WO2009083213A1 - Procede et dispositif de fabrication d'un cable a deux couches du type gomme in situ - Google Patents

Procede et dispositif de fabrication d'un cable a deux couches du type gomme in situ Download PDF

Info

Publication number
WO2009083213A1
WO2009083213A1 PCT/EP2008/011001 EP2008011001W WO2009083213A1 WO 2009083213 A1 WO2009083213 A1 WO 2009083213A1 EP 2008011001 W EP2008011001 W EP 2008011001W WO 2009083213 A1 WO2009083213 A1 WO 2009083213A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
son
inner layer
rubber
assembly
Prior art date
Application number
PCT/EP2008/011001
Other languages
English (en)
Inventor
Thibaud Pottier
Henri Barguet
Original Assignee
Societe De Technologie Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe De Technologie Michelin, Michelin Recherche Et Technique S.A. filed Critical Societe De Technologie Michelin
Priority to EA201070802A priority Critical patent/EA016480B1/ru
Priority to BRPI0821476A priority patent/BRPI0821476A8/pt
Priority to EP08869079.7A priority patent/EP2238288B1/fr
Priority to CN2008801227867A priority patent/CN101910507B/zh
Priority to JP2010540063A priority patent/JP5486509B2/ja
Priority to KR1020107016798A priority patent/KR101526630B1/ko
Priority to US12/810,999 priority patent/US8627696B2/en
Publication of WO2009083213A1 publication Critical patent/WO2009083213A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/12Making ropes or cables from special materials or of particular form of low twist or low tension by processes comprising setting or straightening treatments
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B3/00General-purpose machines or apparatus for producing twisted ropes or cables from component strands of the same or different material
    • D07B3/02General-purpose machines or apparatus for producing twisted ropes or cables from component strands of the same or different material in which the supply reels rotate about the axis of the rope or cable or in which a guide member rotates about the axis of the rope or cable to guide the component strands away from the supply reels in fixed position
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/14Machine details; Auxiliary devices for coating or wrapping ropes, cables, or component strands thereof
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/14Machine details; Auxiliary devices for coating or wrapping ropes, cables, or component strands thereof
    • D07B7/145Coating or filling-up interstices
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0626Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration the reinforcing cords consisting of three core wires or filaments and at least one layer of outer wires or filaments, i.e. a 3+N configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1012Rope or cable structures characterised by their internal structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2023Strands with core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2025Strands twisted characterised by a value or range of the pitch parameter given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2027Compact winding
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2027Compact winding
    • D07B2201/2028Compact winding having the same lay direction and lay pitch
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2029Open winding
    • D07B2201/203Cylinder winding, i.e. S/Z or Z/S
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2029Open winding
    • D07B2201/2031Different twist pitch
    • D07B2201/2032Different twist pitch compared with the core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2038Strands characterised by the number of wires or filaments
    • D07B2201/2039Strands characterised by the number of wires or filaments three to eight wires or filaments respectively forming a single layer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2046Strands comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2061Cores characterised by their structure comprising wires resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2062Cores characterised by their structure comprising wires comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2075Rubbers, i.e. elastomers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2075Rubbers, i.e. elastomers
    • D07B2205/2082Rubbers, i.e. elastomers being of synthetic nature, e.g. chloroprene
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/20Type of machine
    • D07B2207/204Double twist winding
    • D07B2207/205Double twist winding comprising flyer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/4072Means for mechanically reducing serpentining or mechanically killing of rope
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords

Definitions

  • the present invention relates to processes and devices for manufacturing two-layer metal cables, of M + N construction, used in particular for the reinforcement of rubber articles, in particular tires.
  • a radial tire comprises in known manner a tread, two inextensible beads, two flanks connecting the beads to the tread and a belt circumferentially disposed between the carcass reinforcement and the tread.
  • This belt consists of various plies (or “layers") of rubber reinforced or not by reinforcing elements (“reinforcements”) such as cords or monofilaments, metal or textile type.
  • the tire belt generally consists of at least two superimposed belt plies, sometimes called “working” plies or “crossed” plies, whose reinforcing cords, generally of metal, are arranged substantially parallel to each other at the same time. interior of a web, but crossed from one web to another, that is to say inclined, symmetrically or otherwise, with respect to the median circumferential plane, of an angle which is generally between 10 ° and 45 ° depending on the type of tire considered.
  • the crossed plies may be supplemented by various other plies or layers of auxiliary rubber, of variable widths depending on the case, with or without reinforcements;
  • examples of simple rubber cushions include so-called “protection” plies intended to protect the rest of the belt from external aggression, perforations, or so-called “hooping” plies comprising reinforcements oriented substantially along the circumferential direction (so-called “zero degree” plies), whether radially external or internal with respect to the crossed plies.
  • the third requirement is particularly strong for tire casings for industrial vehicles such as heavy vehicles, designed to be retreaded once or more when the treads they comprise reach a degree of critical wear after prolonged rolling.
  • layered cords consisting of a central core and one or more layers of concentric threads arranged around this soul.
  • the most widely used layered cables are essentially M + N or M + N + P construction cables, formed of a core of M wire (s) surrounded by at least one layer of N wires which may itself be surrounded by an outer layer of P son, the M, N or P son having generally the same diameter for reasons of simplification and cost.
  • the two-layer cables most used today in tire belts are essentially M + N construction cables consisting of an inner core or layer of M yarns (in particular of 3 or 4 wires) and an outer layer of N wires (e.g., from 6 to 12 wires).
  • the outer layer is relatively desaturated due to the high diameter of the inner layer provided by the presence of M core son, especially when the diameter of the core son is chosen to be greater than that of the son of the outer layer.
  • This type of construction promotes, as is known, the external penetrability of the cable by the tire calendering rubber or other rubber article during the cooking of the latter, and consequently, it is possible to improve the endurance of the cables in fatigue and fatigue-corrosion, particularly with regard to the cleavage problem mentioned above.
  • the construction cables 3 + N or 4 + N have the disadvantage that they are not penetrable to the core because of the presence of a channel or capillary in the center of the three or four core wires, which remains vacuum after impregnation with rubber and therefore conducive, by a kind of "wicking" effect, to the propagation of corrosive media such as water.
  • This disadvantage is well known, it has been disclosed for example in patent applications WO 01/00922, WO 01/49926, WO 2005/071157, WO 2006/013077.
  • the inner layer Ci by removing its son, through a unit core wire (or "core wire") and remove a wire from the outer layer; thus, the cable obtained, for example of construction 1 + 3 + (N-I), becomes penetrable from the outside to its center.
  • the core wire should be neither too thin, otherwise it does not produce the desaturation effect that is targeted, nor too big otherwise the wire does not stay in the center of the cable.
  • a 0.12 mm diameter core wire is used for 0.35 mm diameter C 1 and C 1 wire wires (see, for example, RD ⁇ Research Disclosure) August 1990, No. 316107, "Steel cord construction”. ).
  • patent application US 2002/160213 for its part proposed the production of M + N type cables gummed in situ, M ranging from 2 to 4.
  • the method proposed here consists of to be sheathed individually (that is to say, singly, "wire to wire") with rubber in the green state, upstream of the assembly point of the M son (or torsion point), one or preferably each M son to obtain an inner layer sheathed rubber, before the subsequent introduction of N son of the outer layer by wiring around the inner layer and sheathed.
  • calendering consists in transforming the cable, by incorporation between two layers of rubber in the green state, into a metal rubberized fabric used as a semi-finished product for any subsequent manufacture, for example for the manufacture of a tire.
  • the winding and the intermediate storage of the inner layer require, during the coil winding of the inner layer, the use of spacers and steps important slicing to prevent parasitic bonding between the wound layers and, for the same layer, between the turns.
  • a first object of the invention is a method for manufacturing a two-layer (Ci, Ce) metal cable, of M + N construction, comprising an inner layer (Ci) consisting of M son of diameter d, coiled together in a helix according to a pitch pi, M ranging from 2 to 4, and an outer layer (Ce) of N son of diameter d 2 wound together in a helix in a pitch p 2 around the inner layer (Ci), said method comprising at least the following steps operated online: - A step of assembly by twisting the M core son, for forming the inner layer (Ci) at an assembly point; downstream from said assembly point of the M core wires, a step of sheathing the inner layer (Ci) with a diene rubber composition, called "filling rubber", in the green state; a step of assembly by twisting the N son of the outer layer (Ce) around the inner layer (Ci) and sheathed; a final balancing step of the twists.
  • the invention also relates to an assembly device and in-line scrubbing, usable for implementing the method of the invention, said device comprising upstream downstream, according to the direction of advancement of the cable being formed:
  • feeding means for the M core wires feeding means for the M core wires; first assembly means by twisting the M core son for forming the inner layer; means for sheathing the inner layer;
  • FIG. 1 An example of an in situ twisting and scrubbing device that can be used for implementing the method according to the invention (FIG.
  • FIG. in cross-section a construction cable 3 + 9 of the compact type that can be manufactured by the method of the invention (FIG. in cross-section, a conventional 3 + 9 construction cable, also of the compact type (Fig. 3); in cross-section, a 3 + 9 construction cable of the cylindrical layer type which can be manufactured by the method of the invention (FIG 4); - in cross-section, a conventional 3 + 9 construction cable, also of the cylindrical layer type (Fig. 5);
  • any range of values designated by the expression "between a and b" represents the range of values from more than a to less than b (i.e., terminals a and b excluded) while any range of values designated by the expression “from a to b” means the range from a to b (i.e., including the strict limits a and b).
  • the method of the invention is intended for the manufacture of a two-layer metal cable (Ci, Ce) of M + N construction, of the "gummed in situ" type, comprising an inner layer (Ci) consisting of M son of diameter di wound helically together in a pitch p b M ranging from 2 to 4, and an outer layer (Ce) of N d 2 diameter son wound helically in a pitch p 2 around the inner layer (Ci), said method comprising at least the following steps operated online:
  • a step of assembly by twisting the M core son for forming the inner layer (Ci) at an assembly point; then, downstream from said assembly point of the M core wires, a step of sheathing the inner layer (Ci) with a diene rubber composition called "filling rubber" in the green state (that is, say non-crosslinked); followed by a step of assembly by twisting the N son of the outer layer (Ce) around the inner layer (Ci) and sheathed; then a final balancing step of the twists.
  • the wires are not twisted around their own axis, due to a synchronous rotation before and after the assembly point; or by twisting: in such a case, the yarns undergo both a collective twist and an individual twist around their own axis, which generates a detorsion torque on each of the threads.
  • a first essential characteristic of the above method is to use, both for the assembly of the inner layer and for that of the outer layer, a twisting step.
  • the M core wires are twisted together (direction S or Z) to form the inner layer Ci, in a manner known per se; the son are delivered by feeding means such as coils, a distribution grid, coupled or not to a joining grain, intended to converge the core son in a common point of torsion (or assembly point).
  • the M son of the inner layer have for example a diameter d between 0.20 and 0.50 mm, in particular in a range of 0.23 to 0.40 mm; their not twisting Pi is for example between 5 and 30 mm.
  • the pitch "p" represents the length, measured parallel to the axis of the cable, at the end of which a wire having this pitch performs a complete revolution about said axis of the cable.
  • the inner layer (Ci) thus formed is then sheathed with filling gum in the green state, provided by an extrusion screw at an appropriate temperature.
  • the filling rubber can thus be delivered at a fixed point, unique and compact, by means of a single extrusion head, without using an individual sheathing son upstream of the assembly operations, before forming the inner layer, as described in the prior art.
  • This method has the significant advantage of not slowing down the conventional assembly process. It enables the complete operation of initial twisting, scrubbing and final twisting in one line, irrespective of the type of cable produced (compact layer cable as a cylindrical layer cable), all at high speed.
  • the method of the invention can be implemented at a speed (running speed of the cable on the twisting-scrub line) greater than 70 m / min, preferably greater than 100 m / min.
  • the tension stress exerted on the M threads is preferably between 10 and 25% of the breaking force of the son.
  • the extrusion head may comprise one or more dies, for example an upstream guide die and a downstream die calibration. It is possible to add continuous measurement and control means of the diameter of the cable connected to the extruder.
  • the extrusion temperature of the filling rubber is between 60 ° C. and 120 ° C., more preferably between 70 ° C. and 110 ° C.
  • the extrusion head thus defines a cladding zone having the shape of a cylinder of revolution whose diameter is of course adjusted to the specific construction of the cable manufactured.
  • the extrusion diameter is preferably between 0.4 and 1.2 mm, more preferably between 0.5 and 1.0 mm.
  • the extrusion length is preferably between 4 and 10 mm.
  • the inner layer Ci at any point of its periphery, is covered with a minimum thickness of filling rubber which is preferably greater than 5 ⁇ m, more preferably greater than 10 ⁇ m. for example between 10 and 50 microns.
  • the amount of filling gum delivered by the extrusion head is adjusted to a preferred range of 5 to 40 mg per gram of final cable (i.e., gummed in situ).
  • the amount of filling gum delivered be between 5 and 30 mg, more preferably still within a range of 10 to 25 mg per g of cable.
  • the diene elastomer of the filling rubber is preferably chosen from the group consisting of polybutadienes (BR), natural rubber (NR), synthetic polyisoprenes (IR), different copolymers of butadiene, the various copolymers of isoprene, and mixtures of these elastomers.
  • a preferred embodiment consists in using an "isoprene" elastomer, that is to say a homopolymer or a copolymer of isoprene, in other words a diene elastomer chosen from the group consisting of natural rubber (NR). , the synthetic polyisoprenes (IR), the various isoprene copolymers and the mixtures of these elastomers.
  • the filling rubber is of the vulcanizable type, that is to say that it generally comprises a vulcanization system adapted to allow the crosslinking of the composition during its cooking, typically based on sulfur and one or more accelerators.
  • the filling rubber may also comprise all or part of the usual additives intended for tire rubber matrices, such as, for example, reinforcing fillers such as carbon black or silica, antioxidants, oils, plasticizers, anti-eversion agents, resins, adhesion promoters, and cobalt salts.
  • the filling rubber has, in the crosslinked state, a secant modulus ElO extension (at 10% elongation) which is between 5 and 25 MPa, more preferably between 5 and 20 MPa.
  • the final assembly is carried out, always by twisting (S or Z direction), of the N wires of the outer layer (Ce) around the inner layer (Ci) and sheathed.
  • the N threads come lean on the filling rubber, embed itself in it.
  • the filling rubber moving under the pressure exerted by these external son, naturally has a tendency to fill, at least in part, each of the interstices or cavities left empty by the son, between the inner layer and the outer layer.
  • the number N of wires of the outer layer N is, of course, a function not only of the respective diameters di and d 2 , but also of the number M of wires of the inner layer.
  • M preferably equal to 3 or 4
  • M preferably from 6 to 12.
  • These N son have for example a diameter d 2 of between 0.20 and 0.50 mm, in particular in a range of 0.23. at 0.40 mm, d 2 can of course be identical to or different from the diameter di M soul son.
  • the inner layer comprises 3 or 4 wires, more preferably 3 wires, and the outer layer preferably comprises 8, 9 or 10 wires.
  • the inner layer has 3 wires and the outer layer has 9 wires.
  • the twisting pitch p 2 is preferably between 10 and 30 mm, more preferably in a range of 12 to 25 mm. Preferably, there is the relation 0.5 ⁇ pi / p 2 ⁇ 1 which is verified.
  • the method of the invention is implemented with pi and p 2 which are equal.
  • the outer layer Ce has the preferred characteristic of being a saturated layer, that is to say that, by definition, there is not enough room in this layer to add at least one (N max + l) th wire diameter d 2 , N max representing the maximum number of windable son in a layer around the inner layer Ci.
  • This construction has the advantage of limiting the risk of overflow of filling rubber at its periphery and of offer, for a given diameter of the cable, a higher resistance.
  • the number N of wires can vary to a very large extent according to the particular embodiment of the invention, for example from 6 to 12 wires for an internal layer Ci of 3 wires, it being understood that the maximum number N max of wires N will be increased if their diameter d 2 is reduced compared to the diameter d of the M core wires, in order to preferentially preserve the saturated outer layer.
  • the M + N cable can be of two types, namely of the compact type or the type with cylindrical layers.
  • the son of the outer layer (Ce) are helically wound at the same pitch and in the same direction of torsion (that is to say in the direction S (provision "S / S"), or in the direction Z ("Z / Z" arrangement)) and the wires of the inner layer (Ci), for obtaining a layer cable of the compact type as schematized for example in Figure 2.
  • the compactness is such that virtually no distinct layer of wires is visible;
  • the cross-section of such cables has an outline which is polygonal and non-cylindrical, as illustrated for example in Fig. 2 (compact cable 3 + 9 gummed in situ) and Fig. 3 (compact cable 3 + 9 conventional, c that is, not gummed in situ).
  • the cable M + N is not yet complete.
  • the central channel delimited by the M core wires when M is equal to 3 or 4, is not yet filled with filling rubber, in any case insufficiently to obtain a watertightness property. the air is acceptable.
  • M is equal to 2
  • the filling rubber surrounds the inner layer without sufficiently penetrating between the two wires which remain in contact with each other, which can be detrimental in particular with respect to the risks of wear. possible by fretting.
  • torsion balancing is meant here in known manner the cancellation of the residual torsional torques (or of the detorsion springback) exerted on each wire of the cable, in the inner layer as in the outer layer.
  • Torsion balancing tools are well known to those skilled in the art of twisting; they may consist for example of "trainers” or “twisters” or “twister-trainers”, consisting of either pulleys for twisters or small diameter rollers for trainers, pulleys and / or rollers through which circulates the cable.
  • the method of the invention exploits the rotation of the M core wires, at the final stage of manufacture of the cable, to naturally distribute, homogeneously, the filling rubber inside and around the inner layer (Ci), while perfectly controlling the amount of filling compound provided.
  • This cable can be wound on a receiving reel, for storage, before being processed, for example, through a calendering installation, for preparing a metal / rubber composite fabric.
  • the cable M + N can be qualified as airtight or impermeable to air: in the air permeability test described in paragraph II-1-B which follows, it is characterized by a flow rate average air less than 2 cm 3 / min, preferably less than or equal to 0.2 cm 3 / min.
  • the method of the invention makes possible the manufacture of M + N cables which may be advantageously free (or virtually free) of filling gum at their periphery.
  • an expression it is meant that no particle of filling compound is visible, with the naked eye, at the periphery of the cable, that is to say that the person skilled in the art does not make any difference at the output of manufacture, with the naked eye and at a distance of two or three meters, between a coil of M + N cable gummed in situ prepared according to the invention and a conventional M + N cable coil (that is, ie not erased in situ).
  • An assembly device and scrub according to the invention usable for the implementation of the method of the invention described above, comprises upstream downstream, according to the direction of advancement of a cable being formed:
  • supply means (110) deliver M (for example three) core wires (11) through a grid ( 12) of distribution (axisymmetrical distributor), coupled or not to an assembly line (13), beyond which the M core wires converge at a point of assembly or point of twisting (14), for formation of the inner layer (Ci).
  • the inner layer Ci once formed, then passes through a cladding zone consisting for example of a single extrusion head (15) through which is intended to circulate the inner layer.
  • the distance between the point of convergence (14) and the sheathing point (15) is for example between 50 cm and 1 m.
  • the final cable M + N thus formed is finally collected on a rotary reception (19), after passing through the torsion balancing means (18) consisting for example of a twister-trainer.
  • FIG. 2 schematizes, in section perpendicular to the axis of the cable (assumed rectilinear and at rest), an example of a preferred cable 3 + 9 gummed in situ, obtainable by means of the method according to the invention. previously described invention.
  • This type of construction has the consequence that the internal (20) and external (21) wires form two concentric layers which each have a substantially polygonal contour (represented in dotted lines) (triangular for the Ci, hexagonal layer for the Ce layer), and not cylindrical as in the case of cables with cylindrical layers which will be described later.
  • the filling rubber (22) fills the central capillary (23) (symbolized by a triangle) formed by the three core wires (20) by spreading them very slightly, while completely covering the inner layer Ci formed by these three wires. (20). It also fills each interstice or cavity (also symbolized by a triangle) formed either by a core wire (20) and the two external wires (21) which are immediately adjacent to it, or by two core wires (20) and the outer wire (21) adjacent thereto; in total, 12 interstices (helical capillaries, also symbolized by a triangle) are thus present in this cable 3 + 9, to which is added the central channel or capillary (23).
  • the filling rubber extends in a continuous manner around the layer Ci it covers.
  • Figure 3 recalls the section of a cable 3 + 9 (noted C-2) conventional (i.e., not gummed in situ), also of the compact type.
  • C-2 conventional (i.e., not gummed in situ), also of the compact type.
  • the absence of filling gum means that virtually all the threads (30, 31) are in contact with each other, which leads to a particularly compact structure, very difficult to penetrate (not to say impenetrable) of the outside by rubber.
  • the characteristic of this type of cable is that the three core wires (30) form a channel or central capillary (33) which is empty and closed and thus conducive, by "wicking" effect, to the propagation of corrosive media such as that water.
  • FIG. 4 schematizes another example of a preferential cable 3 + 9 according to the invention.
  • this type of construction has the consequence that the wires are arranged in two adjacent and concentric layers (Ci and Ce), tubular, giving the cable (and the two layers) an outline (shown in dotted lines) cylindrical and not polygonal.
  • the filling rubber (42) fills the central capillary (43) (symbolized by a triangle) formed by the three core wires (40) slightly apart, while completely covering the inner layer Ci formed by the three wires ( 40). It also fulfills, at least in part (here, in this example, totally) each interstice formed either by a core wire (40) and the two external wires (41) which are immediately adjacent to it (the nearest), or by two core wires (40) and the adjacent outer wire (41); in total, 12 interstices or capillaries are thus present in this cable 3 + 9, to which is added the central capillary (43).
  • Figure 5 recalls the section of a cable 3 + 9 (noted C-4) conventional (i.e., not gummed in situ), also of the type with two cylindrical layers.
  • C-4 conventional (i.e., not gummed in situ), also of the type with two cylindrical layers.
  • the absence of filling rubber causes the three wires (50) of the inner layer (Ci) to come into close contact with each other, which leads to an impenetrable, closed and impenetrable central capillary (53). on the outside by rubber and propitious on the other hand to the propagation of corrosive media.
  • the method of the invention also applies advantageously to 2 + N construction cables. Thanks to an optimized penetration of the cable, from the inside, by the filling rubber, it is no longer necessary to desaturate the outer layer to improve its penetrability from the outside, in particular by rubber. At identical wire diameters between the layers Ci and Ce, this advantageously makes it possible, for example, to replace 2 + 7 construction cables with 2 + 8 construction cables, which are more resistant for the same size.
  • the process of the invention is used for the manufacture of construction cables 2 + 6, 2 + 7, 2 + 8, 3 + 7, 3 + 8, 3 + 9, 4 + 8, 4 + 9, 4 + 10, in particular, of the latter, those consisting of yarns having substantially the same diameter from one layer to another
  • the method of the invention is of course not limited to the manufacture of preferential cables whose son have diameters between 0.20 and 0.50 mm, as indicated above.
  • the process of the invention can be used for the manufacture of cables whose M and N wires have diameters di and d 2 smaller, for example in a range from 0.08 to 0, 20 mm, such cables being used, for example, for reinforcing parts of tires other than their crown reinforcement, in particular for reinforcing the carcass reinforcement of tires for industrial vehicles such as heavy goods vehicles.
  • Fm maximum load in N
  • Rm tensile strength in MPa
  • At total elongation in %
  • the modulus measurements are carried out in tension, unless otherwise indicated according to ASTM D 412 of 1998 (test piece “C"): it is measured in second elongation (ie after one cycle). accommodation) the secant modulus "true” (i.e., reduced to the actual section of the specimen) at 10% elongation, denoted ElO and expressed in MPa (normal conditions of temperature and hygrometry according to ASTM D 1349 of 1999).
  • This test makes it possible to determine the longitudinal permeability to the air of the cables tested, by measuring the volume of air passing through a specimen under constant pressure for a given time.
  • the principle of such a test is to demonstrate the effectiveness of the treatment of a cable to make it impermeable to air; it has been described for example in ASTM D2692-98.
  • the test is here carried out either on cables extracted from tires or rubber sheets that they reinforce, so already coated with rubber in the cooked state, or on raw manufacturing cables.
  • the raw cables must be previously embedded, coated from the outside by a so-called coating gum.
  • a series of 10 cables arranged in parallel is placed between two skims (two rectangles of 80 x 200 mm) of a rubber composition in the raw state, each skim having a thickness 3.5 mm; the whole thing is then locked in a mold, each of the cables being kept under tension sufficient (for example 2 daN) to ensure its straightness when placed in the mold, using clamping modules; then the vulcanization (baking) is carried out for 40 min at a temperature of 140 ° C. and under a pressure of 15 bar (rectangular piston of 80 ⁇ 200 mm). After which, the assembly is demolded and cut 10 pieces of cables thus coated, in the form of parallelepipeds of dimensions 7x7x20 mm, for characterization.
  • the test is carried out on 2 cm of cable length, thus coated by its surrounding rubber composition (or coating gum), as follows: air is sent to the cable inlet, under a pressure of 1 bar, and the volume of air at the outlet is measured using a flow meter (calibrated for example from 0 to 500 cm 3 / min). During the measurement, the cable sample is locked in a compressed seal (eg a dense foam or rubber seal) in such a way that only the amount of air passing through the cable from one end to the other, along its longitudinal axis, is taken into account by the measure; a preliminary seal check of the seal is made using a solid rubber specimen, ie, without a cable.
  • a compressed seal eg a dense foam or rubber seal
  • the measured flow rate is lower as long as the longitudinal imperviousness of the cable is high.
  • measured values equal to or less than 0.2 cm 3 / min are considered to be zero; they correspond to a cable that can be described as airtight along its axis (ie, in its longitudinal direction).
  • the amount of filling compound is measured by difference between the weight of the initial cable (thus erased in situ) and the weight of the cable (and therefore that of its threads) whose filling rubber has been eliminated by a suitable electrolytic treatment.
  • a sample of cable (length 1 m), wound on itself to reduce its bulk, constitutes the cathode of an electrolyzer (connected to the negative terminal of a generator), while the anode (connected to the positive terminal ) consists of a platinum wire.
  • the electrolyte consists of an aqueous solution (demineralized water) comprising 1 mole per liter of sodium carbonate.
  • L 1 specimen, completely immersed in the electrolyte, is turned on for 15 min at a current of 300 mA.
  • the cable is then removed from the bath, rinsed thoroughly with water. This treatment allows the rubber to be easily detached from the cable (if this is not the case, we continue the electrolysis for a few minutes).
  • the eraser is carefully removed, for example by simply wiping with an absorbent cloth, while detaching one by one the son of the cable.
  • the threads are again rinsed with water and then immersed in a beaker containing a mixture of deionized water (50%) and ethanol (50%); the beaker is immersed in an ultrasonic tank for 10 minutes.
  • the threads thus devoid of any trace of gum are removed from the beaker, dried under a stream of nitrogen or air, and finally weighed.
  • the rate of filling rubber in the cable is calculated, expressed in mg of filling rubber per gram of initial cable, and averaged over 10 measurements (10 meters of cable in total).
  • CI cables as schematized in Figure 2 were manufactured according to the method according to the invention, using a device as described above and shown schematically in Figure 1.
  • the filling rubber was a rubber composition conventional tire crown reinforcement, having the same formulation as that of the belt rubber web that the CI cable is intended to reinforce in the tire test that follows. This composition was extruded at a temperature of 90 ° C. through a calibration die of 0.700 mm.
  • the rate of filling rubber measured according to the method previously indicated in paragraph II-1C, is 16 mg per g of cable.
  • This filling gum fills the channel or central capillary formed by the three core wires slightly apart, while completely covering the inner layer Ci formed by the three son. It also fills, at least partially if not totally, each of the twelve interstices or empty channels formed either between a core wire and the two external wires which are immediately adjacent to it, or between two core wires and the external wire which is adjacent.
  • C-5 cables as shown schematically in Figure 6 were manufactured according to a conventional method. They are free of filling gum.
  • Each C-5 cable comprises a core wire (65) of very small diameter (0.12 mm); the three inner wires (60) and the eight outer wires (61) each have a diameter of 0.35 mm.
  • the 3 wires of the inner layer are wound together in a helix (direction S) with a pitch pi equal to 7.7 mm, this layer Ci being in contact with a cylindrical outer layer of 8 wires themselves wound together in a helix ( direction S) around the core in a pitch p 2 equal to 15.4 mm.
  • the core wire (65) by removing the wires (60) of the inner layer Ci and filling in some way the central channel formed by these three core wires (60), makes it possible to desaturate (by increasing the diameter of the inner layer Ci) the outer layer Ce (with identical thread diameters from one layer to another) and thereby increase the external penetrability of the cable (C-5) by rubber. Thanks to this construction, the C-5 cable becomes penetrable from the outside to its center.
  • All the wires used for the manufacture of these cables are fine carbon steel wires, manufactured according to known methods, the properties of which are given in Table 2 below.
  • the C-I and C-5 layered cords are then calendered to rubber skims made of a conventional rubber composition for use in the manufacture of radial heavyweight tire belt plies.
  • This composition is based on natural rubber (peptized) and N33O carbon black (55 phr), it also comprises the following usual additives: sulfur (6 phr), sulfenamide accelerator (1 phr), ZnO (9 phr), stearic acid (0.7 phr), antioxidant (1.5 phr), cobalt naphthenate (1 phr); the ElO module of the filling rubber is approximately 6 MPa.
  • This radial tire 1 comprises an apex 2 reinforced by a crown reinforcement or belt 6, two sidewalls 3 and two beads 4, each of these beads 4 being reinforced with a rod 5.
  • the crown 2 is surmounted by a tread represented in this schematic figure.
  • a carcass reinforcement 7 is wound around the two rods 5 in each bead 4, the upturn 8 of this armature 7 being for example disposed towards the outside of the tire 1 which is shown here mounted on its rim 9.
  • the carcass reinforcement 7 is in known manner constituted by at least one sheet reinforced by so-called "radial” cables, that is to say that these cables are arranged substantially parallel to each other and extend from a bead to the other so as to form an angle of between 80 ° and 90 ° with the median circumferential plane (plane perpendicular to the axis of rotation of the tire which is located halfway between the two beads 4 and passes through the middle of the crown frame 6).
  • this tire 1 also comprises, in a known manner, an inner rubber or elastomer layer (commonly called “inner rubber”) which defines the radially inner face of the tire and which is intended to protect the carcass ply from the diffusion of the tire. air from the interior space to the tire.
  • the crown reinforcement or belt 6 is in known manner constituted by two triangulation half-plies reinforced by metal cables inclined by 65 degrees, surmounted by two sheets called “working plies" superimposed crossed. These working plies are reinforced by metal cables arranged substantially parallel to each other and inclined by 26 degrees (radially internal ply) and 18 degrees (radially external ply). The two working plies are furthermore covered by a protective ply reinforced with conventional metal cables (high elongation) inclined at 18 degrees. All angles of inclination indicated are measured relative to the median circumferential plane of the tire.
  • the tires PI and P-5 are identical with the exception of the cables that strengthen their belt 6.
  • the tires PI are reinforced by CI cables manufactured according to the method of the invention, the tires P-5 are reinforced by the cables C -5 which, because of their recognized performance, are particularly comparable to conventional 3 + 9 cables (wireless core unit), a witness of choice for this test.
  • the test is conducted until the forced destruction of the tires.
  • the tires PI reinforced by the cables resulting from the process of the invention have a significantly improved endurance: the average distance traveled is increased by 20% compared with the tires. witnesses already showing an excellent performance.
  • the CI cables, manufactured with the method of the invention, were further subjected to the air permeability test (paragraph II-1B), by measuring the volume of air passing through the cables in 1 min (average of 10 measurements for each cable tested).
  • In situ control gummed cables of the same 3 + 9 construction as the CI cables, were also manufactured by individually sheathing either a single wire or each of the three wires of the inner layer Ci. This sheathing was made using extrusion dies of variable diameter (320 to 420 microns) arranged this time upstream of the assembly point (sheathing and in-line twisting) as described in the prior art (US 2002/160213 application cited above); for a rigorous comparison, the amount of filling gum delivered was adjusted in such a way that the rate of filling rubber in the final control cables (ie between 6 and 25 mg per g of cable, as measured according to the method of II-1C), which is close to that of the cables of the invention.
  • none of the above test leads can be qualified as an airtight cable along its longitudinal axis.
  • the method of the invention allows the manufacture of M + N construction cables gummed in situ which, thanks to an optimal penetration rate by rubber, on the one hand can be implemented effectively under conditions industrial, especially without the difficulties associated with excessive overflowing of rubber during their manufacture, on the other hand have a tire belt endurance which is significantly improved compared to the best control cables known to date for such an application.

Landscapes

  • Ropes Or Cables (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Procédé de fabrication d'un câble métallique à deux couches (Ci, Ce), de construction M+N, comportant une couche interne (Ci) constituée de M fils de diamètre d1 enroulés ensemble en hélice selon un pas p1, M variant de 2 à 4, et une couche externe (Ce) de N fils de diamètre d2 enroulés ensemble en hélice selon un pas p2 autour de la couche interne (Ci), ledit procédé comportant au moins les étapes suivantes opérées en ligne : - une étape d'assemblage par retordage des M fils d'âme, pour formation de la couche interne (Ci) en un point d'assemblage; - en aval dudit point d'assemblage des M fils d'âme, une étape de gainage de la couche interne (Ci) par une composition de caoutchouc diénique dite 'gomme de remplissage' à l'état cru; - une étape d'assemblage par retordage des N fils de la couche externe (Ce) autour de la couche interne (Ci) ainsi gainée; - une étape d'équilibrage final des torsions. Dispositif pour la mise en oevre d'un tel procédé.

Description

PROCEDE ET DISPOSITIF DE FABRICATION D'UN CABLE A DEUX COUCHES DU TYPE GOMME IN SITU
La présente invention est relative aux procédés et dispositifs de fabrication de câbles métalliques à deux couches, de construction M+N, utilisables notamment pour le renforcement d'articles en caoutchouc, en particulier de pneumatiques.
Elle est plus particulièrement relative aux procédés et dispositifs de fabrication de câbles métalliques du type « gommés in situ », c'est-à-dire gommés de l'intérieur, pendant leur fabrication même, par du caoutchouc à l'état cru, en vue d'améliorer leur résistance à la corrosion et par voie de conséquence leur endurance notamment dans les ceintures des pneumatiques pour véhicules industriels.
Un pneumatique radial comporte de manière connue une bande de roulement, deux bourrelets inextensibles, deux flancs reliant les bourrelets à la bande de roulement et une ceinture disposée circonférentiellement entre l'armature de carcasse et la bande de roulement. Cette ceinture est constituée de diverses nappes (ou "couches") de caoutchouc renforcées ou non par des éléments de renforcement ("renforts") tels que des câblés ou des monofilaments, du type métalliques ou textiles.
La ceinture de pneumatique est généralement constituée d'au moins deux nappes de ceinture superposées, dites parfois nappes "de travail" ou nappes "croisées", dont les câbles de renforcement, en général métalliques, sont disposés pratiquement parallèles les uns aux autres à l'intérieur d'une nappe, mais croisés d'une nappe à l'autre, c'est-à-dire inclinés, symétriquement ou non, par rapport au plan circonférentiel médian, d'un angle qui est généralement compris entre 10° et 45° selon le type de pneumatique considéré. Les nappes croisées peuvent être complétées par diverses autres nappes ou couches de caoutchouc auxiliaires, de largeurs variables selon les cas, comportant ou non des renforts ; on citera à titre d'exemple de simples coussins de gomme, des nappes dites "de protection" chargées de protéger le reste de la ceinture des agressions externes, des perforations, ou encore des nappes dites "de frettage" comportant des renforts orientés sensiblement selon la direction circonférentielle (nappes dites "à zéro degré"), qu'elles soient radialement externes ou internes par rapport aux nappes croisées.
Une telle ceinture de pneumatique doit satisfaire de manière connue à différentes exigences, souvent contradictoires, notamment :
être la plus rigide possible à faible déformation, car elle contribue d'une manière substantielle à rigidifîer le sommet du pneumatique ; avoir une hystérèse aussi basse que possible, pour d'une part minimiser réchauffement en roulage de la zone interne du sommet et d'autre part réduire la résistance au roulement du pneumatique, synonyme d'économie de carburant ; posséder enfin une endurance élevée, vis-à-vis en particulier du phénomène de séparation, fissuration des extrémités des nappes croisées dans la zone d'épaule du pneumatique, connu sous le terme de "clivage", ce qui exige notamment des câbles métalliques qui renforcent les nappes de ceinture de présenter une résistance élevée à la fatigue en compression, le tout dans une atmosphère plus ou moins corrosive.
La troisième exigence est particulièrement forte pour les enveloppes de pneumatiques pour véhicules industriels tels que véhicules poids lourd, conçues pour pouvoir être rechapées une ou plusieurs fois lorsque les bandes de roulement qu'elles comportent atteignent un degré d'usure critique après un roulage prolongé.
Pour le renforcement des ceintures ci-dessus, on utilise généralement des câbles d'acier ("steel cords") dits "à couches" {"layered cords") constitués d'une âme centrale et d'une ou plusieurs couches de fils concentriques disposées autour de cette âme. Les câbles à couches les plus utilisés sont essentiellement des câbles de construction M+N ou M+N+P, formés d'une âme de M fil(s) entourée d'au moins une couche de N fils éventuellement elle-même entourée d'une couche externe de P fils, les M, N voire P fils ayant généralement le même diamètre pour des raisons de simplification et de coût.
La disponibilité en aciers au carbone de plus en plus résistants et endurants fait que les manufacturiers de pneumatiques s'orientent aujourd'hui, autant que possible, vers l'emploi de câbles ayant seulement deux couches, afin notamment de simplifier la fabrication de ces câbles, diminuer l'épaisseur des nappes composites de renforcement et ainsi l'hystérèse des pneumatiques, en fin de compte diminuer les coûts des pneumatiques eux-mêmes et réduire la consommation d'énergie des véhicules équipés de tels pneumatiques.
Pour toutes les raisons exposées ci-dessus, les câbles à deux couches les plus utilisés aujourd'hui dans les ceintures de pneumatiques sont essentiellement des câbles de construction M+N constitués d'une âme ou couche interne de M fils (notamment de 3 ou 4 fils) et d'une couche externe de N fils (par exemple, de 6 à 12 fils). La couche externe est relativement désaturée grâce au diamètre élevé de la couche interne apporté par la présence des M fils d'âme, d'autant plus lorsque le diamètre des fils d'âme est choisi supérieur à celui des fils de la couche externe.
Ce type de construction favorise, on le sait, la pénétrabilité externe du câble par la gomme de calandrage du pneumatique ou autre article en caoutchouc lors de la cuisson de ce dernier, et par voie de conséquence permet d'améliorer l'endurance des câbles en fatigue et fatigue- corrosion, particulièrement vis-à-vis du problème de clivage évoqué précédemment.
Par ailleurs, une bonne pénétration du câble par du caoutchouc permet de manière connue, grâce à un volume d'air emprisonné dans le câble qui est moindre, de réduire les temps de cuisson des pneumatiques ("durée sous presse").
Les câbles de construction 3+N ou 4+N ont toutefois pour inconvénient qu'ils ne sont pas pénétrables jusqu'à cœur à cause de la présence d'un canal ou capillaire au centre des trois ou quatre fils d'âme, qui reste vide après imprégnation par le caoutchouc et donc propice, par une sorte d'effet "de mèche", à la propagation de milieux corrosifs tels que l'eau. Cet inconvénient est bien connu, il a été exposé par exemple dans les demandes de brevet WO 01/00922, WO 01/49926, WO 2005/071157, WO 2006/013077.
Pour résoudre le problème ci-dessus, on a proposé d'ouvrir la couche interne Ci, en écartant ses fils, grâce à un fil noyau unitaire (ou "core wire") et de supprimer un fil de la couche externe ; ainsi, le câble obtenu, par exemple de construction 1+3+(N-I), devient pénétrable de l'extérieur jusqu'en son centre. Relativement aux fils de la couche interne, le fil noyau ne doit être ni trop fin, sans quoi il ne produit pas l'effet de désaturation qui est visé, ni trop gros sans quoi le fil ne reste pas au centre du câble. Typiquement, on emploie par exemple un fil noyau de 0,12 mm de diamètre pour des fils de couche Ci et Ce de diamètre 0,35 mm (voir par exemple RD {Research Disclosure) August 1990, No 316107, "Steel cord construction").
Cette première solution, relativement coûteuse puisqu'elle nécessite d'ajouter un fil qui ne contribue pas par ailleurs à la résistance du câble, se heurte en outre à un problème de fabrication : une tension élevée sur le fil noyau est nécessaire pour maintenir le fil au centre du câble lors du câblage, tension qui peut dans certains cas approcher la force à la rupture du fil. La suppression d'un fil externe réduit encore la résistance du câble par unité de section.
Toujours pour résoudre ce problème de pénétrabilité jusqu'à cœur, la demande de brevet US 2002/160213 a quant à elle proposé la réalisation de câbles du type M+N gommés in situ, M variant de 2 à 4. Le procédé proposé ici consiste à gainer individuellement (c'est-à-dire isolément, "fil à fil") avec du caoutchouc à l'état cru, en amont du point d'assemblage des M fils (ou point de torsion), un seul ou préférentiellement chacun des M fils pour l'obtention d'une couche interne gainée de caoutchouc, avant la mise en place ultérieure des N fils de Ia couche externe par câblage autour de la couche interne ainsi gainée.
Le procédé proposé ci-dessus pose de nombreux problèmes. Tout d'abord le gainage d'un seul fil sur les M fils, par exemple d'un fil sur trois (comme illustré par exemple aux figures 11 et 12 de cette demande), ne permet pas de garantir un remplissage suffisant par la gomme du câble final, et donc d'obtenir une résistance à la corrosion satisfaisante. Ensuite, le gainage fil à fil de chacun des M fils (comme illustré par exemple aux figures 2 et 5 de ce document), s'il conduit effectivement à un remplissage du câble, conduit à l'emploi d'une quantité trop importante de gomme. Le débordement de gomme à la périphérie du câble final devient alors rédhibitoire dans des conditions de câblage et gommage industrielles.
En raison du très fort pouvoir collant du caoutchouc à l'état cru, le câble ainsi gommé devient inutilisable en raison d'un effet collant parasite sur les outils de fabrication ou entre les spires de câble lors de l'enroulage de ce dernier sur une bobine de réception, sans parler de l'impossibilité finale de calandrer correctement le câble. On rappelle que le calandrage consiste à transformer le câble, par incorporation entre deux couches de caoutchouc à l'état cru, en un tissu caoutchouté métallique servant de produit semi-fini pour toute fabrication ultérieure, par exemple pour la confection d'un pneumatique.
Un autre problème posé par le gainage isolé de chacun des M fils est l'encombrement important imposé par l'emploi de M têtes d'extrusion. En raison d'un tel encombrement, la fabrication de câbles à couches cylindriques (c'est-à-dire à pas pi et p2 différents d'une couche à l'autre, ou à pas pi et p2 identiques mais avec des sens de torsion différents d'une couche à l'autre) doit être nécessairement réalisée en deux opérations discontinues : (i) gainage individuel des fils puis câblage et enroulage de la couche interne dans un premier temps, (ii) câblage de la couche externe autour de la couche interne dans un deuxième temps. Toujours en raison du fort pouvoir collant du caoutchouc à l'état cru, l'enroulement et le stockage intermédiaire de la couche interne exigent, lors de l'enroulement sur bobine de la couche interne, l'emploi d'intercalaires ainsi que des pas de trancannage importants pour éviter un collage parasite entre les couches bobinées et, pour une même couche, entre les spires.
Toutes les contraintes ci-dessus sont fortement pénalisantes du point de vue industriel et antinomiques de la recherche de cadences de fabrication élevées.
Poursuivant leurs recherches, les Demanderesses ont découvert un procédé nouveau de retordage et gommage en ligne et en continu, applicable à la fabrication de câbles M+N gommés in situ, qui permet de pallier les inconvénients précités.
En conséquence, un premier objet de l'invention est un procédé de fabrication d'un câble métallique à deux couches (Ci, Ce), de construction M+N, comportant une couche interne (Ci) constituée de M fils de diamètre d, enroulés ensemble en hélice selon un pas pi, M variant de 2 à 4, et une couche externe (Ce) de N fils de diamètre d2 enroulés ensemble en hélice selon un pas p2 autour de la couche interne (Ci), ledit procédé comportant au moins les étapes suivantes opérées en ligne : - une étape d'assemblage par retordage des M fils d'âme, pour formation de la couche interne (Ci) en un point d'assemblage ; en aval dudit point d'assemblage des M fils d'âme, une étape de gainage de la couche interne (Ci) par une composition de caoutchouc diénique, dite "gomme de remplissage", à l'état cru ; une étape d'assemblage par retordage des N fils de la couche externe (Ce) autour de la couche interne (Ci) ainsi gainée ; une étape d'équilibrage final des torsions.
L'invention concerne également un dispositif d'assemblage et gommage en ligne, utilisable pour la mise en œuvre de procédé de l'invention, ledit dispositif comportant d'amont en aval, selon la direction d'avancement du câble en cours de formation :
- des moyens d'alimentation des M fils d'âme ; des premiers moyens d'assemblage par retordage des M fils d'âme pour formation de la couche interne ; des moyens de gainage de la couche interne ;
- en sortie des moyens de gainage, des seconds moyens d'assemblage par retordage des N fils externes autour de l'âme ainsi gainée, pour formation de la couche externe ; en sortie des seconds moyens d'assemblage, des moyens d'équilibrage de torsion.
L'invention ainsi que ses avantages seront aisément compris à la lumière de la description et des exemples de réalisation qui suivent, ainsi que des figures 1 à 7 relatives à ces exemples qui schématisent, respectivement :
un exemple de dispositif de retordage et gommage in situ utilisable pour la mise en œuvre du procédé conforme à l'invention (Fig. 1) ;
- en coupe transversale, un câble de construction 3+9 du type compact susceptible d'être fabriqué par le procédé de l'invention (Fig. 2) ; en coupe transversale, un câble de construction 3+9 conventionnel, également du type compact (Fig. 3) ; en coupe transversale, un câble de construction 3+9 du type à couches cylindriques susceptible d'être fabriqué par le procédé de l'invention (Fig. 4) ; - en coupe transversale, un câble de construction 3+9 conventionnel, également du type à couches cylindriques (Fig. 5) ;
- en coupe transversale, un autre câble conventionnel, du type à couches cylindriques, de construction 1+3+8 avec un fil noyau de très faible diamètre (Fig. 6) ; en coupe radiale, une enveloppe de pneumatique poids-lourd à armature de carcasse radiale (Fig. 7). I. DESCRIPTION DETAILLEE DE L'INVENTION
Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des % massiques. Tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs allant de plus de a à moins de b (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de a jusqu'à b (c'est-à-dire incluant les bornes strictes a et b).
Le procédé de l'invention est destiné à la fabrication d'un câble métallique à deux couches (Ci, Ce) de construction M+N, du type « gommé in situ », comportant une couche interne (Ci) constituée de M fils de diamètre di enroulés ensemble en hélice selon un pas pb M variant de 2 à 4, et une couche externe (Ce) de N fils de diamètre d2 enroulés ensemble en hélice selon un pas p2 autour de la couche interne (Ci), ledit procédé comportant au moins les étapes suivantes opérées en ligne :
tout d'abord, une étape d'assemblage par retordage des M fils d'âme, pour formation de la couche interne (Ci) en un point d'assemblage ; puis, en aval dudit point d'assemblage des M fils d'âme, une étape de gainage de la couche interne (Ci) par une composition de caoutchouc diénique dite "gomme de remplissage" à l'état cru (c'est-à-dire non réticulée) ; suivie d'une étape d'assemblage par retordage des N fils de la couche externe (Ce) autour de la couche interne (Ci) ainsi gainée ; puis d'une étape d'équilibrage final des torsions.
On rappelle ici qu'il existe deux techniques possibles d'assemblage de fils métalliques :
soit par câblage : dans un tel cas, les fils ne subissent pas de torsion autour de leur propre axe, en raison d'une rotation synchrone avant et après le point d'assemblage ; - soit par retordage : dans un tel cas, les fils subissent à la fois une torsion collective et une torsion individuelle autour de leur propre axe, ce qui génère un couple de détorsion sur chacun des fils.
Une première caractéristique essentielle du procédé ci-dessus est d'utiliser, tant pour l'assemblage de la couche interne que pour celui de la couche externe, une étape de retordage.
Au cours de la première étape, les M fils d'âme sont retordus ensemble (direction S ou Z) pour formation de la couche interne Ci, de manière connue en soi ; les fils sont délivrés par des moyens d'alimentation tels que des bobines, une grille de répartition, couplée ou non à un grain d'assemblage, destinés à faire converger les fils d'âme en un point de torsion commun (ou point d'assemblage).
Les M fils de la couche interne ont par exemple un diamètre di compris entre 0,20 et 0,50 mm, en particulier compris dans un domaine de 0,23 à 0,40 mm ; leur pas de retordage Pi est par exemple compris entre 5 et 30 mm.
On rappelle ici que de manière connue le pas « p » représente la longueur, mesurée parallèlement à l'axe du câble, au bout de laquelle un fil ayant ce pas effectue un tour complet autour dudit axe du câble.
La couche interne (Ci) ainsi formée est ensuite gainée de gomme de remplissage à l'état cru, apportée par une vis d'extrusion à une température appropriée. La gomme de remplissage peut être ainsi délivrée en un point fixe, unique et de faible encombrement, au moyen d'une tête d'extrusion unique, sans faire appel à un gainage individuel des fils en amont des opérations d'assemblage, avant formation de la couche interne, comme décrit dans l'art antérieur.
Ce procédé a l'avantage notable de ne pas ralentir le procédé d'assemblage conventionnel. Il rend possible l'opération complète de retordage initial, gommage et retordage final en ligne et en une seule étape, quel que soit le type de câble produit (câble à couches compact comme câble à couches cylindriques), tout ceci à haute vitesse. Le procédé de l'invention peut être mis en œuvre à une vitesse (vitesse de défilement du câble sur la ligne de retordage- gommage) supérieure à 70 m/min, préférentiellement supérieure à 100 m/min.
En aval du point d'assemblage (c'est-à-dire entre le point d'assemblage et la tête d'extrusion), la contrainte de tension exercée sur les M fils, sensiblement identique d'un fil à l'autre, est préférentiellement comprise entre 10 et 25% de la force rupture des fils.
La tête d'extrusion peut comporter une ou plusieurs filières, par exemple une filière amont de guidage et une filière aval de calibrage. On peut ajouter des moyens de mesure et de contrôle en continu du diamètre du câble, reliés à l'extrudeuse. De préférence, la température d'extrusion de la gomme de remplissage est comprise entre 600C et 120°C, plus préférentiellement comprise entre 700C et 1100C.
La tête d'extrusion définit ainsi une zone de gainage ayant la forme d'un cylindre de révolution dont le diamètre est bien entendu ajusté à la construction spécifique du câble fabriqué. A titre d'exemple, dans le cas d'un câble de construction 3+N, le diamètre d'extrusion est compris de préférence entre 0,4 et 1,2 mm, plus préférentiellement entre 0,5 et 1,0 mm. La longueur d'extrusion est préférentiellement comprise entre 4 et 10 mm. Préférentiellement, en sortie de la tête d'extrusion, la couche interne Ci, en tout point de sa périphérie, est recouverte d'une épaisseur minimale de gomme de remplissage qui est de préférence supérieure à 5 μm, plus préférentiel lement supérieure à 10 μm, par exemple comprise entre 10 et 50 μm.
La quantité de gomme de remplissage délivrée par la tête d'extrusion est ajustée dans un domaine préférentiel compris entre 5 et 40 mg par gramme de câble final (i.e., gommé in situ).
En dessous du minimum indiqué, il n'est pas possible de garantir que la gomme de remplissage soit bien présente dans chacun des interstices du câble, tandis qu'au-delà du maximum indiqué, on peut s'exposer aux différents problèmes précédemment décrits dus au débordement de la gomme de remplissage à la périphérie du câble. Pour toutes ces raisons, on préfère que la quantité de gomme de remplissage délivrée soit comprise entre 5 et 30 mg, plus préférentiel lement encore compris dans un domaine de 10 à 25 mg par g de câble.
L'élastomère diénique de la gomme de remplissage est de préférence choisi dans le groupe constitué par les polybutadiènes (BR), le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les différents copolymères de butadiène, les différents copolymères d'isoprène, et les mélanges de ces élastomères. Un mode de réalisation préférentiel consiste à utiliser un élastomère "isoprénique", c'est-à-dire un homopolymère ou un copolymère d'isoprène, en d'autres termes un élastomère diénique choisi dans le groupe constitué par le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les différents copolymères d'isoprène et les mélanges de ces élastomères.
La gomme de remplissage est du type vulcanisable c'est-à-dire qu'elle comprend généralement un système de vulcanisation adapté pour permettre la réticulation de la composition lors de sa cuisson, typiquement à base de soufre et d'un ou plusieurs accélérateurs. La gomme de remplissage peut comporter également tout ou partie des additifs usuels destinés aux matrices de caoutchouc pour pneumatiques, tels que par exemple des charges renforçantes comme le noir de carbone ou la silice, des antioxydants, des huiles, des plastifiants, des agents antiréversion, des résines, des promoteurs d'adhésion tesl que sels de cobalt. De préférence, la gomme de remplissage présente, à l'état réticulé, un module sécant en extension ElO (à 10% d'allongement) qui est compris entre 5 et 25 MPa, plus préférentiellement entre 5 et 20 MPa.
En sortie de l'étape de gainage qui précède, au cours d'une troisième étape, on procède à l'assemblage final, toujours par retordage (direction S ou Z), des N fils de la couche externe (Ce) autour de la couche interne (Ci) ainsi gainée. Au cours du retordage, les N fils viennent s'appuyer sur la gomme de remplissage, s'incruster dans cette dernière. La gomme de remplissage, en se déplaçant sous la pression exercée par ces fils externes, a alors naturellement tendance à remplir, au moins en partie, chacun des interstices ou cavités laissés vides par les fils, entre la couche interne et la couche externe.
Le nombre N de fils de la couche externe N est bien entendu fonction non seulement des diamètres respectifs di et d2, mais aussi du nombre M de fils de la couche interne. Pour une valeur M préférentiellement égale à 3 ou 4, il varie préférentiellement de 6 à 12. Ces N fils ont par exemple un diamètre d2 compris entre 0,20 et 0,50 mm, en particulier compris dans un domaine de 0,23 à 0,40 mm, d2 pouvant être bien entendu identique au, ou différent du diamètre di des M fils d'âme.
Selon un mode de réalisation particulièrement préférentiel, la couche interne comporte 3 ou 4 fils, plus préférentiellement 3 fils, et la couche externe comporte de préférence 8, 9 ou 10 fils.
Dans le cas d'un câble 3+N, on a de préférence les relations suivantes qui sont vérifiées:
- pour N = 8 : 0,7 < (di / d2) < 1 ;
- pour N = 9 : 0,9 < (di / d2) < 1,2 ; - pour N = 10 : 1,0 < (di / d2) < 1,3.
Selon un mode de réalisation particulièrement préférentiel, la couche interne comporte 3 fils et Ia couche externe comporte 9 fils.
Le pas de retordage p2, identique ou différent du pas pi, est préférentiellement compris entre 10 et 30 mm, plus préférentiellement compris dans un domaine de 12 à 25 mm. De préférence, on a la relation 0,5 < pi / p2 < 1 qui est vérifiée.
Selon un autre mode préférentiel, le procédé de l'invention est mise en œuvre avec des pi et p2 qui sont égaux.
De préférence, la couche externe Ce a pour caractéristique préférentielle d'être une couche saturée, c'est-à-dire que, par définition, il n'existe pas suffisamment de place dans cette couche pour y ajouter au moins un (Nmax+l)ème fil de diamètre d2, Nmax représentant le nombre maximal de fils enroulables en une couche autour de la couche interne Ci. Cette construction a pour avantage de limiter le risque de débordement de gomme de remplissage à sa périphérie et d'offrir, pour un diamètre donné du câble, une résistance plus élevée.
Le nombre N de fils peut varier dans une très large mesure selon le mode de réalisation particulier de l'invention, par exemple de 6 à 12 fils pour une couche interne Ci de 3 fils, étant entendu que le nombre maximal Nmax de fils N sera augmenté si leur diamètre d2 est réduit comparativement au diamètre di des M fils d'âme, afin de conserver préférentiellement la couche externe saturée.
Le câble M+N, comme tout câble à couche, peut être de deux types, à savoir du type compact ou du type à couches cylindriques.
Selon un mode de réalisation particulièrement préférentiel de l'invention, les fils de la couche externe (Ce) sont enroulés en hélice au même pas et dans le même sens de torsion (c'est-à- dire soit dans la direction S (disposition "S/S"), soit dans la direction Z (disposition "Z/Z")) que les fils de la couche interne (Ci), pour l'obtention d'un câble à couches du type compact tel que schématisé par exemple à la figure 2.
Dans de tels câbles à couches compacts, la compacité est telle que pratiquement aucune couche distincte de fils n'est visible ; il en résulte que la section transversale de tels câbles a un contour qui est polygonal et non cylindrique, comme illustré par exemple sur les figure 2 (câble compact 3+9 gommé in situ) et figure 3 (câble compact 3+9 conventionnel, c'est-à- dire non gommé in situ).
Après retordage de la couche externe autour de la couche interne gainée de gomme de remplissage, le câble M+N n'est pas encore terminé. Le canal central délimité par les M fils d'âme, lorsque M est égal à 3 ou 4, n'est pas encore rempli de gomme de remplissage, en tout cas de manière insuffisante pour l'obtention d'une propriété d'imperméabilité à l'air qui soit acceptable. Lorsque M est égal à 2, la gomme de remplissage entoure la couche interne sans pénétrer suffisamment entre les deux fils qui restent au contact l'un de l'autre, ce qui peut être préjudiciable notamment vis-à-vis des risques d'usure possible par fretting.
L'étape essentielle qui suit consiste à faire passer le câble à travers des moyens d'équilibrage de torsion. Par "équilibrage de torsion", on entend ici de manière connue l'annulation des couples de torsion résiduels (ou du retour élastique de détorsion) s'exerçant sur chaque fil du câble, dans la couche interne comme dans la couche externe.
Les outils d'équilibrage de la torsion sont bien connus de l'homme du métier du retordage ; ils peuvent consister par exemple en des "dresseurs" ou des "retordeurs" ou des "retordeurs- dresseurs", constitués soit de poulies pour les retordeurs, soit de galets de petit diamètre pour les dresseurs, poulies et/ou galets à travers lesquels circule le câble.
On suppose a posteriori que, lors du passage à travers l'outil d'équilibrage, la détorsion s'exerçant sur les M fils d'âme, entraînant une rotation inverse, au moins partielle, de ces derniers autour de leur axe, est suffisante pour forcer, pour entraîner la gomme de remplissage à l'état cru (Le., non réticulée, non cuite), encore chaude et relativement fluide de l'extérieur vers le cœur du câble, à l'intérieur même du canal central formé par les M fils (Pour M = 3 ou 4) ou entre les deux fils même (pour M = 2), offrant in fine au câble de l'invention l'excellente propriété d'imperméabilité à l'air qui le caractérise. La fonction de dressage en plus, apporté par l'utilisation d'un outil dresseur, aurait pour avantage que le contact des galets du dresseur avec les fils de la couche externe va exercer une pression supplémentaire sur la gomme de remplissage favorisant encore sa pénétration entre les M fils d'âme.
En d'autres termes, le procédé de l'invention exploite la rotation des M fils d'âme, au stade final de fabrication du câble, pour répartir naturellement, de manière homogène, Ia gomme de remplissage à l'intérieur et autour de la couche interne (Ci), tout en contrôlant parfaitement la quantité de gomme de remplissage fournie.
Ainsi, de manière inattendue, il s'est avéré possible de faire pénétrer la gomme de remplissage au cœur même du câble de l'invention, en déposant la gomme en aval du point d'assemblage des M fils et non en amont comme décrit dans l'art antérieur, tout en contrôlant et en optimisant la quantité de gomme de remplissage délivrée grâce à l'emploi d'une tête d'extrusion unique.
Après cette étape ultime d'équilibrage de la torsion, la fabrication du câble de l'invention est terminée. Ce câble peut être enroulé sur une bobine de réception, pour stockage, avant d'être traité par exemple à travers une installation de calandrage, pour préparation d'un tissu composite métal/ caoutchouc.
Ainsi préparé, le câble M+N peut être qualifié d'étanche à l'air ou imperméable à l'air : au test de perméabilité à l'air décrit au paragraphe II- 1 -B qui suit, il se caractérise par un débit d'air moyen inférieur à 2 cm3/min, de préférence inférieur ou au plus égal à 0,2 cm3/min.
Le procédé de l'invention rend possible la fabrication de câbles M+N qui peuvent être avantageusement dépourvus (ou quasiment dépourvus) de gomme de remplissage à leur périphérie. Par une telle expression, on entend qu'aucune particule de gomme de remplissage n'est visible, à l'œil nu, à la périphérie du câble, c'est-à-dire que l'homme du métier ne fait pas de différence en sortie de fabrication, à l'œil nu et à une distance de deux ou trois mètres, entre une bobine de câble M+N gommé in situ préparé selon l'invention et une bobine de câble M+N conventionnel (c'est-à-dire non gommé in situ).
Ce procédé de l'invention s'applique bien entendu à la fabrication de câbles du type compacts
(pour rappel et par définition, ceux dont les couches Ci et Ce sont enroulées au même pas et dans le même sens) comme de câbles du type à couches cylindriques (pour rappel et par définition, ceux dont les couches Ci et Ce sont enroulées soit à des pas différents, soit dans des sens opposés, soit encore à des pas différents et dans des sens opposés).
Un dispositif d'assemblage et gommage conforme à l'invention, utilisable pour la mise en œuvre du procédé de l'invention précédemment décrit, comporte d'amont en aval, selon la direction d'avancement d'un câble en cours de formation :
des moyens d'alimentation des M fils d'âme ;
- des moyens d'assemblage par retordage des M fils d'âme pour formation de la couche interne ; des moyens de gainage de la couche interne ; en sortie de moyens de gainage, des moyens d'assemblage par retordage de N fils externes autour de l'âme ainsi gainée, pour formation de la couche externe ; enfin, des moyens d'équilibrage de torsion.
On voit sur la figure 1 annexée un exemple de dispositif (10) d'assemblage par retordage, du type à alimentation fixe et à réception tournante, utilisable pour la fabrication d'un câble du type compact (p2 = p3 et même sens de torsion des couches Ci et Ce) tel qu'illustré par exemple à la figure 2. Dans ce dispositif, des moyens d'alimentation (110) délivrent M (par exemple trois) fils d'âme (11) à travers une grille (12) de répartition (répartiteur axisymétrique), couplée ou non à un grain d'assemblage (13), au-delà de laquelle convergent les M fils d'âme en un point d'assemblage ou point de retordage (14), pour formation de la couche interne (Ci).
La couche interne Ci, une fois formée, traverse ensuite une zone de gainage consistant par exemple en une tête d'extrusion unique (15) à travers laquelle est destinée à circuler la couche interne. La distance entre le point de convergence (14) et le point de gainage (15) est par exemple comprise entre 50 cm et 1 m. Autour de la couche interne Ci ainsi gommée (16), progressant dans le sens de la flèche, sont ensuite assemblés par retordage les N fils (17) de la couche externe (Ce), par exemple au nombre de neuf, délivrés par des moyens d'alimentation (170). Le câble final M+N ainsi formé est finalement collecté sur une réception tournante (19), après traversée des moyens d'équilibrage de torsion (18) consistant par exemple en un retordeur-dresseur.
On rappelle ici que, de manière bien connue de l'homme du métier, pour la fabrication d'un câble du type à couches cylindriques tel qu'illustré par exemple à la figure 4 (pas p2 et p3 différents et/ou sens de torsion différents des couches Ci et Ce), on utilisera un dispositif comportant deux organes (alimentation ou réception) tournants, et non un seul comme décrit ci-dessus (Fig. 1) à titre d'exemple. La figure 2 schématise, en coupe perpendiculaire à l'axe du câble (supposé rectiligne et au repos), un exemple d'un câble préférentiel 3+9 gommé in situ, susceptible d'être obtenu à l'aide du procédé conforme à l'invention précédemment décrit.
Ce câble (noté C-I) est du type compact, c'est-à-dire que ses couches interne Ci et externe Ce sont enroulées dans le même sens (S/S ou Z/Z selon une nomenclature reconnue) et de plus au même pas (P1 = p2). Ce type de construction a pour conséquence que les fils internes (20) et externes (21) forment deux couches concentriques qui ont chacune un contour (représenté en pointillés) sensiblement polygonal (triangulaire pour la couche Ci, hexagonal pour la couche Ce), et non cylindrique comme dans le cas des câbles à couches cylindiques qui seront décrits ultérieurement.
La gomme de remplissage (22) remplit le capillaire central (23) (symbolisé par un triangle) formé par les trois fils d'âme (20) en les écartant très légèrement, tout en recouvrant totalement la couche interne Ci formée par ces trois fils (20). Elle remplit aussi chaque interstice ou cavité (symbolisé aussi par un triangle) formé soit par un fil d'âme (20) et les deux fils externes (21) qui lui sont immédiatement adjacents, soit par deux fils d'âme (20) et le fil externe (21) qui leur est adjacent ; au total, 12 interstices (capillaires hélicoïdaux, symbolisés aussi par un triangle) sont ainsi présents dans ce câble 3+9, auxquels s'ajoute le canal ou capillaire central (23).
Selon un mode de réalisation préférentiel, dans ce câble 3+N, la gomme de remplissage s'étend d'une manière continue autour de la couche Ci qu'elle recouvre.
Pour comparaison, la figure 3 rappelle la coupe d'un câble 3+9 (noté C-2) conventionnel (i.e., non gommé in situ), également du type compact. L'absence de gomme de remplissage fait que pratiquement tous les fils (30, 31) sont au contact l'un de l'autre, ce qui conduit à une structure particulièrement compacte, très difficilement pénétrable (pour ne pas dire impénétrable) de l'extérieur par du caoutchouc. La caractéristique de ce type de câble est que les trois fils d'âme (30) forment un canal ou capillaire central (33) qui est vide et fermé et donc propice, par effet "de mèche", à la propagation de milieux corrosifs tels que l'eau.
La figure 4 schématise un autre exemple d'un câble préférentiel 3+9 selon l'invention.
Ce câble (noté C-3) est du type à couches cylindriques, c'est-à-dire que ses couches interne Ci et externe Ce sont soit enroulées au même pas (pi = p2) mais dans un sens différent (S/Z ou Z/S), soit enroulées à un pas différent (pi # p2) quelles que soient les directions de torsion (S/S ou Z/Z ou S/Z ou Z/S). De manière connue, ce type de construction a pour conséquence que les fils sont disposés selon deux couches (Ci et Ce) adjacentes et concentriques, tubulaires, donnant au câble (et aux deux couches) un contour (représenté en pointillés) cylindrique et non plus polygonal.
La gomme de remplissage (42) remplit le capillaire central (43) (symbolisé par un triangle) formé par les trois fils d'âme (40) en les écartant légèrement, tout en recouvrant totalement la couche interne Ci formée par les trois fils (40). Elle remplit aussi, au moins en partie (ici, dans cet exemple, totalement) chaque interstice formé soit par un fil d'âme (40) et les deux fils externes (41) qui lui sont immédiatement adjacents (les plus proches), soit par deux fils d'âme (40) et le fil externe (41) qui leur est adjacent ; au total, 12 interstices ou capillaires sont ainsi présents dans ce câble 3+9, auxquels s'ajoute le capillaire central (43).
Pour comparaison, la figure 5 rappelle la coupe d'un câble 3+9 (noté C-4) conventionnel (i.e., non gommé in situ), également du type à deux couches cylindriques. L'absence de gomme de remplissage fait que les trois fils (50) de la couche interne (Ci) sont pratiquement au contact l'un de l'autre, ce qui conduit à un capillaire central (53) vide et fermé, impénétrable de l'extérieur par du caoutchouc et propice d'autre part à la propagation de milieux corrosifs.
Le procédé de l'invention s'applique également de manière avantageuse à des câbles de construction 2+N. Grâce à une pénétration optimisée du câble, de l'intérieur, par la gomme de remplissage, il n'est plus nécessaire de désaturer la couche externe pour améliorer sa pénétrabilité de l'extérieur, notamment par du caoutchouc. A diamètres de fils identiques entre les couches Ci et Ce, ceci permet avantageusement, par exemple, de remplacer des câbles de construction 2+7 par des câbles de construction 2+8, plus résistants pour un même encombrement.
A titre d'exemples préférentiels, le procédé de l'invention est utilisé pour la fabrication de câbles de constructions 2+6, 2+7, 2+8, 3+7, 3+8, 3+9, 4+8, 4+9, 4+10, notamment, parmi ces derniers, ceux constitués de fils ayant sensiblement le même diamètre d'une couche à l'autre
Figure imgf000016_0001
Le procédé de l'invention n'est bien entendu pas limité à la fabrication de câbles préférentiels dont les fils ont des diamètres compris entre 0,20 et 0,50 mm, comme indiqué précédemment. C'est ainsi par exemple que le procédé de l'invention peut être utilisé pour la fabrication de câbles dont les M et N fils ont des diamètres di et d2 plus petits, par exemple compris dans un domaine de 0,08 à 0,20 mm, de tels câbles étant par exemple utilisables pour le renforcement de parties des pneumatiques autres que leur armature de sommet, notamment pour le renforcement de l'armature de carcasse de pneumatiques pour véhicules industriels tels que poids lourd. II. EXEMPLES DE REALISATION DE L'INVENTION
Les essais qui suivent démontrent la capacité du procédé de l'invention à fournir des câbles dont l'endurance en pneumatique est notablement augmentée grâce à une excellente propriété d'imperméabilité à l'air dans l'axe du câble.
H-I . Mesures et tests utilisés
A) Mesures dynamométriques
Pour ce qui concerne les fils et câbles métalliques, les mesures de force à la rupture notée Fm (charge maximale en N), de résistance à la rupture notée Rm (en MPa) et d'allongement à la rupture noté At (allongement total en %) sont effectuées en traction selon la norme ISO 6892 de 1984.
Concernant les compositions de caoutchouc, les mesures de module sont effectuées en traction, sauf indication différente selon la norme ASTM D 412 de 1998 (éprouvette "C") : on mesure en seconde élongation (c'est-à-dire après un cycle d'accommodation) le module sécant "vrai" (c'est-à-dire ramené à la section réelle de l'éprouvette) à 10% d'allongement, noté ElO et exprimé en MPa (conditions normales de température et d'hygrométrie selon la norme ASTM D 1349 de 1999).
B) Test de perméabilité à l'air
Ce test permet de déterminer la perméabilité longitudinale à l'air des câbles testés, par mesure du volume d'air traversant une éprouvette sous pression constante pendant un temps donné. Le principe d'un tel test, bien connu de l'homme du métier, est de démontrer l'efficacité du traitement d'un câble pour le rendre imperméable à l'air ; il a été décrit par exemple dans la norme ASTM D2692-98.
Le test est ici réalisé soit sur des câbles extraits des pneumatiques ou des nappes de caoutchouc qu'ils renforcent, donc déjà enrobés de caoutchouc à l'état cuit, soit sur des câbles bruts de fabrication.
Dans le second cas, les câbles bruts doivent être préalablement noyés, enrobés de l'extérieur par une gomme dite d'enrobage. Pour cela, une série de 10 câbles disposés parallèlement (distance inter-câble : 20 mm) est placée entre deux skims (deux rectangles de 80 x 200 mm) d'une composition de caoutchouc à l'état cru, chaque skim ayant une épaisseur de 3,5 mm ; le tout est alors bloqué dans un moule, chacun des câbles étant maintenu sous une tension suffisante (par exemple 2 daN) pour garantir sa rectitude lors de la mise en place dans le moule, à l'aide de modules de serrage ; puis on procède à la vulcanisation (cuisson) pendant 40 min à une température de 14O0C et sous une pression de 15 bar (piston rectangulaire de 80 x 200 mm). Après quoi, on démoule l'ensemble et on découpe 10 éprouvettes de câbles ainsi enrobés, sous forme de parallélépipèdes de dimensions 7x7x20 mm, pour caractérisation.
On utilise comme gomme d'enrobage une composition de caoutchouc conventionnelle pour pneumatique, à base de caoutchouc naturel (peptisé) et de noir de carbone N330 (65 pce), comportant en outre les additifs usuels suivants: soufre (7 pce), accélérateur sulfénamide (1 pce), ZnO (8 pce), acide stéarique (0,7 pce), antioxydant (1,5 pce), naphténate de cobalt (1,5 pce) ; le module ElO de la gomme d'enrobage est de 10 MPa environ.
Le test est réalisé sur 2 cm de longueur de câble, enrobé donc par sa composition de caoutchouc (ou gomme d'enrobage) environnante, de la manière suivante : on envoie de l'air à l'entrée du câble, sous une pression de 1 bar, et on mesure le volume d'air à la sortie, à l'aide d'un débitmètre (calibré par exemple de 0 à 500 cm3/min). Pendant la mesure, l'échantillon de câble est bloqué dans un joint étanche comprimé (par exemple un joint en mousse dense ou en caoutchouc) de telle manière que seule la quantité d'air traversant le câble d'une extrémité à l'autre, selon son axe longitudinal, est prise en compte par la mesure ; un contrôle d'étanchéïté préalable du joint étanche est fait à l'aide d'une éprouvette de caoutchouc pleine, i.e., sans câble.
Le débit mesuré est d'autant plus faible que l'imperméabilité longitudinale du câble est élevée. La mesure étant faite avec une précision de ± 0,2 cm3/min, les valeurs mesurées égales ou inférieures à 0,2 cm3/min sont considérées comme nulles ; elles correspondent à un câble qui peut être qualifié d'étanche à l'air selon son axe (i.e., selon sa direction longitudinale).
C) Taux de gomme de remplissage
La quantité de gomme de remplissage est mesurée par différence entre le poids du câble initial (donc gommé in situ) et le poids du câble (donc celui de ses fils) dont la gomme de remplissage a été éliminée par un traitement électrolytique approprié.
Un échantillon de câble (longueur 1 m), bobiné sur lui-même pour réduire son encombrement, constitue la cathode d'un électrolyseur (reliée à la borne négative d'un générateur), tandis que l'anode (reliée à la borne positive) est constituée d'un fil de platine. L'électrolyte consiste en une solution aqueuse (eau déminéralisée) comportant 1 mole par litre de carbonate de sodium. L1 échantillon, plongé complètement dans l'électrolyte, est mis sous tension pendant 15 min sous un courant de 300 mA. Le câble est ensuite retiré du bain, rincé abondamment avec de l'eau. Ce traitement permet à la gomme de se détacher facilement du câble (si tel n'est pas le cas, on continue l'électrolyse pendant quelques minutes). On élimine soigneusement la gomme, par exemple par simple essuyage à l'aide d'un tissu absorbant, tout en détordant un à un les fils du câble. Les fils sont de nouveau rincés à l'eau puis plongés dans un bêcher contenant un mélange d'eau déminéralisée (50%) et d'éthanol (50%) ; le bêcher est plongé dans une cuve à ultrasons pendant 10 min. Les fils ainsi dépourvus de toute trace de gomme sont retirés du bêcher, séchés sous un courant d'azote ou d'air, et enfin pesés.
On en déduit par le calcul le taux de gomme de remplissage dans le câble, exprimé en mg de gomme de remplissage par gramme de câble initial, et moyenne sur 10 mesures (10 mètres de câble au total).
H-2. Fabrication des câbles
On a tout d'abord fabriqué deux types de câbles, des câbles à couches 3+9 (référencés C-I) et des câbles à couches 1+3+8 (référencés C-5), dont les constructions respectives sont conformes aux représentations schématiques des figures 2 et 6 annexées, et dont les propriétés mécaniques sont données dans le tableau 1 ci-après.
Tableau 1
Figure imgf000019_0001
Les câbles C-I tels que schématisés à la figure 2 ont été fabriqués selon le procédé conforme à l'invention, à l'aide d'un dispositif tel que décrit précédemment et schématisé à la figure 1. La gomme de remplissage était une composition de caoutchouc conventionnelle pour armature sommet de pneumatique, ayant la même formulation que celle de la nappe de caoutchouc de ceinture que le câble C-I est destiné à renforcer dans l'essai en pneumatique qui suit. Cette composition a été extrudée à une température de 900C à travers une filière de calibrage de 0,700 mm.
Chaque câble C-I est formé de 12 fils au total, tous de diamètre 0,30 mm, qui ont été enroulés au même pas (pi = p2 = 15,4 mm) et dans la même direction de torsion (S) pour l'obtention d'un câble du type compact. Le taux de gomme de remplissage, mesuré selon la méthode indiquée précédemment au paragraphe Il-l-C, est de 16 mg par g de câble. Cette gomme de remplissage remplit le canal ou capillaire central formé par les trois fils d'âme en les écartant légèrement, tout en recouvrant totalement la couche interne Ci formée par les trois fils. Elle remplit aussi, au moins en partie sinon totalement, chacun des douze interstices ou canaux vides formés soit entre un fil d'âme et les deux fils externes qui lui sont immédiatement adjacents, soit entre deux fils d'âme et le fil externe qui leur est adjacent.
Les câbles C-5, tels que schématisés à la figure 6 ont été fabriqués selon un procédé conventionnel. Ils sont dépourvus de gomme de remplissage. Chaque câble C-5 comporte un fil noyau (65) de très faible diamètre (0,12 mm) ; les trois fils internes (60) et les huit fils externes (61) ont chacun un diamètre 0,35 mm. Les 3 fils de la couche interne sont enroulés ensemble en hélice (direction S) selon un pas pi égal à 7,7 mm, cette couche Ci étant au contact d'une couche externe cylindrique de 8 fils eux-mêmes enroulés ensemble en hélice (direction S) autour de l'âme selon un pas p2 égal à 15,4 mm. Le fil noyau (65), en écartant les fils (60) de la couche interne Ci et en remplissant en quelque sorte le canal central formé par ces trois fils d'âme (60), permet de désaturer (en augmentant le diamètre de la couche interne Ci) la couche externe Ce (à diamètres de fils identiques d'une couche à l'autre) et d'augmenter ainsi la pénétrabilité externe du câble (C-5) par du caoutchouc. Grâce à cette construction, le câble C-5 devient pénétrable de l'extérieur jusqu'en son centre.
Tous les fils utilisés pour la fabrication de ces câbles sont des fils fins en acier au carbone, fabriqués selon des procédés connus, dont les propriétés sont données dans le tableau 2 ci- après.
Tableau 2
Figure imgf000020_0001
Les câbles à couches C-I et C-5 sont ensuite incorporés par calandrage à des nappes (skims) de caoutchouc constituées d'une composition de caoutchouc conventionnelle utilisable pour la fabrication des nappes de ceinture de pneumatiques poids-lourd radiaux. Cette composition est à base de caoutchouc naturel (peptisé) et de noir de carbone N33O (55 pce), elle comporte en outre les additifs usuels suivants: soufre (6 pce), accélérateur sulfénamide (1 pce), ZnO (9 pce), acide stéarique (0,7 pce), antioxydant (1,5 pce), naphténate de cobalt (1 pce) ; le module ElO de la gomme de remplissage est de 6 MPa environ.
II-3. Test des câbles en armature sommet de pneumatique Les câbles C-I et C-5 ont été ensuite testés dans une ceinture de pneumatique pour véhicule poids-lourd tel que schématisé sur la figure 7.
Ce pneumatique radial 1 comporte un sommet 2 renforcé par une armature de sommet ou ceinture 6, deux flancs 3 et deux bourrelets 4, chacun de ces bourrelets 4 étant renforcé avec une tringle 5. Le sommet 2 est surmonté d'une bande de roulement non représentée sur cette figure schématique. Une armature de carcasse 7 est enroulée autour des deux tringles 5 dans chaque bourrelet 4, le retournement 8 de cette armature 7 étant par exemple disposé vers l'extérieur du pneumatique 1 qui est ici représenté monté sur sa jante 9. L'armature de carcasse 7 est de manière connue en soi constituée d'au moins une nappe renforcée par des câbles dits "radiaux", c'est-à-dire que ces câbles sont disposés pratiquement parallèles les uns aux autres et s'étendent d'un bourrelet à l'autre de manière à former un angle compris entre 80° et 90° avec le plan circonférentiel médian (plan perpendiculaire à l'axe de rotation du pneumatique qui est situé à mi-distance des deux bourrelets 4 et passe par le milieu de l'armature de sommet 6). Bien entendu, ce pneumatique 1 comporte en outre de manière connue une couche de gomme ou élastomère intérieure (communément appelée "gomme intérieure") qui définit la face radialement interne du pneumatique et qui est destinée à protéger la nappe de carcasse de la diffusion d'air provenant de l'espace intérieur au pneumatique.
L'armature de sommet ou ceinture 6 est de manière connue en soi constituée de deux demi- nappes de triangulation renforcées par des câbles métalliques inclinés de 65 degrés, surmontées de deux nappes dites "nappes de travail" superposées croisées. Ces nappes de travail sont renforcées par des câbles métalliques disposés sensiblement parallèlement les uns par rapport aux autres et inclinés de 26 degrés (nappe radialement interne) et 18 degrés (nappe radialement externe). Les deux nappes de travail sont par ailleurs recouvertes par une nappe de protection renforcée de câbles métalliques élastiques (haute élongation) conventionnels inclinés de 18 degrés. Tous les angles d'inclinaison indiqués sont mesurés par rapport au plan circonférentiel médian du pneumatique.
Dans les tests qui suivent, les deux nappes "nappes de travail" ci-dessus utilisent soit les câbles C-I, soit les câbles C-5 fabriqués précédemment.
On réalise deux séries d'essais de roulage de pneumatiques poids-lourd (notés respectivement P-I et P-5) de dimensions 315/70 R22.5, avec dans chaque série des pneumatiques destinés au roulage, d'autres à un décorticage sur pneumatique neuf. Les pneumatiques P-I et P-5 sont identiques à l'exception des câbles qui renforcent leur ceinture 6. Les pneumatiques P-I sont renforcés par les câbles C-I fabriqués selon le procédé de l'invention, les pneumatiques P-5 sont renforcés par les câbles C-5 qui constituent, en raison de leurs performances reconnues, notamment comparativement à des câbles 3+9 conventionnels (sans fil noyau unitaire), un témoin de choix pour cet essai.
On fait subir à ces pneumatiques un essai de roulage sévère, en surcharge, destiné à tester leur résistance au phénomène dit de "clivage" (séparation des extrémités des nappes de ceinture), en soumettant les pneumatiques (sur une machine de roulage automatique) à des séquences de très forte dérive et mise en compression sévère de leur bloc sommet dans la zone d'épaule.
Le test est conduit jusqu'à la destruction forcée des pneumatiques.
On constate alors que les pneumatiques P-I renforcés par les câbles issus du procédé de l'invention, dans les conditions très sévères de roulage qui leur sont imposées, présentent une endurance nettement améliorée : la distance moyenne parcourue est augmentée de 20% par rapport aux pneumatiques témoins montrant déjà par ailleurs une performance excellente.
H-4. Tests de perméabilité à l'air
Les câbles C-I, fabriqués avec le procédé de l'invention, ont été par ailleurs soumis au test de perméabilité à l'air (paragraphe II-l-B), en mesurant le volume d'air traversant les câbles en 1 min (moyenne de 10 mesures pour chaque câble testé).
Pour chaque câble C-I testé et pour 100% des mesures (soit dix éprouvettes sur dix), on a mesuré un débit nul ou inférieur à 0,2 cm3/min ; les câbles C-I sont donc imperméables à l'air, ils peuvent être qualifiés d'étanches à l'air selon leur axe au sens du test du paragraphe II-I-B, ceci grâce à un taux de pénétration optimal par le caoutchouc (gomme de remplissage).
Des câbles gommés in situ témoins, de même construction 3+9 que les câbles C-I, ont été également fabriqués en gainant individuellement soit un seul fil, soit chacun des trois fils de la couche interne Ci. Ce gainage a été réalisé à l'aide de filières d'extrusion de diamètre variable (320 à 420 μm) disposées cette fois en amont du point d'assemblage (gainage et retordage en ligne) comme décrit dans l'art antérieur (demande US 2002/160213 précitée) ; pour une comparaison rigoureuse, on a ajusté la quantité de gomme de remplissage délivrée de telle manière que le taux de gomme de remplissage, dans les câbles témoins finaux (soit entre 6 et 25 mg par g de câble, tel que mesuré selon la méthode du paragraphe II-l-C), soit voisin de celui des câbles de l'invention.
Dans le cas du gainage d'un seul fil, quel que soit le câble testé, on a observé que 100% des mesures (i.e., 10 éprouvettes sur 10) indiquaient un débit d'air supérieur à 2 cmVmin ; le débit moyen mesuré variait de 16 à 62 cm3/min selon les conditions opératoires utilisées, notamment le diamètre de filière d'extrusion testé.
Dans le cas du gainage individuel de chacun des trois fils, même si le débit moyen mesuré (variant de 0,2 à 4 cm3/min) s'est révélé inférieur aux valeurs précédentes, on a observé que :
- dans le plus mauvais des cas (filière de 320 μm), 90% des mesures (soit 9 éprouvettes sur 10) présentaient un débit supérieur à 2 cnrVmin, avec un débit moyen de 4 cm3/min ; - dans le meilleur des cas (filière de 420 μm), 10% des mesures (soit 1 éprouvette sur
10) présentait encore un débit d'environ 2 cm3/min, avec un débit moyen voisin de 0,2 cm3/min.
En d'autres termes, aucun des câbles témoins ci-dessus testés ne peut être qualifié de câble étanche à l'air selon son axe longitudinal.
En outre, on a noté que parmi ces câbles témoins, ceux présentant la perméabilité à l'air la plus faible (pour rappel, ceux obtenus par gainage individuel de chacun des 3 fils à travers une filière de 420 μm) présentaient une quantité relativement importante de gomme de remplissage à leur périphérie, les rendant inaptes à une opération de calandrage en conditions industrielles.
En résumé, le procédé de l'invention permet la fabrication de câbles de construction M+N gommés in situ qui, grâce à un taux de pénétration optimal par du caoutchouc, d'une part peuvent être mis en œuvre de manière efficace sous des conditions industrielles, notamment sans les difficultés liées à un débordement excessif de caoutchouc lors de leur fabrication, d'autre part présentent une endurance en ceinture des pneumatiques qui est sensiblement améliorée comparée aux meilleurs câbles témoins connus à ce jour pour une telle application.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un câble métallique à deux couches (Ci, Ce), de construction M+N, comportant une couche interne (Ci) constituée de M fils de diamètre d, enroulés ensemble en hélice selon un pas p,, M variant de 2 à 4, et une couche externe (Ce) de N fils de diamètre d2 enroulés ensemble en hélice selon un pas p2 autour de la couche interne (Ci), ledit procédé comportant au moins les étapes suivantes opérées en ligne :
- une étape d'assemblage par retordage des M fils d'âme, pour formation de la couche interne (Ci) en un point d'assemblage ; en aval dudit point d'assemblage des M fils d'âme, une étape de gainage de la couche interne (Ci) par une composition de caoutchouc diénique, dite "gomme de remplissage", à l'état cru ; une étape d'assemblage par retordage des N fils de la couche externe (Ce) autour de la couche interne (Ci) ainsi gainée ; une étape d'équilibrage final des torsions.
2. Procédé selon la revendication 1, dans lequel le diamètre d] est compris entre 0,20 et 0,50 mm et le pas de retordage pi est compris entre 5 et 30 mm.
3. Procédé selon la revendication 1 ou 2, dans lequel la contrainte de tension exercée sur les M fils, en aval du point d'assemblage, est comprise entre 10 et 25% de leur force à la rupture.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel l'élastomère diénique de la gomme de remplissage est choisi dans le groupe constitué par les polybutadiènes, le caoutchouc naturel, les polyisoprènes de synthèse, les copolymères de butadiène, les copolymères d'isoprène, et les mélanges de ces élastomères.
5. Procédé selon la revendication 4, dans lequel l'élastomère diénique est du caoutchouc naturel.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la température d'extrusion de la gomme de remplissage est comprise entre 6O0C et 120°C.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel la quantité de gomme de remplissage délivrée lors du gainage est comprise entre 5 et 40 mg par gramme de câble final.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel la couche interne, après gainage, est recouverte d'une épaisseur minimale de gomme de remplissage supérieure à 5 μm.
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel le diamètre d2 est compris entre 0,20 et 0,50 mm et le pas p2 est supérieur ou égal à pi.
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel les fils de la couche externe sont enroulés en hélice au même pas et dans le même sens de torsion que les fils de la couche interne.
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel M est égal à 3 et N est égal à 8, 9 ou 10.
12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel la couche externe Ce est une couche saturée.
13. Dispositif d'assemblage et gommage en ligne, utilisable pour la mise en œuvre d'un procédé selon l'une quelconque des revendications 1 à 11, ledit dispositif comportant d'amont en aval, selon la direction d'avancement du câble en cours de formation :
des moyens d'alimentation des M fils d'âme ; des premiers moyens d'assemblage par retordage des M fils d'âme pour formation de la couche interne ; des moyens de gainage de la couche interne ;
- en sortie des moyens de gainage, des seconds moyens d'assemblage par retordage des N fils externes autour de l'âme ainsi gainée, pour formation de la couche externe ;
- en sortie des seconds moyens d'assemblage, des moyens d'équilibrage de torsion.
14. Dispositif selon la revendication 13, comportant une alimentation fixe et une réception tournante.
15. Dispositif selon la revendication 13 ou 14, dans lequel les moyens de gainage sont constitués par une tête d'extrusion unique comportant au moins une filière de calibrage.
16. Dispositif selon l'une quelconque des revendications 13 à 15, dans lequel les moyens d'équilibrage de torsion des fils comportent un dresseur ou un retordeur ou un retordeur- dresseur.
PCT/EP2008/011001 2007-12-28 2008-12-22 Procede et dispositif de fabrication d'un cable a deux couches du type gomme in situ WO2009083213A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EA201070802A EA016480B1 (ru) 2007-12-28 2008-12-22 Способ и устройство для изготовления двухслойного обрезиненного корда
BRPI0821476A BRPI0821476A8 (pt) 2007-12-28 2008-12-22 Processo de fabricação de um cabo metálico com duas camadas e dispositivo de reunião e gomagem em linha, utilizável para a execução do processo.
EP08869079.7A EP2238288B1 (fr) 2007-12-28 2008-12-22 Procédé et dispositif de fabrication d'un cable à deux couches du type gomme in situ
CN2008801227867A CN101910507B (zh) 2007-12-28 2008-12-22 用于制造包括两个层的就地被涂覆上橡胶的类型的缆线的方法和装置
JP2010540063A JP5486509B2 (ja) 2007-12-28 2008-12-22 現場でゴム引きされるタイヤの2つの層を有するケーブルの製造方法及び装置
KR1020107016798A KR101526630B1 (ko) 2007-12-28 2008-12-22 부설 위치 화합물 형태의 두 층을 포함하는 케이블을 제조하기 위한 방법 및 장치
US12/810,999 US8627696B2 (en) 2007-12-28 2008-12-22 Method and device for manufacturing a cable comprising two layers of the in situ compound type

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0709163 2007-12-28
FR0709163A FR2925923B1 (fr) 2007-12-28 2007-12-28 Procede et dispositif de fabrication d'un cable a deux couches du type gomme in situ

Publications (1)

Publication Number Publication Date
WO2009083213A1 true WO2009083213A1 (fr) 2009-07-09

Family

ID=39494272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/011001 WO2009083213A1 (fr) 2007-12-28 2008-12-22 Procede et dispositif de fabrication d'un cable a deux couches du type gomme in situ

Country Status (9)

Country Link
US (1) US8627696B2 (fr)
EP (1) EP2238288B1 (fr)
JP (1) JP5486509B2 (fr)
KR (1) KR101526630B1 (fr)
CN (1) CN101910507B (fr)
BR (1) BRPI0821476A8 (fr)
EA (1) EA016480B1 (fr)
FR (1) FR2925923B1 (fr)
WO (1) WO2009083213A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011042386A1 (fr) 2009-10-06 2011-04-14 Societe De Technologie Michelin Methode et dispositif d'inspection automatique d'une bobine de cable
CN102906330A (zh) * 2010-05-20 2013-01-30 米其林集团总公司 制备使用不饱和热塑性弹性体原位橡胶处理的多层金属帘线的方法
WO2013075985A1 (fr) 2011-11-23 2013-05-30 Compagnie Generale Des Etablissements Michelin Procédé de fabrication d'un câble métallique à deux couches gommé in situ par un élastomère thermoplastique insaturé
WO2013075984A1 (fr) 2011-11-23 2013-05-30 Compagnie Generale Des Etablissements Michelin Câble métallique à deux couches, gommé in situ par un élastomère thermoplastique insaturé.
WO2014049058A1 (fr) 2012-09-28 2014-04-03 Compagnie Generale Des Etablissements Michelin Cable gomme in situ comprenant une composition comprenant un polysulfure organique
WO2015189313A2 (fr) 2014-06-12 2015-12-17 Compagnie Generale Des Etablissements Michelin Câble gommé in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
WO2015189310A1 (fr) 2014-06-12 2015-12-17 Compagnie Generale Des Etablissements Michelin Produit semi-fini comprenant un câble gommé in situ noyé dans une composition de caoutchouc de calandrage
WO2015189314A1 (fr) 2014-06-12 2015-12-17 Compagnie Generale Des Etablissements Michelin Câble gommé in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
EP2366048B1 (fr) * 2008-11-17 2016-01-27 Compagnie Generale Des Etablissements Michelin Procede et dispositif de fabrication d'un cable a trois couches du type gomme in situ
US9428011B2 (en) 2012-10-30 2016-08-30 Compagnie Generale Des Etablissements Michelin Cord rubberized in situ comprising a composition comprising a styrene-butadiene copolymer

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943691B1 (fr) 2009-03-31 2011-08-19 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme in situ
FR2943690B1 (fr) 2009-03-31 2011-08-19 Michelin Soc Tech Procede et dispositif de fabrication d'un cable a trois couches du type gomme un situ
FR2947577B1 (fr) * 2009-07-03 2013-02-22 Michelin Soc Tech Cable metallique a trois couches gomme in situ de construction 3+m+n
FR2947575B1 (fr) 2009-07-03 2011-08-19 Michelin Soc Tech Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ.
FR2947576B1 (fr) * 2009-07-03 2011-08-19 Michelin Soc Tech Cable metallique a trois couches gomme in situ de construction 2+m+n
FR2947574B1 (fr) * 2009-07-03 2012-11-09 Michelin Soc Tech Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ.
FR2950838B1 (fr) * 2009-10-07 2013-02-22 Michelin Soc Tech Pneumatique comportant des cables d'armatures de carcasse presentant une faible permeabilite, et des epaisseurs de melanges caoutchouteux variables.
FR2962454B1 (fr) * 2010-05-20 2012-09-21 Michelin Soc Tech Procede de fabrication d'un cable metallique a trois couches du type gomme in situ
DE102011001228A1 (de) 2011-03-11 2012-09-13 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
US20120241066A1 (en) * 2011-03-24 2012-09-27 Paul Harry Sandstrom Tire containing an internal composite comprised of metal cord reinforced rubber layer with auxiliary buffer rubber layer
FR2990963B1 (fr) * 2012-05-25 2014-12-05 Michelin & Cie Cable metallique multi-torons a deux couches.
FR2990962B1 (fr) * 2012-05-25 2014-06-27 Michelin & Cie Procede de fabrication d'un cable metallique multi-torons a deux couches.
DK3047013T3 (da) * 2013-09-16 2021-11-15 Genzyme Corp Fremgangsmåder og systemer til forarbejdning af en cellekultur
CN105336450A (zh) * 2015-11-19 2016-02-17 夏烬楚 一种高压输电线的生产设备
CN109537335A (zh) * 2018-11-10 2019-03-29 江苏兴达钢帘线股份有限公司 一种多边形钢帘线的生产方法
CN109629277B (zh) * 2018-11-10 2022-05-13 江苏兴达钢帘线股份有限公司 一种具有强破断力的钢帘线的制备方法及捻制装置
CN109338767A (zh) * 2018-12-03 2019-02-15 江苏兴达钢帘线股份有限公司 一种2+7×d结构的子午线轮胎钢丝帘线的生产工艺
FR3099189A1 (fr) * 2019-07-25 2021-01-29 Compagnie Generale Des Etablissements Michelin Procédé de fractionnement et de réassemblage
FR3099190A1 (fr) * 2019-07-25 2021-01-29 Compagnie Generale Des Etablissements Michelin Procédé de fabrication d’au moins trois assemblages
CN111676719A (zh) * 2020-05-08 2020-09-18 黄山创想科技股份有限公司 一种预变形铝包钢及其绞合方法
FR3111922B1 (fr) * 2020-06-24 2022-06-17 Michelin & Cie Câble multi-torons à deux couches à endurance sous flexion améliorée
CN112779797A (zh) * 2021-01-15 2021-05-11 江苏兴达钢帘线股份有限公司 一种紧密型钢帘线
CN113969511A (zh) * 2021-11-16 2022-01-25 山东大业股份有限公司 一种高渗胶密集型钢帘线
CN115662708B (zh) * 2022-11-09 2023-09-15 曲阜市虹飞电缆有限公司 一种光纤复合采煤机电缆及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2626904A1 (fr) * 1988-01-29 1989-08-11 Sevastopol Priborostroit Inst Procede de fabrication d'articles metalliques soumis a un commettage tels que des cables electriques, cables de manutention et cordes metalliques multifilaires
US20020160213A1 (en) * 2001-03-30 2002-10-31 The Yokohama Rubber Co., Ltd. Elastomer and steel cord composite and process for producing the same
EP1258558A1 (fr) * 2001-05-17 2002-11-20 Trefileurope Câble dynamique, et procédé et installation de fabrication d'un tel câble

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4740188Y1 (fr) * 1969-12-16 1972-12-05
JPS5743675B2 (fr) * 1975-02-13 1982-09-16
GB2092629B (en) * 1981-02-06 1984-09-19 Bekaert Sa Nv Improvements in fatigue resistant cables
US5285623A (en) * 1989-04-03 1994-02-15 N.V. Bekaert S.A. Steel cord with improved fatigue strength
JP3538205B2 (ja) * 1992-03-09 2004-06-14 住友ゴム工業株式会社 タイヤのカーカス用のスチールコード、タイヤのフィラー用のスチールコード、及びそれを用いたタイヤ
US5609014A (en) * 1992-04-20 1997-03-11 Tokyo Rope Manufacturing Co., Ltd. Rubber reinforcing steel cord
ATE267908T1 (de) * 1999-12-30 2004-06-15 Michelin Soc Tech Mehrlagiges stahlseil für die karkasse eines luftreifens
JP4423772B2 (ja) * 2000-09-11 2010-03-03 横浜ゴム株式会社 タイヤ用スチールコード及びラジアルタイヤ
JP4355111B2 (ja) * 2001-03-30 2009-10-28 横浜ゴム株式会社 エラストマー複合スチールコードの製造方法
FR2833277A1 (fr) * 2001-12-07 2003-06-13 Michelin Soc Tech Cable metallique utilisable pour renforcer une armature de carcasse d'un pneumatique et un tel pneumatique
JP4049627B2 (ja) * 2002-07-02 2008-02-20 トクセン工業株式会社 エラストマー複合スチールコードおよびその製造方法
FR2864556B1 (fr) * 2003-12-24 2006-02-24 Michelin Soc Tech Cable a couches pour armature de carcasse de pneumatique
FR2873721A1 (fr) * 2004-08-02 2006-02-03 Michelin Soc Tech Cable a couches pour armature de sommet de pneumatique
JP2006069130A (ja) * 2004-09-03 2006-03-16 Toyo Tire & Rubber Co Ltd タイヤ及びタイヤ成型方法
JP2007191814A (ja) * 2006-01-18 2007-08-02 Tokusen Kogyo Co Ltd スチールコードおよび自動車用タイヤ
FR2897076B1 (fr) * 2006-02-09 2008-04-18 Michelin Soc Tech Cable composite elastique pour pneumatique.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2626904A1 (fr) * 1988-01-29 1989-08-11 Sevastopol Priborostroit Inst Procede de fabrication d'articles metalliques soumis a un commettage tels que des cables electriques, cables de manutention et cordes metalliques multifilaires
US20020160213A1 (en) * 2001-03-30 2002-10-31 The Yokohama Rubber Co., Ltd. Elastomer and steel cord composite and process for producing the same
EP1258558A1 (fr) * 2001-05-17 2002-11-20 Trefileurope Câble dynamique, et procédé et installation de fabrication d'un tel câble

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2366048B1 (fr) * 2008-11-17 2016-01-27 Compagnie Generale Des Etablissements Michelin Procede et dispositif de fabrication d'un cable a trois couches du type gomme in situ
WO2011042386A1 (fr) 2009-10-06 2011-04-14 Societe De Technologie Michelin Methode et dispositif d'inspection automatique d'une bobine de cable
JP2013530319A (ja) * 2010-05-20 2013-07-25 コンパニー ゼネラール デ エタブリッスマン ミシュラン 不飽和熱可塑性エラストマーを使用して現場ゴム引きしている多層金属コードの製造方法
CN102906330A (zh) * 2010-05-20 2013-01-30 米其林集团总公司 制备使用不饱和热塑性弹性体原位橡胶处理的多层金属帘线的方法
WO2013075984A1 (fr) 2011-11-23 2013-05-30 Compagnie Generale Des Etablissements Michelin Câble métallique à deux couches, gommé in situ par un élastomère thermoplastique insaturé.
WO2013075985A1 (fr) 2011-11-23 2013-05-30 Compagnie Generale Des Etablissements Michelin Procédé de fabrication d'un câble métallique à deux couches gommé in situ par un élastomère thermoplastique insaturé
US9617661B2 (en) 2011-11-23 2017-04-11 Compagnie Generale Des Etablissements Michelin Method of manufacturing a two-layer metal cord rubberized in situ using an unsaturated thermoplastic elastomer
US9617662B2 (en) 2011-11-23 2017-04-11 Compagnie Generale Des Etablissements Michelin Two-layered metal cord rubberized in situ by an unsaturated thermoplastic elastomer
WO2014049058A1 (fr) 2012-09-28 2014-04-03 Compagnie Generale Des Etablissements Michelin Cable gomme in situ comprenant une composition comprenant un polysulfure organique
US9428011B2 (en) 2012-10-30 2016-08-30 Compagnie Generale Des Etablissements Michelin Cord rubberized in situ comprising a composition comprising a styrene-butadiene copolymer
WO2015189313A2 (fr) 2014-06-12 2015-12-17 Compagnie Generale Des Etablissements Michelin Câble gommé in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion
WO2015189310A1 (fr) 2014-06-12 2015-12-17 Compagnie Generale Des Etablissements Michelin Produit semi-fini comprenant un câble gommé in situ noyé dans une composition de caoutchouc de calandrage
WO2015189314A1 (fr) 2014-06-12 2015-12-17 Compagnie Generale Des Etablissements Michelin Câble gommé in situ comprenant une composition de gommage comprenant un inhibiteur de corrosion

Also Published As

Publication number Publication date
KR20100106539A (ko) 2010-10-01
JP2011508109A (ja) 2011-03-10
EA016480B1 (ru) 2012-05-30
CN101910507B (zh) 2012-11-07
EA201070802A1 (ru) 2011-02-28
US8627696B2 (en) 2014-01-14
US20110011486A1 (en) 2011-01-20
EP2238288B1 (fr) 2013-05-22
FR2925923A1 (fr) 2009-07-03
BRPI0821476A8 (pt) 2016-01-05
EP2238288A1 (fr) 2010-10-13
JP5486509B2 (ja) 2014-05-07
CN101910507A (zh) 2010-12-08
BRPI0821476A2 (pt) 2015-06-16
FR2925923B1 (fr) 2009-12-18
KR101526630B1 (ko) 2015-06-05

Similar Documents

Publication Publication Date Title
EP2238288B1 (fr) Procédé et dispositif de fabrication d&#39;un cable à deux couches du type gomme in situ
EP2238289B1 (fr) Câble a couches gomme in situ utilisable en ceinture de pneumatique
EP2326765B1 (fr) Cable a couches gomme in situ pour armature carcasse de pneumatique
EP2449171B1 (fr) Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ
EP2449170B1 (fr) Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ
EP2366046B1 (fr) Cable a trois couches, gomme in situ, pour armature de carcasse de pneumatique
EP2366048B1 (fr) Procede et dispositif de fabrication d&#39;un cable a trois couches du type gomme in situ
EP2414583B1 (fr) Procede et dispositif de fabrication d&#39;un cable a trois couches
EP2414582B1 (fr) Procede et dispositif de fabrication d&#39;un cable a trois couches
WO2010139583A1 (fr) Câble à trois couches, gommé in situ, pour armature carcasse de pneumatique
EP2449169A2 (fr) Cable metallique a trois couches gomme in situ de construction 3+m+n
EP2449168A2 (fr) Cable metallique a trois couches gomme in situ de construction 2+m+n
FR2959517A1 (fr) Cable metallique multitorons elastique a haute permeabilite.
EP2507072A1 (fr) Pneumatique comportant des cables d&#39;armature de carcasse frettes
FR2969181A1 (fr) Cable metallique multitorons a haute permeabilite
FR2950904A1 (fr) Cable metallique multitorons a haute permeabilite.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122786.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4501/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010540063

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008869079

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107016798

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201070802

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 12810999

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0821476

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100629