEROI (ACEC) Société Anonyme Turbine mit regelbarem Einlassquerschnitt
DE4238550A1 (de) * 1992-11-14 1994-05-19 Daimler Benz Ag Abgasturbolader für eine Brennkraftmaschine
EP0659979A1 (de) * 1993-12-22 1995-06-28 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Turbinenschaufel mit verstellbare Wölbung
DE10255389A1 (de) * 2002-11-28 2004-06-09 Alstom Technology Ltd Niederdruckdampfturbine mit Mehrkanal-Diffusor
WO2005064121A1 (en) * 2003-12-31 2005-07-14 Honeywell International, Inc. Cambered vane for use in turbochargers
EP1731716A2 (de) * 2005-06-06 2006-12-13 The General Electric Company Forwärts geneigte Statorschaufel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227823A (ja) * 1988-03-08 1989-09-12 Honda Motor Co Ltd タービンの可変ノズル構造
DE4220960A1 (de) * 1992-06-25 1994-01-05 Turbowerke Meisen Ventilatoren Schaufeln für Arbeitsmaschinen
DE59709447D1 (de) * 1997-11-17 2003-04-10 Alstom Switzerland Ltd Endstufe für axialdurchströmte Turbine
JP2000087899A (ja) * 1998-09-14 2000-03-28 Ishikawajima Harima Heavy Ind Co Ltd インレットガイドベーン装置の異音低減装置
JP3605398B2 (ja) * 2002-02-26 2004-12-22 三菱重工業株式会社 可変容量ターボチャージャ
US6709232B1 (en) * 2002-09-05 2004-03-23 Honeywell International Inc. Cambered vane for use in turbochargers
WO2006053579A1 (en) * 2004-11-16 2006-05-26 Honeywell International Inc. Variable nozzle turbocharger
EP1904730B1 (de) * 2005-07-19 2008-12-10 Honeywell International Inc. Turbolader mit variabler düse
EP3150805B1 (de) * 2005-11-25 2020-09-23 BorgWarner, Inc. Schaufel eines turboladers mit verstellbarer turbinengeometrie sowie turbolader
DE102008020673B4 (de) * 2007-05-09 2018-10-31 Schaeffler Technologies AG & Co. KG Abgestufte Statorschaufel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE522531C (de) * 1929-01-12 1931-04-10 Bbc Brown Boveri & Cie Verfahren zur Anpassung des freien Durchgangsquerschnittes verstellbar eingesetzter Leitschaufeln von Turbinen, insbesondere Abgasturbinen
DE1096536B (de) * 1953-08-17 1961-01-05 Rheinische Maschinen Und App G Zentrifugalverdichter, aus dessen Laufrad das Foerdermittel mit UEberschallgeschwindigkeit in eine das Laufrad konzentrisch umschliessende Leitvorrichtung eintritt
CH351065A (de) * 1957-02-21 1960-12-31 Ingenieurbureau W Hausammann & Laufrad für Turbomaschinen, speziell Axialkompressoren
EP0056669A1 (de) * 1981-01-21 1982-07-28 ATELIERS DE CONSTRUCTIONS ELECTRIQUES DE CHARLEROI (ACEC) Société Anonyme Turbine mit regelbarem Einlassquerschnitt
DE4238550A1 (de) * 1992-11-14 1994-05-19 Daimler Benz Ag Abgasturbolader für eine Brennkraftmaschine
EP0659979A1 (de) * 1993-12-22 1995-06-28 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Turbinenschaufel mit verstellbare Wölbung
DE10255389A1 (de) * 2002-11-28 2004-06-09 Alstom Technology Ltd Niederdruckdampfturbine mit Mehrkanal-Diffusor
WO2005064121A1 (en) * 2003-12-31 2005-07-14 Honeywell International, Inc. Cambered vane for use in turbochargers
EP1731716A2 (de) * 2005-06-06 2006-12-13 The General Electric Company Forwärts geneigte Statorschaufel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8662836B2 (en) 2009-12-11 2014-03-04 Bosch Mahle Turbo Systems Gmbh & Co. Kg Charging device
DE102009057987B4 (de) * 2009-12-11 2020-08-20 BMTS Technology GmbH & Co. KG Ladeeinrichtung und Leitschaufel für eine derartige Ladeeinrichtung
DE102009057987A1 (de) * 2009-12-11 2011-06-16 Bosch Mahle Turbo Systems Gmbh & Co. Kg Ladeeinrichtung
US8834104B2 (en) 2010-06-25 2014-09-16 Honeywell International Inc. Vanes for directing exhaust to a turbine wheel
EP2402558A1 (de) * 2010-06-25 2012-01-04 Honeywell International, Inc. Schaufeln zum Leiten von Abgas zu einem Turbinenrad
CN102296995B (zh) * 2010-06-25 2016-04-13 霍尼韦尔国际公司 用于向涡轮引导废气的叶片
EP3048253A1 (de) * 2010-06-25 2016-07-27 Honeywell International Inc. Schaufeln zum leiten von abgas zu einem turbinenrad
CN102296995A (zh) * 2010-06-25 2011-12-28 霍尼韦尔国际公司 用于向涡轮引导废气的叶片
WO2016062531A1 (de) * 2014-10-21 2016-04-28 Siemens Aktiengesellschaft Profilierung von leitschaufeln von leitapparaten bei turbomaschinen, insbesondere verdichtern
CN107109960A (zh) * 2014-10-21 2017-08-29 西门子公司 在涡轮机械中、尤其压缩机中的导向器的导向叶片的轮廓部
US10634156B2 (en) 2014-10-21 2020-04-28 Siemens Aktiengesellschaft Centrifugal compressor
EP3073063B1 (de) * 2015-03-23 2020-12-09 BMTS Technology GmbH & Co. KG Ladeeinrichtung und zugehörige leitschaufel
EP3412892A4 (de) * 2016-03-31 2019-01-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Rotierende maschinenschaufel, superlader und verfahren zur bildung eines strömungsfeldes davon
US11041505B2 (en) 2016-03-31 2021-06-22 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Rotary machine blade, supercharger, and method for forming flow field of same
EP3470627A1 (de) * 2017-10-12 2019-04-17 United Technologies Corporation Gasturbinenmotorschaufel
US10774650B2 (en) 2017-10-12 2020-09-15 Raytheon Technologies Corporation Gas turbine engine airfoil

Also Published As

Publication number Publication date
US20100296924A1 (en) 2010-11-25
CN101910565B (zh) 2014-06-11
JP2013238249A (ja) 2013-11-28
KR20100110867A (ko) 2010-10-13
EP2245275A1 (de) 2010-11-03
JP2011509371A (ja) 2011-03-24
DE102008004014A1 (de) 2009-07-23
JP5701352B2 (ja) 2015-04-15
CN101910565A (zh) 2010-12-08
EP2245275B1 (de) 2015-04-08

Similar Documents

Publication Publication Date Title
EP2245275B1 (de) Leitschaufel einer variablen turbinengeometrie eines turboladers
EP0598174B1 (de) Abgasturbolader für eine Brennkraftmaschine
DE112015001237B4 (de) Abgasturbolader
DE112012001912T5 (de) Turbolader mit zweiflutigem Turbinengehäuse
DE102007017826B4 (de) Abgasturbolader
WO2010121684A1 (de) Verbrennungskraftmaschine sowie verfahren zum betreiben einer verbrennungskraftmaschine
EP2181268A1 (de) Radialverdichter mit einem diffusor für den einsatz bei einem turbolader
DE112013005624T5 (de) Doppelschnecken-Halbaxial-Turbolader mit Einzelventil
WO2010069301A2 (de) Vollvarioturbinen für abgasturbolader
DE102008049782A1 (de) Abgasturbolader für eine Brennkraftmaschine
WO2008155023A1 (de) Luftversorger, insbesondere für ein luftversorgungssystem von brennstoffzellen
WO2019052729A1 (de) Radialverdichter mit einem irisblendenmechanismus für eine aufladevorrichtung eines verbrennungsmotors, aufladevorrichtung und lamelle für den irisblendenmechanismus
DE102009043085A1 (de) Brennkraftmaschine mit einem Abgasturbolader und einem Abgasrückführsystem
DE102011120167A1 (de) Verdichter für einen Abgasturbolader,insbesondere eines Kraftwagens
EP3568597A1 (de) Rückführstufe und radialturbofluidenergiemaschine
WO2004111406A2 (de) Brennkraftmaschine mit abgasrückführeinrichtung und verfahren hierzu
DE10261790B4 (de) Strömungsmaschinenanordnung
DE102018212756B3 (de) Radialverdichter, Aufladevorrichtung und Brennkraftmaschine mit Abgasrückführeinrichtung
EP1878893A1 (de) Abgasturboladeranordnung
DE4307098C2 (de) Abgasturbolader
EP2134925B1 (de) Abgasturbolader und verfahren zu dessen betreiben
DE102014220679B4 (de) Brennkraftmaschine mit Mixed-Flow-Turbine umfassend eine Leiteinrichtung und Abgasrückführung
WO2013037437A2 (de) Turbine für einen abgasturbolader
DE102016213626A1 (de) Turbine für einen Abgasturbolader
DE102018217287A1 (de) Brennkraftmaschine mit Abgasturbolader mit Variabilität am Verdichtereinlass und Abgasturbolader

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124892.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008869779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4459/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12812499

Country of ref document: US

Ref document number: 2010541722

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107017638

Country of ref document: KR

Kind code of ref document: A