WO2009081586A1 - インプリント装置およびインプリント方法 - Google Patents

インプリント装置およびインプリント方法 Download PDF

Info

Publication number
WO2009081586A1
WO2009081586A1 PCT/JP2008/003953 JP2008003953W WO2009081586A1 WO 2009081586 A1 WO2009081586 A1 WO 2009081586A1 JP 2008003953 W JP2008003953 W JP 2008003953W WO 2009081586 A1 WO2009081586 A1 WO 2009081586A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
pressurizing chamber
molding
molding object
gas
Prior art date
Application number
PCT/JP2008/003953
Other languages
English (en)
French (fr)
Inventor
Yoshiaki Takaya
Yuji Hashima
Yoshihisa Hayashida
Hirosuke Kawaguchi
Satoru Tanaka
Akihiko Kanai
Kazuaki Uehara
Original Assignee
Maruzen Petrochemical Co., Ltd.
Scivax Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Petrochemical Co., Ltd., Scivax Corporation filed Critical Maruzen Petrochemical Co., Ltd.
Priority to US12/810,557 priority Critical patent/US8215944B2/en
Priority to EP08863432.4A priority patent/EP2239127B1/en
Priority to KR1020107016385A priority patent/KR101338684B1/ko
Publication of WO2009081586A1 publication Critical patent/WO2009081586A1/ja
Priority to US13/471,573 priority patent/US20120223461A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves

Definitions

  • the present invention relates to an imprint apparatus and imprint method with high throughput.
  • thermal nanoimprint technology has attracted attention as a method for forming micro-order and nano-order ultrafine patterns. This is because the object to be molded such as a substrate or film made of a thermoplastic resin or the like is heated to a temperature higher than the glass transition temperature of the resin, and a mold having a fine pattern is pressed on the object to be molded. Is to be transferred.
  • the parallelism and flatness of the mold and workpiece are important. This is because if the mold and the object to be molded are not parallel, the applied pressure becomes non-uniform, and a large stress is locally applied to the mold to cause deformation or breakage or cause pattern transfer failure.
  • Patent Document 1 a device in which an elastic member is disposed on the back side of a mold
  • Patent Document 2 a device that pressurizes a mold with oil or the like through a flexible film
  • the problems due to the parallelism and flatness of the mold and the object to be molded have not been sufficiently solved.
  • the conventional apparatus has a stage for holding the molding object between the heater and the molding object, which requires a lot of heat, and requires a lot of time for heating and cooling. It was. These problems become more prominent as the mold becomes larger.
  • an object of the present invention is to provide an imprint apparatus and an imprint method capable of uniformly applying pressure between a mold and a molding object and capable of raising and lowering the temperature at high speed.
  • a first imprint apparatus of the present invention is an imprint apparatus for transferring a pattern of a mold onto a film-shaped object, and a stage for holding the mold;
  • a pressurizing chamber casing that constitutes a pressurizing chamber together with the molding object, sealing means for sealing between the pressurizing chamber casing and the molding target, and the pressurizing chamber casing; Opening and closing means for opening and closing between the molding object, pressurizing means for adjusting the atmospheric pressure in the pressurizing chamber, heating means for heating one or both of the mold and the molding object, It is characterized by comprising.
  • a second imprint apparatus of the present invention is an imprint apparatus for transferring a pattern of a film-like mold onto a molding object, and a stage for holding the molding object, and pressurization together with the mold
  • a pressurizing means for adjusting the atmospheric pressure in the pressurizing chamber, and a heating means for heating one or both of the mold and the molding object is an imprint apparatus for transferring a pattern of a film-like mold onto a molding object, and a stage for holding the molding object, and pressurization together with the mold
  • a pressurizing means for adjusting the atmospheric pressure in the press
  • the heating means may be one that heats by electromagnetic wave radiation or one that supplies a gas heated to a predetermined temperature to the pressurizing chamber casing.
  • a cooling means for cooling the molding object.
  • the mold is a film-shaped mold used at a predetermined molding temperature, and is made of a base layer made of a thermoplastic resin and a material harder than the resin at the molding temperature. And a hard layer formed on the molding surface side of the base layer.
  • the first imprinting method of the present invention is an imprinting method for transferring a pattern of a mold onto a film-like molding object, and directly pressing the molding object against the mold with gas. It is characterized by.
  • the second imprinting method of the present invention is an imprinting method for transferring a pattern of a film-like mold onto a molding object, and directly pressing the mold against the molding object with gas. It is characterized by.
  • either one or both of the mold and the molding object can be heated by electromagnetic wave radiation, or can be heated by a gas having a predetermined temperature.
  • a flexible film-like material is used for at least one of the mold and the object to be molded, and this is directly pressed with gas, so that pressure is uniformly applied between the mold and the object to be molded. And the pattern can be accurately transferred.
  • the object to be molded can be made high-speed by heating by electromagnetic radiation or by heating at a predetermined temperature.
  • the temperature can be increased and decreased, and the throughput can be improved.
  • a first imprint apparatus 1 of the present invention is an imprint apparatus for transferring a pattern of a mold 100 to a film-shaped object 200, and holds the mold 100.
  • a stage 11 a pressurizing chamber casing 13 that forms the pressurizing chamber 12 together with the molding target 200, a sealing means 14 that seals between the pressurizing chamber casing 13 and the molding target 200, and pressurization Opening / closing means 15 for opening and closing between the chamber casing 13 and the molding object 200, pressurizing means 16 for adjusting the atmospheric pressure in the pressurizing chamber 12, and heating means 17 for heating the molding object 200, , Mainly composed of.
  • a degassing means 18 for degassing the gas between the mold 100 and the workpiece 200.
  • the stage 11 may be anything as long as it can hold the mold 100.
  • the surface that holds the mold 100 is formed in a planar shape larger than the mold 100, or the mold 100 is placed on the plane.
  • a recess having a depth similar to the thickness of the mold 100 and in which the mold 100 can be installed is formed.
  • Any material may be used as long as it has pressure resistance and heat resistance that can withstand pressure and heating during molding, but it is preferable to use a material having a coefficient of thermal expansion close to that of the mold 100.
  • the mold 100 is made of nickel, the nickel stage 11 can be used.
  • a holder for holding the molding target 200 may be provided separately.
  • the pressurizing chamber casing 13 is formed in a bottomed cylindrical shape having an opening, and constitutes the pressurizing chamber 12 which is a sealed space by closing the opening with the molding object 200.
  • the opening is formed to be larger than at least the pattern area transferred to the molding object 200.
  • Any material may be used as long as it has pressure resistance and heat resistance that can withstand pressurization and heating during molding.
  • iron materials such as carbon steel and metals such as SUS can be used.
  • the sealing means 14 is for bringing the pressurizing chamber casing 13 and the molding target 200 into close contact with each other in order to make the pressurizing chamber 12 a closed chamber.
  • an O-ring 141 is prepared as the sealing means 14, and a concave groove 142 shallower than the diameter of the cross-section of the O-ring is formed at the end of the side wall of the pressurizing chamber housing 13.
  • An O-ring 141 may be disposed in the groove 142. Accordingly, the molding object 200 can be sandwiched between the pressurizing chamber casing 13 and the stage 11, and the pressurizing chamber casing 13 and the molding target 200 can be brought into close contact with each other. can do. Further, even if there is an inclination between the pressurizing chamber casing 13 and the workpiece 200, the pressurizing chamber 12 can be reliably sealed if the parallelism is within the crushing margin of the O-ring 141. it can.
  • the opening / closing means 15 opens and closes the pressurizing chamber 12 by bringing the pressurizing chamber casing 13 and the molding object 200 close to or away from each other.
  • the pressurizing chamber casing 13 is hydraulically or pneumatically operated. It is possible to apply one that moves by a cylinder, one that moves by an electric motor and a ball screw, and the like.
  • the pressurizing unit 16 may be any unit as long as the pressure in the pressurizing chamber 12 can be adjusted to a pressure at which the pattern of the mold 100 can be transferred to the molding target 200.
  • the pressurizing chamber gas supply / exhaust flow path 161 may be connected to the body 13 to supply or exhaust gas such as air or inert gas from the pressurizing chamber gas supply / exhaust flow path 161 to the pressurizing chamber 12.
  • a cylinder 162 (see FIG. 1) having a compressed gas or a pressurizing pump can be used.
  • the gas may be exhausted by opening / closing the deaeration valve 163.
  • you may provide a safety valve etc. suitably.
  • the heating means 17 may be anything as long as it can heat either the mold 100 or the molding object 200 or both to the glass transition temperature or the melting temperature of the molding object or higher.
  • a heater provided on the side to heat the mold 100 and the molding object 200 from the stage 11 side can be used.
  • emission by electromagnetic waves, such as a far infrared ray can also be used.
  • a ceramic heater or a halogen heater provided on the pressurizing chamber 12 side of the pressurizing chamber casing 13 may be used.
  • the heat capacity can be reduced, and the molding object 200 can be minimized. It can be heated at a high speed with the amount of heat. In addition, this makes it possible to speed up the cooling.
  • the gas supplied by the pressurizing means can be heated and heated by the heated gas.
  • the heating means 17 may be a combination of a plurality of these.
  • a heat insulating material 171 may be provided between the pressurizing chamber casing 13 and the heating means 17. Further, the temperature of the mold 100 or the molding object 200 is detected using a temperature detection unit such as a thermocouple, and the heating unit 17 is controlled by a control unit (not shown) such as a temperature controller to adjust the temperature. good.
  • the deaeration means 18 is for removing gas between the mold 100 and the workpiece 200.
  • the reason why it is preferable to provide the deaeration means 18 is that when a gas exists between the mold 100 and the molding object 200, the mold 100 and the molding object 200 cannot be sufficiently pressed, or uneven heating occurs. This is because it causes a transfer defect.
  • the vacuum chamber 181 includes, for example, a ceiling member 182 that covers an upper portion of the pressurizing chamber casing 13, a bellows 183 that is provided by hanging from the ceiling member 182 and covers a side portion of the pressurizing chamber casing 13, and the bellows 183 and the stage 11 or the base 10 on which the stage 11 is mounted are formed by a seal member 184 and a vacuum pump 185 that exhausts the gas in the vacuum chamber 181 through the vacuum chamber gas supply / discharge channel. Is done.
  • the seal member 184 is disposed in a concave groove formed on the stage 11 side of the bellows 183.
  • the vacuum pump may be any pump that can depressurize the vacuum chamber 181 to the extent that no transfer failure occurs when the molding object 200 is pressurized to the mold 100.
  • the ceiling member 182 is formed to be movable by the opening / closing means 15. Needless to say, the ceiling member 182, the bellows 183, and the seal member 184 have a strength that can withstand external forces when evacuated.
  • the pressurizing chamber supply / exhaust flow channel and the vacuum chamber gas supply / exhaust flow channel can be made common.
  • the gas between the mold 100 and the workpiece 200 is removed by discharging the gas in the vacuum chamber 181 and the pressure chamber 12 with the pressure chamber 12 released.
  • the pressurizing chamber 12 is closed by the opening / closing means 15, a gas is supplied to the pressurizing chamber 12 to press the molding object 200 against the mold 100.
  • the imprint apparatus may include a cooling means. Any cooling means may be used as long as it cools the mold 100 or the molding object 200.
  • air such as air or an inert gas lower than the temperature of the molding object 200 may be used.
  • a fan or the like for blowing air to the mold 100 can be used.
  • a cooling channel made of a metal having high thermal conductivity such as aluminum or copper is formed in the stage 11, and a cooling liquid such as water or oil or a cooling gas such as air or an inert gas is allowed to flow inside the cooling channel. You may do it.
  • various objects can be applied as the object 200 as long as it can be deformed in accordance with the shape of the mold 100 by the pressure from the pressurizing chamber 12 side at the molding temperature.
  • resins such as polycarbonate, polyimide, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polypropylene, paraffin, and cyclic olefin thermoplastic resins
  • metals such as aluminum may be used.
  • any thermoplastic material can be used arbitrarily regardless of the shape such as a plate shape, a sheet shape, or a film shape.
  • a material having a thickness of 1 mm or less can be suitably used.
  • a sheet or film having a thickness of 500 ⁇ m or less is preferable, and the film thickness is as thin as 200 ⁇ m or less, 100 ⁇ m or less, 50 ⁇ m or less. As it becomes, the effect of the present invention is remarkably exhibited.
  • the mold 100 is formed of, for example, “metal such as nickel”, “ceramics”, “carbon material such as glassy carbon”, “silicon”, and the like, and a predetermined pattern is formed on one end surface (molded surface) thereof. ing.
  • This pattern can be formed by subjecting the molding surface to precision machining.
  • it is formed on a silicon substrate or the like by a semiconductor microfabrication technique such as etching, or the surface of the silicon substrate or the like is subjected to metal plating by an electroforming method, for example, a nickel plating method, and the metal plating layer is peeled off. It can also be formed.
  • the material and manufacturing method of the mold 100 are not particularly limited as long as a fine pattern can be formed.
  • the width of this pattern (dimension in the planar direction of the molding surface) varies depending on the type of molding object 200 used, but various sizes such as 100 ⁇ m or less, 10 ⁇ m or less, 2 ⁇ m or less, 1 ⁇ m or less, 100 nm or less, 10 nm or less, etc. Formed.
  • the depth of this pattern (dimension in the direction orthogonal to the molding surface 100a) is formed in various sizes such as 10 nm or more, 100 nm or more, 200 nm or more, 500 nm or more, 1 ⁇ m or more, 10 ⁇ m or more, 100 ⁇ m or more.
  • the aspect ratio of this pattern includes various patterns such as 0.2 or more, 0.5 or more, 1 or more, 2 or more.
  • the mold 100 is heated and cooled during the imprint process, it is preferable to make the mold 100 as thin as possible and reduce its heat capacity.
  • Step 1 A mold 100 having a pattern obtained by inverting the pattern to be transferred to the molding object 200 is prepared and fixed on the stage 11. A film-like object 200 is placed on the mold 100 (see FIG. 3).
  • Step 2 The gas between the mold 100 and the workpiece 200 is removed by the deaeration means 18.
  • the vacuum chamber 181 is formed by bringing the sealing member of the bellows 183 into contact with the base 10 with the pressurizing chamber 12 open (see FIG. 2).
  • the air in the vacuum chamber 181 is exhausted from a pressurizing chamber gas supply / discharge passage 161 provided in the pressurizing chamber 12 by a vacuum pump.
  • the seal member is brought into contact with the base 10 by the elastic force of the bellows, but may be fixed to the base by a separate fixing means.
  • Step 3 The pressurizing chamber casing 13 is moved to the molding target 200 side by the opening / closing means 15, and the O-ring (sealing means 14) is brought into contact with the molding target to constitute the pressurizing chamber 12 (see FIG. 1).
  • Step 4 The inside of the pressurizing chamber 12 is pressurized by the pressurizing means 16, and the molding object 200 is pressed against the mold 100.
  • Step 5 The mold 100 or the molding object 200 is heated by the heating means 17 to a temperature at which the molding object 200 can flow (for example, the glass transition temperature of the resin) or higher.
  • a temperature at which the molding object 200 can flow for example, the glass transition temperature of the resin
  • the mold 100 and the molding object 200 may be directly heated using a far infrared heater formed on the ceiling portion of the pressurizing chamber casing 13.
  • step 4 and step 5 may be reverse, and you may pressurize after heating.
  • Step 6 After a lapse of a predetermined time sufficient to transfer the pattern of the mold 100 to the molding object 200, heating by the heating means 17 is stopped, and the molding object 200 is cooled by the cooling means.
  • Step 7 After reducing the pressure in the pressurizing chamber 12 to atmospheric pressure, the pressurizing chamber 12 and the vacuum chamber 181 are opened, and the molding object 200 is released from the mold 100.
  • the pressurizing chamber 12 and the vacuum chamber 181 are opened, and the molding object 200 is released from the mold 100.
  • cooling gas as a cooling means
  • the second imprint apparatus 2 of the present invention is an imprint apparatus for transferring a pattern of a film-like mold 100 to a molding object 200, and holds the molding object 200.
  • Stage 11 for pressurization casing 13 for pressurizing chamber that constitutes pressurizing chamber 12 together with mold 100, sealing means 14 for sealing between pressurizing chamber casing 13 and mold 100, mold 100 and cover
  • a deaeration means 18 for removing gas between the molded articles 200 an opening / closing means 15 for opening and closing between the pressurizing chamber casing 13 and the mold 100, and a heating means 17 for heating the molding 200.
  • pressurizing means 16 for adjusting the pressure in the pressurizing chamber 12.
  • the second imprint apparatus 2 of the present invention is the same as the first imprint apparatus 1 of the present invention, except that the film 100 is used as the mold 100 and the positions of the mold 100 and the molding object 200 are switched. is there.
  • the stage 11 may be anything as long as it can hold the molding object 200.
  • the surface that holds the molding object 200 is formed in a planar shape larger than the molding object 200, or A recess having a depth approximately the same as the thickness of the molding object 200 and in which the molding object 200 can be provided is formed on the plane.
  • Any material may be used as long as it has pressure resistance and heat resistance that can withstand pressurization and heating during molding. However, it is preferable to use a material having a thermal expansion coefficient close to that of the molding object 200.
  • the casing 13 for the pressurizing chamber is formed in a bottomed cylindrical shape having an opening, and constitutes the pressurizing chamber 12 which is a sealed space by closing the opening with the mold 100.
  • the opening is formed to be larger than at least the pattern area transferred to the molding object 200.
  • Any material may be used as long as it has pressure resistance and heat resistance that can withstand pressurization and heating during molding.
  • iron materials such as carbon steel and metals such as SUS can be used.
  • the sealing means 14 closes the pressurizing chamber casing 13 and the mold 100 in order to make the pressurizing chamber 12 a closed chamber.
  • an O-ring is prepared as the sealing means 14, and a concave groove shallower than the diameter of the cross section of the O-ring is formed at the end of the side wall of the pressurizing chamber housing 13.
  • An O-ring may be disposed on the side. Accordingly, the mold 100 can be sandwiched between the pressurizing chamber casing 13 and the stage 11 and the pressurizing chamber casing 13 and the mold 100 can be brought into close contact with each other, so that the pressurizing chamber 12 can be sealed. . Even if there is an inclination between the pressurizing chamber casing 13 and the mold 100, the pressurizing chamber 12 can be reliably sealed if the parallelism is within the crushing margin of the O-ring.
  • the opening / closing means 15 opens and closes the pressurizing chamber 12 by bringing the pressurizing chamber casing 13 and the mold 100 close to or away from each other.
  • the pressurizing chamber casing 13 is a hydraulic or pneumatic cylinder. It is possible to apply one that moves by means of an electric motor and one that moves by an electric motor and a ball screw.
  • the mold 100 used for the imprint apparatus 2 can be various types as long as it is a film that can be deformed according to the shape of the molding object 200 by the pressure from the pressurizing chamber 12 side.
  • a layer composed of a base layer 101 having a predetermined pattern 103 and a hard layer 102 formed on the pattern 103 can be used.
  • the base layer 101 is composed of cyclic olefin ring-opening polymerization / hydrogenated product (COP), cyclic olefin resin such as cyclic olefin copolymer (COC), acrylic resin, polycarbonate, vinyl ether, perfluoroalkoxyalkane (PFA), polytetrafluoro. It is formed of a film made of a thermoplastic resin such as ethylene (PTFE), polystyrene, or polyimide resin. Further, from the viewpoint of dimensional stability of the pattern, the water absorption of the thermoplastic resin used for the base layer 101 is preferably 3% or less.
  • the base layer 101 has a predetermined pattern 103.
  • the pattern 103 may be formed in any way, but for example, a nanoimprint technique such as a thermal imprint method can be used.
  • the pattern 103 is not only a geometric shape made of unevenness, but also a pattern for transferring a predetermined surface state, such as a mirror surface transfer having a predetermined surface roughness, or a predetermined curved surface. Also included are those for transferring optical elements such as lenses.
  • this pattern 103 can be easily formed even if the minimum dimension of the width of the convex part and the concave part in the plane direction is 100 ⁇ m or less.
  • the width (dimension in the plane direction) of the pattern 10 varies depending on the type of the molding 200 to be used, but various sizes such as 100 ⁇ m or less, 10 ⁇ m or less, 2 ⁇ m or less, 1 ⁇ m or less, 100 nm or less, 10 nm or less. Formed.
  • the dimension in the depth direction of the pattern 103 is formed in various sizes such as 10 nm or more, 100 nm or more, 200 nm or more, 500 nm or more, 1 ⁇ m or more, 10 ⁇ m or more, 100 ⁇ m or more.
  • the aspect ratio of the pattern 103 includes various patterns such as 0.2 or more, 0.5 or more, 1 or more, 2 or more.
  • the base layer 101 is formed to a thickness that can be deformed according to the shape or the like of the molding object 200 by the pressure from the pressurizing chamber 12 side at the molding temperature.
  • the mold 100 is heated and cooled during the imprint process, it is preferable to make the mold 100 as thin as possible and reduce its heat capacity. For example, it is formed to 500 ⁇ m or less, preferably 100 ⁇ m or less, but of course not limited thereto.
  • the hard layer 102 is formed of a material harder than the thermoplastic resin used for the base layer 101 when the mold 100 is heated to a molding temperature in thermal imprinting and pressed against the molding target 200. Considering the molding temperature in thermal imprinting, it is preferable to use a material harder than the thermoplastic resin used for the base layer 101 in the range of at least 0 ° C. and 100 ° C. As such a material, a metal or an inorganic material which is solid in a range of at least 0 ° C. and 100 ° C. corresponds.
  • metals or metal compounds such as platinum (Pt), nickel (Ni), palladium, ruthenium, gold, silver, copper, ZnO, and indium tin oxide (ITO), and inorganic substances such as Si and SiO 2 .
  • Pt platinum
  • Ni nickel
  • ruthenium gold
  • silver copper
  • ZnO indium tin oxide
  • ITO indium tin oxide
  • Si and SiO 2 inorganic substances
  • other materials such as a fluorine resin can be used as long as the material is harder than the base layer 101 in the range of at least 0 ° C. and not more than 100 ° C.
  • Vickers hardness, Brinell hardness and the like may be compared using a high temperature hardness tester or the like. It can also be confirmed by performing a test by nanoindentation.
  • the hard layer 102 be formed thin as long as the strength can be maintained, for example, 100 nm or less. Note that the hard layer 102 may of course be formed in a plurality of layers using different materials depending on the application.
  • any method may be used for forming the hard layer 102.
  • the above materials are deposited using chemical vapor deposition (CVD), physical vapor deposition (PVD), plating, or the like.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • a metal such as platinum (Pt) or nickel (Ni) may be formed by sputtering or vapor deposition.
  • you may form using a silver mirror reaction.
  • a material such as a fluororesin is applied, a solution in which the material is dissolved is dropped on the pattern 103 of the base layer 101 and spin-coated, or the base layer 101 is immersed in the solution in which the material is dissolved.
  • a method or the like can also be used.
  • Step 1 A molding object 200 is prepared and fixed on the stage 11.
  • a film-like mold 100 having a pattern obtained by inverting the pattern to be transferred to the molding object 200 is disposed on the molding object 200.
  • Step 2 The gas between the mold 100 and the workpiece 200 is removed by the deaeration means 18.
  • the vacuum chamber 181 is formed by bringing the seal member of the bellows 183 into contact with the base 10 with the pressurizing chamber 12 opened.
  • the air in the vacuum chamber 181 is exhausted from a pressurizing chamber gas supply / discharge passage 161 provided in the pressurizing chamber 12 by a vacuum pump.
  • the seal member is brought into contact with the base 10 by the elastic force of the bellows, but may be fixed to the base by a separate fixing means.
  • Step 3 The pressurizing chamber casing 13 is moved to the mold 100 side by the opening / closing means 15, and the O-ring (sealing means 14) is brought into contact with the mold 100 to constitute the pressurizing chamber 12 (see FIG. 4).
  • Step 4 The inside of the pressurizing chamber 12 is pressurized by the pressurizing means 16, and the mold 100 is pressed against the workpiece 200.
  • Step 5 The object 200 is heated by the heating means 17 to a temperature at which the object 200 can flow (for example, the glass transition temperature of the resin) or higher.
  • a temperature at which the object 200 can flow for example, the glass transition temperature of the resin
  • the mold 100 and the molding object 200 may be directly heated using a far infrared heater formed on the ceiling portion of the pressurizing chamber casing 13.
  • step 4 and step 5 may be reverse, and you may pressurize after heating.
  • Step 6 After a lapse of a predetermined time sufficient to transfer the pattern of the mold 100 to the molding object 200, heating by the heating means 17 is stopped, and the molding object 200 is cooled by the cooling means.
  • Step 7 After reducing the pressure in the pressurizing chamber 12 to atmospheric pressure, the pressurizing chamber 12 and the vacuum chamber 181 are opened, and the molding object 200 is released from the mold 100.
  • the pressurizing chamber 12 and the vacuum chamber 181 are opened, and the molding object 200 is released from the mold 100.
  • cooling gas as a cooling means
  • the extra inclusions that have conventionally existed between the mold 100 and the molding object 200 can be removed, pressure can be applied uniformly between the mold 100 and the molding object 200, and heating can be performed. Cooling can be performed at high speed. Further, the pattern can be transferred even if the molding object 200 is a substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Micromachines (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 型と被成型物の間に圧力を均一に加えることができると共に、高速に昇降温することができるインプリント装置及びインプリント方法を提供する。型(100)のパターンをフィルム状の被成型物(200)に転写するためのインプリント装置(1)であって、型(100)を保持するためのステージ(11)と、被成型物(200)と共に加圧室(12)を構成する加圧室用筐体(13)と、加圧室用筐体(13)と被成型物(200)との間を密閉する密閉手段(14)と、加圧室用筐体(13)と被成型物(200)との間を開閉する開閉手段(15)と、加圧室(12)内の気圧を調節する加圧手段(16)と、型(100)と被成型物(200)のいずれか一方又は両方を加熱するための加熱手段(17)と、型(100)と被成型物(200)の間の気体を除去する脱気手段(18)と、を具備するインプリント装置(1)。

Description

インプリント装置およびインプリント方法
 この発明は、スループットの高いインプリント装置およびインプリント方法に関するものである。
 近年、マイクロオーダ、ナノオーダの超微細なパターンを形成する方法として、熱ナノインプリント技術が注目されている。これは、熱可塑性を有する樹脂等からなる基板やフィルム等の被成型物を当該樹脂のガラス転移温度以上に加熱し、この被成型物に微細なパターンを有する型を加圧することによって、当該パターンを転写するものである。
 このナノインプリント技術においては、型と被成型物の平行度や平面度が重要である。型と被成型物とが平行でないと加わる圧力が不均一となり、型に局所的に大きな応力が加わって変形や破損を生じたり、パターンの転写不良を引き起こしたりする原因となるからである。
 これを解決するものとして、従来、型の裏側に弾性部材を配置するもの(例えば、特許文献1参照)や、可撓性のある膜を介して型を油等で加圧する装置がある(例えば、特許文献2参照)。
国際公開番号WO2007/049530 国際公開番号WO01/042858
 しかしながら、この場合においても、型と被成型物の平行度や平面度に起因する問題を十分に解決するには至っていない。また、従来の装置は、ヒータと被成型物の間に、被成型物を保持するステージ等があるため、これに多くの熱を必要とし、加熱や冷却に多くの時間を要するという問題があった。これらの問題は、型を大型化する程顕著になる。
 そこで本発明は、型と被成型物の間に圧力を均一に加えることができると共に、高速に昇降温することができるインプリント装置及びインプリント方法を提供することを目的とする。
 上記目的を達成するために、本発明の第1のインプリント装置は、型のパターンをフィルム状の被成型物に転写するためのインプリント装置であって、前記型を保持するためのステージと、前記被成型物と共に加圧室を構成する加圧室用筐体と、前記加圧室用筐体と前記被成型物との間を密閉する密閉手段と、前記加圧室用筐体と前記被成型物との間を開閉する開閉手段と、前記加圧室内の気圧を調節する加圧手段と、前記型と前記被成型物のいずれか一方又は両方を加熱するための加熱手段と、を具備することを特徴とする。
 本発明の第2のインプリント装置は、フィルム状の型のパターンを被成型物に転写するためのインプリント装置であって、前記被成型物を保持するためのステージと、前記型と共に加圧室を構成する加圧室用筐体と、前記加圧室用筐体と前記型との間を密閉する密閉手段と、前記加圧室用筐体と前記型との間を開閉する開閉手段と、前記加圧室内の気圧を調節する加圧手段と、前記型と前記被成型物のいずれか一方又は両方を加熱するための加熱手段と、を具備することを特徴とする。
 この場合、前記型と前記被成型物の間の気体を除去する脱気手段を具備する方が好ましい。また、前記加熱手段は、電磁波の放射によって加熱するものや、前記加圧室用筐体に所定温度に加熱された気体を供給するものを用いることができる。また、前記被成型物を冷却するための冷却手段を具備する方が好ましい。
 また、本発明の第2のインプリント装置において、前記型は、所定の成型温度において用いられるフィルム状の型であって、熱可塑性樹脂からなる基層と、前記成型温度において前記樹脂より硬い材料からなり前記基層の成型面側に形成される硬質層と、を有するものを用いることができる。
 また、本発明の第1のインプリント方法は、型のパターンをフィルム状の被成型物に転写するためのインプリント方法であって、前記型に対し前記被成型物を気体で直接押圧することを特徴とする。
 また、本発明の第2のインプリント方法は、フィルム状の型のパターンを被成型物に転写するためのインプリント方法であって、前記被成型物に対し前記型を気体で直接押圧することを特徴とする。
 この場合、型のパターンを転写する前に、前記型と前記被成型物の間の気体を除去する方が好ましい。また、前記型と前記被成型物のいずれか一方又は両方を電磁波の放射によって加熱するか、あるいは、所定温度の気体によって加熱することができる。
 本発明は、少なくとも型と被成型物のいずれか一方に可撓性のあるフィルム状のものを用い、これを気体で直接押圧するので、型と被成型物の間に圧力を均一に加えることができ、パターンを正確に転写することが可能となる。
 また、型又は被成型物と加熱手段との間にある介在物を排除することができるため、電磁波の放射によって加熱するか、あるいは、所定温度の気体によって加熱することにより、被成型物を高速に昇降温することができ、スループットを向上することが可能となる。
本発明の第1のインプリント装置を示す概略断面図である。 本発明のインプリント装置の真空室を形成した状態の概略断面図である。 本発明のインプリント装置の加圧室、真空室を開放した状態の概略断面図である。 本発明の第2のインプリント装置を示す概略断面図である。 本発明のインプリント装置に関するフィルム状の型を示す概略断面図である。
符号の説明
 1 インプリント装置
 2 インプリント装置
 11 ステージ
 12 加圧室
 13 加圧室用筐体
 14 密閉手段
 15 開閉手段
 16 加圧手段
 17 加熱手段
 18 脱気手段
 100 型
 101 基層
 102 硬質層
 200 被成型物
 以下に、本発明の実施の形態を図面に基づいて詳細に説明する。
 本発明の第1のインプリント装置1は、図1に示すように、型100のパターンをフィルム状の被成型物200に転写するためのインプリント装置であって、型100を保持するためのステージ11と、被成型物200と共に加圧室12を構成する加圧室用筐体13と、加圧室用筐体13と被成型物200との間を密閉する密閉手段14と、加圧室用筐体13と被成型物200との間を開閉する開閉手段15と、加圧室12内の気圧を調節する加圧手段16と、被成型物200を加熱するための加熱手段17と、で主に構成される。また、型100と被成型物200との間の気体を脱気する脱気手段18を具備する方が好ましい。
 ステージ11は、型100を保持できるものであればどのようなものでも良いが、例えば、型100を保持する面が型100より大きい平面状に形成されるか、または、当該平面に、型100の厚みと同程度の深さを有し型100を内設できる凹部が形成される。材質は、成型時の加圧や加熱に耐えられる耐圧性、耐熱性を有していればどのようなものでも良いが、型100の熱膨張係数に近いものを用いる方が好ましい。例えば、型100がニッケル製のものであれば、ニッケル製のステージ11を用いることができる。また、型100とステージ11とを一体に形成する方が被成型物200に不要な転写跡が生じるのを防止できる点で好ましい。例えば従来は、パターンを電気鋳造によって形成した後、パターンの部分のみを切り出して用いられていたが、これを切り出さずにそのまま用いれば良い。また、被成型物200を保持する保持具を別途設けても良い。
 加圧室用筐体13は、開口部を有する有底筒状に形成され、開口部を被成型物200によって閉じることにより、密閉された空間である加圧室12を構成するものである。この開口部は、少なくとも被成型物200に転写されるパターン領域より大きく形成される。材質は、成型時の加圧や加熱に耐えられる耐圧性、耐熱性を有していればどのようなものでも良く、例えば、炭素鋼等の鉄材やSUSなどの金属を用いることができる。
 密閉手段14は、加圧室12を密室にするために、加圧室用筐体13と被成型物200との間を密接させるものである。例えば、図1に示すように、密閉手段14としてOリング141を用意すると共に、加圧室用筐体13の側壁の端部にOリングの断面の直径より浅い凹状の溝142を形成し、この溝142にOリング141を配置すれば良い。これにより、被成型物200を加圧室用筐体13とステージ11とによって挟持し、加圧室用筐体13と被成型物200とを密接させることができるので、加圧室12を密閉することができる。また、加圧室用筐体13と被成型物200との間に傾きがあっても、その平行度がOリング141のつぶし代以内であれば、加圧室12を確実に密閉することができる。
 開閉手段15は、加圧室用筐体13と被成型物200とを近接又離間することにより、加圧室12を開閉するもので、例えば加圧室用筐体13を油圧式又は空圧式のシリンダによって移動するものや、電気モータとボールねじによって移動するもの等を適用することができる。
 加圧手段16は、型100のパターンを被成型物200に転写可能な圧力まで、加圧室12内の気圧を調節可能であればどのようなものでも良いが、例えば、加圧室用筐体13に加圧室用気体給排流路161を接続し、加圧室用気体給排流路161から加圧室12へ空気や不活性ガス等の気体を給気又は排気すれば良い。気体の供給には、圧縮された気体を有するボンベ162(図1参照)又は加圧ポンプを用いることができる。また、気体の排気には、脱気弁163の開閉によって気体を排気するようにすれば良い。なお、適宜安全弁等を設けても良い。
 加熱手段17は、型100と被成型物200のいずれか一方又は両方を被成型物のガラス転移温度以上又は溶融温度以上に加熱することができるものであればどのようなものでも良く、ステージ11側にヒータを設けてステージ11側から型100や被成型物200を加熱するものを用いることができる。また、加圧室12内に設けられ、型100又は被成型物200を遠赤外線等の電磁波による放射によって加熱するものを用いることもできる。例えば、加圧室用筐体13の加圧室12側に設けられたセラミックヒータやハロゲンヒータを用いれば良い。このように構成すると、従来の装置のように、加熱手段17と被成型物200の間にステージ11や膜等の介在物がないため熱容量を小さくすることができ、被成型物200を最小限の熱量で高速に加熱することができる。また、これにより冷却も高速にすることができる。また、加圧手段が供給する気体を加熱しておき、加熱気体によって加熱することもできる。勿論、加熱手段17は、これらを複数組み合わせたものでも構わない。なお、加圧室用筐体13と加熱手段17との間に断熱材171を設けても良い。また、熱電対等の温度検出手段を用いて型100や被成型物200の温度を検知し、温度コントローラ等の制御手段(図示せず)によって加熱手段17を制御し温度を調節するようにしても良い。
 脱気手段18は、型100と被成型物200との間の気体を除去するものである。脱気手段18を設ける方が好ましい理由は、型100と被成型物200との間に気体が存在すると、型100と被成型物200を十分に押圧することができなかったり、加熱むらを生じたりし、転写不良の原因となるからである。この脱気手段18としては、例えば、少なくとも型100及び被成型物200を内包する真空室181を形成し、真空室181を減圧することで型100と被成型物200との間の気体を除去するものを用いれば良い。
 真空室181は、例えば、加圧室用筐体13の上部を覆う天井部材182と、天井部材182から垂下して設けられ加圧室用筐体13の側部を覆う蛇腹183と、当該蛇腹183とステージ11又はステージ11を載置する基台10との間を密閉するシール部材184と、真空室用気体給排流路を介して真空室181内の気体を排気する真空ポンプ185によって形成される。このシール部材184は、蛇腹183のステージ11側に形成された凹状の溝に配置される。また、真空ポンプは、型100に被成型物200を加圧した際に転写不良が生じない範囲まで真空室181を減圧できるものであれば良い。また、天井部材182は、開閉手段15によって移動可能に形成される。なお、天井部材182、蛇腹183、シール部材184は、真空にした際の外力に耐えられる強度を有するものであることは言うまでもない。
 また、図1に示すように、上述した加圧室用給排流路と真空室用気体給排流路を共通にすることも可能である。この場合、まず、図2に示すように、加圧室12を解放した状態で真空室181及び加圧室12の気体を排出して型100と被成型物200の間の気体を除去し、次に、図1に示すように、開閉手段15で加圧室12を閉鎖した後、加圧室12に気体を供給して型100に対し被成型物200を押圧すれば良い。
 また、インプリント装置は、冷却手段を具備していても良い。冷却手段は、型100又は被成型物200を冷却するものであればどのようなものでも良いが、例えば、被成型物200の温度より低い空気や不活性ガス等の気体を被成型物200や型100に送風するファン等を用いることができる。また、加圧室12内の気体を冷却ガスで置換する置換手段を用いても良い。また、ステージ11内にアルミニウムや銅等の熱伝導性の高い金属で形成された冷却流路を形成し、その内部に水や油等の冷却液又は空気や不活性ガス等の冷却気体を流すようにしても良い。
 ここで、被成型物200としては、成型温度において加圧室12側からの圧力により型100の形状等に応じて変形できるものであれば種々のものを適用することができる。例えば、ポリカーボネート、ポリイミド、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリプロピレン、パラフィン、環状オレフィン系熱可塑性樹脂等の樹脂の他、アルミニウム等の金属を用いれば良い。また、熱可塑性材料であれば板状、シート状、フィルム状等の形状を問わず任意に使用することができる。本発明の効果が発現する熱可塑性材料の厚みとして1mm以下の材料が好適に使用でき、特に500μm以下の厚みを有するシート・フィルムが好ましく、200μm以下、100μm以下、50μm以下、と膜厚が薄くなるにつれて本発明の効果が顕著に発現する。
 型100は、例えば「ニッケル等の金属」、「セラミックス」、「ガラス状カーボン等の炭素素材」、「シリコン」などから形成されており、その一端面(成型面)に所定のパターンが形成されている。このパターンは、その成型面に精密機械加工を施すことで形成することができる。また、シリコン基板等にエッチング等の半導体微細加工技術によって形成したり、このシリコン基板等の表面に電気鋳造(エレクトロフォーミング)法、例えばニッケルメッキ法によって金属メッキを施し、この金属メッキ層を剥離して形成したりすることもできる。また、後述するフィルム状の型100のようにインプリント技術を用いて形成することも可能である。もちろん型100は、微細パターンが形成できるものであれば材料やその製造方法が特に限定されるものではない。このパターンの幅(成型面の平面方向の寸法)は、用いられる被成型物200の種類にもよるが、100μm以下、10μm以下、2μm以下、1μm以下、100nm以下、10nm以下等種々の大きさに形成される。更に、このパターンの深さ(成型面100aと直交する方向の寸法)は、10nm以上、100nm以上、200nm以上、500nm以上、1μm以上、10μm以上、100μm以上等種々の大きさに形成される。また、このパターンのアスペクト比としては、0.2以上、0.5以上、1以上、2以上等種々のものがある。
 また、この型100は、インプリントプロセス中に加熱・冷却されるため、できる限り薄型化し、その熱容量を小さくする方が好ましい。
 次に、型100のパターンをフィルム状の被成型物200に転写するインプリント方法について説明する。
[ステップ1]
 被成型物200に転写したいパターンを反転させたパターンを有する型100を用意し、ステージ11上に固定する。この型100の上に、フィルム状の被成型物200を配置する(図3参照)。
[ステップ2]
 脱気手段18によって、型100と被成型物200との間の気体を除去する。例えば、加圧室12を開放した状態で、蛇腹183のシール部材を基台10に当接させて真空室181を形成する(図2参照)。この真空室181内の空気を加圧室12内に設けられた加圧室用気体給排流路161から真空ポンプによって排気する。なお、シール部材には、蛇腹の弾性力によって基台10に当接されるが、別途固定手段で基台に固定するようにしても良い。
[ステップ3]
 加圧室用筐体13を開閉手段15によって被成型物200側に移動し、Oリング(密閉手段14)を被成型体に当接させて加圧室12を構成する(図1参照)。
[ステップ4]
 加圧手段16によって加圧室12内を加圧し、被成型物200を型100に押圧する。
[ステップ5]
 加熱手段17によって型100又は被成型物200を被成型物200が流動可能な温度(例えば、樹脂のガラス転移温度)以上に加熱する。例えば、加圧室用筐体13の天井部に形成された遠赤外線ヒータを用いて、型100や被成型物200を直接加熱すれば良い。なお、加圧した後に加熱する場合について説明したが、ステップ4とステップ5は逆でもよく、加熱した後に加圧しても良い。
[ステップ6]
 型100のパターンを被成型物200に転写するのに十分な所定の時間経過後、加熱手段17による加熱を停止し、冷却手段によって被成型物200を冷却する。
[ステップ7]
 加圧室12内を大気圧まで減圧した後、加圧室12および真空室181を開放し、被成型物200を型100から離型する。なお、冷却手段として、加圧室12内の気体を冷却気体と置換するものを用いる場合には、冷却と減圧を同時に行うことも可能である。
 これにより、従来、型100と被成型物200との間に存在した余分な介在物を取り除くことができるので、型100と被成型物200の間に圧力を均一に加えることができると共に、加熱、冷却を高速に行うことができる。
 本発明の第2のインプリント装置2は、図4に示すように、フィルム状の型100のパターンを被成型物200に転写するためのインプリント装置であって、被成型物200を保持するためのステージ11と、型100と共に加圧室12を構成する加圧室用筐体13と、加圧室用筐体13と型100との間を密閉する密閉手段14と、型100と被成型物200の間の気体を除去する脱気手段18と、加圧室用筐体13と型100との間を開閉する開閉手段15と、被成型物200を加熱するための加熱手段17と、加圧室12内の気圧を調節する加圧手段16と、で主に構成される。
 すなわち、本発明の第2のインプリント装置2は、本発明の第1のインプリント装置1において、型100にフィルム状のものを用い、型100と被成型物200の位置を入れ替えたものである。
 ステージ11は、被成型物200を保持できるものであればどのようなものでも良いが、例えば、被成型物200を保持する面が被成型物200より大きい平面状に形成されるか、または、当該平面に、被成型物200の厚みと同程度の深さを有し被成型物200を内設できる凹部が形成される。材質は、成型時の加圧や加熱に耐えられる耐圧性、耐熱性を有していればどのようなものでも良いが、被成型物200の熱膨張係数に近いものを用いる方が好ましい。
 加圧室用筐体13は、開口部を有する有底筒状に形成され、開口部を型100によって閉じることにより、密閉された空間である加圧室12を構成するものである。この開口部は、少なくとも被成型物200に転写されるパターン領域より大きく形成される。材質は、成型時の加圧や加熱に耐えられる耐圧性、耐熱性を有していればどのようなものでも良く、例えば、炭素鋼などの鉄材やSUS等の金属を用いることができる。
 密閉手段14は、加圧室12を密室にするために、加圧室用筐体13と型100との間を密接させるものである。例えば、図4に示すように、密閉手段14としてOリングを用意すると共に、加圧室用筐体13の側壁の端部にOリングの断面の直径より浅い凹状の溝を形成し、この溝にOリングを配置すれば良い。これにより、型100を加圧室用筐体13とステージ11とによって挟持し、加圧室用筐体13と型100とを密接させることができるので、加圧室12を密閉することができる。また、加圧室用筐体13と型100との間に傾きがあっても、その平行度がOリングのつぶし代以内であれば、加圧室12を確実に密閉することができる。
 開閉手段15は、加圧室用筐体13と型100とを近接又離間することにより、加圧室12を開閉するもので、例えば加圧室用筐体13を油圧式又は空圧式のシリンダによって移動するものや、電気モータとボールねじによって移動するもの等を適用することができる。
 加圧手段16、加熱手段17、脱気手段18、冷却手段の構成は、上述した第1のインプリント装置と同様の構成のため説明は省略する。
 また、このインプリント装置2に用いる型100は、加圧室12側からの圧力により被成型物200の形状等に応じて変形できるフィルム状のものであれば種々のものを用いることができ、例えば図5に示すように、所定のパターン103を有する基層101と、パターン103上に形成される硬質層102と、で構成されるものを用いることができる。
 基層101は、環状オレフィン開環重合/水素添加体(COP)や環状オレフィン共重合体(COC)等の環状オレフィン系樹脂、アクリル樹脂、ポリカーボネート、ビニルエーテル、パーフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン(PTFE)、ポリスチレン、ポリイミド系樹脂等の熱可塑性樹脂からなるフィルムによって形成される。また、パターンの寸法安定性の観点から、基層101に用いる熱可塑性樹脂の吸水率は3%以下である方が好ましい。
 また、基層101は、所定のパターン103を有する。当該パターン103はどのように形成しても良いが、例えば熱インプリント法のようなナノインプリント技術を用いることができる。なお、当該パターン103は、凹凸からなる幾何学的な形状のみならず、例えば所定の表面粗さを有する鏡面状態の転写のように所定の表面状態を転写するためのものや、所定の曲面を有するレンズ等の光学素子を転写するためのものも含む。
 また、このパターン103は、平面方向の凸部の幅や凹部の幅の最小寸法が100μm以下であっても容易に形成される。なお、このパターン10の幅(平面方向の寸法)は、用いられる被成型物200の種類にもよるが、100μm以下、10μm以下、2μm以下、1μm以下、100nm以下、10nm以下等種々の大きさに形成される。
 また、このパターン103の深さ方向の寸法は、10nm以上、100nm以上、200nm以上、500nm以上、1μm以上、10μm以上、100μm以上等種々の大きさに形成される。また、このパターン103のアスペクト比としては、0.2以上、0.5以上、1以上、2以上等種々のものがある。
 また、基層101は、成型温度において加圧室12側からの圧力により被成型物200の形状等に応じて変形できる厚さに形成される。
 また、この型100は、インプリントプロセス中に加熱・冷却されるため、できる限り薄型化し、その熱容量を小さくする方が好ましい。例えば500μm以下、好ましくは100μm以下に形成されるが、もちろんこれに限定されるものではない。
 硬質層102は、型100を熱インプリントにおける成型温度に加熱し被成型物200に押圧する際に、基層101に用いられる熱可塑性樹脂より硬い材料によって形成される。熱インプリントにおける成型温度を考慮すると、少なくとも0℃以上100℃以下の範囲において、基層101に用いられる熱可塑性樹脂より硬い材料を用いるのが好ましい。このような材料としては、少なくとも0℃以上100℃以下の範囲において固体である金属又は無機材料が該当する。例えば、白金(Pt)やニッケル(Ni)、パラジウム、ルテニウム、金、銀、銅、ZnO、酸化インジウムスズ(ITO)等の金属又は金属化合物、SiやSiO等の無機物がある。もちろん、少なくとも0℃以上100℃以下の範囲において、基層101より硬い材料であれば、その他の材料、例えばフッ素系樹脂等を用いることも可能である。なお、硬さは、ビッカース硬さやブリネル硬さ等を、高温硬さ試験機等を用いて比較すれば良い。また、ナノインデンテーションによる試験を行うことで確認することも可能である。
 また、硬質層102の膜厚は、厚すぎると基層101のパターン103が埋まってしまうため、強度を保持できる範囲で薄く形成される方が好ましく、例えば100nm以下に形成される。なお、硬質層102は、用途に応じて、異なる材料により複数層に形成しても勿論構わない。
 このような硬質層102の形成方法としては、どのような方法でも良いが、例えば、上記材料を化学気相成長法(CVD)や物理気相成長法(PVD)、めっき法等を用いて堆積させる方法がある。例えば、白金(Pt)やニッケル(Ni)等の金属をスパッタリングや蒸着により形成すれば良い。また、銀鏡反応を利用して形成しても良い。また、フッ素系樹脂等の材料を適用する場合には、材料を溶かした溶液を基層101のパターン103上に滴下してスピンコートする方法や、当該材料を溶かした溶液中に基層101を浸漬する方法などを用いることもできる。
 被成型物200は、種々のものに適用することができ、例えばポリカーボネート、ポリイミド、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリプロピレン、パラフィン、環状オレフィン系熱可塑性樹脂等の樹脂を用いることができる。また、被成型物200は、フィルム状に形成されるものや基板状のもの、基板上に形成される薄膜状のもの等、種々の形状のものを適用することができる。
 次に、フィルム状の型100のパターンを被成型物200に転写するインプリント方法について説明する。
[ステップ1]
 被成型物200を用意しステージ11上に固定する。この被成型物200の上に、被成型物200に転写したいパターンを反転させたパターンを有するフィルム状の型100を配置する。
[ステップ2]
 脱気手段18によって、型100と被成型物200との間の気体を除去する。例えば、加圧室12を開放した状態で、蛇腹183のシール部材を基台10に当接させて真空室181を形成する。この真空室181内の空気を加圧室12内に設けられた加圧室用気体給排流路161から真空ポンプによって排気する。なお、シール部材には、蛇腹の弾性力によって基台10に当接されるが、別途固定手段で基台に固定するようにしても良い。
[ステップ3]
 加圧室用筐体13を開閉手段15によって型100側に移動し、Oリング(密閉手段14)を型100に当接させて加圧室12を構成する(図4参照)。
[ステップ4]
 加圧手段16によって加圧室12内を加圧し、型100を被成型物200に押圧する。
[ステップ5]
 加熱手段17によって被成型物200を被成型物200が流動可能な温度(例えば、樹脂のガラス転移温度)以上に加熱する。例えば、加圧室用筐体13の天井部に形成された遠赤外線ヒータを用いて、型100や被成型物200を直接加熱すれば良い。なお、加圧した後に加熱する場合について説明したが、ステップ4とステップ5は逆でもよく、加熱した後に加圧しても良い。
[ステップ6]
 型100のパターンを被成型物200に転写するのに十分な所定の時間経過後、加熱手段17による加熱を停止し、冷却手段によって被成型物200を冷却する。
[ステップ7]
 加圧室12内を大気圧まで減圧した後、加圧室12および真空室181を開放し、被成型物200を型100から離型する。なお、冷却手段として、加圧室12内の気体を冷却気体と置換するものを用いる場合には、冷却と減圧を同時に行うことも可能である。
 これにより、従来、型100と被成型物200との間に存在した余分な介在物を取り除くことができるので、型100と被成型物200の間に圧力を均一に加えることができると共に、加熱、冷却を高速に行うことができる。また、被成型物200が基板状のものであってもパターンを転写することができる。

Claims (12)

  1.  型のパターンをフィルム状の被成型物に転写するためのインプリント装置であって、
     前記型を保持するためのステージと、
     前記被成型物と共に加圧室を構成する加圧室用筐体と、
     前記加圧室用筐体と前記被成型物との間を密閉する密閉手段と、
     前記加圧室用筐体と前記被成型物との間を開閉する開閉手段と、
     前記加圧室内の気圧を調節する加圧手段と、
     前記型と前記被成型物のいずれか一方又は両方を加熱するための加熱手段と、
    を具備することを特徴とするインプリント装置。
  2.  フィルム状の型のパターンを被成型物に転写するためのインプリント装置であって、
     前記被成型物を保持するためのステージと、
     前記型と共に加圧室を構成する加圧室用筐体と、
     前記加圧室用筐体と前記型との間を密閉する密閉手段と、
     前記加圧室用筐体と前記型との間を開閉する開閉手段と、
     前記加圧室内の気圧を調節する加圧手段と、
     前記型と前記被成型物のいずれか一方又は両方を加熱するための加熱手段と、
    を具備することを特徴とするインプリント装置。
  3.  前記型と前記被成型物の間の気体を除去する脱気手段を具備することを特徴とする請求項1又は2記載のインプリント装置。
  4.  前記加熱手段は、電磁波の放射によって加熱するものであることを特徴とする請求項1ないし3のいずれかに記載のインプリント装置。
  5.  前記加熱手段は、前記加圧室用筐体に所定温度に加熱された気体を供給するものであることを特徴とする請求項1ないし3のいずれかに記載のインプリント装置。
  6.  前記被成型物を冷却するための冷却手段を具備することを特徴とする請求項1ないし5のいずれかに記載のインプリント装置。
  7.  所定の成型温度において用いられるフィルム状の型であって、熱可塑性樹脂からなる基層と、前記成型温度において前記樹脂より硬い材料からなり前記基層の成型面側に形成される硬質層と、を有する型を具備することを特徴とする請求項2記載のインプリント装置。
  8.  型のパターンをフィルム状の被成型物に転写するためのインプリント方法であって、
     前記型に対し前記被成型物を気体で直接押圧することを特徴とするインプリント方法。
  9.  フィルム状の型のパターンを被成型物に転写するためのインプリント方法であって、
     前記被成型物に対し前記型を気体で直接押圧することを特徴とするインプリント方法。
  10.  前記型と前記被成型物の間の気体を除去することを特徴とする請求項8又は9記載のインプリント方法。
  11.  前記型と前記被成型物のいずれか一方又は両方を電磁波の放射によって加熱することを特徴とする請求項8又は9記載のインプリント方法。
  12.  前記型と前記被成型物のいずれか一方又は両方を所定温度の気体によって加熱することを特徴とする請求項8又は9記載のインプリント方法。
PCT/JP2008/003953 2007-12-26 2008-12-25 インプリント装置およびインプリント方法 WO2009081586A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/810,557 US8215944B2 (en) 2007-12-26 2008-12-25 Imprinting device and imprinting method
EP08863432.4A EP2239127B1 (en) 2007-12-26 2008-12-25 Imprinting device and imprinting method
KR1020107016385A KR101338684B1 (ko) 2007-12-26 2008-12-25 임프린트 장치 및 임프린트 방법
US13/471,573 US20120223461A1 (en) 2007-12-26 2012-05-15 Imprinting device and imprinting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007335093A JP4578517B2 (ja) 2007-12-26 2007-12-26 インプリント装置およびインプリント方法
JP2007-335093 2007-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/471,573 Division US20120223461A1 (en) 2007-12-26 2012-05-15 Imprinting device and imprinting method

Publications (1)

Publication Number Publication Date
WO2009081586A1 true WO2009081586A1 (ja) 2009-07-02

Family

ID=40800903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003953 WO2009081586A1 (ja) 2007-12-26 2008-12-25 インプリント装置およびインプリント方法

Country Status (6)

Country Link
US (2) US8215944B2 (ja)
EP (1) EP2239127B1 (ja)
JP (1) JP4578517B2 (ja)
KR (1) KR101338684B1 (ja)
TW (1) TW200936350A (ja)
WO (1) WO2009081586A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071399A (ja) * 2009-09-28 2011-04-07 Dainippon Printing Co Ltd ナノインプリントパターン形成方法
US20120263814A1 (en) * 2011-04-13 2012-10-18 Colop Stempelerzeugung Skopek Gesellschaft M.B.H. & Co. Kg. Apparatus for manufacturing stamp printing blocks
CN103158252A (zh) * 2013-03-21 2013-06-19 宁波大学 一种光波导的热压印装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814682B2 (ja) * 2006-04-18 2011-11-16 株式会社日立ハイテクノロジーズ 微細構造パターンの転写方法及び転写装置
KR101093285B1 (ko) 2010-08-04 2011-12-14 순천향대학교 산학협력단 고온 엠보싱 나노 임프린트 리소그래피 장치를 위한 열판 장치
EP2614881A1 (en) * 2010-09-07 2013-07-17 Toray Industries, Inc. Separation membrane, separation membrane element, and method for producing separation membrane
SG189983A1 (en) * 2010-10-26 2013-06-28 Toray Industries Separation membrane, separation membrane element and separation membrane production method
JP5723262B2 (ja) 2010-12-02 2015-05-27 株式会社神戸製鋼所 薄膜トランジスタおよびスパッタリングターゲット
JP2012143915A (ja) * 2011-01-10 2012-08-02 Scivax Kk インプリント用型
JP5818306B2 (ja) * 2011-03-07 2015-11-18 学校法人東京理科大学 転写構造体の製造方法及びそれに用いる母型
JP5289492B2 (ja) * 2011-03-23 2013-09-11 株式会社東芝 インプリント方法およびインプリント装置
KR20190047112A (ko) * 2011-06-02 2019-05-07 에스씨아이브이에이엑스 가부시키가이샤 유압 임프린트 장치 및 임프린트 방법
CN103635303B (zh) * 2011-07-08 2016-06-08 东洋制罐集团控股株式会社 热塑性树脂产品的成形方法及其成形装置
KR20140057261A (ko) * 2011-07-11 2014-05-12 에스씨아이브이에이엑스 가부시키가이샤 가압부용 고정구를 구비한 유체압력 임프린트 장치
JP5787691B2 (ja) * 2011-09-21 2015-09-30 キヤノン株式会社 インプリント装置、それを用いた物品の製造方法
JP2013074115A (ja) * 2011-09-28 2013-04-22 Fujifilm Corp ナノインプリント装置およびナノインプリント方法、並びに、歪み付与デバイスおよび歪み付与方法
KR20140102705A (ko) * 2011-11-25 2014-08-22 에스씨아이브이에이엑스 가부시키가이샤 임프린트 장치 및 임프린트 방법
WO2013105658A1 (ja) 2012-01-11 2013-07-18 Scivax株式会社 成形方法及び成形装置
US20150042013A1 (en) * 2012-02-14 2015-02-12 Scivax Corporation Imprint device and imprint method
KR101656094B1 (ko) * 2012-03-22 2016-09-08 도요세이칸 그룹 홀딩스 가부시키가이샤 열 가소성 수지 제품의 성형 방법 및 그 성형 장치
WO2013191206A1 (ja) 2012-06-21 2013-12-27 Scivax株式会社 ローラ式加圧装置、インプリント装置、ローラ式加圧方法
EP2889895B1 (en) * 2012-08-27 2017-11-15 Scivax Corporation Imprint device and imprint method
WO2014088107A1 (ja) 2012-12-06 2014-06-12 Scivax株式会社 ローラ式加圧装置、インプリント装置、ローラ式加圧方法
KR102219703B1 (ko) * 2014-05-07 2021-02-24 삼성전자주식회사 임프린트를 이용한 패터닝 방법, 이를 이용하여 제작된 패턴 구조체 및 임프린팅 시스템
WO2015186736A1 (ja) 2014-06-03 2015-12-10 Scivax株式会社 ローラ式加圧装置、インプリント装置およびローラ式加圧方法
US20170210036A1 (en) * 2016-01-22 2017-07-27 Canon Kabushiki Kaisha Mold replicating method, imprint apparatus, and article manufacturing method
NL2023022B1 (en) * 2019-04-29 2020-11-05 Suss Microtec Lithography Gmbh Replication device and method for reproducing a structure on a substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09240125A (ja) * 1996-03-04 1997-09-16 Motorola Inc 物品の面をスタンピングするための装置および方法
WO2001042858A1 (en) 1999-12-10 2001-06-14 Obducat Aktiebolag Device and method in connection with the production of structures
JP2007055235A (ja) * 2005-06-10 2007-03-08 Obducat Ab 環状オレフィン共重合体を含んでなるインプリントスタンプ
WO2007049530A1 (ja) 2005-10-24 2007-05-03 Scivax Corporation 型保持具、加工対象物保持具、微細加工装置および型取付方法
JP2008230027A (ja) * 2007-03-20 2008-10-02 Hitachi High-Technologies Corp 微細構造転写装置および微細構造体の製造方法
JP2008288673A (ja) * 2007-05-15 2008-11-27 Audio Technica Corp コンデンサマイクロホンユニット用振動板の製造方法およびその装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488862A (en) * 1983-04-25 1984-12-18 The Budd Company Compression molding apparatus having vacuum chamber
US6482742B1 (en) 2000-07-18 2002-11-19 Stephen Y. Chou Fluid pressure imprint lithography
EP1546804A1 (en) * 2002-08-27 2005-06-29 Obducat AB Device for transferring a pattern to an object
KR101166278B1 (ko) * 2004-05-07 2012-07-17 오브듀캇 아베 일정한 온도에서의 임프린트 리소그라피를 위한 방법
US8721952B2 (en) * 2004-11-16 2014-05-13 International Business Machines Corporation Pneumatic method and apparatus for nano imprint lithography having a conforming mask
TW200640638A (en) * 2005-03-25 2006-12-01 Zeon Corp Resin stamper
KR101107474B1 (ko) * 2005-06-07 2012-01-19 엘지디스플레이 주식회사 소프트몰드와 이를 이용한 패턴방법
US7854873B2 (en) * 2005-06-10 2010-12-21 Obducat Ab Imprint stamp comprising cyclic olefin copolymer
US20070065642A1 (en) * 2005-09-21 2007-03-22 Venkateswara Gupta Device and method for thermoforming a part
WO2007067469A2 (en) * 2005-12-08 2007-06-14 Molecular Imprints, Inc. Method for expelling gas positioned between a substrate and a mold
EP1988152B1 (en) * 2006-02-21 2016-11-23 JSR Corporation Cell culture construct, cell culture container, construct having spheroid, container having spheroid and method of producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09240125A (ja) * 1996-03-04 1997-09-16 Motorola Inc 物品の面をスタンピングするための装置および方法
WO2001042858A1 (en) 1999-12-10 2001-06-14 Obducat Aktiebolag Device and method in connection with the production of structures
JP2007055235A (ja) * 2005-06-10 2007-03-08 Obducat Ab 環状オレフィン共重合体を含んでなるインプリントスタンプ
WO2007049530A1 (ja) 2005-10-24 2007-05-03 Scivax Corporation 型保持具、加工対象物保持具、微細加工装置および型取付方法
JP2008230027A (ja) * 2007-03-20 2008-10-02 Hitachi High-Technologies Corp 微細構造転写装置および微細構造体の製造方法
JP2008288673A (ja) * 2007-05-15 2008-11-27 Audio Technica Corp コンデンサマイクロホンユニット用振動板の製造方法およびその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2239127A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071399A (ja) * 2009-09-28 2011-04-07 Dainippon Printing Co Ltd ナノインプリントパターン形成方法
US20120263814A1 (en) * 2011-04-13 2012-10-18 Colop Stempelerzeugung Skopek Gesellschaft M.B.H. & Co. Kg. Apparatus for manufacturing stamp printing blocks
US8790105B2 (en) * 2011-04-13 2014-07-29 Colop Stempelerzeugung Skopek Gesellschaft M.B.H. & Co. Kg. Apparatus for manufacturing stamp printing blocks
CN103158252A (zh) * 2013-03-21 2013-06-19 宁波大学 一种光波导的热压印装置

Also Published As

Publication number Publication date
EP2239127B1 (en) 2014-09-10
KR101338684B1 (ko) 2013-12-06
TW200936350A (en) 2009-09-01
KR20100110833A (ko) 2010-10-13
TWI482733B (ja) 2015-05-01
EP2239127A4 (en) 2011-06-22
EP2239127A1 (en) 2010-10-13
US20110024948A1 (en) 2011-02-03
JP2009154393A (ja) 2009-07-16
US8215944B2 (en) 2012-07-10
US20120223461A1 (en) 2012-09-06
JP4578517B2 (ja) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4578517B2 (ja) インプリント装置およびインプリント方法
JP5644014B2 (ja) ローラ式加圧装置、インプリント装置、ローラ式加圧方法
JP6330157B2 (ja) インプリント用型を用いたインプリント方法
JP6142120B2 (ja) 成形方法及び成形装置
JP2006212859A (ja) 成形方法および成形装置
JP6592659B2 (ja) ローラ式加圧装置、インプリント装置およびローラ式加圧方法
EP2783833B1 (en) Imprinting device and imprinting method
JPWO2014088107A1 (ja) ローラ式加圧装置、インプリント装置、ローラ式加圧方法
EP2889895B1 (en) Imprint device and imprint method
WO2012147958A1 (ja) 流体圧インプリント装置および加圧装置
JP5488766B2 (ja) 流体圧インプリント装置およびインプリント方法
JP5499306B2 (ja) 加圧部用固定具を備えた流体圧インプリント装置
JP6031655B2 (ja) 剛体ステージを備えた流体圧インプリント装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107016385

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008863432

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12810557

Country of ref document: US