WO2009084199A1 - 露光装置及び露光方法、並びにデバイス製造方法 - Google Patents

露光装置及び露光方法、並びにデバイス製造方法 Download PDF

Info

Publication number
WO2009084199A1
WO2009084199A1 PCT/JP2008/003955 JP2008003955W WO2009084199A1 WO 2009084199 A1 WO2009084199 A1 WO 2009084199A1 JP 2008003955 W JP2008003955 W JP 2008003955W WO 2009084199 A1 WO2009084199 A1 WO 2009084199A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure apparatus
encoder
exposure
optical member
measurement
Prior art date
Application number
PCT/JP2008/003955
Other languages
English (en)
French (fr)
Inventor
Yuichi Shibazaki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2009547896A priority Critical patent/JPWO2009084199A1/ja
Publication of WO2009084199A1 publication Critical patent/WO2009084199A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34746Linear encoders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system

Definitions

  • the present invention relates to an exposure apparatus, an exposure method, and a device manufacturing method, and more particularly, an exposure apparatus that forms a pattern on an object with an energy beam, an exposure method, and a device that uses the exposure apparatus or the exposure method. It relates to a manufacturing method.
  • a step-and-repeat projection exposure apparatus (so-called stepper) or a step-and-scan projection exposure apparatus (so-called so-called stepper).
  • Scanning steppers (also called scanners)) are mainly used.
  • the position of a wafer stage that holds a substrate to be exposed (hereinafter referred to as a wafer) such as a wafer or a glass plate, using a laser interferometer, as a reference with respect to the lens barrel side surface of the projection optical system.
  • a wafer stage such as a wafer or a glass plate
  • a laser interferometer as a reference with respect to the lens barrel side surface of the projection optical system.
  • measurement is performed and position control of the stage with respect to the projection optical system is performed using the measurement result (see, for example, Patent Document 1).
  • the wafer stage can be accurately followed.
  • an exposure apparatus for exposing an object through an optical member with an energy beam and forming a pattern on the object, holding the object, and moving along a predetermined plane
  • a movable body that holds the optical member, and a first encoder that measures a distance between a predetermined reference position and the holding member in a first axial direction parallel to the plane. It is an exposure apparatus.
  • the distance in the first axial direction from the reference position to the holding member that holds the optical member is measured by the first encoder. Accordingly, even if an atmosphere change such as temperature fluctuation occurs around the first encoder and the holding member, the distance from the reference position to the optical member can be accurately measured. Therefore, the moving body can be accurately moved or positioned with reference to the optical system member.
  • the present invention is an exposure apparatus that exposes an object with an energy beam via an optical member, the movable body holding the object and movable within a predetermined plane; A holding member to hold; an encoder device in which a scale is provided on one of the optical member and the holding member and a head is provided on the other, and measures positional information of the optical member in a direction parallel to the predetermined plane; Is a second exposure apparatus.
  • the position information of the optical member in the direction parallel to the predetermined plane is measured by the encoder device in which the scale is provided on one of the optical member and the holding member and the head is provided on the other.
  • an exposure method for exposing an object through an optical member with an energy beam to form a pattern on the object, the object having the optical member and a predetermined reference position Is a first exposure method including a first measurement step of measuring the positional relationship in the moving surface of the moving body that moves while holding the position using an encoder system.
  • the positional relationship between the optical member and the predetermined reference position within the moving surface of the moving body that holds and moves the object is measured using the encoder system. This makes it possible to accurately measure the positional relationship between the optical member and the predetermined reference position within the moving surface of the moving body. Therefore, the moving body can be accurately moved or positioned with reference to the optical system member.
  • a second exposure including a step of measuring positional information of the optical member in a direction parallel to the predetermined plane using an encoder device in which a scale is provided on one of the holding members to be held and a head is provided on the other; Is the method.
  • the position information of the optical member in the direction parallel to the predetermined plane is measured using the encoder device in which the scale is provided on one of the optical member and the holding member and the head is provided on the other.
  • a step of forming a pattern on an object using any one of the first and second exposure methods of the present invention and a step of developing the object on which the pattern is formed And a device manufacturing method.
  • FIG. 2A is a view for explaining the arrangement of the head unit and the pickup
  • FIG. 2B is a plan view showing the wafer stage.
  • It is a perspective view which shows a measurement mount.
  • It is a figure for demonstrating arrangement
  • It is a block diagram which shows the control system of one Embodiment.
  • FIG. 1 shows a schematic configuration of an exposure apparatus 10 according to an embodiment.
  • the exposure apparatus 10 is a step-and-scan projection exposure apparatus, that is, a so-called scanning stepper.
  • the projection optical system PL is provided.
  • the optical axis direction of the projection optical system PL is the Z-axis direction, and the reticle and the wafer are relative to each other in a plane perpendicular to the Z-axis direction.
  • the direction to be scanned is the Y-axis direction
  • the direction perpendicular to the Z-axis and the Y-axis is the X-axis direction
  • the rotation (tilt) directions around the X-axis, Y-axis, and Z-axis are the ⁇ x, ⁇ y, and ⁇ z directions, respectively. Will be described.
  • the exposure apparatus 10 includes an illumination unit IOP, a reticle stage RST that holds the reticle R, a projection unit PU that includes the projection optical system PL, a wafer stage WST that holds the wafer W and moves in the XY plane, and a control system thereof.
  • a column 34 or the like for holding the projection unit PU is provided.
  • the illumination unit IOP includes a light source and an illumination optical system, and irradiates the illumination light IL to a rectangular or arc-shaped illumination area defined by a field stop (also referred to as a mask king blade or a reticle blind) disposed therein,
  • a field stop also referred to as a mask king blade or a reticle blind
  • the reticle R on which the circuit pattern is formed is illuminated with uniform illuminance.
  • ArF excimer laser light (wavelength 193 nm) is used as an example of the illumination light IL.
  • the reticle stage RST is disposed on a reticle stage base 32a that forms a top plate of a column 34, which will be described later, and the reticle stage base is generated by a magnetic levitation force generated by, for example, a magnetic levitation type two-dimensional linear actuator that constitutes a reticle stage drive system 19R. It is levitated and supported on 32a.
  • reticle stage RST On reticle stage RST, reticle R is fixed by, for example, vacuum chucking or electrostatic chucking.
  • Reticle stage RST is driven by reticle stage drive system 19R with a predetermined stroke in the Y-axis direction (left and right in the plane of the paper in FIG. 1), and also minute in the X-axis direction (the direction orthogonal to the plane of the paper in FIG. 1) and ⁇ z direction. Further, it is finely driven in the Z-axis direction and the tilt directions ( ⁇ x direction and ⁇ y direction) with respect to the XY plane.
  • the position of reticle stage RST (reticle R) in the XY plane is a reticle laser interferometer (hereinafter referred to as a reticle laser interferometer) that irradiates a laser beam onto a reflecting surface fixed (or formed) to reticle stage RST. 18R) (referred to as “reticle interferometer”) is always detected with a resolution of about 0.25 to 1 nm, for example.
  • the position of the reticle R in the Z-axis direction is, for example, a reticle focus sensor RF (not shown in FIG. 1, see FIG. 5) comprising a multipoint focus position detection system disclosed in US Pat. No. 5,448,332. ).
  • Measured values of reticle interferometer 18R and reticle focus sensor RF are supplied to main controller 11 (see FIG. 5).
  • Main controller 11 drives reticle stage RST via reticle stage drive system 19R based on the supplied measurement value.
  • the projection unit PU has a cylindrical lens barrel 40 and a projection optical system PL composed of a plurality of optical elements held by the lens barrel 40.
  • the lens barrel 40 is single.
  • a plurality of lens barrels each holding one or a plurality of optical elements may be stacked.
  • it is preferable that the plurality of lens barrels are housed in a sealing member to keep the cleanness of the projection optical system PL high.
  • the projection optical system PL for example, a refractive optical system including a plurality of optical elements (lens elements) arranged along an optical axis parallel to the Z-axis direction is used.
  • the projection optical system PL is, for example, both-side telecentric and has a predetermined projection magnification (for example, 1/4 or 1/5). For this reason, when the above-mentioned illumination area is illuminated by the illumination light IL from the illumination unit IOP, it passes through the reticle R in which the first surface (object surface) of the projection optical system PL and the pattern surface are substantially aligned.
  • a reduced image (a projection image of a part of the circuit pattern) of the reticle R in the illumination area via the projection optical system PL becomes a second surface (image plane) side of the projection optical system PL. And is formed in a region (exposure region) conjugate to the illumination region on the wafer W having a resist (photosensitive agent) coated on the surface thereof.
  • reticle R is moved relative to the illumination area (illumination light IL) in the scanning direction (Y-axis direction) and at the same time with respect to the exposure area (illumination light IL).
  • illumination area illumination light IL
  • Y-axis direction scanning direction
  • the pattern of the reticle R is transferred to the shot area. That is, in this embodiment, a pattern is generated on the wafer W by the illumination unit IOP, the reticle R, and the projection optical system PL, and the sensitive layer (resist layer) on the wafer W is exposed on the wafer W by the illumination light IL. That pattern is formed.
  • the column 34 has a plurality of (in this case, for example, three) leg portions 32b (the leg portions on the back side of the paper are not shown) whose lower end portions are fixed to the floor surface F, and the floor portion F above the floor surface F by the leg portions 32b. And a reticle stage base 32a supported by the above. In the center of the reticle stage base 32a, an opening 34a that is rectangular in a plan view (viewed from above) that penetrates in the vertical direction (Z-axis direction) is formed.
  • the lens barrel 40 is a cylindrical hollow member whose longitudinal direction that accommodates the projection optical system PL is the Z-axis direction, for example, and a protrusion is formed at the center of the bottom wall. An optical member located at the lower end of the projection optical system PL is held inside the protrusion, and an opening serving as a path for illumination light is formed at the center of the protrusion.
  • the bottom wall of the lens barrel 40 is configured by a plate member having a circular opening formed in the center, and a holding member that holds the optical member positioned at the lower end of the projection optical system PL is projected from the circular opening. May be.
  • a ring-shaped flange FLG is integrally provided on the outer peripheral portion at a position somewhat below the center in the height direction of the lens barrel 40.
  • the lens barrel 40 has a flange FLG supported by a plurality of, for example, three suspension support mechanisms 137 (one of which is not shown) on the lower surface side of the reticle stage base 32a. As a result, it is suspended and supported below the reticle stage base 32a.
  • Each suspension support mechanism 137 includes a coil spring 136 and a wire 135 which are, for example, flexible connection members.
  • the coil spring 136 vibrates like a pendulum in a direction perpendicular to the optical axis (Z-axis) of the projection optical system PL, and dampens vibration in a direction perpendicular to the optical axis of the projection optical system PL (that is, floor vibration). To prevent vibrations from being transmitted to the projection optical system PL).
  • the coil spring 136 also has high vibration isolation performance in the direction parallel to the optical axis.
  • the lens barrel surface plate may be supported by being suspended by, for example, three suspension support mechanisms 137.
  • the convex part 134a is formed in the center part vicinity regarding the Z-axis direction of each of the three leg parts 32b of the column 34.
  • a drive mechanism 440 is provided between each convex portion 134a and the flange FLG of the projection optical system PL.
  • Each drive mechanism 440 includes a voice coil motor that drives the projection optical system PL in the radial direction of the lens barrel 40 and a voice coil motor that drives the projection optical system PL in the optical axis direction (Z-axis direction).
  • the projection optical system PL can be driven in the direction of six degrees of freedom by three driving mechanisms 440 (the driving mechanism on the back side in FIG.
  • the main control device 11 has the projection optical system PL connected to the column 34 based on acceleration information detected by an acceleration sensor (not shown) provided on the flange FLG of the projection optical system PL, for example. And the drive of the voice coil motor of each drive mechanism 440 is controlled so that it may be in a stationary state with respect to the floor surface F.
  • Wafer stage WST is arranged below projection optical system PL, and is placed on stage surface plate BS placed horizontally on floor surface F via a plurality of non-contact bearings provided on the bottom surface thereof, such as air bearings. Is supported by levitation.
  • wafer W is held by vacuum suction (or electrostatic suction) via a wafer holder (not shown).
  • this encoder system has four linear encoders 70A to 70D (see FIG. 5), and as shown in FIG. 2A, the four encoder head units 62A to 62D are provided with measurement mounts (holding members). ) On the lower surface of 51 (details will be described later). On the other hand, on the upper surface of wafer stage WST, as shown in FIG.
  • a pair of Y scales 44A, 44C having a longitudinal direction as the Y-axis direction and a pair of X are surrounded so as to surround wafer W.
  • Scales 44B and 44D are fixed, respectively.
  • a reflection type diffraction grating having the longitudinal direction as a periodic direction is formed.
  • the surface (upper surface) on the + Z side of the stage surface plate BS is processed so as to have a very high flatness, and serves as a reference surface (guide surface) when the wafer stage WST is moved.
  • Wafer stage WST is driven by wafer stage drive system 19W with a predetermined stroke in the Y-axis direction, and is also finely driven in the X-axis direction and ⁇ z direction. Further, it is inclined with respect to the Z-axis direction and XY plane ( ⁇ x direction and It is also finely driven in the ⁇ y direction).
  • the measurement mount 51 is suspended and supported by a flange FLG of the projection optical system PL via a plurality of (for example, four) support members 53 (note that a support member on the back side of the drawing is not shown).
  • Each support member 53 is actually configured to include link members having flexure portions at both ends.
  • Each flexure portion has high rigidity in the longitudinal direction (Z-axis direction) of the support member and low rigidity in the other five-degree-of-freedom directions. Therefore, the measurement mount 51 is supported by the four support members with almost no stress between the measurement mount 51 and the flange FLG.
  • the measurement mount 51 has a circular plate-like main body 52 and a plan view projecting from the main body 52 in the + X direction, the + Y direction, the ⁇ X direction, and the ⁇ Y direction. It has four extending portions 53A, 53B, 53C, 53D having a substantially square shape.
  • a portion (an inner circular portion) excluding the ring-shaped rim portion on the outer peripheral edge of the upper surface is a recess 52a whose inner bottom surface is one step lower than the rim portion.
  • an annular surface region parallel to the upper surface is formed which is somewhat lower than the inner bottom surface of the recess 52a.
  • the inner peripheral edge and the outer peripheral edge of the annular surface region are concentric with the rim portion described above.
  • the inner peripheral edge of the surface region is the inner peripheral surface of the circular opening 52c.
  • the surface region and the inner bottom surface of the recess 52a are connected by a tapered slope.
  • An accommodating portion 52b is formed by the surface area around the circular opening 52c and the tapered slope.
  • the pickup 54x is arranged on a straight line Px as shown in FIG. 2A, and includes an x head 56x that irradiates light upward (+ Z direction).
  • the pickup 54y is disposed on the straight line Py and includes a y head 56y that emits light upward.
  • the x scale 58 is opposed to the pickups 54x and 54y, respectively, as representatively shown in FIG.
  • the 58x and y scale 58y are fixed.
  • the x scale 58x has a direction parallel to the straight line Px on the straight line Px that is orthogonal to the optical axis of the projection optical system PL and forms an angle of 45 degrees with the X axis.
  • the y scale 58y is disposed on the straight line Py orthogonal to the optical axis of the projection optical system PL and at an angle of 45 degrees with the direction parallel to the straight line Py as the longitudinal direction.
  • a reflection type diffraction grating having a longitudinal direction as a periodic direction is formed on the lower surfaces (surfaces on the ⁇ Z side) of the scales 58x and 58y.
  • the pickup 54x uses reflected light (diffracted light from the diffraction grating) obtained by irradiating light to the x scale 58x fixed to the lower surface of the lens barrel 40, and is parallel to the straight line Px caused by vibration, for example.
  • An optical x linear encoder 50x (see FIG. 5) that detects the displacement of the direction barrel 40 (projection optical system PL) is configured.
  • the pickup 54y uses the reflected light (diffracted light from the diffraction grating) obtained by irradiating light to the y scale 58y fixed to the lower surface of the lens barrel 40, and the lens barrel in the direction parallel to the straight line Py.
  • An optical y linear encoder 50y (see FIG. 5) for detecting a displacement of 40 (projection optical system PL) is configured.
  • the x linear encoder 50x and the y linear encoder 50y have the same configuration as the encoder head disclosed in, for example, US Pat. No. 7,238,931 and US Patent Application Publication No. 2007/0288121.
  • the pickups 54x and 54y include an optical system including a polarizing beam splitter in which a light source and a light receiving system (including a photodetector) are arranged outside the measurement mount 51 and separates light from the light source. Only (a part of) is disposed on the inner bottom surface of the recess 52a of the measurement mount 51, that is, facing the x scale 58x and the y scale 58y.
  • the pickups 54x and 54y may be provided on the measurement mount 51.
  • light and / or signals are transmitted and received between the light source, the light receiving system, and the optical system via an optical fiber (not shown) or by air transmission.
  • the optical system disposed on the inner bottom surface of the recess 52a of the measurement mount 51 is referred to as a pickup.
  • members disposed outside the measurement mount 51 are not limited to the light source and the light receiving system, and may be, for example, only the light source or only the light source and the light receiving element (sensor).
  • the head units 62A and 62C are arranged symmetrically with respect to the optical axis of the projection optical system PL, with the X-axis direction as the longitudinal direction on the + X side and the ⁇ X side of the projection unit PU, respectively.
  • the head units 62B and 62D are arranged symmetrically with respect to the optical axis of the projection optical system PL, with the Y-axis direction as the longitudinal direction on the + Y side and ⁇ Y side of the projection unit PU, respectively.
  • the head units 62A and 62C include a plurality of, in this case, five Y heads 64 arranged at predetermined intervals along the X-axis direction.
  • the head unit 62A is a multi-lens, in this case, five eyes, equipped with a plurality of Y heads 64 that measure the position (Y position) of the wafer stage WST in the Y-axis direction using the Y scale 44A on the wafer stage WST.
  • Y linear encoder 70A see FIG. 5
  • the head unit 62C constitutes a five-lens Y linear encoder 70C (see FIG. 5) including five Y heads 64 for measuring the Y position of the wafer stage WST using the above-described Y scale 44C. .
  • the head units 62B and 62D include a plurality of (here, five) X heads 66 arranged at a predetermined interval along the Y-axis direction.
  • the head unit 62B is a multi-lens, in this case, five-lens X linear encoder 70B, which includes a plurality of X heads 66 that measure the position (X position) of the wafer stage WST in the X-axis direction using the aforementioned X scale 44B. (See FIG. 5).
  • the head unit 62D constitutes a five-lens X linear encoder 70D (see FIG. 5) including five X heads 66 for measuring the X position of the wafer stage WST using the above-described X scale 44D. .
  • the measurement mount 51 configured as described above has the upper end fixed (connected) to the flange FLG and the lower end fixed (connected) to the extending portions 53A to 53D. It is suspended and supported by a book support member 53 (however, a support member on the back side of the drawing is not shown), and is disposed at a position ( ⁇ Z direction) below a predetermined distance from the lower surface of the lens barrel 40. In this suspended support state, as shown in FIG. 4, the protruding portion at the lower end of the lens barrel 40 is housed in the housing portion 52 b formed in the measurement mount 51. Further, as shown in FIG.
  • the lower surface of the lens barrel 40 and the inner bottom surface of the recess 52a face each other with a predetermined gap, and the x head 56x of the pickup 54x and the x head disposed on the lower surface of the lens barrel 40 are arranged.
  • the scale 58x faces, and the y head 56y of the pickup 54y and the y scale 58y disposed on the lower surface of the lens barrel 40 face each other.
  • the measurement mount 51 is equipped with an alignment system ALG, a wafer focus sensor WF, etc. (see FIG. 5).
  • an alignment system ALG an image processing type sensor can be used. This image processing type sensor is disclosed in, for example, Japanese Patent Application Laid-Open No. 04-065603 (corresponding to US Pat. No. 5,493,403). Has been.
  • the wafer focus sensor WF for example, a wafer focus sensor disclosed in Japanese Patent Laid-Open No. 06-283403 (corresponding to US Pat. No. 5,448,332) can be used.
  • the measurement mount 51 can also be called a metrology frame or the like.
  • the measurement mount 51 not only the scales 58x and 58y but also the head units 62A to 62D, the alignment system ALG, and the wafer focus sensor WF are provided in the measurement mount 51.
  • the present invention is not limited to this. At least one of ⁇ 62D, alignment system ALG, and wafer focus sensor WF may be provided on a member different from measurement mount 51.
  • FIG. 5 is a block diagram showing a control system of the exposure apparatus 10 of the present embodiment.
  • the control system shown in FIG. 5 includes a so-called microcomputer (or workstation) comprising a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc.
  • the main controller 11 is configured mainly for overall control.
  • the head units 62A and 62C (Y linear encoders 70A and 70C) facing the Y scales 44A and 44C measure the position of the wafer stage WST in the Y axis direction, and the head units 62B and 44D facing the X scales 44B and 44D, respectively.
  • the position of wafer stage WST in the X-axis direction is measured by 62D (X linear encoders 70B and 70D).
  • a pickup 54x (x linear encoder 50x) facing the x scale 58x and a pickup 54y (y linear encoder 50y) facing the y scale 58y disposed on the lower surface of the lens barrel 40 are straight lines.
  • the displacement in the direction parallel to Px and the straight line Py, that is, the position of the lens barrel 40 in the XY plane is measured.
  • the main control measure 11 monitors the measurement results of the Y linear encoders 70A and 70C and the X linear encoders 70B and 70D and the measurement results of the x linear encoder 50x and the y linear encoder 50y, and moves the wafer stage WST to the XY plane.
  • the lens barrel 40 is moved with reference to the inside.
  • the displacement in the XY plane of the lens barrel 40 during the exposure operation is arranged on the measurement mount 51 facing the scale 58x arranged on the lower surface of the lens barrel 40. Measurement is performed by the pickup 54x (x linear encoder 50x) and the pickup 54y (y linear encoder 50y) disposed on the measurement mount 51 facing the scale 58y disposed on the lower surface of the lens barrel 40. Therefore, even if the position of the lens barrel 40 in the XY plane slightly fluctuates due to vibration caused by the movement of the wafer stage WST, the displacement can be accurately measured. It is possible to accurately control the position of wafer stage WST with reference to the optical axis of projection optical system PL being held.
  • length measuring light light emitted from the pickups 54x and 54y (hereinafter referred to as length measuring light) is reflected by the x scale 58x or y scale 58y, and is fixed to the pickups 54x and 54y and the lens barrel 40.
  • the path of the measuring light is so small that it can be ignored as compared with the path of the measuring light in the interferometer, for example. Therefore, even if air fluctuations or the like occur around the lens barrel 40 during exposure, the short-term stability of the measured values of the x linear encoder 50x and the y linear encoder 50y is significantly higher than that when an interferometer is used. It becomes possible to improve.
  • the pickups 54x and 54y for emitting the measurement light used for measuring the displacement of the lens barrel 40 and the head units 62A to 62D for measuring the position of the wafer stage WST are both disposed on the measurement mount 51. ing. Therefore, the positional relationship between the pickups 54x and 54y and the head units 62A to 62D is maintained constant, and the X linear encoders 70B and 70D and Y linear encoders 70A and 70C for measuring the wafer stage WST and the measurement for the lens barrel 40 are measured. It is possible to reduce measurement errors that occur between the x linear encoder 50x and the y linear encoder 50y.
  • the x linear encoder 50x and the y linear encoder 50y measure the displacement of the lens barrel 40 in the direction parallel to the straight line Px and the straight line Py that form an angle of 45 degrees with respect to the X axis and the Y axis.
  • the present invention is not limited to this, and the displacement of the lens barrel 40 in the X-axis direction and the Y-axis direction may be measured using an encoder, and any different two-axis displacements may be measured. Forty displacements on the XY plane may be measured. That is, the scales 58x and 58y are not limited to the direction in which the longitudinal direction (measurement direction, periodic direction / arrangement direction of the diffraction grating) is parallel to the straight lines Px and Py, and may be arbitrary.
  • the optical system (a part) is arranged on the measurement mount 51 in order to avoid the heat source.
  • the influence of heat can be eliminated or the influence of heat can be excluded.
  • a light source and / or a light receiving system may be arranged on the measurement mount 51.
  • the pickups 54x and 54y of the x linear encoder 50x and the y linear encoder 50y are attached to the measurement mount 51.
  • the present invention is not limited to this, and the pickups 54x and 54y are attached to the lens barrel 40.
  • the displacement of the lens barrel 40 relative to the measurement mount 51 may be measured using the scales 58x and 58y attached to the measurement mount 51.
  • the pickups 54x and 54y or the scales 58x and 58y are attached to the lower end surface of the projection unit PU (lens barrel 40).
  • the pickups 54x and 54y or the scales 58x and 58y may be fixed.
  • the optical x linear encoder 50x and the y linear encoder 50y are used to measure the displacement of the lens barrel 40.
  • the present invention is not limited to this, and an electromagnetic induction encoder or the like may be used, for example.
  • the displacement of the lens barrel 40 is measured using the x linear encoder 50x and the y linear encoder 50y including the pickups 54x and 54y that receive the reflected light obtained by irradiating the scale with light.
  • the present invention is not limited to this, and as an encoder that measures the displacement of the lens barrel 40, for example, an encoder that measures displacement using transmitted light that has passed through the scales 58x and 58y may be employed.
  • the encoder is not limited to any different two-axis directions such as the X-axis and the Y-axis, and for example, the displacement of the lens barrel 40 may be measured in other directions (such as the ⁇ z direction).
  • the projection unit PU (projection optical system PL) is suspended and supported by the three suspension support mechanisms 137 below the reticle stage base 32a via the flange FLG.
  • the projection unit PU projection optical system PL
  • the measurement mount 51 may be suspended and supported by the lens barrel surface plate.
  • it is only necessary that the positional relationship between the projection unit PU (projection optical system PL) and the reference position in the XY plane can be measured by the linear encoder.
  • at least one of the head units 62A to 62D, the alignment system ALG, and the wafer focus sensor WF may be provided on the lens barrel surface plate independently of the measurement mount 51.
  • the position measurement of wafer stage WST is performed using an encoder system including X linear encoders 70B and 70D and Y linear encoders 70A and 70C. It is not limited to.
  • position measurement of wafer stage WST may be performed by an interferometer system, or an interferometer system and an encoder system.
  • this interferometer system since it is not necessary to measure the position of the wafer stage with reference to the projection optical system PL, the reflection surface of the measurement beam of the interferometer system need not be provided in the projection optical system PL.
  • An exposure apparatus including both an interferometer system and an encoder system is disclosed in, for example, US Patent Application Publication No. 2007/0288121, US Patent Application Publication No. 2008/0088843.
  • the encoder system is configured such that the grating portion (Y scale, X scale) is provided on the wafer table (wafer stage), and the X head and the Y head are arranged outside the wafer stage so as to face the lattice portion.
  • the present invention is not limited to this, and as disclosed in, for example, US Patent Application Publication No. 2006/0227309, an encoder head is provided on the wafer stage, and the wafer stage is opposed to the encoder head.
  • a Z head that measures the position of the wafer table in the Z-axis direction may also be provided on the wafer stage, and the surface of the grating portion may be a reflective surface to which the Z head measurement beam is irradiated.
  • a single head having the functions of the encoder head and the Z head may be used.
  • the lattice portion (scale) may be supported by the above-described measurement mount or lens barrel surface plate.
  • the present invention is not limited to this, and the present invention may be applied to a stationary exposure apparatus such as a stepper.
  • the present invention can also be applied to a step-and-stitch projection exposure apparatus that synthesizes a shot area and a shot area.
  • the magnification of the projection optical system may be not only a reduction system but also an equal magnification and an enlargement system.
  • the projected image may be either an inverted image or an erect image.
  • the illumination light IL is not limited to ArF excimer laser light (wavelength 193 nm), but may be ultraviolet light such as KrF excimer laser light (wavelength 248 nm) or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm). good.
  • ultraviolet light such as KrF excimer laser light (wavelength 248 nm) or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm). good.
  • bright lines in the ultraviolet region such as g-line (wavelength 436 nm) and i-line (wavelength 365 nm) emitted from an ultra-high pressure mercury lamp can be used as the illumination light IL.
  • a single wavelength laser beam in an infrared region or a visible region oscillated from a DFB semiconductor laser or a fiber laser as vacuum ultraviolet light For example, a harmonic which is amplified by a fiber amplifier doped with erbium (or both erbium and ytterbium) and wavelength-converted into ultraviolet light using a nonlinear optical crystal may be used.
  • the illumination light IL of the exposure apparatus is not limited to light having a wavelength of 100 nm or more, and light having a wavelength of less than 100 nm may be used.
  • EUV Extreme Ultraviolet
  • a soft X-ray region for example, a wavelength region of 5 to 15 nm
  • the exposure wavelength Development of an EUV exposure apparatus using an all-reflection reduction optical system designed under (for example, 13.5 nm) and a reflective mask is underway.
  • the present invention can be applied to such an apparatus.
  • the present invention can be applied to an exposure apparatus using a charged particle beam such as an electron beam or an ion beam.
  • the present invention can be applied to an immersion exposure apparatus that is disclosed in, for example, International Publication WO 99/49504 pamphlet and the like in which a liquid (for example, pure water) is filled between the projection optical system PL and the wafer. it can.
  • a liquid for example, pure water
  • a light transmissive mask in which a predetermined light shielding pattern (or phase pattern / dimming pattern) is formed on a light transmissive substrate is used.
  • a predetermined light shielding pattern or phase pattern / dimming pattern
  • an electronic mask variant molding mask that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed is used. May be.
  • an exposure apparatus (lithography system) that forms line and space patterns on the wafer W by forming interference fringes on the wafer W.
  • the present invention can also be applied to.
  • two reticle patterns are synthesized on a wafer via a projection optical system, and one scan exposure is performed on one wafer.
  • the present invention can also be applied to an exposure apparatus that performs double exposure of shot areas almost simultaneously.
  • the object on which the pattern is to be formed in the above embodiment is not limited to the wafer, but other objects such as a glass plate, a ceramic substrate, a film member, or a mask blank. But it ’s okay.
  • the use of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing, but for example, an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern to a square glass plate, an organic EL, a thin film magnetic head, an image sensor (CCD, etc.), micromachines, DNA chips and the like can also be widely applied to exposure apparatuses. Further, in order to manufacture reticles or masks used in not only microdevices such as semiconductor elements but also light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, and electron beam exposure apparatuses, glass substrates, silicon wafers, etc. The present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
  • the semiconductor device includes a step of designing the function / performance of the device, a step of manufacturing a reticle based on the design step, a step of manufacturing a wafer from a silicon material, and the exposure apparatus (pattern forming apparatus) of the above-described embodiment.
  • a lithography step for transferring a mask (reticle) pattern onto a wafer, a development step for developing the exposed wafer, an etching step for removing exposed members other than the portion where the resist remains by etching, and etching is unnecessary. It is manufactured through a resist removal step for removing the resist, a device assembly step (including a dicing process, a bonding process, and a packaging process), an inspection step, and the like. In this case, since the exposure apparatus of the above embodiment is used in the lithography step, a highly integrated device can be manufactured with a high yield.
  • the exposure apparatus, the exposure method, and the device manufacturing method of the present invention are suitable for manufacturing electronic devices such as semiconductor elements and liquid crystal display elements.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Transform (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 投影光学系を収容する鏡筒(40)の下面に固定されたxスケール(58x)に対向する、計測マウント(51)に配置されたピックアップ(54x)により構成されるxリニアエンコーダにより、計測マウント(51)を基準とする鏡筒(40)の変位を計測する。リニアエンコーダの構成では、ピックアップ(54x)とスケール(58x)との間を往復する測長光の経路が、干渉計を用いた場合に比較して大幅に短くなる。

Description

露光装置及び露光方法、並びにデバイス製造方法
 本発明は、露光装置及び露光方法、並びにデバイス製造方法に係り、更に詳しくは、エネルギビームにより物体上にパターンを形成する露光装置、及び露光方法、並びに前記露光装置又は前記露光方法を用いたデバイス製造方法に関する。
 半導体素子(集積回路等)、液晶表示素子等の電子デバイスを製造するリソグラフィ工程では、ステップ・アンド・リピート方式の投影露光装置(いわゆるステッパ)、あるいはステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが、主として用いられている。
 この種の露光装置では、レーザ干渉計を用いて、ウエハ又はガラスプレート等の被露光基板(以下、ウエハと総称する)を保持するウエハステージの位置を、投影光学系の鏡筒側面を基準として計測し、その計測結果を用いて投影光学系に対するステージの位置制御を行うことが一般的に行われている(例えば特許文献1参照)。これにより、振動等により投影光学系の位置が微小に変化しても、これにウエハステージを精度良く追従させることができる。
 しかしながら、ウエハステージの位置を投影光学系の鏡筒側面を基準として計測するためにレーザ干渉計を用いた場合には、測長ビームの光路長は数百mm程度以上にもなってしまう。このため、測長ビームの光路周囲に生じる雰囲気の温度揺らぎ(空気揺らぎ)によって、計測値に誤差が生じることがあり、この誤差はウエハに形成されるパターンの位置ずれ及びウエハ上に積層形成される複数の層のパターン間の重ね合わせ誤差の要因となる。
米国特許出願公開2007/0288121号明細書
 本発明は第1の観点からすると、エネルギビームにより光学部材を介して物体を露光し、前記物体上にパターンを形成する露光装置であって、前記物体を保持し、所定の平面に沿って移動する移動体と;前記光学部材を保持する保持部材と;所定の基準位置と前記保持部材との、前記平面に平行な第1軸方向の距離を計測する第1エンコーダと;を備える第1の露光装置である。
 これによれば、基準位置から光学部材を保持する保持部材までの第1軸方向の距離は、第1エンコーダによって計測される。これにより、第1エンコーダ及び保持部材の周囲で、例えば温度揺らぎなどの雰囲気の変化が生じたとしても、基準位置から光学部材までの距離を精度良く計測することが可能となる。従って、移動体を光学系部材を基準に精度良く移動させ、あるいは位置決めすることが可能となる。
 本発明は、第2の観点からすると、光学部材を介してエネルギビームで物体を露光する露光装置であって、前記物体を保持して所定平面内で移動可能な移動体と;前記光学部材を保持する保持部材と;前記光学部材と前記保持部材との一方にスケールが設けられかつ他方にヘッドが設けられ、前記所定平面と平行な方向に関する前記光学部材の位置情報を計測するエンコーダ装置と;を備える第2の露光装置である。
 これによれば、光学部材と保持部材との一方にスケールが設けられかつ他方にヘッドが設けられたエンコーダ装置により、所定平面と平行な方向に関する光学部材の位置情報が計測される。これにより、保持部材の周囲で、例えば温度揺らぎなどの雰囲気の変化が生じたとしても、光学部材の位置情報を精度良く計測することが可能となる。
 また、本発明は第3の観点からすると、本発明の第1、第2の露光装置のいずれかを用いて物体上にパターンを形成する工程と;前記パターンが形成された物体を現像する工程と;を含むデバイス製造方法である。
 本発明は第4の観点からすると、エネルギビームにより光学部材を介して物体を露光し、前記物体上にパターンを形成する露光方法であって、前記光学部材と所定の基準位置との、前記物体を保持して移動する移動体の移動面内の位置関係を、エンコーダシステムを用いて計測する第1の計測工程を含む第1の露光方法である。
 これによれば、光学部材と所定の基準位置との、物体を保持して移動する移動体の移動面内の位置関係が、エンコーダシステムを用いて計測される。これにより、光学部材と所定の基準位置との、移動体の移動面内の位置関係を精度良く計測することが可能となる。従って、移動体を光学系部材を基準に精度良く移動させ、あるいは位置決めすることが可能となる。
 本発明は第5の観点からすると、光学部材を介してエネルギビームで、所定平面内で移動可能な移動体に保持された物体を露光する露光方法であって、前記光学部材と該光学部材を保持する保持部材との一方にスケールが設けられかつ他方にヘッドが設けられたエンコーダ装置を用いて、前記所定平面と平行な方向に関する前記光学部材の位置情報を計測する工程を含む第2の露光方法である。
 これによれば、光学部材と保持部材との一方にスケールが設けられかつ他方にヘッドが設けられたエンコーダ装置を用いて、所定平面と平行な方向に関する光学部材の位置情報が計測される。これにより、保持部材の周囲で、例えば温度揺らぎなどの雰囲気の変化が生じたとしても、光学部材の位置情報を精度良く計測することが可能となる。
 また、本発明は第6の観点からすると、本発明の第1、第2の露光方法のいずれかを用いて物体上にパターンを形成する工程と;前記パターンが形成された物体を現像する工程と;を含むデバイス製造方法である。
一実施形態に係る露光装置を示す概略図である。 図2(A)は、ヘッドユニット及びピックアップの配置を説明するための図、図2(B)は、ウエハステージを示す平面図である。 計測マウントを示す斜視図である。 ピックアップと鏡筒に設けられたスケールの配置を説明するための図である。 一実施形態の制御系を示すブロック図である。
 以下、本発明の一実施形態を図1~図5に基づいて説明する。
 図1には、一実施形態に係る露光装置10の概略的な構成が示されている。この露光装置10は、ステップ・アンド・スキャン方式の投影露光装置、すなわちいわゆるスキャニング・ステッパである。後述するように本実施形態では、投影光学系PLが設けられており、以下においては、この投影光学系PLの光軸方向をZ軸方向、これに直交する面内でレチクルとウエハとが相対走査される方向をY軸方向、これらZ軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行う。
 露光装置10は、照明ユニットIOP、レチクルRを保持するレチクルステージRST、投影光学系PLを含む投影ユニットPU、ウエハWを保持してXY平面内で移動するウエハステージWST、及びこれらの制御系、並びに投影ユニットPUを保持するコラム34等を備えている。
 照明ユニットIOPは、光源及び照明光学系を含み、その内部に配置された視野絞り(マスクキングブレード又はレチクルブラインドとも呼ばれる)で規定される矩形又は円弧状の照明領域に照明光ILを照射し、回路パターンが形成されたレチクルRを均一な照度で照明する。照明光ILとしては、ここでは、一例として、ArFエキシマレーザ光(波長193nm)が用いられるものとする。
 レチクルステージRSTは、後述するコラム34の天板を構成するレチクルステージベース32a上に配置され、レチクルステージ駆動系19Rを構成する例えば磁気浮上型2次元リニアアクチュエータが発生する磁気浮上力によってレチクルステージベース32a上に浮上支持されている。そして、このレチクルステージRST上には、レチクルRが、例えば真空吸着又は静電吸着により固定されている。
 レチクルステージRSTは、レチクルステージ駆動系19RによってY軸方向(図1における紙面内左右方向)に所定のストロークで駆動されるとともに、X軸方向(図1における紙面直交方向)及びθz方向にも微小駆動され、更に、Z軸方向及びXY平面に対する傾斜方向(θx方向及びθy方向)にも微小駆動される。
 レチクルステージRST(レチクルR)のXY平面内の位置(θz方向の回転も含む)は、レチクルステージRSTに固定された(又は形成された)反射面にレーザビームを照射するレチクルレーザ干渉計(以下、「レチクル干渉計」という)18Rによって、例えば0.25~1nm程度の分解能で常時検出される。そして、レチクルRのZ軸方向の位置は、例えば米国特許第5,448,332号明細書に開示される多点焦点位置検出系からなるレチクルフォーカスセンサRF(図1では不図示、図5参照)によって計測される。
 レチクル干渉計18R及びレチクルフォーカスセンサRFの計測値は、主制御装置11(図5参照)に供給される。主制御装置11は、供給された計測値に基づいて、レチクルステージ駆動系19Rを介してレチクルステージRSTを駆動する。
 前記投影ユニットPUは、円筒状の鏡筒40と、該鏡筒40に保持された複数の光学素子から成る投影光学系PLとを有している。本実施形態では、鏡筒40が単一であるものとしたが、例えば、それぞれ1つ又は複数の光学素子を保持する複数の鏡筒を積み重ねて構成しても良い。この場合、その複数の鏡筒を密閉部材内に収納し、投影光学系PLの清浄度を高く維持することが好ましい。
 前記投影光学系PLとしては、例えば、Z軸方向と平行な光軸に沿って配列される複数の光学素子(レンズエレメント)から成る屈折光学系が用いられている。この投影光学系PLは、例えば、両側テレセントリックで所定の投影倍率(例えば1/4あるいは1/5)を有する。このため、照明ユニットIOPからの照明光ILによって前述の照明領域が照明されると、投影光学系PLの第1面(物体面)とパターン面がほぼ一致して配置されるレチクルRを通過した照明光ILにより、投影光学系PLを介してその照明領域内のレチクルRの回路パターンの縮小像(回路パターンの一部の投影像)が、投影光学系PLの第2面(像面)側に配置され、表面にレジスト(感光剤)が塗布されたウエハW上の前記照明領域に共役な領域(露光領域)に形成される。
 そして、レチクルステージRSTとウエハステージWSTとの同期駆動によって、照明領域(照明光IL)に対してレチクルRを走査方向(Y軸方向)に相対移動させるとともに、露光領域(照明光IL)に対してウエハWを走査方向(Y軸方向)に相対移動させることで、ウエハW上の1つのショット領域(区画領域)の走査露光が行われ、そのショット領域にレチクルRのパターンが転写される。すなわち、本実施形態では、照明ユニットIOP、レチクルR及び投影光学系PLによって、ウエハW上にパターンが生成され、照明光ILによるウエハW上の感応層(レジスト層)の露光によってウエハW上にそのパターンが形成される。
 コラム34は、床面Fにその下端部が固定された複数(ここでは、例えば3本)の脚部32b(紙面奥側の脚部は不図示)と、該脚部32bにより床面F上方で支持されたレチクルステージベース32aとを含んでいる。レチクルステージベース32aの中央部には、上下方向(Z軸方向)に貫通する平面視(上方から見て)矩形の開口34aが、形成されている。
 鏡筒40は、例えば投影光学系PLを収容する長手方向をZ軸方向とする円柱状の中空部材であり、その底壁の中央には、突出部が形成されている。この突出部の内部には、投影光学系PLの下端に位置する光学部材が保持されており、その突出部の中央には、照明光の通路となる開口部が形成されている。これに限らず、鏡筒40の底壁を中央部に円形開口が形成された板部材により構成し、その円形開口から投影光学系PLの下端に位置する光学部材を保持する保持部材を突出させても良い。
 また、鏡筒40の高さ方向の中央より幾分下方の位置には、外周部にリング状のフランジFLGが一体に設けられている。
 鏡筒40は、レチクルステージベース32aの下面側に一端が固定された複数、例えば3つの吊り下げ支持機構137(ただし紙面奥側の吊り下げ支持機構は不図示)によって、フランジFLGが支持されることで、レチクルステージベース32aの下方に吊り下げ支持されている。各吊り下げ支持機構137は、例えば柔構造の連結部材であるコイルばね136とワイヤ135とを含んでいる。コイルばね136は、投影光学系PLの光軸(Z軸)に垂直な方向に振り子のように振動し、投影光学系PLの光軸に垂直な方向の振動を除振する(すなわち、床の振動が投影光学系PLに伝達するのを防止する)。また、コイルばね136は、光軸に平行な方向に関しても、高い除振性能を有している。なお、投影ユニットPUを支持する鏡筒定盤が設けられる場合には、該鏡筒定盤を、例えば3つの吊り下げ支持機構137によって吊り下げ支持しても良い。
 コラム34の3つの脚部32bそれぞれのZ軸方向に関する中央部近傍には凸部134aが形成されている。また、各凸部134aと投影光学系PLのフランジFLGとの間には、駆動機構440が設けられている。各駆動機構440は、投影光学系PLを鏡筒40の半径方向に駆動するボイスコイルモータと、投影光学系PLを光軸方向(Z軸方向)に駆動するボイスコイルモータとを含んでいる。3つの凸部134aそれぞれとフランジFLGとの間に設けられた3つの駆動機構440(図1における紙面奥側の駆動機構は不図示)により、投影光学系PLを6自由度方向に駆動できる。本実施形態では、主制御装置11(図5参照)が、例えば投影光学系PLのフランジFLGに設けられた不図示の加速度センサで検出される加速度情報に基づいて、投影光学系PLがコラム34及び床面Fに対して静止した状態となるように各駆動機構440のボイスコイルモータの駆動を制御する。
 ウエハステージWSTは、投影光学系PLの下方に配置され、床面F上に水平に設置されたステージ定盤BS上に、その底面に設けられた複数の非接触軸受、例えばエアベアリングなどを介して浮上支持されている。ウエハステージWST上に、不図示のウエハホルダを介してウエハWが真空吸着(又は静電吸着)により保持される。
 ウエハステージWSTの位置は、例えば米国特許出願公開第2007/0288121号明細書、米国特許出願公開第2008/0088843号明細書、米国特許出願公開第2006/0227309号明細書などに開示されるエンコーダシステムによって計測される。本実施形態において、このエンコーダシステムは4つのリニアエンコーダ70A~70D(図5参照)を有し、図2(A)に示されるように、4つのエンコーダヘッドユニット62A~62Dが計測マウント(保持部材)51の下面に配置されている(詳細後述)。一方、ウエハステージWSTの上面には、図2(B)に示されるように、ウエハWを取り囲むように、長手方向をY軸方向とする1対のYスケール44A,44Cと、1対のXスケール44B,44Dとが、それぞれ固定されている。スケール44A~44Dそれぞれの表面には、それぞれの長手方向を周期方向とする反射型の回折格子が形成されている。
 ステージ定盤BSの+Z側の面(上面)は平坦度が非常に高くなるように加工され、ウエハステージWSTの移動の際の基準面(ガイド面)となっている。ウエハステージWSTは、ウエハステージ駆動系19WによってY軸方向に所定ストロークで駆動されるとともに、X軸方向及びθz方向にも微小駆動され、更に、Z軸方向及びXY平面に対する傾斜方向(θx方向及びθy方向)にも微小駆動される。
 投影光学系PLのフランジFLGには、計測マウント51が複数(ここでは例えば4本)の支持部材53(ただし、紙面奥側の支持部材は不図示)を介して吊り下げ支持されている。各支持部材53は、実際には、両端部にフレクシャー部を有するリンク部材を含んで構成されている。各フレクシャー部は、支持部材の長手方向(Z軸方向)に関する剛性が高く、その他の5自由度方向に関する剛性が低い。従って、4本の支持部材によって、計測マウント51とフランジFLGとの間に応力を殆ど生じさせることなく、計測マウント51が支持される。
 計測マウント51は、図3の斜視図に示されるように、円形板状の本体部52と、本体部52から+X方向、+Y方向、-X方向、-Y方向にそれぞれ突設された平面視略正方形状の4つの延設部53A,53B,53C,53Dとを有している。
 本体部52は、上面の外周縁のリング状のリム部を除く部分(内部の円形の部分)が、リム部に比べてその内部底面が一段低い凹部52aとなっている。そして、凹部52aの中央には、凹部52aの内部底面より幾分低い上面に平行な環状の面領域が形成されている。この環状の面領域の内周縁、外周縁は、前述のリム部と同心である。面領域の内周縁は、円形開口52cの内周面となっている。面領域と凹部52aの内部底面とは、テーパ状の斜面によって、連結されている。円形開口52c周囲の面領域とテーパ状の斜面とによって、収容部52bが形成されている。
 図2(A)及び図3に示されるように、計測マウント51の凹部52aの内部底面上には、後述するリニアエンコーダ50x、50y(図5参照)のセンサヘッド部である、ピックアップ54x及びピックアップ54yが配置されている。
 ピックアップ54xは、図2(A)に示されるように直線Px上に配置され、上方(+Z方向)に光を照射するxヘッド56xを備えている。同様にピックアップ54yは直線Py上に配置され、上方に光を照射するyヘッド56yを備えている。
 投影ユニットPUの下面(-Z側の面)、例えば鏡筒40の下面には、図4にxスケール58xを取り上げて代表的に示されるように、ピックアップ54x及び54yそれぞれに対向してxスケール58x及びyスケール58yが、固定されている。
 xスケール58xは、図2(A)の配置図に示されるように、投影光学系PLの光軸に直交しX軸と45度の角度をなす直線Px上に、直線Pxと平行な方向を長手方向として配置され、yスケール58yは、投影光学系PLの光軸に直交しY軸と45度の角度をなす直線Py上に、直線Pyと平行な方向を長手方向として配置されている。また、スケール58x,58yの下面(-Z側の面)には長手方向を周期方向とする反射型の回折格子が形成されている。
 ピックアップ54xは、鏡筒40の下面に固定されたxスケール58xに光を照射して得られる反射光(回折格子からの回折光)を用いて、例えば振動などに起因する、直線Pxに平行な方向の鏡筒40(投影光学系PL)の変位を検出する光学式のxリニアエンコーダ50x(図5参照)を構成する。同様に、ピックアップ54yは、鏡筒40の下面に固定されたyスケール58yに光を照射して得られる反射光(回折格子からの回折光)を用いて、直線Pyに平行な方向の鏡筒40(投影光学系PL)の変位を検出する光学式のyリニアエンコーダ50y(図5参照)を構成する。
 ここで、xリニアエンコーダ50x及びyリニアエンコーダ50yでは、例えば米国特許第7,238,931号明細書、及び米国特許出願公開第2007/0288121号明細書などに開示されるエンコーダヘッドと同様の構成の回折干渉型のヘッドが、ピックアップ54x,54yとして用いられている。ただし、本実施形態では、ピックアップ54x,54yは、光源及び受光系(光検出器を含む)が、計測マウント51の外部に配置され、光源からの光を偏光分離する偏光ビームスプリッタを含む光学系(の一部)のみが計測マウント51の凹部52aの内部底面上に、すなわちxスケール58x、yスケール58yに対向して配置されている。すなわち、ピックアップ54x,54yはその全てが計測マウント51に設けられていなくても良い。この場合、光源及び受光系と光学系との間では、不図示の光ファイバを介して、又は空中伝送にて、光及び又は信号の送受が行われる。以下、計測マウント51の凹部52aの内部底面上に配置された光学系をピックアップと呼ぶ。なお、ピックアップ54x,54yのうち、計測マウント51の外部に配置する部材は光源及び受光系に限られず、例えば光源のみ、あるいは光源と受光素子(センサ)のみなどでも良い。
 また、計測マウント51の下面(-Z側の面)には、図2(A)に示されるように、投影光学系PLの下端部の周囲を四方から囲むように、4つのエンコーダヘッドユニット(以下、ヘッドユニットともいう)62A~62Dが配置されている。
 前記ヘッドユニット62A,62Cは、投影ユニットPUの+X側及び-X側にそれぞれX軸方向を長手方向とし、投影光学系PLの光軸に対して対称に配置されている。また、前記ヘッドユニット62B,62Dは、投影ユニットPUの+Y側及び-Y側にそれぞれY軸方向を長手方向とし、投影光学系PLの光軸に対して対称に配置されている
 ヘッドユニット62A,62Cは、図2(A)に示されるように、X軸方向に沿って所定間隔で配置された複数、ここでは5個のYヘッド64を備えている。ヘッドユニット62Aは、ウエハステージWST上の前述のYスケール44Aを用いて、ウエハステージWSTのY軸方向の位置(Y位置)を計測する複数のYヘッド64を備えた多眼、ここでは5眼のYリニアエンコーダ70A(図5参照)を構成する。同様に、ヘッドユニット62Cは、前述のYスケール44Cを用いて、ウエハステージWSTのY位置を計測する5個のYヘッド64を備えた5眼のYリニアエンコーダ70C(図5参照)を構成する。
 また、ヘッドユニット62B,62Dは、図2(A)に示されるように、Y軸方向に沿って所定間隔で配置された複数、ここでは5個のXヘッド66を備えている。ヘッドユニット62Bは、前述のXスケール44Bを用いて、ウエハステージWSTのX軸方向の位置(X位置)を計測する複数のXヘッド66を備えた多眼、ここでは5眼のXリニアエンコーダ70B(図5参照)を構成する。同様に、ヘッドユニット62Dは、前述のXスケール44Dを用いて、ウエハステージWSTのX位置を計測する5個のXヘッド66を備えた5眼のXリニアエンコーダ70D(図5参照)を構成する。
 上述のように構成された計測マウント51は、図1に示されるように、フランジFLGに上端が固定(接続)され、下端が延設部53A~53Dにそれぞれ固定(接続)された前述の4本の支持部材53(ただし、紙面奥側の支持部材は不図示)によって吊り下げ支持され、鏡筒40の下面から所定距離だけ下方(-Z方向)の位置に配置されている。この吊り下げ支持状態では、図4に示されるように、鏡筒40下端の突出部が計測マウント51に形成された収容部52bに収容された状態となる。また、図4に示されるように、鏡筒40の下面と凹部52aの内部底面とが、所定の隙間を介して対向し、ピックアップ54xのxヘッド56xと鏡筒40の下面に配置されたxスケール58xとが対向し、ピックアップ54yのyヘッド56yと鏡筒40の下面に配置されたyスケール58yとが対向した状態となる。
 更に、計測マウント51には、アライメント系ALG、ウエハフォーカスセンサWFなど(図5参照)が装着されている。アライメント系ALGとしては、画像処理方式のセンサを用いることができ、この、画像処理方式のセンサは、例えば特開平04-065603号公報(対応米国特許第5,493,403号明細書)に開示されている。また、ウエハフォーカスセンサWFとしては、例えば特開平06-283403号公報(対応米国特許第5,448,332号明細書)等に開示されるウエハフォーカスセンサを用いることができる。
 なお、本実施形態では、前述のスケール58x、58y、ヘッドユニット62A~62Dなどが計測マウント51に設けられることから、計測マウント51をメトロロジーフレームなどとも呼ぶことができる。また、本実施形態では、スケール58x、58yだけでなく、ヘッドユニット62A~62D、アライメント系ALG、ウエハフォーカスセンサWFをも計測マウント51に設けるものとしたが、これに限らず、例えばヘッドユニット62A~62D、アライメント系ALG、ウエハフォーカスセンサWFの少なくとも1つを、計測マウント51とは別の部材に設けても良い。
 図5には、本実施形態の露光装置10の制御系がブロック図にて示されている。この図5に示される制御系は、CPU(中央演算処理装置)、ROM(リード・オンリ・メモリ)、RAM(ランダム・アクセス・メモリ)等から成るいわゆるマイクロコンピュータ(又はワークステーション)を含み、装置全体を統括して制御する主制御装置11を中心として構成されている。
 上述のように構成された露光装置10では、露光動作の際にウエハWを保持したウエハステージWSTが計測マウント51の下方に位置すると、ウエハステージWSTの上面に配置されたYスケール44A,44Cとヘッドユニット62A,62Cとがそれぞれ対向し、Xスケール44B,44Dとヘッドユニット62B,62Dとがそれぞれ対向する。そして、Yスケール44A,44Cに対向するヘッドユニット62A,62C(Yリニアエンコーダ70A,70C)によって、ウエハステージWSTのY軸方向の位置が計測され、Xスケール44B,44Dに対向するヘッドユニット62B,62D(Xリニアエンコーダ70B,70D)によって、ウエハステージWSTのX軸方向の位置が計測される。また、同時に鏡筒40の下面に配置されたxスケール58xに対向するピックアップ54x(xリニアエンコーダ50x)と、yスケール58yに対向するピックアップ54y(yリニアエンコーダ50y)とで、鏡筒40の直線Px及び直線Pyに平行な方向の変位、すなわち鏡筒40のXY平面内での位置が計測される。そして、主制御措置11は、Yリニアエンコーダ70A,70C及びXリニアエンコーダ70B,70Dの計測結果と、xリニアエンコーダ50x及びyリニアエンコーダ50yの計測結果とをモニタして、ウエハステージWSTをXY平面内で、鏡筒40を基準に移動させる。
 以上説明したように、本実施形態の露光装置10によると、露光動作中の鏡筒40のXY平面内における変位が、鏡筒40の下面に配置されたスケール58xに対向する計測マウント51に配置されたピックアップ54x(xリニアエンコーダ50x)、及び鏡筒40の下面に配置されたスケール58yに対向する計測マウント51に配置されたピックアップ54y(yリニアエンコーダ50y)によって計測される。従って、ウエハステージWSTの移動などに起因する振動などによって、鏡筒40のXY平面内の位置が微少変動しても、その変位を精度よく計測することが可能となり、結果的に鏡筒40に保持される投影光学系PLの光軸を基準とするウエハステージWSTの位置制御を精度よく行うことができる。
 また、ピックアップ54x,54yから射出される光(以下、測長光という)は、xスケール58x又はyスケール58yで反射され、ピックアップ54x,54yと鏡筒40に固定されたxスケール58x又はyスケール58yとの間を往復することとなるが、測長光の経路は、例えば干渉計における測長光の経路と比べて無視できるほど小さくなる。従って、露光中に鏡筒40の周囲などで空気揺らぎなどが生じたとしても、xリニアエンコーダ50x及びyリニアエンコーダ50yの計測値の短期安定性を、干渉計を用いた場合に比べて格段に向上させることが可能となる。
 また、本実施形態では、鏡筒40の変位の計測に用いられる測長光を射出するピックアップ54x,54yと、ウエハステージWSTの位置を計測するヘッドユニット62A~62Dがともに計測マウント51に配置されている。このため、ピックアップ54x,54yとヘッドユニット62A~62Dとの位置関係は一定に維持され、ウエハステージWSTに対する計測を行うXリニアエンコーダ70B,70D及びYリニアエンコーダ70A,70Cと、鏡筒40に対する計測を行うxリニアエンコーダ50x及びyリニアエンコーダ50yとの間で生じる計測誤差を低減することが可能となる。
 なお、上記実施形態では、xリニアエンコーダ50x及びyリニアエンコーダ50yで、X軸及びY軸に対して45度の角度をなす直線Px及び直線Pyに平行な方向の鏡筒40の変位を計測しているが、これに限らず、エンコーダを用いて鏡筒40のX軸方向及びY軸方向の変位を計測しても良く、また、任意の異なる2軸方向の変位を計測することで鏡筒40のXY平面上における変位を計測しても良い。すなわち、スケール58x,58yはその長手方向(計測方向、回折格子の周期方向/配列方向)が直線Px、Pyに平行な方向に限られるものではなく任意で構わない。
 また、上記実施形態では、熱源を避けるべく、光学系(の一部)のみが計測マウント51に配置されるものとしたが、熱の影響を排除できる、あるいは熱の影響を考慮しなくても良い場合には、光源及び/又は受光系(光検出器を含む)を、計測マウント51に配置しても良い。
 また、上記実施形態では、xリニアエンコーダ50x及びyリニアエンコーダ50yそれぞれのピックアップ54x,54yは、計測マウント51に取り付けられているが、これに限らず、ピックアップ54x,54yを鏡筒40に取り付けて、計測マウント51に取り付けられたスケール58x,58yを用いて、計測マウント51に対する鏡筒40の変位を計測しても良い。
 また、これまでは、ピックアップ54x,54y又はスケール58x,58yを、投影ユニットPU(鏡筒40)の下端面に取り付けるものとしているが、投影ユニットPU(鏡筒40)の下端面以外の部位に、ピックアップ54x,54y又はスケール58x,58yを、固定しても良い。
 また、上記実施形態では、鏡筒40の変位計測に、光学式のxリニアエンコーダ50x及びyリニアエンコーダ50yを用いたが、これに限らず、例えば電磁誘導方式のエンコーダなどを用いても良い。
 また、上記実施形態では、スケールに光を照射することによって得られる反射光を受光するピックアップ54x,54yを備えたxリニアエンコーダ50x及びyリニアエンコーダ50yを用いて鏡筒40の変位を計測することとしたが、これに限らず、鏡筒40の変位を計測するエンコーダとしては、例えばスケール58x,58yを透過した透過光を用いて変位を計測するエンコーダなども採用することができる。
 また、エンコーダにより、X軸及びY軸などの任意の異なる2軸方向に限られず、例えば他の方向(θz方向など)についても鏡筒40の変位を計測可能として良い。
 なお、上記実施形態では、投影ユニットPU(投影光学系PL)が、3つの吊り下げ支持機構137によって、フランジFLGを介して、レチクルステージベース32aの下方に吊り下げ支持されるものとしたが、これに限らず、床面上に防振装置を介して水平に支持される鏡筒定盤によって投影ユニットPU(投影光学系PL)を支持しても良い。この場合、計測マウント51はその鏡筒定盤で吊り下げ支持しても良い。要は、投影ユニットPU(投影光学系PL)と基準位置とのXY平面内における位置関係が、リニアエンコーダによって計測可能であれば良い。また、前述のヘッドユニット62A~62D、アライメント系ALG、及びウエハフォーカスセンサWFの少なくとも1つを、計測マウント51とは独立に鏡筒定盤に設けても良い。
 また、本実施形態では、ウエハステージWSTの位置計測を、Xリニアエンコーダ70B,70D、及びYリニアエンコーダ70A,70Cを含むエンコーダシステムを用いて行ったが、ウエハステージWSTの位置計測の方法はこれに限られるものではない。例えば、ウエハステージWSTの位置計測を、干渉計システム、又は干渉計システム及びエンコーダシステムにより行っても良い。この干渉計システムでは、投影光学系PLを基準としてウエハステージの位置計測を行う必要がないので、干渉計システムの計測ビームの反射面を投影光学系PLに設けなくても良い。なお、干渉計システム及びエンコーダシステムの両方を備える露光装置は、例えば米国特許出願公開第2007/0288121号明細書、米国特許出願公開第2008/0088843号明細書などに開示されている。
 また、上記実施形態では、ウエハテーブル(ウエハステージ)上に格子部(Yスケール、Xスケール)を設け、これに対向してXヘッド、Yヘッドをウエハステージの外部に配置する構成のエンコーダシステムを採用した場合について例示したが、これに限らず、例えば米国特許出願公開第2006/0227309号明細書などに開示されているように、ウエハステージにエンコーダヘッドを設け、これに対向してウエハステージの外部に格子部(例えば2次元格子又は2次元に配置された1次元の格子部)を配置する構成のエンコーダシステムを採用しても良い。この場合において、ウエハテーブルのZ軸方向に関する位置を計測するZヘッドもウエハステージに設け、その格子部の面を、Zヘッドの計測ビームが照射される反射面としても良い。この場合において、エンコーダヘッドとZヘッドとの機能を備えた単一のヘッドを用いても良い。また、その格子部(スケール)は、一例として、前述の計測マウントあるいは鏡筒定盤などで支持しても良い。
 また、上記実施形態では、スキャニング・ステッパに本発明が適用された場合について説明したが、これに限らず、ステッパなどの静止型露光装置に本発明を適用しても良い。また、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の投影露光装置にも本発明を適用することができる。
 また、上記実施形態の露光装置における投影光学系の倍率は縮小系のみならず等倍および拡大系のいずれでも良いし、投影光学系PLは屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、その投影像は倒立像及び正立像のいずれでも良い。
 また、照明光ILは、ArFエキシマレーザ光(波長193nm)に限らず、KrFエキシマレーザ光(波長248nm)などの紫外光や、F2レーザ光(波長157nm)などの真空紫外光であっても良い。そのほか、超高圧水銀ランプから発せられるg線(波長436nm)、i線(波長365nm)などの紫外域の輝線を照明光ILとして用いることもできる。この他、例えば米国特許7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
 また、上記実施形態では、露光装置の照明光ILとしては波長100nm以上の光に限らず、波長100nm未満の光を用いても良いことはいうまでもない。例えば、近年、70nm以下のパターンを露光するために、SORやプラズマレーザを光源として、軟X線領域(例えば5~15nmの波長域)のEUV(Extreme Ultraviolet)光を発生させるとともに、その露光波長(例えば13.5nm)の下で設計されたオール反射縮小光学系、及び反射型マスクを用いたEUV露光装置の開発が行われている。この装置においては、円弧照明を用いてマスクとウエハを同期走査してスキャン露光する構成が考えられるので、かかる装置にも本発明を適用することができる。この他、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも本発明を適用できる。
 さらに、例えば国際公開WO99/49504号パンフレットなどに開示される、投影光学系PLとウエハとの間に液体(例えば純水など)が満たされる液浸露光装置などにも本発明を適用することができる。
 また、上記実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレチクルに代えて、例えば米国特許第6,778,257号公報に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスク)を用いても良い。
 また、例えば国際公開第2001/035168号パンフレットに開示されているように、干渉縞をウエハW上に形成することによって、ウエハW上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)にも本発明を適用することができる。
 さらに、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも本発明を適用することができる。
 なお、上記実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものではなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。
 露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。
 なお、これまでの説明で引用した露光装置などに関する全ての公報、国際公開パンフレット、米国特許出願公開明細書及び米国特許明細書の開示を援用して本明細書の記載の一部とする。
 なお、半導体デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、前述した実施形態の露光装置(パターン形成装置)によりマスク(レチクル)のパターンをウエハに転写するリソグラフィステップ、露光されたウエハを現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置が用いられるので、高集積度のデバイスを歩留り良く製造することができる。
 以上説明したように、本発明の露光装置及び露光方法、並びにデバイス製造方法は、半導体素子及び液晶表示素子などの電子デバイスを製造するのに適している。

Claims (18)

  1.  エネルギビームにより光学部材を介して物体を露光し、前記物体上にパターンを形成する露光装置であって、
     前記物体を保持し、所定の平面に沿って移動する移動体と;
     前記光学部材を保持する保持部材と;
     所定の基準位置と前記保持部材との、前記平面に平行な第1軸方向の距離を計測する第1エンコーダと;を備える露光装置。
  2.  請求項1に記載の露光装置において、
     前記基準位置と前記保持部材との、前記平面に平行で前記第1軸方向とは異なる第2軸方向の距離を計測する第2エンコーダを更に備える露光装置。
  3.  請求項2に記載の露光装置において、
     前記第2エンコーダは、照明光を射出する第2検出装置を有し、
     前記照明光に対して相対移動する第2スケールからの反射光又は透過光を受光して、前記基準位置に対する前記保持部材の、前記第2軸方向の位置を計測する露光装置。
  4.  請求項3に記載の露光装置において、
     前記第1エンコーダは、照明光を射出する第1検出装置を有し、
     前記照明光に対して相対移動する第1スケールからの反射光又は透過光を受光して、前記基準位置に対する前記保持部材の、前記第1軸方向の位置を計測する露光装置。
  5.  請求項4に記載の露光装置において、
     前記第1スケール及び前記第2スケールは、前記保持部材に設けられている露光装置。
  6.  請求項2~5のいずれか一項に記載の露光装置において、
     前記基準位置に対する前記移動体の変位を計測する計測装置と;
     前記計測装置の計測結果と、前記第1エンコーダ及び前記第2エンコーダの計測結果のうちの少なくとも一方の計測結果とに基づいて、前記移動体の移動を制御する制御装置と;を更に備える露光装置。
  7.  請求項2~6のいずれか一項に記載の露光装置において、
     前記第1軸方向と前記第2軸方向とは、直交している露光装置。
  8.  光学部材を介してエネルギビームで物体を露光する露光装置であって、
     前記物体を保持して所定平面内で移動可能な移動体と;
     前記光学部材を保持する保持部材と;
     前記光学部材と前記保持部材との一方にスケールが設けられかつ他方にヘッドが設けられ、前記所定平面と平行な方向に関する前記光学部材の位置情報を計測するエンコーダ装置と;を備える露光装置。
  9.  請求項8に記載の露光装置において、
     前記エンコーダ装置は、計測方向が異なる2つのスケールが前記光学部材と前記保持部材との一方に設けられ、前記所定平面内で互いに直交する第1及び第2方向に関する前記光学部材の位置情報を計測する露光装置。
  10.  請求項8又は9に記載の露光装置において、
     前記移動体と前記保持部材との一方にスケールが設けられかつ他方にヘッドが設けられ、前記所定平面内で互いに直交する第1及び第2方向に関する前記移動体の位置情報を計測するエンコーダシステムを備え、
     前記エンコーダ装置及び前記エンコーダシステムの計測情報を用いて前記移動体の移動が制御される露光装置。
  11.  請求項1~10のいずれか一項に記載の露光装置を用いて物体上にパターンを形成する工程と;
     前記パターンが形成された物体を現像する工程と;を含むデバイス製造方法。
  12.  エネルギビームにより光学部材を介して物体を露光し、前記物体上にパターンを形成する露光方法であって、
     前記光学部材と所定の基準位置との、前記物体を保持して移動する移動体の移動面内の位置関係を、エンコーダシステムを用いて計測する第1の計測工程を含む露光方法。
  13.  請求項12に記載の露光方法において、
     前記第1の計測工程では、前記基準位置と前記光学部材との、前記移動面内の直交2軸方向の少なくとも一方向の距離を前記エンコーダシステムを用いて計測する露光方法。
  14.  請求項12又は13に記載の露光方法において、
     前記基準位置に対する前記移動体の変位をエンコーダシステムを用いて計測する第2の計測工程と;
     前記第1、第2の計測工程の計測結果に基づいて、前記移動体の移動を制御する制御工程と;を更に含む露光方法。
  15.  光学部材を介してエネルギビームで、所定平面内で移動可能な移動体に保持された物体を露光する露光方法であって、
     前記光学部材と該光学部材を保持する保持部材との一方にスケールが設けられかつ他方にヘッドが設けられたエンコーダ装置を用いて、前記所定平面と平行な方向に関する前記光学部材の位置情報を計測する工程を含む露光方法。
  16.  請求項15に記載の露光方法において、
     前記エンコーダ装置は、計測方向が異なる2つのスケールが前記光学部材と前記保持部材との一方に設けられ、前記所定平面内で互いに直交する第1及び第2方向に関する前記光学部材の位置情報を計測する露光方法。
  17.  請求項15又は16に記載の露光方法において、
     前記移動体と前記保持部材との一方にスケールが設けられかつ他方にヘッドが設けられたエンコーダシステムを用いて、前記所定平面内で互いに直交する第1及び第2方向に関する前記移動体の位置情報を計測する工程をさらに含み、
     前記エンコーダ装置及び前記エンコーダシステムの計測情報を用いて前記移動体の移動が制御される露光方法。
  18.  請求項12~17のいずれか一項に記載の露光方法を用いて物体上にパターンを形成する工程と;
     前記パターンが形成された物体を現像する工程と;を含むデバイス製造方法。
PCT/JP2008/003955 2007-12-28 2008-12-25 露光装置及び露光方法、並びにデバイス製造方法 WO2009084199A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009547896A JPWO2009084199A1 (ja) 2007-12-28 2008-12-25 露光装置及び露光方法、並びにデバイス製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007340275 2007-12-28
JP2007-340275 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084199A1 true WO2009084199A1 (ja) 2009-07-09

Family

ID=40823935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003955 WO2009084199A1 (ja) 2007-12-28 2008-12-25 露光装置及び露光方法、並びにデバイス製造方法

Country Status (6)

Country Link
US (1) US8792079B2 (ja)
JP (2) JPWO2009084199A1 (ja)
KR (1) KR101476865B1 (ja)
SG (1) SG186651A1 (ja)
TW (1) TWI436168B (ja)
WO (1) WO2009084199A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579503A (zh) * 2015-01-12 2015-04-29 西安电子科技大学 一种基于x射线的通信测距一体化方法
JP2020003008A (ja) * 2018-06-28 2020-01-09 株式会社ユニロック 防振構造、計測装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8488109B2 (en) 2009-08-25 2013-07-16 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8395783B2 (en) 2010-07-16 2013-03-12 Rudolph Technologies, Inc. System metrology core
US8760624B2 (en) 2010-07-16 2014-06-24 Rudolph Technologies, Inc. System and method for estimating field curvature
SG10201505017PA (en) * 2010-07-16 2015-08-28 Azores And Rudolph Technologies Inc Projection system with metrology
NL2015826A (en) * 2014-12-19 2016-09-20 Asml Netherlands Bv Optical encoder system, encoder head and lithographic apparatus.
WO2017057569A1 (ja) 2015-09-30 2017-04-06 株式会社ニコン 露光装置及び露光方法、並びにフラットパネルディスプレイ製造方法
KR20180059814A (ko) * 2015-09-30 2018-06-05 가부시키가이샤 니콘 노광 장치, 플랫 패널 디스플레이의 제조 방법, 및 디바이스 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210858A (ja) * 2004-12-28 2006-08-10 Nikon Corp 位置調整装置の制御方法、位置調整装置、及び露光装置
JP2006250587A (ja) * 2005-03-09 2006-09-21 Nikon Corp 計測装置、駆動ユニット及びその製造方法、光学ユニット、光学装置並びに露光装置
WO2006128713A2 (en) * 2005-06-02 2006-12-07 Carl Zeiss Smt Ag Optical imaging arrangement
JP2007129202A (ja) * 2005-10-04 2007-05-24 Asml Netherlands Bv リソグラフィ装置の温度補償
JP2007251156A (ja) * 2006-03-03 2007-09-27 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2007528125A (ja) * 2004-02-25 2007-10-04 カール ツァイス エスエムテー アクチェンゲゼルシャフト 少なくとも一つの光学部品で構成される機器

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2897355B2 (ja) 1990-07-05 1999-05-31 株式会社ニコン アライメント方法,露光装置,並びに位置検出方法及び装置
JP3316833B2 (ja) 1993-03-26 2002-08-19 株式会社ニコン 走査露光方法、面位置設定装置、走査型露光装置、及び前記方法を使用するデバイス製造方法
KR100300618B1 (ko) 1992-12-25 2001-11-22 오노 시게오 노광방법,노광장치,및그장치를사용하는디바이스제조방법
JPH07270122A (ja) 1994-03-30 1995-10-20 Canon Inc 変位検出装置、該変位検出装置を備えた露光装置およびデバイスの製造方法
CN100578876C (zh) 1998-03-11 2010-01-06 株式会社尼康 紫外激光装置以及使用该紫外激光装置的曝光装置和曝光方法
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
US7561270B2 (en) 2000-08-24 2009-07-14 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
JP4714403B2 (ja) 2001-02-27 2011-06-29 エーエスエムエル ユーエス,インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
TW529172B (en) 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
EP1345082A1 (en) * 2002-03-15 2003-09-17 ASML Netherlands BV Lithographic apparatus and device manufacturing method
JP4751032B2 (ja) 2004-04-22 2011-08-17 株式会社森精機製作所 変位検出装置
US20060139595A1 (en) 2004-12-27 2006-06-29 Asml Netherlands B.V. Lithographic apparatus and method for determining Z position errors/variations and substrate table flatness
US7515281B2 (en) 2005-04-08 2009-04-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7161659B2 (en) 2005-04-08 2007-01-09 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US7348574B2 (en) 2005-09-02 2008-03-25 Asml Netherlands, B.V. Position measurement system and lithographic apparatus
EP2752714B8 (en) 2006-01-19 2015-10-28 Nikon Corporation Exposure apparatus and exposure method
SG178791A1 (en) 2006-02-21 2012-03-29 Nikon Corp Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
EP2003680B1 (en) 2006-02-21 2013-05-29 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007097466A1 (ja) 2006-02-21 2007-08-30 Nikon Corporation 測定装置及び方法、処理装置及び方法、パターン形成装置及び方法、露光装置及び方法、並びにデバイス製造方法
US7602489B2 (en) 2006-02-22 2009-10-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7483120B2 (en) * 2006-05-09 2009-01-27 Asml Netherlands B.V. Displacement measurement system, lithographic apparatus, displacement measurement method and device manufacturing method
JP2007311597A (ja) 2006-05-19 2007-11-29 Nikon Corp 干渉計システム、ステージ装置及び露光装置
KR101824374B1 (ko) 2006-08-31 2018-01-31 가부시키가이샤 니콘 이동체 구동 방법 및 이동체 구동 시스템, 패턴 형성 방법 및 장치, 노광 방법 및 장치, 그리고 디바이스 제조 방법
KR101556493B1 (ko) 2006-08-31 2015-10-01 가부시키가이샤 니콘 이동체 구동 시스템 및 이동체 구동 방법, 패턴 형성 장치 및 방법, 노광 장치 및 방법, 디바이스 제조 방법, 그리고 결정 방법
TWI590005B (zh) 2006-08-31 2017-07-01 尼康股份有限公司 Exposure method and exposure apparatus, and device manufacturing method
CN102360169B (zh) 2006-09-01 2014-01-22 株式会社尼康 移动体驱动方法及移动体驱动系统、图案形成方法及装置、曝光方法及装置、组件制造方法、以及校正方法
TW201610608A (zh) 2006-09-01 2016-03-16 尼康股份有限公司 移動體驅動方法及移動體驅動系統、圖案形成方法及裝置、曝光方法及裝置、以及元件製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528125A (ja) * 2004-02-25 2007-10-04 カール ツァイス エスエムテー アクチェンゲゼルシャフト 少なくとも一つの光学部品で構成される機器
JP2006210858A (ja) * 2004-12-28 2006-08-10 Nikon Corp 位置調整装置の制御方法、位置調整装置、及び露光装置
JP2006250587A (ja) * 2005-03-09 2006-09-21 Nikon Corp 計測装置、駆動ユニット及びその製造方法、光学ユニット、光学装置並びに露光装置
WO2006128713A2 (en) * 2005-06-02 2006-12-07 Carl Zeiss Smt Ag Optical imaging arrangement
JP2007129202A (ja) * 2005-10-04 2007-05-24 Asml Netherlands Bv リソグラフィ装置の温度補償
JP2007251156A (ja) * 2006-03-03 2007-09-27 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579503A (zh) * 2015-01-12 2015-04-29 西安电子科技大学 一种基于x射线的通信测距一体化方法
CN104579503B (zh) * 2015-01-12 2017-02-22 西安电子科技大学 一种基于x射线的通信测距一体化方法
JP2020003008A (ja) * 2018-06-28 2020-01-09 株式会社ユニロック 防振構造、計測装置
JP7113451B2 (ja) 2018-06-28 2022-08-05 株式会社ユニロック 防振構造、計測装置

Also Published As

Publication number Publication date
TWI436168B (zh) 2014-05-01
JPWO2009084199A1 (ja) 2011-05-12
KR20100101048A (ko) 2010-09-16
US20090201513A1 (en) 2009-08-13
TW200944951A (en) 2009-11-01
JP5605768B2 (ja) 2014-10-15
KR101476865B1 (ko) 2014-12-26
SG186651A1 (en) 2013-01-30
JP2013128126A (ja) 2013-06-27
US8792079B2 (en) 2014-07-29

Similar Documents

Publication Publication Date Title
JP5605768B2 (ja) 露光装置及びデバイス製造方法
JP5146507B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
KR102072076B1 (ko) 이동체 장치, 물체 처리 디바이스, 노광 장치, 플랫 패널 디스플레이 제조 방법, 및 디바이스 제조 방법
JP6035694B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP6183418B2 (ja) 露光装置及びデバイス製造方法
TWI480709B (zh) 物體交換方法、曝光方法、搬送系統及曝光裝置、以及元件製造方法
JP5071894B2 (ja) ステージ装置、パターン形成装置、露光装置、ステージ駆動方法、露光方法、並びにデバイス製造方法
US20070103660A1 (en) Stage unit and exposure apparatus
KR20110110197A (ko) 노광 장치, 노광 방법, 및 디바이스 제조 방법
JPWO2007142351A1 (ja) 移動体装置、露光装置及び露光方法、並びにデバイス製造方法
KR20170133526A (ko) 노광 장치 및 디바이스 제조 방법
KR101799118B1 (ko) 노광 장치 및 디바이스 제조 방법
JP2012531028A (ja) 露光装置及びデバイス製造方法
JP5861858B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP5757397B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2009252850A (ja) 移動体システム、露光装置及び露光方法、並びにデバイス製造方法
JP2013218017A (ja) 移動体装置、露光装置、デバイス製造方法及びフラットパネルディスプレイの製造方法、並びに移動体システム
JP2012089768A (ja) 露光装置及びデバイス製造方法
JP2009252848A (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2009252852A (ja) 移動体システム、露光装置及び露光方法、並びにデバイス製造方法
JP2013218018A (ja) 移動体装置、露光装置、デバイス製造方法及びフラットパネルディスプレイの製造方法、並びに移動体システム
JP2009252847A (ja) 移動体システム、露光装置及び露光方法、並びにデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08867097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20097023231

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009547896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08867097

Country of ref document: EP

Kind code of ref document: A1