WO2009084532A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2009084532A1
WO2009084532A1 PCT/JP2008/073410 JP2008073410W WO2009084532A1 WO 2009084532 A1 WO2009084532 A1 WO 2009084532A1 JP 2008073410 W JP2008073410 W JP 2008073410W WO 2009084532 A1 WO2009084532 A1 WO 2009084532A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold storage
refrigerant
evaporator
storage tank
compressor
Prior art date
Application number
PCT/JP2008/073410
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Idei
Original Assignee
Calsonic Kansei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corporation filed Critical Calsonic Kansei Corporation
Publication of WO2009084532A1 publication Critical patent/WO2009084532A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • B60H1/005Regenerative cooling means, e.g. cold accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0013Particular heat storage apparatus the heat storage material being enclosed in elements attached to or integral with heat exchange conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0082Multiple tanks arrangements, e.g. adjacent tanks, tank in tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a vehicle air conditioner, and more particularly to a vehicle air conditioner capable of continuing a cooling operation in a compressor stopped state.
  • idling stop control that automatically stops the engine when the vehicle is stopped may be performed.
  • the compressor driven by the engine in the refrigeration cycle is stopped and the refrigeration cycle is also stopped. Therefore, the vehicle air conditioner capable of continuing the cooling operation even in such a refrigeration cycle stopped state. Is required.
  • vehicle air conditioner capable of cooling operation when the compressor is stopped, for example, one described in Japanese Patent Application Laid-Open No. 2007-1485 is known.
  • the vehicle air conditioner described in this patent publication is provided with a cold storage heat exchanger between the evaporator and the condenser of the refrigeration cycle outside the air conditioning unit, and the cold storage material of the cold storage heat exchanger is allowed to cool.
  • a cold storage tank is provided for storing the refrigerant condensed at the time.
  • the refrigerant absorbed and evaporated by the evaporator is condensed and liquefied by cooling from the regenerator material of the regenerator heat exchanger to reduce the refrigerant volume on the regenerator tank side. Since the evaporator side can be set to a lower pressure than the condenser side, the refrigerant on the condenser side flows into the evaporator side, and cooling by the evaporator can be continued.
  • the cold storage heat exchanger and the cold storage tank are provided outside the air conditioning unit. Therefore, when assembling to the vehicle body, it is necessary to connect these pipes. In addition, it is necessary to secure an installation space for the cold storage heat exchanger and the cold storage tank in the engine room, which is inferior to the vehicle-mounted property as compared with those not having them.
  • the shape of the vehicle body differs depending on the specification in order to secure the installation space for the cold storage tank in the vehicle body. If this happens, the cost will increase significantly.
  • the present invention has been made by paying attention to the conventional problems as described above, and is intended to improve in-vehicle performance and reduce costs in a vehicle air conditioner having a function of continuing cooling when the refrigeration cycle is stopped. Let it be an issue.
  • an air conditioner for a vehicle passes through the air passage to a casing that forms an air passage that forms air flow from the suction port to the air outlet that communicates with the passenger compartment.
  • An air-conditioning unit equipped with a blower that forms air and an evaporator that cools the air; a refrigerating cycle that includes the evaporator and in which refrigerant circulates in the order of a compressor, a condenser, an expansion valve, and the evaporator; A decompressor provided in parallel with the expansion valve so that the high-pressure refrigerant on the condenser side can be decompressed and supplied to the evaporator side when the compressor is stopped; connected between the evaporator and the compressor in the refrigeration cycle; And installed in the casing and configured to store the refrigerant.
  • Both the cold storage tank with a cold accumulating material for cooling the interior of the refrigerant; and the vehicle air-conditioning system characterized in that it comprises.
  • the refrigerant circulates in the order of the compressor, the condenser, the expansion valve, the evaporator, and the cold storage tank.
  • the cold storage material is cooled by the refrigerant that has passed through the evaporator, and is stored in the cold storage material.
  • the cooling energy stored in the cold storage material liquefies the refrigerant vaporized by passing through the pressure reducer, and the volume is reduced.
  • the movement of the refrigerant due to the residual pressure can be maintained for a long time, and the cooling state by the evaporator can be maintained.
  • the cold storage tank is installed in the casing of the air conditioning unit. Therefore, when the vehicle air conditioner of the present invention is mounted on a vehicle, the air conditioning unit is assembled to the vehicle body, so that the cold storage tank is also mounted on the vehicle, and the cold storage tank is installed outside the casing of the air conditioning unit as in the past. Compared to installing in the engine room, it is not necessary to assemble an independent cold storage tank or connect this cold storage tank to piping, and it is not necessary to secure the installation space for the cold storage tank in the vehicle body. Yes, excellent in-vehicle performance.
  • the difference in configuration due to the difference in specifications is the internal configuration of the air conditioning unit, such as the shape of the vehicle body side It can be shared, and it is easy to share the assembly work, which is advantageous in terms of cost.
  • FIG. 3 is a longitudinal sectional view showing a cold storage tank 7 used in the vehicle air conditioner A of Embodiment 1, and shows a state cut along a line S2-S2 in FIG.
  • FIG. 3 is a longitudinal sectional view showing a cold storage tank 7 used in the vehicle air conditioner A of Embodiment 1, and shows a state cut along line S3-S3 in FIG. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a configuration explanatory diagram illustrating a configuration of a vehicle air conditioner A according to Example 1 of the best mode of the present invention.
  • FIG. 1 is a configuration explanatory diagram illustrating a configuration of a vehicle air conditioner A according to Example 1 of the best mode of the present invention.
  • FIG. 6 is a configuration explanatory diagram showing a refrigeration cycle 230 in the vehicle air conditioner of Embodiment 2.
  • FIG. 9 is a longitudinal sectional view showing a cold storage tank 307 used in the vehicle air conditioner of Embodiment 3, and shows a state cut along a line S6-S6 in FIG.
  • FIG. 7 is a transverse sectional view showing a cold storage tank 307 used in the vehicle air conditioner of Embodiment 3, and shows a state cut along line S7-S7 in FIG. It is a longitudinal cross-sectional view which shows the cool storage tank 407 used for the vehicle air conditioner of Example 4.
  • FIG. 9 is a longitudinal sectional view showing a cold storage tank 307 used in the vehicle air conditioner of Embodiment 3, and shows a state cut along a line S6-S6 in FIG.
  • FIG. 7 is a transverse sectional view showing a cold storage tank 307 used in the vehicle air conditioner of Embodiment 3, and shows a state cut along line S7-S7 in FIG.
  • the vehicle air conditioner of the present embodiment is configured such that the air passage 18 is provided in a casing 1c that forms an air passage 18 in which air is directed from the air inlet 11 to the air outlets 12a, 12b, and 12c.
  • the air conditioner unit 1 on which the blower 4 that forms the passing air and the evaporator 3 that cools the air flow are mounted, and the evaporator 3, and the refrigerant circulates in the order of the compressor 31, the condenser 32, the expansion valve 34, and the evaporator 3.
  • a decompressor provided in parallel with the expansion valve 34 so that the high-pressure refrigerant on the condenser 32 side can be decompressed and supplied to the evaporator 3 side when the compressor 31 is stopped. 35, and connected between the evaporator 3 and the compressor 31 in the refrigeration cycle 30 And a cold storage tank 7 provided with cold storage materials 8a and 8b for cooling the internal refrigerant, and installed in the casing 1C and configured to store the refrigerant.
  • Air conditioner provided in parallel with the expansion valve 34 so that the high-pressure refrigerant on the condenser 32 side can be decompressed and supplied to the evaporator 3 side when the compressor 31 is stopped.
  • FIG. 4 is an overall schematic diagram showing an outline of the configuration of the vehicle air conditioner A.
  • the vehicle air conditioner A includes an air conditioner unit 1 installed in an instrument panel (not shown) and the air conditioner unit 1.
  • a control unit 2 for controlling the operation is provided.
  • the air conditioning unit 1 is installed in an instrument panel (not shown), and a differential outlet 12a to which various ducts (not shown) connected to the vehicle interior are connected from an inlet 11 capable of selectively introducing inside and outside air,
  • a casing 1c is provided in which an air passage 18 reaching the foot outlet 12b and the vent outlet 12c is formed.
  • the blower passage 18 of the casing 1c includes, in order from the upstream side of the air flow, a blower fan 4 that forms air flow from the suction port 11 toward the air outlets 12a to 12c, an evaporator 3 that cools the air flow, and a heater core that heats the air flow. 6 are installed.
  • the evaporator 3 is one of the components of the refrigeration cycle 30 that circulates a known refrigerant.
  • the refrigeration cycle 30 includes a compressor 31 that is driven by a traveling engine or motor to compress refrigerant, a condenser 32 that cools high-pressure gaseous refrigerant to obtain a saturated liquid, A liquid tank 33 that performs gas-liquid separation and an expansion valve 34 that uses a refrigerant as low-temperature and low-pressure steam are provided.
  • the refrigerant circulates in the order of the compressor 31, the condenser 32, the liquid tank 33, the expansion valve 34, and the evaporator 3. It is configured as follows.
  • a decompressor 35 is provided in parallel with the expansion valve 34, and a cold storage tank 7 is provided between the evaporator 3 and the compressor 31.
  • the decompressor 35 has a function of maintaining the communication state between the condenser 32 side and the evaporator 3 side even when the expansion valve 34 is closed, and depressurizing and vaporizing the high-pressure refrigerant on the condenser 32 side.
  • the expansion valve 34 it can be comprised by the groove
  • the cold storage tank 7 is arranged in parallel with the evaporator 3 in the casing 1c of the air conditioning unit 1 and is formed in a flat cylindrical shape.
  • the cold storage tank 7 is formed in a double cylinder shape including an outer cylinder 71 and an inner cylinder 72 by extrusion molding, and the vertical direction of the vehicle is an action direction of gravity. It is arranged in a direction that substantially matches the direction.
  • connecting plates 73 a, 73 b, 73 c that connect the outer cylinder 71 and the inner cylinder 72 are formed integrally with both the cylinders 71, 72.
  • the inner chamber 7d formed inside is divided into two. As shown in FIG.
  • lid plates 72 a and 72 b are joined to the upper and lower ends of the inner cylinder 72 by welding or the like so that the upper and lower ends of the inner cylinder 72 are closed, and the upper and lower ends of the outer cylinder 71 are closed.
  • An upper cap member 74 and a lower cap member 75 having a substantially U-shaped cross section having an inner diameter dimension slightly larger than the outer dimension of the outer cylinder 71 are fitted into the section, and are joined by welding. Therefore, an upstream chamber 7a and a downstream chamber 7b that are partitioned from the inside of the outer cylinder 71 and the inner cylinder 72 are formed at both upper and lower ends of the cold storage tank 7, and the upstream chamber 7a and the downstream chamber 7b are formed by the outer cylinder 71. And the inner cylinder 72 are communicated by a communication passage 7c extending in the axial direction.
  • the inner chamber 7d of the inner cylinder 72 is filled with a cold storage material 8a.
  • the cold storage material 8a can exchange heat with the refrigerant to store the cooling energy of the refrigerant.
  • paraffin, water-absorbing polymer, plant cellulose, water, LLC, or the like can be used.
  • a sheet-like cool storage material 8 b is also wound around the outer periphery of the outer cylinder 71.
  • the inflow pipe 36 through which the refrigerant is sent from the evaporator 3 is connected to the upstream chamber 7 a of the cold storage tank 7 through the upper cap member 74.
  • an outflow pipe 37 that sends refrigerant from the cold storage tank 7 to the compressor 31 is connected to the downstream chamber 7 b of the cold storage tank 7 through the lower cap member 75.
  • control unit 2 is configured to form a room temperature set by a setting switch (not shown) based on an input from a sensor group SE including various sensors for detecting an indoor temperature environment factor. Control the temperature.
  • the compressor 31 is driven by an engine or motor (not shown), and the refrigeration cycle 30 is activated.
  • the refrigerant compressed and discharged by the compressor 31 is condensed and liquefied by the condenser 32, gas-liquid separated by the liquid tank 33, decompressed by the expansion valve 34, absorbed by the evaporator 3, and evaporated.
  • the air in the air passage 18 of the air conditioning unit 1 is cooled.
  • the refrigerant evaporated in the evaporator 3 flows into the cold storage tank 7 through the inflow pipe 36, and moves from the upstream chamber 7a of the cold storage tank 7 to the downstream chamber 7b through the communication path 7c.
  • the regenerator materials 8a and 8b arranged inside and outside are cooled, and cooling energy is stored in these regenerator materials 8a and 8b.
  • the refrigerant in the downstream chamber 7 b moves from the outflow pipe 37 to the suction side of the compressor 31.
  • the control unit 2 performs so-called idle stop control that automatically stops driving of the engine (not shown) when the vehicle stops.
  • idle stop control the driving of the compressor 31 in the refrigeration cycle 30 is stopped.
  • the refrigerant gasified by heat exchange in the evaporator 3 flows into the upstream chamber 7a of the cold storage tank 7 from the inflow pipe 36 and is cooled by the cold storage materials 8a and 8b while moving through the communication path 7c by gravity.
  • the liquid is condensed and stored in the downstream chamber 7b.
  • the evaporator 3 and the cold storage tank 7 are kept at a low pressure, and the refrigerant is continuously sent to the evaporator 3 even after the compressor 31 is stopped. And cooling continues. In addition, this continuous cooling is performed while the cool storage materials 8a and 8b are the temperature which can perform refrigerant
  • the air conditioning unit 1 is assembled to the vehicle body when the vehicle air conditioner A is mounted on the vehicle.
  • the cold storage tank 7 is also mounted on the vehicle, and the cold storage tank 7 is assembled in an independent manner as compared with the case where the cold storage tank 7 is installed outside the casing 1c of the air conditioning unit 1 in the vehicle compartment or the engine room. No work or connection work between the cold storage tank 7 and the piping is required, and the in-vehicle property is excellent.
  • the difference in the configuration due to the difference in the specification is the internal configuration of the air conditioning unit 1 and the shape on the vehicle body side. Etc., and it is easy to share the assembling work, so that it is excellent in in-vehicle performance and cost reduction.
  • the cold storage tank 7 is formed in a flat cylindrical shape, it can be arranged in the air conditioning unit 1 with a limited capacity so as not to be a resistance to blowing air in the air passage 18, as compared with a case where it is not flat. Excellent in-vehicle performance.
  • the cold storage tank 7 has a structure in which the inside and outside of the communication passage 7c through which the refrigerant flows is surrounded by the cold storage materials 8a and 8b, and therefore, only one of the cold storage materials 8a and 8b is used.
  • the refrigerant cooling performance in the cold storage tank 7 is high, and the cooling continuation performance when the compressor 31 is stopped can be enhanced.
  • the cold storage tank 7 is formed by closing both ends of the double-cylinder structure portion of the extrusion molding material with the upper cap member 74 and the lower cap member 75, manufacturing is easy and cost reduction is achieved. Can do.
  • the refrigerant from the evaporator 3 flows into the upstream chamber 7 a at the upper end and flows out from the downstream chamber 7 b at the lower end to the compressor 31, so that the mist refrigerant flowing from the evaporator 3 directly It is difficult to send to the compressor 31, and the operation of the refrigeration cycle 30 can be stabilized.
  • FIG. 5 is a configuration explanatory view showing the refrigeration cycle 230 of the vehicle air conditioner of the second embodiment.
  • a decompressor 235 is provided in parallel with the expansion valve 34, and the liquid tank 33
  • a switching valve 200 is provided between the expansion valve 34 and the expansion valve 34 to switch between an expansion valve side open state in which the refrigerant from the liquid tank 33 flows only to the expansion valve 34 and a decompressor side open state in which only the decompressor 235 flows. is there.
  • the switching of the switching valve 200 is performed by the control unit 2. That is, the control unit 2 controls the switching valve 200 so that the expansion valve side is opened when the compressor 31 is driven and the decompressor side is opened when the compressor 31 is stopped.
  • the existing expansion valve 34 can be used as the expansion valve 34 without using a function having a pressure reducer even in the closed state. It should be noted that by installing the cold storage tank 7 in the casing 1c of the air conditioning unit 1, it is possible to improve the in-vehicle performance and to reduce the cost by improving the in-vehicle performance by sharing the shape of the vehicle body due to the difference in specifications.
  • the point that the cool storage tank 7 is formed in a flat cylindrical shape improves the on-vehicle performance, and in the cool storage tank 7, the cooling passage continuation performance can be improved by surrounding the inside and outside of the communication path 7c with the cool storage materials 8a and 8b.
  • the cold storage tank 7 can be reduced in cost by forming the cold storage tank 7 by closing both ends of the double cylindrical structure portion of the extrusion molding material with the upper cap member 74 and the lower cap member 75.
  • the refrigerant from the evaporator 3 flows into the upstream chamber 7a at the upper end and flows out from the downstream chamber 7b at the lower end to the compressor 31, so that the refrigeration cycle 30 That can be achieved dynamic stabilization, the same as in Example 1 for.
  • FIG. 6 is a longitudinal sectional view showing a cold storage tank 307 used in the vehicle air conditioner of the third embodiment
  • FIG. 7 is a transverse sectional view of the cold storage tank 307.
  • the regenerator tank 307 includes a cylindrical outer cylinder 371 and an inner cylinder 372, and both upper and lower ends of the outer cylinder 371 are closed with lid plates 374 and 375, and the upper and lower sides of the inner cylinder 372 are closed. Are closed by cover plates 376 and 375, and a refrigerant space 373 is formed between the outer cylinder 371 and the inner cylinder 372.
  • the inner cylinder 372 is filled with the cold storage material 8a, and the outer cylinder 371 is wound with the sheet-shaped cold storage material 8b.
  • the inflow pipe 336 is inserted into the refrigerant space 373 from the upper end of the cold storage tank 307 and extends to the bottom of the refrigerant space 373.
  • the outflow pipe 337 is inserted into the refrigerant space 373 from the upper end of the cold storage tank 307, and the tip is disposed at a position higher than the inflow pipe 336.
  • the existing inexpensive cylindrical pipe is used as the outer cylinder 371 and the inner cylinder 372 of the cold storage tank 307, it can be manufactured at low cost.
  • the pipes 336 and 337 are inserted from the upper end of the regenerator tank 307.
  • the inflow pipe 336 connected to the evaporator 3 is disposed at a position lower than the outflow pipe 337, the evaporator It is difficult for the mist-like refrigerant sent from 3 to be directly sucked into the outflow pipe 337 and sent to the compressor 31, and the cooling performance can be stabilized.
  • the cold storage tank 7 in the casing 1c of the air conditioning unit 1, it is possible to improve the in-vehicle performance and to reduce the cost by improving the in-vehicle performance by sharing the shape of the vehicle body due to the difference in specifications. About a point, it is the same as that of Example 1.
  • FIG. 8 is a cross-sectional view showing a cold storage tank 407 used in the vehicle air conditioner of the fourth embodiment.
  • the fourth embodiment is a modification of the third embodiment, in which the tip of the outflow pipe 437 is disposed in the upper part of the refrigerant space 373, and further from the inflow pipe 336 directly below the front end of the outflow pipe 437.
  • a shielding plate 401 is provided that prevents the mist-like refrigerant supplied to the space 373 from directly flowing into the outflow pipe 337.
  • the pipes 336 and 437 are inserted from the upper end of the cold storage tank 407, but the tip of the outflow pipe 437 is arranged at a position higher than the tip of the inflow pipe 336, and A shielding plate 401 is provided immediately below the outflow pipe 437. For this reason, it becomes difficult for the mist-like refrigerant supplied from the inflow pipe 336 to the refrigerant space 373 to be directly sucked into the outflow pipe 437, and the operation of the refrigeration cycle 30 can be stabilized.
  • the cold storage tank has a flat oval shape and a circular shape, but is not limited to this, and has other shapes such as a rectangular shape, a quadrangular shape or a polygonal shape. May be used.
  • the cold storage tank has a double structure inside and outside, and the cold storage material 8a is provided on the inner side. However, when the cold storage material is provided only on the outer side, the cold storage tank is provided. It is not necessary to have a double structure. Or you may make it provide a cool storage material only inside the cool storage tank of a double structure.
  • the cold storage tank is preferably formed in a flat cylindrical shape that is crushed in the direction perpendicular to the axis.
  • an inflow pipe into which a refrigerant flows in from the evaporator, and an outflow pipe that sends the inflowed refrigerant to the condenser have their tips directed downward in the direction of gravity. It is desirable that the leading end position of the inflow pipe is disposed at a position lower than the leading end position of the outflow pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

車両用空調装置はエバポレータ3が搭載された空調ユニット(1)と;エバポレータ(3)を含み、冷媒が、コンプレッサ(31)、コンデンサ(32)、膨張弁(34)、エバポレータ(3)の順で循環する冷凍サイクル(30)と;この冷凍サイクル(30)において、コンプレッサ(31)の駆動停止時に、コンデンサ(32)側の高圧冷媒をエバポレータ(3)側に減圧させて供給可能に膨張弁(34)と並列に設けられた減圧器(35)と;冷凍サイクル(30)においてエバポレータ(3)とコンプレッサ(31)との間に接続されて空調ユニット(1)のケーシング内に設置され、かつ、冷媒を貯留可能に形成されているとともに、内部の冷媒を冷却する蓄冷材を備えた蓄冷タンク(7)と;を備えている。

Description

車両用空調装置
 本発明は、車両用空調装置に関し、特に、コンプレッサ停止状態において冷房運転を継続可能な車両用空調装置に関する。
(優先権の主張)
 本願は、2007年12月27日に日本国特許庁に出願された特願2007-337621号に基づく優先権を主張し、その内容をここに援用する。
近年、車両の低燃費化が進み、停車時に自動的にエンジン停止を行ういわゆるアイドリングストップ制御が行われる場合がある。このアイドリングストップ制御時には、冷凍サイクルにおいてエンジンにより駆動されるコンプレッサが停止されて冷凍サイクルも作動が停止されるため、このような冷凍サイクルの作動停止状態でも、冷房運転を継続可能な車両用空調装置が求められている。
 このようなコンプレッサの駆動停止時に冷房運転を可能とする車両用空調装置として、例えば、特開2007-1485号公報に記載されたものが知られている。
この公開特許公報に記載の車両用空調装置は、空調ユニットの外部において、冷凍サイクルのエバポレータとコンデンサとの間に蓄冷熱交換器が設けられているとともに、蓄冷熱交換機の蓄冷材が放冷する際に凝縮される冷媒を溜める蓄冷タンクが設けられている。
 したがって、コンプレッサの駆動が停止された際には、エバポレータで吸熱して蒸発された冷媒は、蓄冷熱交換器の蓄冷材からの放冷によって凝縮液化されて蓄冷タンク側の冷媒体積を縮小させてエバポレータ側をコンデンサ側よりも低圧にできるため、コンデンサ側の冷媒がエバポレータ側へ流入され、エバポレータによる冷却を継続させることができる。
 しかしながら、上述の従来技術では、蓄冷熱交換器および蓄冷タンクが、空調ユニットの外部に設けられているため、車体への組付時において、これらの配管接続作業が必要であり、また、車室内やエンジンルームに、これら蓄冷熱交換器および蓄冷タンクの設置スペースを確保する必要もあり、これらを有しないものと比較して、車載性に劣る。
  また、車両により、このような冷凍サイクル停止時に冷房を継続させる機能を有する仕様と、有しない仕様との設定がある場合、車体に蓄冷タンクの設置スペースを確保するために仕様により車体形状を異ならせることになると、大幅なコストアップを招く。
 本発明は、上述のような従来の問題に着目して成されたもので、冷凍サイクル停止時に冷房を継続させる機能を有した車両用空調装置において、車載性向上および低コスト化を図ることを課題とする。
 上述の課題を解決するために、この発明に係わる車両用空調装置は、吸入口から車室に連通された吹出口へ向かう送風が形成される送風通路を形成するケーシングに、前記送風通路を通る送風を形成する送風機および送風を冷却するエバポレータが搭載された空調ユニットと;前記エバポレータを含み、冷媒が、コンプレッサ、コンデンサ、膨張弁、前記エバポレータの順で循環する冷凍サイクルと;この冷凍サイクルにおいて、前記コンプレッサの駆動停止時に、前記コンデンサ側の高圧冷媒を前記エバポレータ側に減圧させて供給可能に前記膨張弁と並列に設けられた減圧器と;前記冷凍サイクルにおいて前記エバポレータとコンプレッサとの間に接続されて前記ケーシング内に設置され、かつ、前記冷媒を貯留可能に形成されているとともに、内部の冷媒を冷却する蓄冷材を備えた蓄冷タンクと;を備えていることを特徴とする車両用空調装置とした。
 本発明の車両用空調装置では、コンプレッサが駆動する冷凍サイクルの作動時には、冷媒が、コンプレッサ、コンデンサ、膨張弁、エバポレータ、蓄冷タンクの順で循環する。
  このとき、蓄冷タンクでは、エバポレータを通過した冷媒により蓄冷材が冷却され、蓄冷材に蓄冷される。
  その後、車両が停止するなどして、コンプレッサの駆動が停止された場合、残圧による差圧により、コンデンサ側の冷媒が減圧器を介して減圧されながらエバポレータへ供給され、さらにエバポレータを通過した後、蓄冷タンクに流入する。そして、蓄冷タンクにおいて、蓄冷材に蓄えられた冷却エネルギにより、減圧器を通過して気化されている冷媒が液化されて体積が縮小されるため、蓄冷タンクおよび蓄冷材を設けないものと比較して、長時間、残圧による冷媒の移動を維持でき、エバポレータによる冷房状態を維持することができる。
 このように蓄冷タンクおよび蓄冷材により、コンプレッサ駆動停止後の冷房状態の維持を図ることができる本発明の車両用空調装置では、蓄冷タンクを空調ユニットのケーシング内に設置している。
  したがって、本発明の車両用空調装置を車両に搭載する際に、空調ユニットを車体に組み付けることで、蓄冷タンクも車載され、従来のように、蓄冷タンクを空調ユニットのケーシングの外部で車室やエンジンルームに設置するのと比較して、独立した蓄冷タンクの組付作業や、この蓄冷タンクと配管との接続作業が不要であるとともに、車体に蓄冷タンクの設置スペースを確保することが不要であり、車載性に優れる。
  また、コンプレッサの駆動停止時に冷房状態を継続させる機能を有する仕様と有しない仕様とを設定する場合に、仕様の違いによる構成の相違は空調ユニットの内部の構成であり、車体側の形状などの共通化を図ることができるとともに、組付作業の共通化を図るのが容易であり、コスト上有利となる。
本発明の最良の実施の形態の実施例1の車両用空調装置Aに用いた冷凍サイクル30を示す構成説明図である。 実施例1の車両用空調装置Aに用いた蓄冷タンク7を示す縦断面図であって、図3のS2-S2線で切断した状態を示している。 実施例1の車両用空調装置Aに用いた蓄冷タンク7を示す縦断面図であって、図2のS3-S3線で切断した状態を示している。 本発明の最良の実施の形態の実施例1の車両用空調装置Aの構成を示す構成説明図である。 実施例2の車両用空調装置における冷凍サイクル230を示す構成説明図である。 実施例3の車両用空調装置に用いた蓄冷タンク307を示す縦断面図であって、図7のS6-S6線で切断した状態を示している。 実施例3の車両用空調装置に用いた蓄冷タンク307を示す横断面図であって、図6のS7-S7線で切断した状態を示している。 実施例4の車両用空調装置に用いた蓄冷タンク407を示す縦断面図である。
符号の説明
A     車両用空調装置
1     空調ユニット
1c   ケーシング
3     エバポレータ
4     ブロワファン(送風機)
7     蓄冷タンク
8a   蓄冷材
8b   蓄冷材
18   送風通路
30   冷凍サイクル
31   コンプレッサ
32   コンデンサ
33   リキッドタンク
34   膨張弁
35   減圧器
36   流入パイプ
37   流出パイプ
230 冷凍サイクル
235 減圧器
307 蓄冷タンク
336 流入パイプ
337 流出パイプ
407 蓄冷タンク
437 流出パイプ
 以下、本発明の実施の形態を図面に基づいて説明する。
  本実施の形態の車両用空調装置は、吸入口11から車室に連通された吹出口12a、12b、12cへ向かう送風が形成される送風通路18を形成するケーシング1cに、前記送風通路18を通る送風を形成する送風機4および送風を冷却するエバポレータ3が搭載された空調ユニット1と、前記エバポレータ3を含み、冷媒が、コンプレッサ31、コンデンサ32、膨張弁34、前記エバポレータ3の順で循環する冷凍サイクル30と、この冷凍サイクル30において、前記コンプレッサ31の駆動停止時に、前記コンデンサ32側の高圧冷媒を前記エバポレータ3側に減圧させて供給可能に前記膨張弁34と並列に設けられた減圧器35と、前記冷凍サイクル30において前記エバポレータ3とコンプレッサ31との間に接続されて前記ケーシング1C内に設置され、かつ、前記冷媒を貯留可能に形成されているとともに、内部の冷媒を冷却する蓄冷材8a、8bを備えた蓄冷タンク7と、を備えていることを特徴とする車両用空調装置である。
 以下に、図1~図4に基づいて、この発明の最良の実施の形態の実施例1の車両用空調装置Aについて説明する。
  図4は車両用空調装置Aの構成の概略を示す全体概略図であって、この車両用空調装置Aは、図示を省略したインストルメントパネル内に設置される空調ユニット1およびこの空調ユニット1の作動を制御するコントロールユニット2を備えている。
 空調ユニット1は、図示を省略したインストルメントパネル内に設置され、内外気を選択的に導入可能な吸入口11から、車室内に繋がる図示を省略した各種ダクトが接続されるデフ吹出口12a、フット吹出口12b、ベント吹出口12cに至る送風通路18を形成したケーシング1cを備えている。
 このケーシング1cの送風通路18には、送風上流側から順に、吸入口11から各吹出口12a~12cへ向かう送風を形成するブロワファン4と、送風を冷却するエバポレータ3と、送風を加熱するヒータコア6と、が設置されている。
 エバポレータ3は、周知の冷媒を循環する冷凍サイクル30の構成要素の一つである。この冷凍サイクル30は、図1に示すように、走行用のエンジンあるいはモータによって駆動されて冷媒を圧縮するコンプレッサ31と、高圧ガス状の冷媒を冷却して飽和液とするコンデンサ32と、冷媒の気液分離を行うリキッドタンク33と、冷媒を低温低圧の蒸気とする膨張弁34と、を備え、冷媒が、コンプレッサ31、コンデンサ32、リキッドタンク33、膨張弁34、エバポレータ3の順で循環するよう構成されている。
 さらに、本実施例1では、冷凍サイクル30において、膨張弁34と並列に減圧器35が設けられているとともに、エバポレータ3とコンプレッサ31との間に、蓄冷タンク7が設けられている。
 減圧器35は、膨張弁34が閉弁した状態でもコンデンサ32側とエバポレータ3側との連通状態を維持するとともに、コンデンサ32側の高圧冷媒を減圧気化させる機能を有している。具体的には、膨張弁34において、閉弁時の封止位置の上流と下流とを連通させるように形成された溝で構成することができる。
  蓄冷タンク7は、空調ユニット1のケーシング1c内において、エバポレータ3に並設されており、かつ、扁平の筒状に形成されている。
 図2および図3に示すように、蓄冷タンク7は、押出成形により外筒71と内筒72とを備えた二重筒状に形成されており、軸方向を重力の作用方向である車両上下方向に略一致する向きに配置されている。
 そして、図3に示すように、外筒71と内筒72とを連結する連結板73a、73b、73cが、両筒71、72と一体に形成されている。なお、これらの連結板73a、73b、73cのうち、図において矢印W方向である幅方向の中央に設けられた連結板73bは、内筒72を幅方向の直交方向に貫通し、内筒72の内側に形成された内部室7dを2分割している。
  また、図2に示すように、内筒72の上下方向両端に、蓋板72a、72bが溶接などにより結合されて内筒72の上下両端部が塞がれ、かつ、外筒71の上下両端部には、外筒71の外形寸法よりも僅かに大きな内径寸法を有した断面略U字状の上側キャップ部材74および下側キャップ部材75が嵌合され、かつ、溶接により結合されている。
  したがって、蓄冷タンク7の上下両端には、外筒71および内筒72の内部と区画された上流室7aと下流室7bとが形成され、これら上流室7aと下流室7bとが、外筒71と内筒72との間で軸方向に延在された連通路7cにより連通されている。
 また、内筒72の内部室7dには、蓄冷材8aが充填されている。この蓄冷材8aは、冷媒と熱交換を行って、冷媒が有する冷却エネルギを蓄えることができるもので、例えば、パラフィン、吸水性ポリマ、植物セルロース、水、LLCなどを用いることができる。
  さらに、外筒71の外周にもシート状の蓄冷材8bが巻き付けられている。
 そして、蓄冷タンク7の上流室7aには、冷凍サイクル30において、エバポレータ3から冷媒が送られる流入パイプ36が上側キャップ部材74を貫通して接続されている。
  一方、蓄冷タンク7の下流室7bには、蓄冷タンク7からコンプレッサ31へ冷媒を送る流出パイプ37が下側キャップ部材75を貫通して接続されている。
 なお、コントロールユニット2は、室内温度環境因子の検出を行う各種センサから成るセンサ群SEからの入力に基づいて、図示を省略した設定スイッチにより設定された室温を形成するべく、吹出風量や吹出空気温度を制御する。
 次に、実施例1の車両用空調装置Aの作動について説明する。
  車両走行時に、実施例1の車両用空調装置Aの冷房運転を行うと、コンプレッサ31が、図外のエンジンあるいはモータにより駆動され、冷凍サイクル30が作動する。
  この場合、コンプレッサ31で圧縮して吐出された冷媒は、コンデンサ32で凝縮液化され、リキッドタンク33で気液分離された後、膨張弁34で減圧され、エバポレータ3で吸熱して蒸発され、このとき、空調ユニット1の送風通路18の送風を冷却する。
 そして、エバポレータ3で蒸発した冷媒は、流入パイプ36を通って蓄冷タンク7に流入し、蓄冷タンク7の上流室7aから、連通路7cを通って下流室7bへ移動する間に、連通路7cの内外に配置された蓄冷材8a、8bを冷却し、これら蓄冷材8a、8bに冷却エネルギが蓄えられる。また、下流室7bの冷媒は、流出パイプ37からコンプレッサ31の吸入側へ移動する。
 次に、アイドルストップ制御時の作動について説明する。
  すなわち、コントロールユニット2は、車両の停止時に、自動的に図外のエンジンの駆動を停止させるいわゆるアイドルストップ制御を実行する。
  このアイドルストップ制御時には、冷凍サイクル30におけるコンプレッサ31の駆動が停止される。
 このとき、冷凍サイクル30では、残圧により、コンプレッサ31の吐出側で高圧となっているコンデンサ32およびリキッドタンク33と、膨張弁34で減圧された後の低圧側のエバポレータ3および蓄冷タンク7とで差圧が生じている。
  そこで、この差圧により、冷媒が、減圧器35を介して、リキッドタンク33側からエバポレータ3へ流入する。
  したがって、エバポレータ3では、コンプレッサ31の停止後も、残圧によりリキッドタンク33から送られる冷媒により、送風通路18との熱交換が行われて、冷房が行われる。
 また、このエバポレータ3における熱交換により加熱ガス化した冷媒は、流入パイプ36から蓄冷タンク7の上流室7aへ流入し、重力により連通路7cを移動する間に、蓄冷材8a、8bにより冷却されて凝縮液化され、下流室7bに貯められる。
 このように、蓄冷タンク7において、冷媒が凝縮されて体積を縮小させることから、エバポレータ3および蓄冷タンク7が低圧に保たれ、コンプレッサ31の停止後も、冷媒が、継続的にエバポレータ3に送られて冷房が継続して実行される。
  なお、この継続的な冷房は、蓄冷材8a、8bが、冷媒凝縮を実行可能な温度である間行われることになる。
 以上説明した実施例1の車両用空調装置Aでは、蓄冷タンク7を空調ユニット1のケーシング1cの内部に設置したため、車両用空調装置Aを車両に搭載する際に、空調ユニット1を車体に組み付けることで、蓄冷タンク7も車載され、従来のように、蓄冷タンク7を空調ユニット1のケーシング1cの外部で車室やエンジンルームに設置するのと比較して、独立した蓄冷タンク7の組付作業や、この蓄冷タンク7と配管との接続作業が不要であり、車載性に優れる。
  また、コンプレッサ31の駆動停止時に冷房状態を継続させる機能を有する仕様と有しない仕様とを設定する場合に、仕様の違いによる構成の相違は空調ユニット1の内部の構成であり、車体側の形状などの共通化を図ることができるとともに、組付作業の共通化を図るのが容易であり、車載性に優れるとともに低コスト化を図ることができる。
 さらに、蓄冷タンク7を扁平筒状に形成したため、容量が限られた空調ユニット1内において、送風通路18の送風の抵抗にならないように配置することが可能となり、扁平状でない場合と比較して、車載性に優れる。
 加えて、本実施例1では、蓄冷タンク7において、冷媒が流通する連通路7cの内外を蓄冷材8a、8bで囲んだ構造としたため、蓄冷材8a、8bをいずれか一方のみとした場合と比較して、蓄冷タンク7における冷媒冷却性能が高く、コンプレッサ31の停止時における冷房継続性能を高めることができる。
 しかも、蓄冷タンク7は、押出成形材の二重筒構造部分の両端を上側キャップ部材74および下側キャップ部材75で塞いで形成しているため、製造が容易であり、低コスト化を図ることができる。
 また、蓄冷タンク7では、上端の上流室7aにエバポレータ3からの冷媒を流入させ、下端の下流室7bからコンプレッサ31へ流出させるようにしたため、エバポレータ3から流入されるミスト状の冷媒が、直接コンプレッサ31へ送られ難く、冷凍サイクル30の作動安定化を図ることができる。
 (他の実施例)
  以下に、本発明の実施の形態の他の実施例について説明する。
  なお、これら他の実施例を説明するのにあたり、実施例1と共通する構成には、実施例1で示した符号を付けることで、説明を省略する。また、作用についても、実施例1と共通する作用については説明を省略する。
  図5に基づいて、本発明の実施の形態の実施例2の車両用空調装置について説明する。
  図5は、実施例2の車両用空調装置の冷凍サイクル230を示す構成説明図であり、実施例1との相違点は、膨張弁34と並列に減圧器235が設けられ、リキッドタンク33と膨張弁34との間に、リキッドタンク33からの冷媒を膨張弁34のみに流す膨張弁側開状態と、減圧器235のみに流す減圧器側開状態とに切り換える切換弁200を設けた例である。
 なお、切換弁200の切り換えはコントロールユニット2により行われる。すなわち、コントロールユニット2が、切換弁200を、コンプレッサ31の駆動時に膨張弁側開状態とし、コンプレッサ31の駆動停止時に減圧器側開状態とするよう制御する。
 この実施例2の車両用空調装置では、膨張弁34として、閉弁状態でも減圧器の機能を有するものを用いずに、既存の膨張弁34を用いることができる。
  なお、蓄冷タンク7を空調ユニット1のケーシング1cの内部に設置したことによる車載性向上、仕様の違いによる車体側の形状などの共通化を図って車載性向上ならびに低コスト化を図ることができる点、蓄冷タンク7を扁平筒状に形成したことによる車載性向上の点、蓄冷タンク7において、連通路7cの内外を蓄冷材8a、8bで囲んだ構造としたことにより冷房継続性能を向上できる点、蓄冷タンク7を、押出成形材の二重筒構造部分の両端を上側キャップ部材74および下側キャップ部材75で塞いで形成したことにより低コスト化を図ることができる点、冷タンク7を、上端の上流室7aにエバポレータ3からの冷媒を流入させ、下端の下流室7bからコンプレッサ31へ流出させるようにしたことにより、冷凍サイクル30の作動安定化を図ることができる点、については実施例1と同様である。
  図6および図7に基づいて、本発明の実施の形態の実施例3の車両用空調装置について説明する。
  図6は実施例3の車両用空調装置に用いた蓄冷タンク307を示す縦断面図、図7は蓄冷タンク307の横断面図である。
 図6および図7に示すように、蓄冷タンク307は、円筒状の外筒371と内筒372とを備え、外筒371の上下両端を蓋板374、375で塞ぐとともに、内筒372の上下を蓋板376、375で塞いで、外筒371と内筒372との間に、冷媒用空間373が形成されている。
 また、実施例1と同様に、内筒372の内側に、蓄冷材8aが充填されているとともに、外筒371の外周には、シート状の蓄冷材8bが巻き付けられている。
 そして、流入パイプ336は、蓄冷タンク307の上端部から冷媒用空間373に挿し込まれて、冷媒用空間373の底部まで延在されている。一方、流出パイプ337は、蓄冷タンク307の上端部から冷媒用空間373に挿し込まれて、先端が流入パイプ336よりも高い位置に配置されている。
 以上のように、実施例3では、蓄冷タンク307の外筒371および内筒372として、既存の安価な円筒状のパイプを用いているため、安価に製造することができる。
 また、実施例3では、両パイプ336、337を蓄冷タンク307の上端部から挿し込む構造であるが、エバポレータ3に接続された流入パイプ336を、流出パイプ337よりも低い位置に配置したため、エバポレータ3から送られるミスト状の冷媒が、直接流出パイプ337に吸い込まれてコンプレッサ31へ送られることが生じにくく、冷房性能の安定化を図ることができる。
  なお、蓄冷タンク7を空調ユニット1のケーシング1cの内部に設置したことによる車載性向上、仕様の違いによる車体側の形状などの共通化を図って車載性向上ならびに低コスト化を図ることができる点、については実施例1と同様である。
  図8に基づいて、本発明の実施の形態の実施例4の車両用空調装置について説明する。
  図8は実施例4の車両用空調装置に用いた蓄冷タンク407を示す断面図である。
  この実施例4は、実施例3の変形例であり、流出パイプ437の先端を、冷媒用空間373の上部に配置し、さらに、流出パイプ437の先端の直ぐ下方に、流入パイプ336から冷媒用空間373に供給されるミスト状の冷媒が、直接、流出パイプ337に流入するのを妨げる遮蔽板401を設けた例である。
 このように、実施例4では、両パイプ336、437を蓄冷タンク407の上端部から挿し込む構造であるが、流出パイプ437の先端を、流入パイプ336の先端よりも高い位置に配置し、さらに、流出パイプ437の直ぐ下に遮蔽板401を設けた。このため、流入パイプ336から冷媒用空間373に供給されるミスト状の冷媒が、直接流出パイプ437に吸入されにくくなり、冷凍サイクル30の作動の安定化を図ることができる。
  なお、蓄冷タンク7を空調ユニット1のケーシング1cの内部に設置したことによる車載性向上、仕様の違いによる車体側の形状などの共通化を図って車載性向上ならびに低コスト化を図ることができる点、については実施例1と同様である。
 以上、図面を参照して、本発明の実施の形態および実施例1~実施例4について詳述してきたが、具体的な構成は、この実施の形態および実施例1~実施例4に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。
 例えば、実施例1~実施例4では、蓄冷タンクとして、扁平楕円形状のものおよび円形状のものを示したが、これに限定されず、長方形や四角形あるいは多角形状のものなど他の形状のものを用いてもよい。
 また、実施例1~実施例4では、蓄冷タンクを、内外に二重構造として、内側に蓄冷材8aを設けた例を示したが、蓄冷材を外側のみに設ける場合には、蓄冷タンクを二重構造とする必要はない。あるいは、二重構造の蓄冷タンクの内側のみに蓄冷材を設けるようにしてもよい。
 この発明によれば、前記車両用空調装置において、前記蓄冷タンクが、軸直交方向に潰れた扁平筒状に形成されていることが望ましい。
このように蓄冷タンクを扁平筒状に形成することにより、容量が限られた空調ユニット内において、送風の抵抗にならないような配置が可能となり、より車載性が向上する。
 また、前記車両用空調装置において、前記エバポレータから冷媒が流入される流入パイプ、および、流入された冷媒を前記コンデンサに送る流出パイプが、先端を重力の作用方向である下方に向けて前記蓄冷タンクに挿し込まれ、かつ、前記流入パイプの先端位置が、前記流出パイプの先端位置よりも低い位置に配置されていることが望ましい。
 このように蓄冷タンクの流入パイプを流出パイプよりも、その先端を低く配置することにより、エバポレータから送られるミスト状の冷媒が、直接コンプレッサへ送られにくくなり、冷房性能の安定化を図ることができる。

Claims (3)

  1.  吸入口から車室に連通された吹出口へ向かう送風が形成される送風通路を形成するケーシングに、前記送風通路を通る送風を形成する送風機および送風を冷却するエバポレータが搭載された空調ユニットと、
     前記エバポレータを含み、冷媒が、コンプレッサ、コンデンサ、膨張弁、前記エバポレータの順で循環する冷凍サイクルと、
     この冷凍サイクルにおいて、前記コンプレッサの駆動停止時に、前記コンデンサ側の高圧冷媒を前記エバポレータ側に減圧させて供給可能に前記膨張弁と並列に設けられた減圧器と、
     前記冷凍サイクルにおいて前記エバポレータとコンプレッサとの間に接続されて前記ケーシング内に設置され、かつ、前記冷媒を貯留可能に形成されているとともに、内部の冷媒を冷却する蓄冷材を備えた蓄冷タンクと、
    を備えていることを特徴とする車両用空調装置。
  2.  前記蓄冷タンクが、軸直交方向に潰れた扁平筒状に形成されていることを特徴とする請求項1に記載の車両用空調装置。
  3.  前記エバポレータから冷媒が流入される流入パイプ、および、流入された冷媒を前記コンデンサに送る流出パイプが、先端を重力の作用方向である下方に向けて前記蓄冷タンクに挿し込まれ、かつ、前記流入パイプの先端位置が、前記流出パイプの先端位置よりも低い位置に配置されていることを特徴とする請求項1に記載の車両用空調装置。
PCT/JP2008/073410 2007-12-27 2008-12-24 車両用空調装置 WO2009084532A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-337621 2007-12-27
JP2007337621A JP2009154804A (ja) 2007-12-27 2007-12-27 車両用空調装置

Publications (1)

Publication Number Publication Date
WO2009084532A1 true WO2009084532A1 (ja) 2009-07-09

Family

ID=40824246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073410 WO2009084532A1 (ja) 2007-12-27 2008-12-24 車両用空調装置

Country Status (2)

Country Link
JP (1) JP2009154804A (ja)
WO (1) WO2009084532A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639347A (zh) * 2009-12-09 2012-08-15 三电有限公司 车辆用空调装置
FR3056721A1 (fr) * 2016-09-28 2018-03-30 Valeo Systemes Thermiques Echangeur thermique comprenant un materiau a changement de phase
FR3056720A1 (fr) * 2016-09-28 2018-03-30 Valeo Systemes Thermiques Echangeur thermique comprenant un materiau a changement de phase
FR3056719A1 (fr) * 2016-09-28 2018-03-30 Valeo Systemes Thermiques Echangeur thermique comprenant un materiau a changement de phase
FR3056718A1 (fr) * 2016-09-28 2018-03-30 Valeo Systemes Thermiques Echangeur thermique comprenant un materiau a changement de phase
WO2018060645A1 (fr) * 2016-09-28 2018-04-05 Valeo Systemes Thermiques Échangeur thermique comprenant un matériau à changement de phase
WO2018060647A1 (fr) * 2016-09-28 2018-04-05 Valeo Systemes Thermiques Échangeur thermique comprenant un matériau à changement de phase
US10046136B2 (en) 2010-06-04 2018-08-14 Koninklijke Philips N.V. Automatic humidity control in a pressure support system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585253B2 (ja) * 2010-07-08 2014-09-10 株式会社デンソーエアシステムズ 車両用冷凍サイクル装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149450U (ja) * 1976-05-10 1977-11-12
JP2002274165A (ja) * 2001-01-05 2002-09-25 Behr Gmbh & Co 自動車用空調装置
JP2004142551A (ja) * 2002-10-23 2004-05-20 Sanden Corp 車両用空調装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149450U (ja) * 1976-05-10 1977-11-12
JP2002274165A (ja) * 2001-01-05 2002-09-25 Behr Gmbh & Co 自動車用空調装置
JP2004142551A (ja) * 2002-10-23 2004-05-20 Sanden Corp 車両用空調装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639347A (zh) * 2009-12-09 2012-08-15 三电有限公司 车辆用空调装置
US10046136B2 (en) 2010-06-04 2018-08-14 Koninklijke Philips N.V. Automatic humidity control in a pressure support system
FR3056721A1 (fr) * 2016-09-28 2018-03-30 Valeo Systemes Thermiques Echangeur thermique comprenant un materiau a changement de phase
FR3056720A1 (fr) * 2016-09-28 2018-03-30 Valeo Systemes Thermiques Echangeur thermique comprenant un materiau a changement de phase
FR3056719A1 (fr) * 2016-09-28 2018-03-30 Valeo Systemes Thermiques Echangeur thermique comprenant un materiau a changement de phase
FR3056718A1 (fr) * 2016-09-28 2018-03-30 Valeo Systemes Thermiques Echangeur thermique comprenant un materiau a changement de phase
WO2018060645A1 (fr) * 2016-09-28 2018-04-05 Valeo Systemes Thermiques Échangeur thermique comprenant un matériau à changement de phase
WO2018060647A1 (fr) * 2016-09-28 2018-04-05 Valeo Systemes Thermiques Échangeur thermique comprenant un matériau à changement de phase

Also Published As

Publication number Publication date
JP2009154804A (ja) 2009-07-16

Similar Documents

Publication Publication Date Title
WO2009084532A1 (ja) 車両用空調装置
CN101737990B (zh) 用于喷射器型制冷循环的单元
EP2990740B1 (en) Air conditioning system
US9170038B2 (en) Air conditioning unit for vehicles and method of operating the same
CN101403553B (zh) 蒸发器单元
US11391499B2 (en) Heat pump cycle device and valve device
JP4492017B2 (ja) アキュムレータモジュール
US8789389B2 (en) Intermediate heat exchanger
JP5911728B2 (ja) 気液分離器及び車両用空気調和装置
US20120036884A1 (en) Expansion valve and air conditioner for vehicles having the same
JP2012007821A (ja) 熱交換器
JP5951381B2 (ja) 蒸発器構造
KR101894440B1 (ko) 차량용 히트펌프 시스템의 실외 열교환기
US8769984B2 (en) Decompression device
WO2020175075A1 (ja) 圧縮機
JP5062066B2 (ja) エジェクタ式冷凍サイクル用蒸発器ユニット
JP5925048B2 (ja) 車両用空調装置及び車両
JP2008051474A (ja) 超臨界冷凍サイクル装置
CN100580344C (zh) 用于喷射器型制冷循环的单元
CN103538443A (zh) 一体式车用电驱空调器
JP5812557B2 (ja) 車両用空気調和装置
JP2014025646A (ja) 蒸発器およびその蒸発器を備えた車両用空調装置
CN104976814B (zh) 车辆中的热泵系统
JP2014024436A (ja) 蒸発器および該蒸発器を備えた車両用空調装置
JP5491875B2 (ja) 車両用蓄冷式クーラー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08866990

Country of ref document: EP

Kind code of ref document: A1