WO2009081661A1 - 試料同定装置および試料同定方法 - Google Patents

試料同定装置および試料同定方法 Download PDF

Info

Publication number
WO2009081661A1
WO2009081661A1 PCT/JP2008/070331 JP2008070331W WO2009081661A1 WO 2009081661 A1 WO2009081661 A1 WO 2009081661A1 JP 2008070331 W JP2008070331 W JP 2008070331W WO 2009081661 A1 WO2009081661 A1 WO 2009081661A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
observer
sound
frequency
information
Prior art date
Application number
PCT/JP2008/070331
Other languages
English (en)
French (fr)
Inventor
Takahiro Ikeda
Hidenao Iwai
Toyohiko Yamauchi
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to DE112008003471.0T priority Critical patent/DE112008003471B4/de
Priority to US12/808,907 priority patent/US8867815B2/en
Publication of WO2009081661A1 publication Critical patent/WO2009081661A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/368Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements details of associated display arrangements, e.g. mounting of LCD monitor

Definitions

  • the present invention relates to a sample identification device and a sample identification method.
  • the above identification is performed by an observer confirming the result of imaging or measuring a cell with the naked eye, and selecting, for example, a cell having a high frequency per unit time as a “living” cell.
  • Patent document 1 shows an example of an apparatus for an observer to observe and identify a cell.
  • the frequency of a cell vibration signal is converted by a spectrum analyzer or the like, and the result is displayed on an oscilloscope. For this reason, an observer using the apparatus described in Patent Document 1 can identify so-called “living” cells by confirming the output screen of the oscilloscope.
  • Japanese National Publication No. 4-504055 Japanese National Publication No. 4-504055
  • the observer In order to identify a cell having a desired vibration state using the apparatus of Patent Document 1, the observer first adjusts the position of the cell while placing a viewpoint on the cell placed on the sample holder, A region to be observed is determined (step S001). Next, the observer confirms the information displayed on the oscilloscope, and confirms whether there are cells in a desired vibration state (step S002). That is, the observer must move the viewpoint once to the display screen of the oscilloscope after the position adjustment in step S001. Further, if there is no cell in the desired vibration state in the confirmation in step S002, the observation point region determination procedure in step S001 must be performed again after returning the viewpoint to the cell placed on the sample holder again. I must.
  • the viewpoint must be returned to the cell placed on the sample holder in order to perform the next cell identification starting from step S001. I must.
  • the work efficiency may be lowered, for example, the work speed may be reduced by frequently changing the viewpoint.
  • an object of the present invention is to provide a sample identification device and a sample identification method capable of improving work efficiency when identifying a sample having a desired vibration state.
  • the sample identification device of the present invention includes an image input unit that inputs image information of a sample, an image display unit that displays the image information to an observer, and the image display unit that displays the image display unit.
  • a region designating unit for designating a certain region of the image information, and vibration information of the sample in the certain region designated by the region designating unit are sounded.
  • Conversion means for converting the frequency into information; and sound output means for outputting the sound information frequency-converted by the conversion means to the observer.
  • the image input means inputs the image information of the sample
  • the image display means displays the image information to the observer
  • the area specifying means An area designating step for designating a certain area of the image information in accordance with the operation of the observer performed based on the image information displayed by the image display means;
  • the observer can specify the region to be identified while placing a viewpoint on the image display means, and can output the sound output from the sound output means.
  • the sample can be identified while listening. That is, the observer can identify the sample based on the output sound from the sound output means without moving the viewpoint between when specifying the identification target and when performing identification. Therefore, since frequent viewpoint movement in the sample identification procedure is prevented, according to the present invention, it is possible to increase work efficiency when identifying a sample having a desired vibration state.
  • the observer can specify a region to be identified while looking at the display image of the image display means. That is, the observer can designate a part of the region representing the sample without moving the sample itself from the same viewpoint as when the sample is identified. As a result, operability and throughput are increased, and work efficiency can be further increased.
  • the conversion means includes a frequency converter configured to include at least one multiplier, and a differentiator is provided before or after the multiplier in the frequency converter. May be.
  • the differentiator is provided in the front stage or the rear stage of the multiplier.
  • a differentiator that suppresses the direct current component and emphasizes the amount of change in the conversion means of the present invention, the observer can hear a loud sound when the change in cell vibration is severe. As a result, the observer can obtain information on the vibration speed of the sample more efficiently, and work efficiency is increased.
  • the conversion means may include a plurality of frequency converters and an adder that adds outputs from the plurality of frequency converters.
  • each of the plurality of frequency converters included in the conversion means can perform the frequency conversion processing in parallel, and the adder adds the outputs from the plurality of frequency converters.
  • the converting means can quickly and efficiently convert the vibration information of the sample into sound information even for a plurality of frequency bands.
  • the conversion means may further comprise means for converting the degree of strength in the frequency-converted sound information to a level of the sound information.
  • the sound output means can provide the observer with the conversion means converting the strength level of the sound information to a high or low level.
  • the observer can obtain information on the vibration speed of the sample more efficiently, and work efficiency is improved.
  • the sound output means when the sound output to the observer changes within a predetermined time interval, the sound output means outputs the sound before the change as a reverberant sound during the predetermined time interval. You can keep doing it.
  • the predetermined time interval may be 2 ms.
  • the sound output means when the output sound of the sound output means changes at an interval shorter than the time interval corresponding to the time resolution of human hearing, that is, the change in the output sound of the sound output means is observed by the observer. Is not recognizable, the sound output means continues to output the output sound before the change as a reverberant sound during a time interval corresponding to the temporal resolution of human hearing.
  • the sound output means can make the observer recognize even an output sound that changes at an interval shorter than the time interval corresponding to the temporal resolution of human hearing. This is particularly useful when the time interval corresponding to the human auditory time resolution is set to 2 ms.
  • the image input means may input the image information of the sample from a phase contrast microscope and a two-dimensional photodiode array.
  • the image input means may input the image information of the sample from a database in which the image information of the sample is stored in advance.
  • sample identification can be performed even offline based on the vibration information of the sample acquired in advance.
  • the present invention it is possible to provide a sample identification apparatus and a sample identification method capable of improving work efficiency when identifying a sample having a desired vibration state.
  • FIG. 3 is an example of a circuit configuration diagram of a frequency conversion circuit 322.
  • FIG. 10 is a circuit configuration diagram of another form of the frequency conversion circuit 322.
  • FIG. 10 is a circuit configuration diagram of still another form of the frequency conversion circuit 322.
  • 3 is an example of a circuit configuration diagram of a VF converter 323.
  • FIG. 4 is a flowchart showing an operation performed based on the cell stethoscope 1. It is a functional block diagram which imaged the structure of the cell stethoscope 2 concerning 2nd Embodiment of this invention.
  • the configuration of the cell stethoscope 1 (sample identification device) according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
  • 1 and 2 illustrate the configuration of the cell stethoscope 1.
  • the cell stethoscope 1 includes a phase contrast microscope 10, a CCD camera 20, a calculation unit 30, a region designation unit 40 (region designation unit), an image display unit 50 (image display unit), and The sound output unit 60 (sound output means) is configured.
  • the CCD camera 20, the area designating unit 40, the image display unit 50, and the sound output unit 60 are each connected to be able to communicate with the calculation unit 30.
  • each component of the cell stethoscope 1 will be described in detail.
  • phase contrast microscope 10 provides the observer with a two-dimensional shape of a cell (sample).
  • the phase-contrast microscope 10 can use the principle of approximating the optical thickness of a cell and converting it to light intensity.
  • the operation principle of the phase-contrast microscope 10 is expressed by a mathematical formula, for example, the following formula (1) is obtained.
  • I ⁇ exp (i ⁇ ) ⁇ ⁇ (1)
  • I a luminance value
  • i an imaginary unit
  • (phi) represents a phase difference
  • an absolute value
  • the CCD camera 20 images the shape of a cell displayed by the phase contrast microscope 10.
  • the CCD camera 20 outputs image information obtained by imaging to the calculation unit 30.
  • the calculation unit 30 performs various calculations in the cell stethoscope 1.
  • the calculation unit 30 is physically a main storage device such as a CPU, ROM, and RAM, a communication module such as a network card for transmitting and receiving data to and from other components, a hard disk, and the like It is configured as a normal computer system including an auxiliary storage device.
  • Each function of the calculation unit 30, which will be described later, operates a communication module and the like under the control of the CPU by reading predetermined computer software on the hardware such as the CPU, ROM, and RAM, and the main memory and auxiliary This is realized by reading and writing data in the storage device.
  • the calculation unit 30 is functionally configured to include a sample image input unit 31 (image input unit) and a frequency conversion unit 32 (conversion unit).
  • the sample image input unit 31 inputs image information captured by the CCD camera 20.
  • the calculation unit 30 may include a frame grabber card as a communication module.
  • the sample image input unit 31 can input image information captured by the CCD camera 20 through the frame grabber card.
  • the sample image input unit 31 outputs the input image information to the frequency conversion unit 32 and the image display unit 50.
  • the image display unit 50 is a display device such as a monitor, and displays cell image information input from the sample image input unit 31 of the calculation unit 30 so as to be visible to an observer. .
  • the area designating unit 40 is an input device such as a mouse or a pointer, for example, and according to an observer's operation performed while viewing the cell image information displayed on the display screen of the image display unit 50, A certain area is designated.
  • FIG. 3 is a diagram illustrating a state in which a certain region A of the image information of the cell C is designated by the region designation unit 40. In FIG. 3, five cells are schematically drawn, and a circle in one cell represents a cell nucleus. As shown in FIG.
  • the image information of the cell C is displayed on the display screen of the image display unit 50 in frames per unit time (t0, t1,..., Tn) (frames F0, F1,..., Fn having xy coordinates). Is displayed.
  • the observer can freely move the arrow P in the display screen by operating the mouse and the pointer.
  • the arrow P is displayed so as to overlap with the phase difference images (frames F0, F1,..., Fn) in the display screen.
  • FIG. 3 shows that the region A which is a constant region in the phase difference image is designated by the observer.
  • the observer can designate the area A by dragging the arrow P using the mouse.
  • the area designating unit 40 outputs information specifying the fixed area (or one point) designated as described above, for example, information representing each xy coordinate group or coordinates in the frames F0, F1,..., Fn to the frequency converting unit 32. To do.
  • the description returns to the calculation unit 30 with reference to FIGS. 1 and 2 again.
  • the frequency conversion unit 32 receives image information from the sample image input unit 31 and information specifying a certain region designated by the observer from the region designation unit 40, the certain region in the image information.
  • the frequency of cell vibration information is converted into sound information.
  • the frequency conversion unit 32 includes a time-series data creation unit 321, a frequency conversion circuit 322, and a VF converter 323 as shown in FIG. 2.
  • time series data creation unit 321 When receiving the above input from the sample image input unit 31 and the region designating unit 40, the time series data creating unit 321 produces time series data S (tn) based on the coordinates or the luminance values Ii in the coordinate group in the designated region. Is to create.
  • time series data S (tn) created by the time series data creation unit 321 is expressed by an equation, for example, the following equation (2) or equation (3) is obtained.
  • Expression (2) represents time-series data S (tn) when the region designating unit 40 designates only one point of the cell.
  • S (tn) ⁇ Ii (tn) + ⁇
  • the subscript i represents the coordinate position (Xi, Yi) in the image information
  • represents the multiplication factor
  • represents the offset value
  • tn is a time parameter.
  • is a parameter corresponding to the vertical axis adjustment knob in the oscilloscope, that is, the signal intensity multiplication factor. If it is desired to observe a vibration of about 1 / 10,000 of the cell size, it is preferable to set the value of ⁇ so that the DC component becomes zero.
  • Expression (3) represents time-series data S (tn) when the region designating unit 40 designates a certain region of the cell.
  • S (tn) ⁇ [ ⁇ iIi (tn) + ⁇ i] (3)
  • the subscript i represents the coordinate position (Xi, Yi) in the image information
  • ⁇ i represents the coordinate position (Xi, Yi).
  • ⁇ i represents an offset value of the coordinate position (Xi, Yi)
  • tn is a time parameter.
  • the time series data creation unit 321 creates the time series signal S (tn) as shown in the above formula (2) or (3), and then uses the created time series signal S (tn) as the time series signal S1. (Tn) is input to the frequency conversion circuit 322.
  • the frequency conversion circuit 322 converts the time series signal S1 (tn) input from the time series data creation unit 321 into a time series signal S2 (tn).
  • the time-series signal S1 (tn) has a frequency band f1, and is a signal in a frequency band that is not audible to humans, although it is a signal in a frequency band that the observer wants to observe.
  • the time-series signal S2 (tn) has a frequency band of f2, and is a signal in a frequency band audible to humans.
  • the frequency conversion circuit 322 inputs a signal that is inaudible to humans from the time-series data creation unit 321 and converts the frequency into an audible signal.
  • FIG. 4 shows an example of the circuit configuration of the frequency conversion circuit 322.
  • the frequency conversion circuit 322 includes a high-pass filter 701, an amplifier 702, a multiplier 703, a low-pass filter 704, an amplifier 705, a multiplier 706, a high-pass filter 707, and an amplifier 708.
  • the frequency conversion circuit 322 converts the time series signal S1 (tn) to the time series signal S2 (tn) by providing the configuration shown in FIG.
  • fc represents the center frequency of the frequency band f1
  • fs represents the center frequency of the desired frequency band f2 in the audible range of the observer.
  • the bandwidth of f1 is fcw
  • the upper limit of f1 is fc + (fcw / 2)
  • the lower limit of f1 is fc ⁇ (fcw / 2).
  • the bandwidth of f2 is fsw
  • the upper limit of f2 is fs + (fsw / 2)
  • the lower limit of f2 is fs ⁇ (fsw / 2).
  • the time-series signal S1 (tn) input to the frequency conversion circuit 322 first passes only frequency components of fc ⁇ (fcw / 2) or higher by the high-pass filter 701.
  • the multiplier 703 multiplies the local oscillator signal of the frequency fc ⁇ (fcw / 2).
  • the above operation by the multiplier 703 is also referred to as down-conversion.
  • the observer may freely select the frequency fc ⁇ (fcw / 2) of the local oscillator signal by using the area designating unit 40. For example, when the region designating unit 40 is a mouse, the observer may perform the selection by rotating the mouse wheel. In this case, the bandwidth fcw may be fixedly set in advance.
  • the low frequency filter 704 is used to cut the sum frequency and output the difference frequency.
  • the amplifier 705 amplifies the signal strength to a desired level.
  • the signal output from the amplifier 705 includes a low-frequency frequency (generally 20 Hz or less) that is inaudible to humans, a frequency band that is most sensitive to the hearing of the observer using the multiplier 706 is used.
  • Frequency conversion This is performed by the multiplier 706 multiplying the signal output from the amplifier 705 by the local oscillator signal having the frequency fs ⁇ (fsw / 2).
  • the above operation by the multiplier 706 is also referred to as up-conversion.
  • This up-conversion has an effect of avoiding a non-audible sound range of 20 Hz or less, and further has an effect of converting a signal frequency to a frequency band that is most sensitive to an observer.
  • a method for selecting fs in the up-conversion for example, when the region designating unit 40 is a mouse, a method in which the observer freely selects fs by tilting the mouse wheel to the left or right is preferable.
  • the high-pass filter 707 extracts only the sum frequency from the sum frequency and the difference frequency output from the multiplier 706. Thereafter, when amplified to a desired intensity by the amplifier 708, a time-series signal S2 (tn) after frequency conversion is obtained.
  • the frequency conversion circuit 322 outputs the obtained time series signal S2 (tn) to the VF converter 323.
  • two multipliers of the multiplier 703 and the multiplier 706 are used, but the signal of the frequency fc ⁇ (fcw / 2) and the frequency fs ⁇ (fsw / 2).
  • the frequency conversion circuit 322 can be configured even by using a single multiplier.
  • FIG. 5 is a circuit configuration diagram of another form of the frequency conversion circuit 322.
  • the frequency conversion circuit 322 according to another embodiment has all the configurations of the frequency conversion circuit 322 of FIG. 4, and further includes a differentiator 709.
  • the time series signal S1 (tn) input to the frequency conversion circuit 322 first passes only the frequency component equal to or higher than fc ⁇ (fcw / 2) by the high pass filter 701.
  • the output signal from the high pass filter 701 is input to the differentiator 709.
  • the differentiator 709 plays a role of suppressing the DC component of the signal and emphasizing the temporal variation of the signal.
  • the frequency conversion circuit 322 including the differentiator 709 is a frequency conversion circuit that is particularly effective when the DC component is large and the variation is small.
  • the output signal from the differentiator 709 is input to the amplifier 702.
  • the operation after the amplifier 702 is the same as that of the frequency conversion circuit 322 in FIG.
  • the output signal from the high-pass filter 701 is passed n times by the differentiator 709, whereby n-order differentiation can be performed on the output signal.
  • the differentiator 709 may be provided after the multipliers 703 and 706 in FIG. 5, that is, before the amplifier 708.
  • FIG. 6 is a circuit configuration diagram of still another form of the frequency conversion circuit 322.
  • the frequency conversion circuit 322 includes a plurality of frequency conversion circuits (hereinafter referred to as “frequency converters”) described above with reference to FIG. Is output to an adder 710.
  • the adder 710 adds the outputs from the plurality of frequency converters to generate a time series signal S2 (tn), and outputs the generated time series signal S2 (tn) to the VF converter 323.
  • the local oscillator signals input to each frequency converter are distinguished by subscripts 1 to n.
  • the frequency conversion circuit described above with reference to FIG. 5 may be a “frequency converter”.
  • the VF converter 323 converts the strength of the time series signal S2 (tn) input from the frequency conversion circuit 322 into a high or low level.
  • FIG. 7 shows an example of the circuit configuration of the VF converter 323.
  • the VF converter 323 includes a high-pass filter 711, a VF converter element 712, and an amplifier 713.
  • the level of the sound is more easily distinguished from the level of the sound than the level of the sound. Therefore, the observer can convert the strength of the sound information to high or low with the configuration shown in FIG. 7 based on the sound information. There is an effect of improving the working efficiency when performing cell identification.
  • the VF converter 323 outputs a signal resulting from the conversion to the sound output unit 60.
  • the time series data creation unit 321 passes the frequency conversion circuit 322. Instead, the time series signal S (tn) may be output to the VF converter 323 as it is. In this case, although not shown, a means for determining whether or not the time series signal S (tn) is within the human audible range may be further provided.
  • the frequency conversion circuit 322 and the VF converter 323 are realized by electric circuits. However, the present invention is not limited to this, and the frequency conversion and VF conversion are performed by numerical calculation on a computer. May be.
  • the sound output unit 60 inputs a signal within the human audible range from the VF converter 323 and outputs the signal as a sound to the observer.
  • the sound output unit 60 can be composed of, for example, headphones or speakers. Further, when the sound output to the observer changes within a predetermined time interval of 2 ms, for example, the sound output unit 60 continues to output the sound before the change as a reverberant sound during the predetermined time interval. May be.
  • the time interval of 2 ms is a time interval corresponding to the time resolution of human hearing and can be changed as appropriate.
  • FIG. 8 is a flowchart showing an operation performed based on the cell stethoscope 1.
  • a cultured cell as a sample is set on the stage of the phase contrast microscope 10.
  • the observer puts the petri dish in which the cells are cultured on the stage of the phase contrast microscope 10, and then focuses while looking through the eyepiece (step S1).
  • the CCD camera 20 images the shape of the cultured cell displayed by the phase contrast microscope 10.
  • the CCD camera 20 outputs image information obtained by imaging to the sample image input unit 31 of the calculation unit 30 (step S2).
  • the sample image input unit 31 inputs image information captured by the CCD camera 20, and outputs the input image information to the time-series data creation unit 321 of the frequency conversion unit 32 and the image display unit 50 (step). S3, image input step).
  • the image display unit 50 displays the image information of the cultured cells input in step S3 from the sample image input unit 31 of the calculation unit 30 so as to be visible to the observer (step S4, image display step).
  • the region designating unit 40 determines a certain amount of the image information in accordance with an operation performed by the observer while viewing the image information displayed on the display screen of the image display unit 50. Specify an area.
  • the area specifying unit 40 outputs information specifying the specified fixed area to the time-series data creating unit 321 of the frequency converting unit 32 (step S5, area specifying step).
  • time-series data creating unit 321 receives the input in step S3 and step S5 from the sample image input unit 31 and the region designating unit 40, the time series data creating unit 321 is based on the luminance value Ii in the coordinate or coordinate group in the designated constant region. Time series data S (tn) is created.
  • the time series data creation unit 321 inputs the created time series signal S (tn) as the time series signal S1 (tn) to the frequency conversion circuit 322 (step S6).
  • the frequency conversion circuit 322 converts the time series signal S1 (tn) input from the time series data creation unit 321 into a time series signal S2 (tn).
  • the time series signal S1 (tn) is a signal in a frequency band that is inaudible for humans
  • the time series signal S2 (tn) is a signal in a frequency band that is audible for humans.
  • the frequency conversion circuit 322 outputs the frequency-converted time series signal S2 (tn) to the VF converter 323. (Step S7, conversion step).
  • the VF converter 323 converts the strength of the time-series signal S2 (tn) input from the frequency conversion circuit 322 into a high or low level and outputs it to the sound output unit 60 (step S8).
  • the sound output unit 60 inputs a signal within the human audible range from the VF converter 323, and outputs the signal as a sound to the observer (step S9, sound output step).
  • the observer identifies “living” cultured cells based on the output sound from the sound output unit 60 (step S10).
  • the observer can specify the region to be identified while placing the viewpoint on the image display unit 50 and listening to the output sound of the sound output unit 60.
  • Cell identification can be performed. That is, the observer can identify the cells based on the output sound from the sound output unit 60 without moving the viewpoint between when specifying the identification target and when performing identification. Therefore, since frequent viewpoint movement in the cell identification procedure is prevented, according to the first embodiment, it is possible to improve work efficiency when identifying a cell having a desired vibration state.
  • the observer can specify a region to be identified while looking at the display image of the image display unit 50. That is, the observer can designate a part of the area representing the cell without moving the cell itself from the same viewpoint as when the cell is identified. As a result, operability and throughput are increased, and work efficiency can be further increased.
  • the differentiator 709 is provided in the previous stage of the multipliers 703 and 706.
  • the differentiator 709 that suppresses the DC component and enhances the change in the frequency converter 32 the observer can hear a high sound when the vibration change of the cell is severe. As a result, the observer can obtain information on the vibration speed of the cells more efficiently and work efficiency is increased.
  • each of the plurality of frequency converters included in the frequency conversion unit 32 can perform the frequency conversion processing in parallel, and the adder 710 can output from the plurality of frequency converters. Add the outputs.
  • the frequency conversion unit 32 can quickly and efficiently convert cell vibration information into sound information for a plurality of frequency bands.
  • the sound output unit 60 can provide the observer with the frequency conversion unit 32 converting the degree of strength in the sound information to a high or low level. As a result, the observer can obtain information on the vibration speed of the cells more efficiently and work efficiency is improved.
  • the sound output unit 60 when the output sound of the sound output unit 60 changes, for example, at an interval shorter than the time interval corresponding to the time resolution of human hearing, that is, the output sound of the sound output unit 60 When the observer cannot recognize the change, the sound output unit 60 continues to output the output sound before the change as a reverberant sound during a time interval corresponding to the time resolution of human hearing.
  • the sound output unit 60 can make the observer recognize even an output sound that changes at an interval shorter than the time interval corresponding to the temporal resolution of human hearing. This is particularly useful when the time interval corresponding to the human auditory time resolution is set to 2 ms.
  • FIG. 9 is a functional block diagram illustrating the configuration of the cell stethoscope 2.
  • the cell stethoscope 2 includes all the components of the cell stethoscope 1 shown in FIG. 2, and further includes a two-dimensional PD array 80 (two-dimensional photodiode array) and an image database 90. Yes. Below, the component of the cell stethoscope 2 is demonstrated centering on a different point from the cell stethoscope 1 of 1st Embodiment.
  • the two-dimensional PD array 80 images the shape of cells displayed by the phase-contrast microscope 10 by light detection.
  • the two-dimensional PD array 80 can capture the shape of cells displayed by the phase-contrast microscope 10 with a high dynamic range of high-frequency vibrations than the CCD camera 20.
  • the two-dimensional PD array 80 outputs image information obtained by imaging to the sample image input unit 31 of the calculation unit 30.
  • the image database 90 is a database in which cell image information is stored in advance.
  • the sample image input unit 31 of the calculation unit 30 can connect to the image database 90 and read out the cell image information.
  • the image database 90 is installed outside the calculation unit 30, but may be installed inside the calculation unit 30. Further, the image database 90 may be a CD or a DVD, for example.
  • the sample image input unit 31 can input image information from any of a plurality of input sources.
  • the sample image input unit 31 may further include means for appropriately selecting any one or a plurality of input sources according to the work situation.
  • cell identification can be performed even offline based on cell vibration information acquired in advance. it can.
  • the region designating unit 40 when the region designating unit 40 performs designation so as to completely surround one cell, the entire volume variation of one cell may be output as an output sound.
  • time series data creation unit 321 may be configured to perform a two-dimensional Fourier transform for each frame of the time series data S (tn). In this case, it is possible to handle temporal changes in power spectrum intensity of only a desired spatial frequency as time series data S (tn).
  • the VF converter 323 may be omitted in the configuration of the frequency conversion unit 32.
  • the frequency conversion circuit 322 directly outputs the time series signal S2 (tn) to the sound output unit 60.
  • the VF converter 323 is omitted and the differentiator 709 is included in the components of the frequency conversion circuit 322
  • the observer can hear a loud sound when the change in cell vibration is severe.
  • both the VF converter 323 and the differentiator 709 are included in the constituent elements, the observer can hear a high sound when the vibration change of the cell is severe.
  • the phase-contrast microscope 10 is adopted as a microscope.
  • the present invention is not limited to this, and any microscope can be used as long as it has a mechanism capable of providing the observer with the cell shape in two dimensions. It can be used in place of the phase contrast microscope 10.
  • the phase difference can be obtained as luminance information without using the approximation as in the above equation (1).
  • the quantitative phase microscope in this case may be a Mach-Zehnder type, a Michelson type, or a Mirau interferometer, Linnik interferometer, or common path interferometer.
  • the illumination method is not limited to transmitted illumination, and reflected illumination (epi-illumination) may be performed.
  • phase contrast microscope 10 may be employed instead of the phase contrast microscope 10.
  • phase difference images between the vicinity of the two-dimensional plane are obtained, difference information between two adjacent points in the refractive index change and physical thickness can be obtained. As a result, common noise is canceled out, and measurement resistant to noise can be performed.
  • a fluorescence microscope when observing fluctuations in fluorescence intensity, a fluorescence microscope may be employed instead of the phase contrast microscope 10.
  • a laser scanning microscope may be employed instead of the phase contrast microscope 10.
  • the laser scanning microscope uses a method of obtaining a fluorescent image by scanning a cell in a two-dimensional direction using a laser light beam as a light source for illumination.
  • a mechanism that irradiates a laser beam to the position of the pointer pointed to by the observer, and a second light source that allows the observer to observe the whole cell in a two-dimensional manner And an optical system for combining and separating the laser beam and the observation light source by a dichroic mirror or the like.
  • the present invention provides a sample identification device and a sample identification method capable of improving work efficiency when identifying a sample having a desired vibration state.

Landscapes

  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)
  • Image Analysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

 細胞聴診器1は、細胞の画像情報を入力する試料画像入力部31と、画像情報を観察者に表示する画像表示部50と、画像表示部50が表示した画像情報を元に行われた観察者の操作に応じ、画像情報のうちの一定領域を指定する領域指定部40と、領域指定部40が指定した一定領域における細胞の振動情報を音情報に周波数変換する周波数変換部32と、周波数変換部32が周波数変換した音情報を観察者に出力する音出力部60と、を備える。 

Description

試料同定装置および試料同定方法
 本発明は、試料同定装置および試料同定方法に関するものである。
 近年のバイオテクノロジーの発展により、人工授精や再生医療が臨床で日常的に行われている。このような現場では、いわゆる「生きの良い」細胞を迅速に効率よく同定することが好ましい。通常、上記の同定は、細胞を撮像または計測した結果を観察者が肉眼で確認し、例えば単位時間当たりの振動数が多い細胞を「生きの良い」細胞として選ぶことにより行われる。
 特許文献1は、観察者が細胞を観察して同定を行うための装置の一例を示している。特許文献1では、細胞の振動信号をスペクトルアナライザー等によって周波数変換し、その結果をオシロスコープに表示している。このため、特許文献1に記載された装置を用いる観察者は、オシロスコープの出力画面を確認することにより、いわゆる「生きの良い」細胞を同定することができる。
特表平4-504055号公報
 上記の特許文献1の装置を用いて所望の振動状態を有する細胞を同定するために、観察者は、まず、試料保持台に置かれた細胞に視点を置きながら、細胞の位置調節を行い、観察対象となる領域を決定する(ステップS001)。次に、観察者は、オシロスコープに表示された情報を確認し、所望の振動状態の細胞が存在するかを確認する(ステップS002)。つまり、観察者は、ステップS001の位置調節後に、視点をオシロスコープの表示画面に一旦移動させなければならない。更に、ステップS002の確認にて所望の振動状態の細胞が存在しなかった場合には、視点を再び試料保持台に置かれた細胞に戻してからステップS001の観察対象領域決定手順を再び行わなければならない。一方、ステップS002の確認にて所望の振動状態の細胞が見つかった場合にも、ステップS001から始まる次なる細胞同定を再び行うためには、視点をまた試料保持台に置かれた細胞に戻さなければならない。このように、上記の特許文献1の装置による場合には、視点を頻繁に変えることによって作業スピードが落ちてしまうなど、作業効率の低下が懸念される。
 そこで、本発明は上記に鑑みてなされたもので、所望の振動状態を有する試料を同定する際に作業効率を高めることが可能な試料同定装置および試料同定方法を提供することを目的とする。
 上記課題を解決するために、本発明の試料同定装置は、試料の画像情報を入力する画像入力手段と、前記画像情報を観察者に表示する画像表示手段と、前記画像表示手段が表示した前記画像情報を元に行われた前記観察者の操作に応じ、前記画像情報のうちの一定領域を指定する領域指定手段と、前記領域指定手段が指定した前記一定領域における前記試料の振動情報を音情報に周波数変換する変換手段と、前記変換手段が周波数変換した前記音情報を前記観察者に出力する音出力手段と、を備える。
 また、本発明の試料同定方法は、画像入力手段が、試料の画像情報を入力する画像入力ステップと、画像表示手段が、前記画像情報を観察者に表示する画像表示ステップと、領域指定手段が、前記画像表示手段が表示した前記画像情報を元に行われた前記観察者の操作に応じ、前記画像情報のうちの一定領域を指定する領域指定ステップと、変換手段が、前記領域指定手段が指定した前記一定領域における前記試料の振動情報を音情報に周波数変換する変換ステップと、音出力手段が、前記変換手段が周波数変換した前記音情報を前記観察者に出力する音出力ステップと、を備える。
 このような本発明の試料同定装置および試料同定方法によれば、観察者は、画像表示手段に視点を置きながら同定対象となる領域を指定することができ、且つ音出力手段の出力する音を聞きながら試料の同定を行うことができる。つまり、観察者は、同定対象を指定する時と同定を行う時とで視点を移動することなく、音出力手段からの出力音に基づいて試料の同定を行うことができる。したがって、試料同定手順における頻繁な視点移動を防ぐことから、本発明によれば、所望の振動状態を有する試料を同定する際に作業効率を高めることが可能となる。
 また、本発明においては、観察者は、画像表示手段の表示画像を見ながら、同定対象となる領域を指定することができる。つまり、観察者は、試料同定時と同じ視点において、試料自体を動かすことなく、試料を表す領域中の一部の領域を指定することができる。このことにより、操作性およびスループットが増大し、作業効率を更に高めることができる。
 また、本発明においては、前記変換手段は、少なくとも1つの乗算器を含んで構成される周波数変換器を備え、前記周波数変換器における前記乗算器の前段または後段には、微分器が備えられていても良い。
 この発明によれば、乗算器の前段または後段には微分器が備えられている。直流成分を抑圧すると共に変化分を強調するとの作用がある微分器を本発明の変換手段に含ませることにより、観察者には、細胞の振動変化が激しいときに音量が大きく聞こえることとなる。その結果、観察者は試料の振動速度に関する情報をより効率的に得ることができ、作業効率が高まる。
 また、本発明においては、前記変換手段は、複数の前記周波数変換器と、前記複数の周波数変換器からの出力を加算する加算器とを備えても良い。
 この発明によれば、変換手段に含まれた複数の周波数変換器のそれぞれが並列的に周波数変換処理を行うことができ、加算器が当該複数の周波数変換器からの出力を加算する。このことにより、変換手段は複数の周波数帯域に対しても迅速に効率よく試料の振動情報を音情報に変換することができる。
 また、本発明においては、前記変換手段は、周波数変換した前記音情報における強弱の程度を当該音情報における高低の程度に変換する手段を更に備えても良い。
 この発明によれば、音出力手段は、変換手段が音情報における強弱の程度を高低の程度に変換したものを、観察者に提供できる。その結果、観察者は試料の振動速度に関する情報をより効率的に得ることができ、作業効率が向上する。
 また、本発明においては、前記音出力手段は、前記観察者に出力する音が所定の時間間隔以内で変化する場合に、当該変化前の音を前記所定の時間間隔の間で残響音として出力し続けても良い。
 また、本発明において、前記所定の時間間隔は、2msであっても良い。
 これらの発明によれば、音出力手段の出力音が、例えば、人間の聴覚の時間分解能に相当する時間間隔よりも短い間隔で変化した場合に、つまり音出力手段の出力音の変化を観察者が認識できない場合に、音出力手段は当該変化前の出力音を人間の聴覚の時間分解能に相当する時間間隔の間で残響音として出力し続ける。このことにより、音出力手段は、人間の聴覚の時間分解能に相当する時間間隔よりも短い間隔で変化した出力音であっても、観察者に認識させることができる。これは、人間の聴覚の時間分解能に相当する時間間隔を2msと設定した場合に、特に有用である。
 また、本発明においては、前記画像入力手段は、位相差顕微鏡および二次元フォトダイオードアレイより、前記試料の前記画像情報を入力しても良い。
 この発明によれば、高周波数の、かつ微少な振動状態の試料同定を行うことができる。
 また、本発明においては、前記画像入力手段は、前記試料の前記画像情報が予め格納されたデータベースより、前記試料の前記画像情報を入力しても良い。
 この発明によれば、予め取得した試料の振動情報を元に、オフラインでも、試料同定を行うことができる。
 本発明によれば、所望の振動状態を有する試料を同定する際に作業効率を高めることが可能な試料同定装置および試料同定方法を提供することができる。
本発明の第1実施形態にかかる細胞聴診器1の構成をイメージした機能ブロック図である。 本発明の第1実施形態にかかる細胞聴診器1の構成をイメージした機能ブロック図である。 領域指定部40により一定領域が指定された様子をイメージした図である。 周波数変換回路322の回路構成図の一例である。 周波数変換回路322の別の形態における回路構成図である。 周波数変換回路322の更に別の形態における回路構成図である。 VFコンバータ323の回路構成図の一例である。 細胞聴診器1に基づいて行われる動作を示すフローチャートである。 本発明の第2実施形態にかかる細胞聴診器2の構成をイメージした機能ブロック図である。
符号の説明
1,2…細胞聴診器、10…位相差顕微鏡、20…CCDカメラ、30…計算部、31…試料画像入力部、32…周波数変換部、321…時系列データ作成部、322…周波数変換回路、323…VFコンバータ、40…領域指定部、50…画像表示部、60…音出力部、701,707,711…ハイパスフィルタ、702,705,708,713…アンプ、703,706…乗算器、704…ローパスフィルタ、709…微分器、710…加算器、712…コンバータ素子、80…二次元PDアレイ、90…画像データベース。
 以下、添付図面を参照して本発明にかかる試料同定装置および試料同定方法の好適な実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 [第1実施形態]
 (細胞聴診器1の全体構成)
 まず、本発明の第1実施形態に係る細胞聴診器1(試料同定装置)の構成について、図1および図2を参照しながら説明する。図1および図2は、細胞聴診器1の構成をイメージしている。図1および図2に示すように、細胞聴診器1は、位相差顕微鏡10、CCDカメラ20、計算部30、領域指定部40(領域指定手段)、画像表示部50(画像表示手段)、および音出力部60(音出力手段)から構成される。CCDカメラ20、領域指定部40、画像表示部50、および音出力部60は、それぞれ、計算部30と通信可能に接続されている。以下、細胞聴診器1の各構成要素について詳細に説明する。
 (位相差顕微鏡10)
 位相差顕微鏡10は、細胞(試料)の形状を二次元で観察者に提供するものである。位相差顕微鏡10は、細胞の光学的厚みを近似的にて光強度に変換する原理を用いることができる。位相差顕微鏡10の動作原理を数式で表現すると、例えば下記の式(1)となる。
 I=∥exp(iφ)∥~φ…(1)
 ただし、上記の式(1)において、Iは輝度値を表し、iは虚数単位を表し、φは位相差を表す。また∥は絶対値を表す。観察者は、上記の式(1)に基づく位相差顕微鏡10を用いることにより、細胞における屈折率の変化や物理的な厚みの変化を輝度情報として観察することができる。
 (CCDカメラ20)
 CCDカメラ20は、位相差顕微鏡10により表示される細胞の形状を撮像するものである。CCDカメラ20は、撮像により得た画像情報を計算部30に出力する。
 (計算部30)
 計算部30は、細胞聴診器1における各種計算を行うものである。計算部30は、図示はしないが、物理的には、CPU、ROM及びRAM等の主記憶装置、他の構成要素との間でデータの送受信を行うためのネットワークカード等の通信モジュール、ハードディスク等の補助記憶装置などを含む通常のコンピュータシステムとして構成される。後述する計算部30の各機能は、CPU、ROM、RAM等のハードウェア上に所定のコンピュータソフトウェアを読み込ませることにより、CPUの制御の元で通信モジュール等を動作させると共に、主記憶装置や補助記憶装置におけるデータの読み出し及び書き込みを行うことで実現される。
 計算部30は、機能的には、図1および図2に示すように、試料画像入力部31(画像入力手段)、および周波数変換部32(変換手段)を備えて構成される。
 (試料画像入力部31)
 試料画像入力部31は、CCDカメラ20が撮像した画像情報を入力するものである。計算部30には通信モジュールとしてフレームグラバーカードが備えられていても良く、この場合に試料画像入力部31はフレームグラバーカードを通じてCCDカメラ20が撮像した画像情報を入力することができる。試料画像入力部31は、入力した画像情報を周波数変換部32および画像表示部50に出力する。
 (画像表示部50)
 説明の便宜上、画像表示部50について先に説明する。画像表示部50は、図1に示すように、例えばモニター等のディスプレイ装置であり、計算部30の試料画像入力部31より入力した細胞の画像情報を観察者に見えるように表示するものである。
 (領域指定部40)
 次に、領域指定部40について説明する。領域指定部40は、例えばマウスやポインター等の入力装置であり、画像表示部50の表示画面に表示された細胞の画像情報を見ながら行われた観察者の操作に応じ、当該画像情報のうちの一定領域を指定するものである。図3は、領域指定部40により、細胞Cの画像情報のうちの一定の領域Aが指定された様子をイメージした図である。なお、図3には5つの細胞が模式的に描画されており、1つの細胞中の丸印は細胞核を表現している。図3に示すように、画像表示部50の表示画面には細胞Cの画像情報が単位時間(t0、t1、…、tn)毎のフレーム(xy座標を有するフレームF0、F1、…、Fn)にて表示されている。観察者は、マウスやポインターを操作して、表示画面中の矢印Pを自在に動かすことができる。矢印Pは、表示画面中の位相差像(フレームF0、F1、…、Fn)にて重なって表示されている。図3は、観察者により位相差像中の一定の領域である領域Aが指定されたことがイメージされている。観察者はマウスを用いて矢印Pをドラックすることにより領域Aを指定することができる。また、図示はしないが、観察者は、一定の領域に限らずに、観察したい細胞の一点のみを例えばマウスをクリックすることにより指定することができる。領域指定部40は、上記のように指定した一定領域(または一点)を特定する情報、例えばフレームF0、F1、…、Fnにおけるそれぞれのxy座標群または座標を表す情報を周波数変換部32に出力する。
 (周波数変換部32)
 続いて、図1および図2を再び参照しながら計算部30の説明に戻る。周波数変換部32は、画像情報を試料画像入力部31より入力され、且つ観察者により指定された一定領域を特定する情報を領域指定部40より入力されると、当該画像情報中の当該一定領域における細胞の振動情報を音情報に周波数変換するものである。周波数変換部32は、機能的には、図2に示すように、時系列データ作成部321、周波数変換回路322、およびVFコンバータ323を備えている。
 (時系列データ作成部321)
 時系列データ作成部321は、試料画像入力部31および領域指定部40より上記の入力を受けると、指定された一定領域における座標または座標群における輝度値Iiを元に時系列データS(tn)を作成するものである。時系列データ作成部321が作成した時系列データS(tn)を数式で表現すると、例えば下記の式(2)または式(3)となる。
 式(2)は、領域指定部40が細胞の一点のみを指定した場合の時系列データS(tn)を表す。
S(tn)=αIi(tn)+β…(2)
 ただし、上記の式(2)において、添え字iは画像情報における座標位置(Xi,Yi)を表し、αは増倍率を表し、βはオフセット値を表し、tnは時刻のパラメータである。なお、αはオシロスコープにおける縦軸調整つまみ、つまり信号強度の増倍率に相当するパラメータである。なお、細胞の大きさの1/10000程度の振動を観察したい場合には、DC成分が0となるように、βの値を設定することが好ましい。
 式(3)は、領域指定部40が細胞の一定領域を指定した場合の時系列データS(tn)を表す。
S(tn)=Σ[αiIi(tn)+βi]…(3)
 ただし、上記の式(3)においても、上記の式(2)の場合と同様に、添え字iは画像情報における座標位置(Xi,Yi)を表し、αiは座標位置(Xi,Yi)の増倍率を表し、βiは座標位置(Xi,Yi)のオフセット値を表し、tnは時刻のパラメータである。
 時系列データ作成部321は、上記の式(2)または式(3)に示すような時系列信号S(tn)を作成した後に、当該作成した時系列信号S(tn)を時系列信号S1(tn)として周波数変換回路322に入力する。
 (周波数変換回路322、その1)
 周波数変換回路322は、時系列データ作成部321より入力した時系列信号S1(tn)を時系列信号S2(tn)に周波数変換するものである。時系列信号S1(tn)は周波数帯域がf1であり、観察者が観測したい周波数帯域の信号ではあるが、人間にとって非可聴の周波数帯域の信号である。また、時系列信号S2(tn)は周波数帯域がf2であり、人間にとって可聴の周波数帯域の信号である。つまり、周波数変換回路322は、人間にとって非可聴の信号を時系列データ作成部321より入力して、可聴の信号に周波数変換するものである。
 図4は、周波数変換回路322の回路構成の一例を示す。図4に示すように、周波数変換回路322は、ハイパスフィルタ701、アンプ702、乗算器703、ローパスフィルタ704、アンプ705、乗算器706、ハイパスフィルタ707、およびアンプ708を備えて構成される。周波数変換回路322は、図4に示す構成を備えることにより、時系列信号S1(tn)を時系列信号S2(tn)に周波数変換する。なお、周波数変換回路322において、fcは周波数帯域f1の中心周波数を表し、fsは観察者の可聴域における所望の周波数帯域f2の中心周波数を表す。したがって、f1の帯域幅がfcwである場合に、f1の上限はfc+(fcw/2)であり、f1の下限はfc―(fcw/2)である。また、f2の帯域幅がfswである場合に、f2の上限はfs+(fsw/2)であり、f2の下限はfs―(fsw/2)である。
 図4に示すように、周波数変換回路322に入力された時系列信号S1(tn)は、まず、ハイパスフィルタ701にてfc―(fcw/2)以上の周波数成分のみが通過される。次に、アンプ702により所望の信号強度に増幅されると、乗算器703により周波数fc―(fcw/2)のローカルオシレータ信号と乗算される。乗算器703による以上の動作をダウンコンバートともいう。ここで、観察者がローカルオシレータ信号の周波数fc―(fcw/2)を領域指定部40を用いて自在に選択できるようにしても良い。例えば領域指定部40がマウスである場合に、観察者がマウスのホイールを回転させることにより上記選択を行えるようにしても良い。また、この場合に、帯域幅fcwを予め固定的に設定しておいても良い。以上の構成により、元信号S1(tn)が人間の可聴域を超えた周波数であっても、人間の可聴域に周波数変換することができる。
 次に、乗算器703から出力された信号には差周波数と和周波数とが含まれているため、ローパスフィルタ704を用いて和周波数をカットすると共に差周波数を出力する。次に、アンプ705により所望の信号強度に増幅する。
 次に、アンプ705から出力された信号には人間にとって非可聴な低域の周波数(一般に20Hz以下)が含まれているため、乗算器706を用いて観察者の聴力にとって最も感度の良い周波数帯域に周波数変換する。これは、乗算器706により、アンプ705から出力された信号と周波数fs―(fsw/2)のローカルオシレータ信号とを乗算させることにより行われる。乗算器706による以上の動作をアップコンバートともいう。このアップコンバートは、20Hz以下の非可聴音域を避けるという効果があり、更には、観察者にとって最も感度の良い周波数帯域に信号周波数を変換するという効果がある。アップコンバートにおけるfsを選択する方法としては、例えば領域指定部40がマウスである場合に、観察者がマウスのホイールを左右にチルトさせることにより自在にfsを選択させる方法が好適である。
 次に、ハイパスフィルタ707が乗算器706から出力される和周波数と差周波数のうちで和周波数のみを取り出す。その後、アンプ708により所望の強度に増幅されると、周波数変換後の時系列信号S2(tn)が得られる。周波数変換回路322は、当該得られた時系列信号S2(tn)をVFコンバータ323に出力する。なお、周波数変換回路322に関する以上の説明では、乗算器703および乗算器706の二つの乗算器を用いているが、周波数fc―(fcw/2)の信号と周波数fs―(fsw/2)の信号とを一回の乗算で乗算させる場合には、一つの乗算器を用いても周波数変換回路322を構成することができる。
 (周波数変換回路322、その2)
 続いて、図5を参照しながら、周波数変換回路322の別の形態について説明する。図5は、周波数変換回路322の別の形態における回路構成図である。図5に示すように、別の形態における周波数変換回路322は、図4の周波数変換回路322の構成を全て有している上で、微分器709を更に有している。
 図5を参照すると、周波数変換回路322に入力された時系列信号S1(tn)は、まず、ハイパスフィルタ701にてfc―(fcw/2)以上の周波数成分のみが通過される。次に、ハイパスフィルタ701からの出力信号は微分器709に入力される。微分器709は、信号の直流成分を抑圧すると共に、信号の時間的な変動を強調する役割を果たす。このため、微分器709を含む周波数変換回路322は、直流成分が多く且つ変動分が少ない場合に、特に有効な周波数変換回路である。次に、微分器709からの出力信号はアンプ702に入力される。アンプ702以後の動作については、図4の周波数変換回路322と同じであるため、説明を省略する。なお、ハイパスフィルタ701からの出力信号を微分器709にてn回通過させることにより、当該出力信号に対してn次微分を行うことができる。また、図には示さないが、微分器709を、図5中の乗算器703、706の後段、すなわち増幅器708の前段においてもよい。
 (周波数変換回路322、その3)
 続いて、図6を参照しながら、周波数変換回路322の更に別の形態について説明する。図6は、周波数変換回路322の更に別の形態における回路構成図である。図6に示すように、更に別の形態における周波数変換回路322は、図4を参照しながら上記説明した周波数変換回路(以下、「周波数変換器」という。)を複数備え、それぞれの周波数変換器からの出力が加算器710に入力されるように構成されている。加算器710は、複数の周波数変換器からの出力を加算して時系列信号S2(tn)を生成し、当該生成した時系列信号S2(tn)をVFコンバータ323に出力する。なお、図6においては、各周波数変換器に入力されるローカルオシレータ信号を1からnの添え字で区別している。また、図示はしないが、図5を参照しながら上記説明した周波数変換回路を「周波数変換器」としても良い。
 (VFコンバータ323)
 VFコンバータ323は、周波数変換回路322より入力した時系列信号S2(tn)における強弱の程度を高低の程度に変換するものである。図7は、VFコンバータ323の回路構成の一例を示す。図7に示すように、VFコンバータ323は、ハイパスフィルタ711、VFコンバータ素子712、およびアンプ713を備えて構成される。人間にとっては音の強弱よりは音の高低の方が音に対する区別が付きやすいため、図7に示した構成により音情報の強弱を高低に変換することは、観察者が当該音情報に基づいて細胞同定を行う際の作業効率を高めるとの効果を奏する。VFコンバータ323は、当該変換した結果となる信号を音出力部60に出力する。
 なお、図示はしないが、時系列データ作成部321が作成した時系列信号S(tn)が既に人間の可聴域内に入っている場合には、時系列データ作成部321は周波数変換回路322を通さずに時系列信号S(tn)をそのままVFコンバータ323に出力しても良い。この場合には、図示はしないが、時系列信号S(tn)が人間の可聴域内に入っているか否かを判断する手段を更に設けても良い。また、周波数変換部32に関する以上の説明では、周波数変換回路322およびVFコンバータ323を電気回路で実現したが、これに限らずに、コンピュータ上での数値計算により周波数変換およびVF変換を行うようにしても良い。
 (音出力部60)
 音出力部60は、人間の可聴域内の信号をVFコンバータ323より入力し、当該信号を音として観察者に出力するものである。音出力部60は、例えばヘッドホンやスピーカで構成することができる。また、音出力部60は、観察者に出力する音が例えば2msの所定の時間間隔以内で変化する場合に、当該変化前の音を上記の所定の時間間隔の間で残響音として出力し続けても良い。この2msとの時間間隔は、人間の聴覚の時間分解能に相当する時間間隔であり、適宜変更可能なものである。
 (細胞聴診器1の動作)
 続いて、細胞聴診器1に基づいて行われる動作について、図8を参照しながら説明する。図8は、細胞聴診器1に基づいて行われる動作を示すフローチャートである。
 最初に、試料である培養細胞が位相差顕微鏡10のステージ上にセットされる。観察者は、細胞が培養されたシャーレーを位相差顕微鏡10のステージ上に置いた後に、アイピースを覗きながら、フォーカスをあわせる(ステップS1)。
 次に、CCDカメラ20が、位相差顕微鏡10により表示される培養細胞の形状を撮像する。CCDカメラ20は、撮像により得た画像情報を計算部30の試料画像入力部31に出力する(ステップS2)。
 次に、試料画像入力部31が、CCDカメラ20が撮像した画像情報を入力し、当該入力した画像情報を周波数変換部32の時系列データ作成部321、および画像表示部50に出力する(ステップS3、画像入力ステップ)。
 次に、画像表示部50が、計算部30の試料画像入力部31よりステップS3にて入力した培養細胞の画像情報を観察者に見えるように表示する(ステップS4、画像表示ステップ)。
 次に、領域指定部40が、例えば図3に示すように、画像表示部50の表示画面に表示された画像情報を見ながら行われた観察者の操作に応じ、当該画像情報のうちの一定領域を指定する。領域指定部40は、当該指定した一定領域を特定する情報を周波数変換部32の時系列データ作成部321に出力する(ステップS5、領域指定ステップ)。
 次に、時系列データ作成部321が、試料画像入力部31および領域指定部40よりステップS3およびステップS5における入力を受けると、指定された一定領域における座標または座標群における輝度値Iiを元に時系列データS(tn)を作成する。時系列データ作成部321は、当該作成した時系列信号S(tn)を時系列信号S1(tn)として周波数変換回路322に入力する(ステップS6)。
 次に、周波数変換回路322が、時系列データ作成部321より入力した時系列信号S1(tn)を時系列信号S2(tn)に周波数変換する。時系列信号S1(tn)は人間にとって非可聴の周波数帯域の信号であり、時系列信号S2(tn)は人間にとって可聴の周波数帯域の信号である。周波数変換回路322は、当該周波数変換した時系列信号S2(tn)をVFコンバータ323に出力する。(ステップS7、変換ステップ)。
 次に、VFコンバータ323が、周波数変換回路322より入力した時系列信号S2(tn)における強弱の程度を高低の程度に変換して音出力部60に出力する(ステップS8)。
 次に、音出力部60が、人間の可聴域内の信号をVFコンバータ323より入力し、当該信号を音として観察者に出力する(ステップS9、音出力ステップ)。
 次に、観察者が音出力部60からの出力音を元に、「生きの良い」培養細胞を同定する(ステップS10)。
 (細胞聴診器1の作用及び効果)
 続いて、第1実施形態にかかる細胞聴診器1の作用及び効果について説明する。第1実施形態にかかる細胞聴診器1によれば、観察者は、画像表示部50に視点を置きながら同定対象となる領域を指定することができ、且つ音出力部60の出力音を聞きながら細胞の同定を行うことができる。つまり、観察者は、同定対象を指定する時と同定を行う時とで視点を移動することなく、音出力部60からの出力音に基づいて細胞の同定を行うことができる。したがって、細胞同定手順における頻繁な視点移動を防ぐことから、第1実施形態によれば、所望の振動状態を有する細胞を同定する際に作業効率を高めることが可能となる。
 また、第1実施形態においては、観察者は、画像表示部50の表示画像を見ながら、同定対象となる領域を指定することができる。つまり、観察者は、細胞同定時と同じ視点において、細胞自体を動かすことなく、細胞を表す領域中の一部の領域を指定することができる。このことにより、操作性およびスループットが増大し、作業効率を更に高めることができる。
 また、第1実施形態によれば、乗算器703、706の前段には微分器709が備えられている。直流成分を抑圧すると共に変化分を強調するとの作用がある微分器709を周波数変換部32に含ませることにより、観察者には、細胞の振動変化が激しいときに音が高く聞こえることとなる。その結果、観察者は細胞の振動速度に関する情報をより効率的に得ることができ、作業効率が高まる。
 また、第1実施形態によれば、周波数変換部32に含まれた複数の周波数変換器のそれぞれが並列的に周波数変換処理を行うことができ、加算器710が当該複数の周波数変換器からの出力を加算する。このことにより、周波数変換部32は複数の周波数帯域に対しても迅速に効率よく細胞の振動情報を音情報に変換することができる。
 また、第1実施形態によれば、音出力部60は、周波数変換部32が音情報における強弱の程度を高低の程度に変換したものを、観察者に提供できる。その結果、観察者は細胞の振動速度に関する情報をより効率的に得ることができ、作業効率が向上する。
 また、第1実施形態によれば、音出力部60の出力音が、例えば、人間の聴覚の時間分解能に相当する時間間隔よりも短い間隔で変化した場合に、つまり音出力部60の出力音の変化を観察者が認識できない場合に、音出力部60は当該変化前の出力音を人間の聴覚の時間分解能に相当する時間間隔の間で残響音として出力し続ける。このことにより、音出力部60は、人間の聴覚の時間分解能に相当する時間間隔よりも短い間隔で変化した出力音であっても、観察者に認識させることができる。これは、人間の聴覚の時間分解能に相当する時間間隔を2msと設定した場合に、特に有用である。
 [第2実施形態]
 (細胞聴診器2の構成)
 続いて、本発明の第2実施形態にかかる細胞聴診器2について説明する。図9は、細胞聴診器2の構成をイメージした機能ブロック図である。図9に示すように、細胞聴診器2は、図2に示した細胞聴診器1の構成要素を全て含み、二次元PDアレイ80(二次元フォトダイオードアレイ)、および画像データベース90を更に備えている。以下では、第1実施形態の細胞聴診器1と異なる点を中心に細胞聴診器2の構成要素について説明する。
 二次元PDアレイ80は、位相差顕微鏡10により表示される細胞の形状を光検出によって撮像するものである。一般的に二次元PDアレイ80は、CCDカメラ20より高周波振動を高いダイナミックレンジで、位相差顕微鏡10により表示される細胞の形状を撮像することができる。二次元PDアレイ80は、撮像により得た画像情報を計算部30の試料画像入力部31に出力する。
 画像データベース90は、細胞の画像情報が予め格納されたデータベースである。計算部30の試料画像入力部31は画像データベース90に接続して細胞の画像情報を読み出すことができる。なお、図9では、画像データベース90が計算部30の外部に設置されているが、計算部30の内部に設置されていてもかまわない。また、画像データベース90が例えばCDやDVDであっても良い。
 以上の説明のように、第2実施形態の細胞聴診器2においては、計算部30の試料画像入力部31に画像情報を入力する入力元が複数存在している。試料画像入力部31は、複数の入力元のうちの何れのものからでも画像情報を入力することができる。また、試料画像入力部31は、複数の入力元のうちで何れか一つまたは複数のものを作業状況に応じて適宜に選択する手段を更に備えていても良い。
 (細胞聴診器2の作用及び効果)
 続いて、第2実施形態にかかる細胞聴診器2の作用及び効果について説明する。第2実施形態にかかる細胞聴診器2によれば、細胞の画像情報を二次元PDアレイ80より入力することから、所望の振動状態の細胞同定をリアルタイムおよび高検出感度で行うことができる。
 また、第2実施形態にかかる細胞聴診器2によれば、細胞の画像情報を画像データベース90より入力することから、予め取得した細胞の振動情報を元に、オフラインでも、細胞同定を行うことができる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されないことは言うまでもない。
 例えば、領域指定部40が一つの細胞を完全に囲むような指定を行った場合には、一つの細胞の全体の体積変動が出力音として出力されるように構成しても良い。
 また、時系列データ作成部321が時系列データS(tn)の1フレーム毎に2次元フーリエ変換を施すように構成しても良い。この場合には、所望の空間周波数のみのパワースペクトル強度の時間的変化を時系列データS(tn)として扱うことが可能となる。
 また、上記実施形態ではVFコンバータ323を用いた場合について説明したが、周波数変換部32の構成においてVFコンバータ323を省略することも可能である。この場合の周波数変換回路322は時系列信号S2(tn)を音出力部60に直接出力する。VFコンバータ323を省略し、且つ微分器709を周波数変換回路322の構成要素に含めた場合には、観察者には、細胞の振動変化が激しいときに音量が大きく聞こえる。一方、VFコンバータ323および微分器709の両方を構成要素に含めた場合には、観察者には、細胞の振動変化が激しいときに音が高く聞こえる。
 また、上記実施形態においては、位相差顕微鏡10を顕微鏡として採用したが、これに限られることなく、細胞の形状を2次元で観察者に提供できる機構を備えたものであれば、どんな顕微鏡でも位相差顕微鏡10の代わりに利用可能である。例えば、位相差顕微鏡に定量性を持たせた定量位相顕微鏡を使えば、上述の式(1)のような近似を使うことなく、位相差が輝度情報として得られる。この場合の定量位相顕微鏡は、マッハツェンダ型であっても良く、マイケルソン型であっても良く、Mirau干渉計、Linnik干渉計、コモンパス干渉計であっても良い。また、照明方法としては、透過照明に限らず、反射照明(落射照明)を行っても良い。
 また、位相差顕微鏡10の代わりに微分干渉顕微鏡を採用しても良い。この場合には、二次元平面の近傍同士の位相差像が得られることから、屈折率変化や物理的厚みにおける隣り合う2点の差分情報を得ることができる。その結果、コモンノイズが相殺され、ノイズに強い計測を行うことができる。
 また、例えばFluorescenceCorrelation Spectroscopyに示されるように、蛍光強度の揺らぎを観察する場合には、位相差顕微鏡10の代わりに蛍光顕微鏡を採用しても良い。
 また、位相差顕微鏡10の代わりにレーザー走査型顕微鏡を採用しても良い。レーザー走査型顕微鏡は、照明用の光源としてレーザー光ビームを用い、2次元方向に細胞をスキャンすることで蛍光画像を得る手法を用いるものである。このレーザー走査型顕微鏡のレーザースキャニングの手法を用いる場合には、観察者が指し示すポインターの位置にレーザービームを照射する機構と、観察者に細胞の全体像が2次元的に観察できる第2の光源と、ダイクロイックミラー等でレーザービームと観察用光源を合波および分離する光学系とを備える。
 本発明は、所望の振動状態を有する試料を同定する際に作業効率を高めることができる試料同定装置および試料同定方法を提供する。

Claims (9)

  1.  試料の画像情報を入力する画像入力手段と、
     前記画像情報を観察者に表示する画像表示手段と、
     前記画像表示手段が表示した前記画像情報を元に行われた前記観察者の操作に応じ、前記画像情報のうちの一定領域を指定する領域指定手段と、
     前記領域指定手段が指定した前記一定領域における前記試料の振動情報を音情報に周波数変換する変換手段と、
     前記変換手段が周波数変換した前記音情報を前記観察者に出力する音出力手段と、
     を備えることを特徴とする試料同定装置。
  2.  前記変換手段は、少なくとも1つの乗算器を含んで構成される周波数変換器を備え、
     前記周波数変換器における前記乗算器の前段または後段には、微分器が備えられていることを特徴とする請求項1に記載の試料同定装置。
  3.  前記変換手段は、複数の前記周波数変換器と、前記複数の周波数変換器からの出力を加算する加算器とを備えることを特徴とする請求項2に記載の試料同定装置。
  4.  前記変換手段は、周波数変換した前記音情報における強弱の程度を当該音情報における高低の程度に変換する手段を更に備えることを特徴とする請求項1~3の何れか1項に記載の試料同定装置。
  5.  前記音出力手段は、前記観察者に出力する音が所定の時間間隔以内で変化する場合に、当該変化前の音を前記所定の時間間隔の間で残響音として出力し続けることを特徴とする請求項1~4の何れか1項に記載の試料同定装置。
  6.  前記所定の時間間隔は、2msであることを特徴とする請求項5に記載の試料同定装置。
  7.  前記画像入力手段は、位相差顕微鏡および二次元フォトダイオードアレイより、前記試料の前記画像情報を入力することを特徴とする請求項1~6の何れか1項に記載の試料同定装置。
  8.  前記画像入力手段は、前記試料の前記画像情報が予め格納されたデータベースより、前記試料の前記画像情報を入力することを特徴とする請求項1~7の何れか1項に記載の試料同定装置。
  9.  画像入力手段が、試料の画像情報を入力する画像入力ステップと、
     画像表示手段が、前記画像情報を観察者に表示する画像表示ステップと、
     領域指定手段が、前記画像表示手段が表示した前記画像情報を元に行われた前記観察者の操作に応じ、前記画像情報のうちの一定領域を指定する領域指定ステップと、
     変換手段が、前記領域指定手段が指定した前記一定領域における前記試料の振動情報を音情報に周波数変換する変換ステップと、
     音出力手段が、前記変換手段が周波数変換した前記音情報を前記観察者に出力する音出力ステップと、
     を備えることを特徴とする試料同定方法。
PCT/JP2008/070331 2007-12-21 2008-11-07 試料同定装置および試料同定方法 WO2009081661A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112008003471.0T DE112008003471B4 (de) 2007-12-21 2008-11-07 Probenidentifizierungs-Vorrichtung und Probenidentifizierungs-Verfahren
US12/808,907 US8867815B2 (en) 2007-12-21 2008-11-07 Sample identification device and sample identification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007330468A JP5160878B2 (ja) 2007-12-21 2007-12-21 試料同定装置および試料同定方法
JP2007-330468 2007-12-21

Publications (1)

Publication Number Publication Date
WO2009081661A1 true WO2009081661A1 (ja) 2009-07-02

Family

ID=40800977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070331 WO2009081661A1 (ja) 2007-12-21 2008-11-07 試料同定装置および試料同定方法

Country Status (4)

Country Link
US (1) US8867815B2 (ja)
JP (1) JP5160878B2 (ja)
DE (1) DE112008003471B4 (ja)
WO (1) WO2009081661A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012010758A2 (pt) 2009-11-05 2019-09-24 Sequent Medical Inc dispositivos filamentares de camadas múltiplas para tratamento de defeitos vasculares
JP5713251B2 (ja) * 2010-01-22 2015-05-07 国立大学法人浜松医科大学 細胞判別方法、細胞判別用の参照データ生成方法、および細胞判別装置
JP5457262B2 (ja) * 2010-04-23 2014-04-02 浜松ホトニクス株式会社 膜電位変化検出装置および膜電位変化検出方法
JP5804441B2 (ja) * 2011-05-18 2015-11-04 株式会社ニコン 顕微鏡システム
US11085901B2 (en) * 2014-08-19 2021-08-10 Dan Slater Acoustical microscope
JP5969640B2 (ja) * 2015-02-26 2016-08-17 浜松ホトニクス株式会社 細胞判別方法および細胞判別装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504055A (ja) * 1989-03-15 1992-07-23 ドゥ サント―アガト、ニコラス 振動測定法による生きた微生物の検出及び/又は同定方法
JPH10321179A (ja) * 1997-05-23 1998-12-04 Nikon Corp 走査型電子顕微鏡のパラメータ入力装置
JPH11219130A (ja) * 1998-01-29 1999-08-10 Shimadzu Corp 表示システム
JP2002078995A (ja) * 2000-09-06 2002-03-19 Pegasus Sewing Mach Mfg Co Ltd 縫製不良検出装置
JP2004000046A (ja) * 2002-05-31 2004-01-08 Osaka Gas Co Ltd 細胞が発信する音波の周波数測定方法
JP2006071430A (ja) * 2004-09-01 2006-03-16 Hitachi Medical Corp 診断支援システム
WO2006112210A1 (ja) * 2005-03-31 2006-10-26 Pioneer Corporation 音声出力装置、音声出力方法、音声出力プログラム、および記録媒体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430897A (en) * 1981-05-14 1984-02-14 The Board Of Trustees Of The Leland Stanford University Acoustic microscope and method
JPS58122456A (ja) * 1982-01-14 1983-07-21 Hitachi Ltd 超音波顕微鏡
IT1228925B (it) * 1987-08-07 1991-07-10 Eniricerche Spa Procedimento per la preparazione dell'ormone della crescita umano
GB8926781D0 (en) * 1989-11-27 1990-01-17 Nat Res Dev Identification of micro-organisms
US6272235B1 (en) * 1997-03-03 2001-08-07 Bacus Research Laboratories, Inc. Method and apparatus for creating a virtual microscope slide
DE10143441A1 (de) * 2001-09-05 2003-03-27 Leica Microsystems Verfahren und Mikroskopsystem zur Beobachtung dynamischer Prozesse
EP1538865B1 (en) * 2002-08-30 2010-06-30 National University Corporation Nara Institute of Science and Technology Microphone and communication interface system
JP4504055B2 (ja) 2004-03-22 2010-07-14 株式会社神田製作所 ロールペーパーホルダー装置
US7711174B2 (en) * 2004-05-13 2010-05-04 The Charles Stark Draper Laboratory, Inc. Methods and systems for imaging cells

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504055A (ja) * 1989-03-15 1992-07-23 ドゥ サント―アガト、ニコラス 振動測定法による生きた微生物の検出及び/又は同定方法
JPH10321179A (ja) * 1997-05-23 1998-12-04 Nikon Corp 走査型電子顕微鏡のパラメータ入力装置
JPH11219130A (ja) * 1998-01-29 1999-08-10 Shimadzu Corp 表示システム
JP2002078995A (ja) * 2000-09-06 2002-03-19 Pegasus Sewing Mach Mfg Co Ltd 縫製不良検出装置
JP2004000046A (ja) * 2002-05-31 2004-01-08 Osaka Gas Co Ltd 細胞が発信する音波の周波数測定方法
JP2006071430A (ja) * 2004-09-01 2006-03-16 Hitachi Medical Corp 診断支援システム
WO2006112210A1 (ja) * 2005-03-31 2006-10-26 Pioneer Corporation 音声出力装置、音声出力方法、音声出力プログラム、および記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUHASHI, M. ET AL.: "Production of sound waves by bacterial cells and the response of bacterial cells to sound", J. GEN. APPL. MICROBIOL., vol. 44, no. 1, 1998, pages 49 - 55 *

Also Published As

Publication number Publication date
JP5160878B2 (ja) 2013-03-13
US20110229008A1 (en) 2011-09-22
US8867815B2 (en) 2014-10-21
DE112008003471B4 (de) 2016-05-25
DE112008003471T5 (de) 2011-01-13
JP2009148224A (ja) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5160878B2 (ja) 試料同定装置および試料同定方法
CN109124615B (zh) 一种可选区高动态激光散斑血流成像装置及方法
JP5780865B2 (ja) 画像処理装置、撮像システム、画像処理システム
JP5576739B2 (ja) 画像処理装置、画像処理方法、撮像装置及びプログラム
JP4826586B2 (ja) スペクトル画像処理方法、コンピュータ実行可能なスペクトル画像処理プログラム、スペクトルイメージングシステム
CN104823040B (zh) 紫外线防御效果的评价方法及评价装置、以及记录介质
WO2013100025A9 (ja) 画像処理装置、画像処理システム、画像処理方法および画像処理プログラム
EP1906224B1 (en) Confocal Microscope Apparatus
WO2016092940A1 (ja) 情報処理装置、画像取得システム、情報処理方法、画像情報取得方法及びプログラム
JP2006317261A (ja) 走査型サイトメータの画像処理方法及び装置
JP5616588B2 (ja) 顕微鏡
CN111681668B (zh) 声学成像方法及终端设备
JP6681068B2 (ja) データ復元装置、顕微鏡システム、およびデータ復元方法
WO2018158810A1 (ja) 細胞観察装置
JPH01158578A (ja) 物体点順次走査装置
JP2016188791A (ja) 音源探査装置および音源探査方法
WO2021100328A1 (ja) 画像処理方法、画像処理装置および画像処理システム
CN115480385A (zh) 手术显微镜系统及其成像方法
JP2023033982A (ja) 画像処理装置、画像処理システム、画像の鮮鋭化方法、及び、プログラム
JP6719000B2 (ja) 電子顕微鏡および電子顕微鏡の作動方法
JP6898729B2 (ja) 検出装置、顕微鏡システムおよび検出方法
JP3869521B2 (ja) 走査型レーザ顕微鏡
CN112241065A (zh) 显微镜和用于产生具有扩展的景深的显微图像的方法
TW202238209A (zh) 高通量無鏡頭成像方法和系統
JP6811874B2 (ja) 画像作成装置、画像作成方法、画像作成プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120080034710

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 12808907

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112008003471

Country of ref document: DE

Date of ref document: 20110113

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08864158

Country of ref document: EP

Kind code of ref document: A1