WO2009070983A1 - Procédé, système et appareil de génération de signal et de transmission de message dans des communications sans fil à large bande - Google Patents

Procédé, système et appareil de génération de signal et de transmission de message dans des communications sans fil à large bande Download PDF

Info

Publication number
WO2009070983A1
WO2009070983A1 PCT/CN2008/001932 CN2008001932W WO2009070983A1 WO 2009070983 A1 WO2009070983 A1 WO 2009070983A1 CN 2008001932 W CN2008001932 W CN 2008001932W WO 2009070983 A1 WO2009070983 A1 WO 2009070983A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
module
modulation
unit block
repetition
Prior art date
Application number
PCT/CN2008/001932
Other languages
English (en)
French (fr)
Inventor
Shaohui Sun
Yang Yu
Yingmin Wang
Yongbin Xie
Original Assignee
Datang Mobile Communications Equipment Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Datang Mobile Communications Equipment Co., Ltd. filed Critical Datang Mobile Communications Equipment Co., Ltd.
Priority to KR1020107013621A priority Critical patent/KR101147492B1/ko
Priority to US12/744,550 priority patent/US8670298B2/en
Priority to EP08856866.2A priority patent/EP2216953B1/en
Priority to JP2010534344A priority patent/JP2011504694A/ja
Publication of WO2009070983A1 publication Critical patent/WO2009070983A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0019Time-frequency-code in which one code is applied, as a temporal sequence, to all frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the invention relates to information transmission technology, in particular to a signal generation method and device, information transmission method and device in broadband wireless communication.
  • IMT-2000 International Mobile Telecommunications-2000
  • ITU International Telecommunications Union
  • the IMT-Advanced system has a maximum wireless communication bandwidth of 100MHz, supports low-to-high mobility applications and a wide range of data rates. In IMT-Advanced systems, the maximum transmission rate is up to 1Gbps, which can satisfy multiple users. Users and business needs in the environment, such as: Users can enjoy high-speed data download, online shopping, mobile video chat, mobile TV and many other wireless mobile services, greatly enriching the lives of users.
  • the IMT-Advanced system also has the ability to provide high quality multimedia applications that significantly improve Quality of Service (QoS).
  • QoS Quality of Service
  • the uplink data and control signaling of the broadband wireless communication system are transmitted by using a single carrier method, and the single carrier mode is adopted to reduce the peak-to-average ratio (PAPR) in the uplink signal, thereby Improve the coverage of the uplink signal.
  • the uplink single carrier method uses orthogonal transform frequency division multiplexing (DFT-S OFDM) based on orthogonal frequency division multiple access (OFDMA) signal generation mode, specifically, The DFT-S OFDM signal generation method is shown in Figure 1:
  • the signal data to be transmitted is modulated first, the transmitted data stream is segmented, and then the segmented data stream is serial-sum (S/P) converted, and then the data subjected to the serial-to-parallel conversion process is subjected to discrete Fourier transform.
  • the transform (DFT) process is converted to the frequency domain, and then subjected to frequency domain spreading, followed by an inverse fast Fourier transform (IFFT) process, and finally a cyclic prefix (CP) is generated to generate a random sequence in the time domain.
  • DFT transform
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • DFT-S OFDM passes the high-rate data stream through parallel-to-serial conversion, so that the data symbol length on each sub-carrier is relatively increased, thereby effectively reducing the wireless
  • the inter-symbol interference caused by the dispersion of the time of the channel reduces the complexity of the equalization in the receiver. By frequency domain equalization, the receiver can be easily processed.
  • DFT-S OFDM uses a similar processing method to the downlink Orthogonal Frequency Division Multiplexing (OFDM) symbol to ensure equalization of the signal in the frequency domain and reduce the complexity of the system implementation.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Differentiated by frequency division multiplexing access (FDMA) mode occupying different sub-bands to achieve multi-user multiple access.
  • FDMA frequency division multiplexing access
  • the DFT-S OFDM multiple access method also has disadvantages: For the DFT-S OFDM uplink multiple access method, when it is applied to a cellular mobile communication system, if the same frequency networking mode is used, users of different cells If the same subcarrier is used to receive and transmit data, it will interfere with the receiving and transmitting signals of the neighboring cell user terminals, and therefore, there will be a large interference between the cells.
  • the user terminal is closer to other cells, and the arrival signals of other cells are stronger.
  • the user terminal receives and transmits data, serious mutual interference occurs between the signals of the neighboring cells, so that The communication performance of the cell edge user terminal drops sharply.
  • CDMA code division multiple access
  • OFDM orthogonal frequency division multiple access
  • MC-CDMA multi-carrier CDMA
  • MC-DS-CDMA multi-carrier direct-spread CDMA
  • OFCDMA method combining two-dimensional spread spectrum and OFDM in the time-frequency domain.
  • the signal generation method of MC-CDMA is as shown in FIG. 2, and the processing flow is: each symbol in a data stream composed of a plurality of data symbols is first subjected to spreading processing, and then spread. The data is mapped onto an OFDM modulated subcarrier and the spread spectrum data symbols are output. Assuming that the spreading code length is N, the spread data is mapped to N subcarriers, / 2 ... / N. Compared with the OFDM method, the MC-CDMA method has the advantages that frequency diversity can be utilized and neighbor cell interference of the same frequency network can be reduced.
  • the signal generation method of MC-DS-CDMA is shown in Figure 3.
  • the processing flow is as follows: First, the data stream composed of several data symbols is serial-to-parallel converted, the data is mapped to each sub-carrier, and then on each sub-carrier. Each symbol is subjected to a spread spectrum process, that is, spread spectrum is performed in time to obtain a time diversity gain, and then the spread spectrum data symbol is output. Assuming that the length of the spreading code is N, the N subcarriers are /; f 2 / N. Compared with the OFDM method, the MC-DS-CDMA method can also reduce the neighbor cell interference of the same frequency network.
  • OFDM orthogonal frequency division code division multiplexing
  • the MC-CDMA, MC-DS-CDMA and OFCDM schemes described above are all combined with CDMA and OFDM, and can also be applied to DFT-S OFDM uplink signal generation. All of these methods can obtain certain diversity gain and anti-multiple-access interference capability, can easily implement multi-cell co-frequency networking, and reduce interference of adjacent cells in the same-frequency networking.
  • the above scheme requires high time-frequency synchronization of signals, and signal detection for multi-cell users requires that each cell data occupy the same time-frequency resource, thus requiring coordination of resources between cells. And scheduling. At the same time, multi-user detection also requires the UE to know the time-frequency resources and spreading codes occupied by other users.
  • the main object of the present invention is to provide a signal generation method and apparatus, information transmission method and apparatus in broadband wireless communication, which can solve the problem of resource allocation scheduling and interference coordination control, thereby greatly improving system capacity. And performance.
  • the present invention provides a signal generation method in broadband wireless communication, including:
  • a signal data to be transmitted is modulated, segmented, and serial-to-parallel converted, and the data subjected to serial-to-convert processing is subjected to discrete Fourier transform DFT processing to be converted into the frequency domain;
  • step B performs unit block modulation and block repetition modulation on the data symbol block converted to the frequency domain, specifically:
  • the processed unit block is a unit block that is subjected to weighted repetition processing.
  • the unit block modulation and the block repetition modulation of the data symbol block converted to the frequency domain in step B are specifically:
  • the data symbol block modulation of the weighted repetition is mapped to a unit block.
  • the processed unit block is the unit block generated in step B22.
  • the weighted repetition is repeated in the time domain. Different users are multiplexed along the power axis, and different users use different block repetition weighting sequences to distinguish.
  • the invention also provides a signal generating device in broadband wireless communication, comprising a data modulation module, a serial-to-parallel conversion module, a DFT module, an IFFT module and a cyclic prefix module; the key is that between the DFT module and the IFFT module, A block and block repetition modulation module is used to perform block repetition modulation and unit block modulation.
  • the unit block and block repetition modulation module further includes a unit block modulation module and a block repetition modulation module; the input of the unit block modulation module is connected to an output of the DFT module, and is used to perform data symbol block conversion to the frequency domain.
  • the modulation map is generated to generate a unit block; the input of the block repetition modulation module is connected to the output of the unit block modulation module, and the output is connected to the input of the IFFT module, and is used for weighting the generated unit block to be mapped to the specified time-frequency position.
  • the block and block repetition modulation module further includes a block repetition modulation module and a unit block modulation module; the input of the block repetition modulation module is connected to an output of the DFT module, and is used to perform data symbol block conversion to the frequency domain. Weighted repetition; the input of the unit block modulation module is connected to the output of the block repetition modulation module, and the output is connected to the input of the IFFT module, and is used for mapping the weighted repeated data symbol block to a unit block and mapping to a specified time-frequency position. on.
  • the present invention also provides an information transmission system in broadband wireless communication, comprising a transmitting end and a receiving end, wherein the transmitting end and the receiving end are connected by a modulation channel, wherein the transmitting end further comprises a data modulation module, a serial-to-parallel conversion module, DFT module and IFFT module, the receiving end further includes fast Fourier Leaf transform FFT module, discrete Fourier transform IDFT module, parallel-to-serial conversion module and data demodulation module; the key is between the DFT module and the IFFT module at the transmitting end, and also includes a unit block and a block repetition modulation module for completing the block repetition Modulation and unit block modulation; correspondingly, between the FFT module and the IDFT module at the receiving end, a unit block and a block repetition demodulation module are further included for performing block repetition demodulation and unit block demodulation.
  • the present invention further provides an information transmission method in broadband wireless communication, including a sending process and a receiving process; wherein, the sending process includes:
  • the signal data to be transmitted is modulated, segmented, and serial-to-parallel converted, and the data subjected to serial-to-conversion processing is subjected to DFT processing to be converted into the frequency domain;
  • the receiving process includes:
  • the method and device for generating signals in broadband wireless communication provided by the present invention, and the method and device for transmitting information can realize efficient and reliable transmission of information in a wireless communication channel, and can also implement multiple access of wireless communication channel resources. Applicable to wireless mobile cellular systems, it can easily realize the same frequency networking and improve the capacity and performance of the system. Since the block repetition technique used is based on basic physical resource blocks, the coordination between the multiple cells is much larger, and only static or semi-static coordination is required. Therefore, the present invention can well solve the resources in the wireless communication.
  • the coordination control problem of allocation scheduling and interference including the control of intra-cell and inter-cell interference, greatly improves system capacity and performance, and provides an effective solution for broadband wireless communication systems.
  • FIG. 1 is a schematic flowchart of an implementation process of a DFT-S OFDM signal generation method in the prior art
  • 2 is a schematic diagram of an implementation principle of a MC-CDMA signal generation method in the prior art
  • FIG. 3 is a schematic diagram of an implementation principle of a MC-DS-CDMA signal generation method in the prior art
  • FIG. 4 is a two-dimensional time-frequency domain in the prior art. Schematic diagram of the implementation principle of the spread spectrum OFCDM signal generation method
  • FIG. 5 is a schematic diagram of channel resource allocation in an OFDM modulation mode according to the present invention.
  • FIG. 6 is a schematic structural diagram of a physical resource block in an OFDM modulation mode according to the present invention
  • FIG. 7 is a schematic diagram of a signal structure of a block repeated transmission mode according to the present invention
  • FIG. 8 is a schematic diagram of a signal structure of a block repeated multiple access method according to the present invention.
  • FIG. 9 is a schematic diagram of an implementation scheme of a block repeated transmission and transmission system in the present invention.
  • FIG. 10 is a schematic diagram of another implementation scheme of a block repeat transmission transmission system according to the present invention.
  • FIG. 11 is a schematic diagram of an implementation scheme of a block repetition transmission receiving system according to the present invention.
  • FIG. 12 is a schematic diagram of another implementation of a block repeat transmission receiving system according to the present invention
  • FIG. 13 is a schematic flowchart of an implementation of a BR DFT-S OFDM signal generation method according to the present invention
  • FIG. 14 is a BR DFT-S OFDM signal according to the present invention. Schematic diagram of another implementation flow of the generation mode
  • FIG. 15 is a schematic diagram of a single-user time domain block repetition in the present invention
  • 16 is a schematic diagram of two users using time domain block repetition in the present invention.
  • FIG. 17 is a schematic structural diagram of an implementation of a BR DFT-S OFDM transmission communication system according to the present invention
  • FIG. 18 is a schematic diagram of another implementation structure of a BR DFT-S OFDM transmission communication system according to the present invention. detailed description
  • a scheme of information transmission based on block repetition and multiplexing and multiple access is proposed, which is a block repetition (BR) block transmission scheme, and block repetition multiplexing (BRDM). , Block Repeat Division Multiplex) / Block Repeat Division Multiple Access (BRDMA) scheme.
  • the scheme combined with OFDM may be referred to as Block Repeat Orthogonal Frequency Division Multiplexing (BR-OFDM) / Block Repeat Orthogonal Frequency Division Multiple Access (BR-OFDMA). Since the block repeated multiple access method is implemented based on the repetition of basic physical resource blocks, the low-layer modulation multiple access method is not limited, and therefore, not only can be combined with the OFDM multiple access method, but also combined with multiple multiple access methods. For example, combined with multiple access methods such as FDMA, TDM A, and CDMA, it constitutes multiple schemes.
  • each block in FIG. 5 is a physical resource block (PRB), which is a basic unit for transmitting data mapping to the physical layer.
  • PRB physical resource block
  • the inbound, B, C, D, E, and F marked in Figure 5 represent different users. It can be seen from the figure that adjacent physical resource blocks can be assigned to the same user or to different users, for example: User B owns Two adjacent physical resource blocks, and User A and User E have two physical resource blocks that are not adjacent.
  • the channel resource is a time-frequency two-dimensional structure.
  • the specific composition of each physical resource block is shown in FIG. 6.
  • ⁇ ⁇ , >1 ⁇ 2 is generally greater than 1
  • a physical resource block is taken as a unit block, and the unit block is a basic unit of block repetition.
  • the signal structure of the block repeat OFDM (BR-OFDM) is as shown in FIG. 7 and FIG. 8, wherein FIG. 7 shows A BR-OFDM example for a single user, Figure 8 shows an example of a BR-OFDM for multiple users.
  • BU1 ⁇ BU6 indicate the number of times a unit block is repeatedly transmitted.
  • the value of the RF can be set as required. Generally, the value is any value between 1 and 8. If the RF value is too large, the computational complexity increases.
  • two users occupy the same time-frequency channel resources for block repeat transmission, along the direction of the power axis, above is User 1, and below is User 2.
  • the sender gives a block repetition weighting factor sequence or repetition code C, C 2 ...
  • Each repeated unit block is weighted by a weighting factor, and is repeatedly transmitted and mapped to a specified time-frequency position.
  • the effect of the weighting factor is equivalent to spreading.
  • the block repetition transmission transmitting apparatus in the present invention has two implementation modes: The unit block modulation is performed, and then the block repeat modulation is performed; the other is to perform block repetition modulation first, and then perform unit block modulation.
  • the data to be transmitted generates a final transmitted signal by three-level modulation: the first level is the transmit data modulation, and the transmit data is modulated.
  • the module is implemented to modulate and block the transmitted data to generate a data symbol block (DB);
  • the second stage is a unit block modulation, which is implemented by a unit block modulation module, performs modulation mapping on the generated data symbol block, and generates a unit block (BU).
  • DB data symbol block
  • BU unit block
  • the generating of the unit block is to sequentially fill the generated data symbol sequence or data stream into respective time-frequency points corresponding to the unit block in a certain order, for example: using an interleaver for interleaving processing,
  • the data symbol block is directly placed in the unit block;
  • the third level is block repetition modulation, which is implemented by the block repetition modulation module, and the unit block weighted repetition (BR) is mapped to the specified time-frequency position to generate
  • the final transmitted signal where the weighted repetition is obtained by multiplying each unit block by a repetition code or a repetition weighting factor G, onto the physical resource; and then transmitting the generated transmission signal.
  • the data to be transmitted is data subjected to channel coding, rate matching, and combined mapping processing.
  • the block diagram of the transmitting device of the second implementation is shown in FIG. 10.
  • the data to be transmitted generates a final transmitted signal through three-level modulation:
  • the first stage is the transmit data modulation, which is implemented by the transmit data modulation module, and modulates the transmitted data. And block, generating a block of data symbols;
  • the second stage is block repetition modulation, implemented by a block repetition modulation module, and weighting the data symbol block repeatedly;
  • the third stage is unit block modulation, implemented by the unit block modulation module, and the weight is repeated
  • the data symbol block is mapped to the unit block and mapped to the specified time-frequency position.
  • mapping is to sequentially fill the data symbol block to each time-frequency point corresponding to the unit block in a certain order, for example: using an interlace
  • the interleave processing is performed, and simply, the data symbol blocks can be directly arranged in the unit block.
  • the data is first filled with one unit block, and the block is repeatedly modulated in units of the unit block, so that it is compatible with the existing LTE system.
  • the compatibility is strong, and the mapping method in units of unit blocks is not changed, but the correlation between data is lowered.
  • the data is first divided into small blocks, and the block is repeatedly modulated in units of small blocks, and the data after the block is repeated is filled in the unit block, so that the data is repeated in a small range.
  • the data is highly correlated, and the detection algorithm with low complexity can be used, but the original data mapping method is adjusted.
  • FIG. 12 and FIG. 12 respectively show corresponding two kinds of block repeat receiving apparatuses, wherein FIG. 12 is a receiving apparatus corresponding to the transmitting apparatus of FIG. 9, and FIG. 11 corresponds to FIG. A receiving device of the transmitting device.
  • FIG. 11 a specific implementation process of a block repeat receiving apparatus is: the received signal is demodulated by three stages.
  • the first stage is unit block demodulation, which is implemented by the unit block modulation module, detects each repeated unit block at a specified time-frequency position, and inversely maps the data symbol block; the second level is block repetition.
  • the demodulation is implemented by a block repetition demodulation module, and the data symbol blocks obtained by each repeated unit block are weighted and combined to obtain a data symbol block to be demodulated;
  • the third stage is data demodulation, which is implemented by a data demodulation module, The obtained block of data symbols is demodulated to generate received data.
  • the received signal is subjected to three stages of demodulation to obtain final received data:
  • the first stage is block repeated demodulation, which is implemented by a block repeating demodulation module, Each repeating unit block at the specified time-frequency position is weighted and combined to demodulate the data symbol block;
  • the second stage is unit block demodulation, which is implemented by the unit block modulation module, and detects the demodulated data symbol block, and inversely maps to The data symbol block;
  • the third stage is data demodulation, which is implemented by the data demodulation module, demodulates the obtained data symbol block to generate received data.
  • BR-OFDMA can be applied to LTE uplink signal transmission. Through the block repetition mode, the interference of the DFT-S OFDM uplink signal transmission mode in the same frequency network can be reduced, and the system capacity and resource utilization can be improved.
  • the frequency domain channel resource is also a time-frequency two-dimensional structure, and a physical resource block unit of DFT-S OFDM occupies a part of the entire time-frequency resource.
  • the signal generation manner of the BR DFT-S OFDM may be as shown in FIG. 13 or FIG. 14 , and between the DFT processing and the IFFT processing, the unit block modulation and the block repetition modulation are added, that is, After the DFT process is converted to the data symbol block in the frequency domain, the modulation mapping and the weighted repetition processing are performed first, then the IFFT processing is performed, and finally the CP generates a random sequence in the time domain.
  • the modulation map and the weighted repetition may first perform weighted repetition on the data symbol block, and then map the weighted repeated data symbol block to a unit block and map to a specified time-frequency position.
  • the data symbol block may be first subjected to modulation mapping, a unit block is generated, and the unit block is weighted and repeated, and mapped to the timing frequency position.
  • a signal generation method of the BR DFT-S OFDM of the present invention includes: Step 131: The signal data to be sent is first modulated, the transmitted data stream is segmented, and the segmented data stream is serial-to-parallel converted;
  • Step 132 Perform DFT processing on the data subjected to the serial-to-parallel conversion process to the frequency domain.
  • Step 133 Perform modulation mapping on the data symbol block converted to the frequency domain to generate a unit block.
  • Step 134 Weight-repeating the generated unit block, Map to the specified time-frequency location;
  • Steps 135 - 136 Perform IFFT processing on the unit block mapped to the time-frequency position, and add a random sequence on the time domain generated by the CP.
  • Step 141 The signal data to be transmitted is modulated first, the transmission data stream is segmented, and then the segment data stream is serialized. And convert;
  • Step 142 performing DFT processing on the data subjected to the serial-to-parallel conversion process and converting to the frequency domain;
  • Step 143 performing weighted repetition on the data symbol block converted to the frequency domain;
  • Step 144 Mapping the weighted repeated data symbol block to a unit block and mapping to a specified time-frequency position
  • Step 145 146 Perform IFFT processing on the unit block mapped to the time-frequency position, and add a random sequence on the time domain generated by the CP.
  • the corresponding module can be used to complete the corresponding functions, for example, the data modulation module completes the data modulation, the serial-to-parallel conversion module completes the serial-to-parallel conversion, and the DFT module completes the DFT processing.
  • the unit block modulation module completes the unit block modulation
  • the block repetition modulation module completes the block repetition modulation
  • the IFFT module performs the IFFT processing
  • the CP module increases the force.
  • CP The unit block modulation module and the block repetition modulation module may be combined by one module, which may be referred to as a unit block and a block repetition modulation module, which is used to perform block repetition modulation and unit block modulation.
  • the block repetition In the BR DFT-S OFDM modulation mode, in order to maintain the single-carrier characteristic of the DFT-S OFDM method, the block repetition only adopts the repeating manner in the time domain. If the signal becomes a multi-carrier transmission form, the coverage performance of the uplink signal will be impaired. .
  • the DFT-processed data symbol block first modulates the map generation unit block BU1, and if the number of repetitions is 8, the BU1 is repeated 8 times to generate BU1, BU2, BU8, and the block repetition weighting factor sequence is C, C 2 ...
  • Figure 16 shows a schematic diagram of repeated transmissions of time-domain blocks by two users. Different users use different block repetition weighting sequences to distinguish them.
  • Fig. 17 shows an implementation structure of the BR DFT-S OFDM communication system, which includes two parts, a transmitting end and a receiving end, and a transmitting channel and a receiving end are connected by a modulation channel.
  • the transmitting end includes a data modulation module, a serial-to-parallel conversion module, a DFT module, a unit block modulation module, a block repetition modulation module, and an IFFT module;
  • the receiving end includes a fast Fourier transform (FFT) module, a block repetition demodulation module, and a unit block solution.
  • Tuning module discrete Fourier transform (IDFT) module, parallel-to-serial conversion module, and data demodulation module.
  • IDFT discrete Fourier transform
  • the data modulation module is used to complete data modulation
  • the serial-to-parallel conversion module is used for serial-to-parallel conversion
  • the DFT module performs DFT processing
  • the unit block modulation module is used to perform unit block modulation, that is, to perform data symbol block conversion to the frequency domain.
  • the modulation mapping generates a unit block
  • the block repetition modulation module is configured to perform block repetition modulation, that is, weighting the generated unit block to be mapped to a specified time-frequency position, and the IFFT module performs IFFT processing; correspondingly, the FFT module performs FFT processing, and the block
  • the repeated demodulation module is used to perform block repetition demodulation, that is, weighting and combining the respective repeated unit blocks at the specified time-frequency position to demodulate the data symbol block
  • the unit block demodulation module is used to complete the unit block demodulation, that is,
  • the demodulated data symbol block is detected, inversely mapped to the data symbol block, the IDFT module performs IDFT processing, and the data demodulation module is used to demodulate the data.
  • the unit block modulation module and the block repetition modulation module may be implemented by one module, which may be referred to as a unit block and a block repetition modulation module, which is used to perform block repetition modulation and unit block modulation; correspondingly, a unit block
  • the demodulation module and the block repetition demodulation module can be combined and implemented by one module, which can be called a unit block and a block repetition demodulation module, which is used for performing block repetition demodulation and unit block demodulation.
  • the information transmission method based on FIG. 17 includes a transmission process and a reception process; wherein, the transmission process includes: al.
  • the signal data to be transmitted is first modulated, segmented, and serial-to-parallel converted, and then subjected to DFT processing on the data subjected to serial-to-parallel conversion processing. Convert to the frequency domain;
  • the receiving process includes: A2, remove the CP from the signal received in the time domain, and perform FFT processing;
  • Figure 18 shows another implementation structure of the BR DFT-S OFDM communication system.
  • the implementation principle, flow and system composition are basically similar to those in Figure 17, except that the unit block modulation/demodulation module and block repetition modulation/demodulation are exchanged.
  • the order of the modules, correspondingly, the processing of the unit block modulation/demodulation and the processing of the block repetition modulation/demodulation are also exchanged.
  • the method and device for generating signals in broadband wireless communication provided by the present invention, and the method and device for transmitting information can realize efficient and reliable transmission of information in a wireless communication channel, and can also implement multiple access of wireless communication channel resources. Applicable to wireless mobile cellular systems, it can easily realize the same frequency networking and improve the capacity and performance of the system. Since the block repetition technique used is based on basic physical resource blocks, coordination between multiple cells is much simpler, and only static or semi-static coordination is required. Therefore, the present invention can well solve resource allocation in wireless communication.
  • the coordinated control of scheduling and interference including control of intra-cell and inter-cell interference, greatly improves system capacity and performance, and provides an effective solution for broadband wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

宽带无线通信中信号生成和信息传输方法、 系统及装置 技术械
本发明涉及信息传输技术, 特别是指一种宽带无线通信中信号生成方法及 装置、 信息传输方法及装置。 背景技术
随着移动通信技术的飞速发展, 宽带无线通信将成为今后移动通信的主要 发展方向。 国际电信联盟 ( ITU ) 在 IMT-2000 ( International Mobile Telecommunications-2000 )基础上, 又提出了具有更强更新能力的移动通信系 统 IMT-Advanced。 IMT-Advanced系统最大的无线通信带宽可达 100MHz, 支 持从低到高的移动性应用和很宽范围的数据速率, 在 IMT-Advanced 系统中, 最大的传输速率可达 lGbps, 能满足多种用户环境下用户和业务的需求, 比如: 用户可以享受高速的数据下载、 网上购物、 移动视频聊天、 手机电视等众多的 无线移动服务,极大丰富了用户的生活。 IMT-Advanced系统还具有提供显著提 升服务质量(QoS ) 的高质量多媒体应用的能力。
在现有 3GPP 的长期演进(LTE ) 系统中, 采用单载波方式传输宽带无线 通信系统的上行数据和控制信令, 采用单载波方式的目的在于减少上行信号中 的峰均比(PAPR ), 从而提高上行信号的覆盖。 目前, 在 LTE中, 上行单载波 方式采用类似于正交频分多址接入(OFDMA ) 的信号生成方式的基于傅立叶 变换扩展的正交频分复用 (DFT-S OFDM ), 具体的, DFT-S OFDM信号生成方 式如图 1所示:
在发送端, 要发送的信号数据先经过调制, 对发送数据流进行分段, 再对 分段数据流进行串并(S/P )转换, 之后, 对经过串并转换处理的数据进行离散 傅立叶变换(DFT )处理转换到频域, 再经过频域扩频后进行快速傅立叶反变 换(IFFT )处理, 最后加上循环前缀(CP )生成时域上的随机序列。 假设经过 串并转换后的数据块为 5 = ...,¾} , 经过 DFT、 IFFT处理后的随机序列为 S' = {s' s2' , - - , sN' } . 相应的, 在接收端, DFT-S OFDM将高速率数据流通过并串 转换, 使每个子载波上的数据符号持续长度相对增加, 从而有效减少由于无线 信道的时间弥散所造成的码间干扰, 减少接收机内均衡的复杂度。 通过频域均 衡, 可以使接收机很容易处理信号。
在图 1中,为保证频域上信号的均衡处理和降低系统实现的复杂度, DFT-S OFDM采用与下行正交频分复用 ( OFDM )符号类似的处理方式, 如此, 可使 多用户之间通过占用不同子频带的频分复用接入 ( FDMA )方式进行区分, 从 而实现多用户的多址接入。 但是, DFT-S OFDM多址接入方式也存在缺点: 对于 DFT-S OFDM上行多址接入方式, 其应用于蜂窝移动通信系统时,如 果采用同频组网方式工作, 由于不同小区的用户如果采用相同的子载波接收和 发送数据, 会对相邻小区用户终端的接收和发送信号产生干扰, 因此, 会导致 小区间存在较大的干扰。 特别是在小区边缘的情况下, 用户终端距离其它小区 较近, 其它小区到达信号会比较强, 当用户终端接收和发送数据时, 相邻小区 的信号之间就会产生严重的相互干扰, 使得小区边缘用户终端的通信性能急剧 下降。
为避免同频组网情况下相邻小区的信号干扰,人们提出了相关的改进方案。 例如, 在下行 OFDM调制方式中, 通过码分多址(CDMA )与 OFDM相结合 的方式, 来减少同频组网时信号干扰。 目前, CDMA与 OFDM相结合的多址 接入方式主要有三种, 分别被称为: 多载波 CDMA ( MC-CDMA, Multi-carrier CDMA )方式、 多载波直扩 CDMA ( MC-DS-CDMA )方式、 以及在时频域二 维扩频与 OFDM结合的 OFCDMA方式。
其中, MC-CDMA的信号生成方式如图 2所示, 其处理流程是: 由若干数 据符号( data symbols )组成的一个数据流中的每个符号先进行扩频处理, 再将 扩频后的数据映射到 OFDM调制的子载波(subcarrier )上,输出扩频数据符号。 假设扩频码( spreading code )长度为 N,则扩频后的数据映射到 N个子载波 、 /2 ...... /N上。 与 OFDM方式相比, MC- CDMA方式的优点在于可以利用频率 分集和降低同频组网的邻小区干扰。
MC-DS- CDMA的信号生成方式如图 3所示, 其处理流程是: 先对由若干 数据符号组成的数据流进行串并转换, 将数据映射到各个子载波上, 再在每个 子载波上对每个符号进行扩频处理, 也就是说在时间上进行扩频, 以获得时间 分集增益,之后输出扩频数据符号。假设扩频码长度为 N, 则 N个子载波为 /;、 f2 /N。 与 OFDM方式相比, MC-DS-CDMA方式也可以降低同频组网的邻 小区干扰。
在上述两种 CDMA与 OFDM相结合的多址方式基础上, 还有一种在时频 域二维扩频与 OFDM结合的方式, 称为正交频分码分复用(OFCDM ),每个数 据符号在时间上扩频 M倍, 同时在子载波上扩频 N倍, 如图 4所示, 在时域 上扩频为 4, 频 i或扩频为 2。
上面介绍的 MC-CDMA、 MC-DS-CDMA 以及 OFCDM方案, 都是采用 CDMA与 OFDM相结合的方式, 也可以应用于 DFT-S OFDM上行信号生成方 式中。 这几种方式均能够得到一定的分集增益和抗多址干扰的能力, 能容易地 实现多小区同频组网, 并降低同频组网中相邻小区的干扰。 但是, 像 CDMA 技术一样, 上述方案对信号的时频同步要求较高, 对多小区用户的信号检测就 要求各个小区数据占用相同的时频资源, 因此这样就需要各个小区之间有资源 的协调和调度。 同时, 多用户检测也需要 UE知道其它用户占用的时频资源和 扩频码。 而上述几种方案中资源的分配调度和干扰的协调控制不够灵活方便; 且在接收端进行多址干扰消除时需要付出较大的代价, 接收处理复杂; 另外, 信道的衰落和干扰也会造成一些符号的突发错误。 发明内容
有鉴于此, 本发明的主要目的在于提供一种宽带无线通信中信号生成方法 及装置、 信息传输方法及装置, 能很好解决资源的分配调度和干扰的协调控制 问题, 从而极大地提高系统容量和性能。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种宽带无线通信中的信号生成方法, 包括:
A 要发送的信号数据先经过调制、 分段以及串并转换, 再对经过串并转 换处理的数据进行离散傅立叶变换 DFT处理转换到频域;
B、 对转换到频域的数据符号块进行单元块调制和块重复调制, 将经过处 理的单元块映射到指定时频位置上;
C、 对映射到时频位置上的单元块进行快速傅立叶反变换 EFFT处理, 加上 循环前缀 CP生成时域上的随机序列。 其中, 步骤 B所述对转换到频域的数据符号块进行单元块调制和块重复调 制具体为:
Bl l、 对转换到频域的数据符号块进行调制映射, 生成单元块;
B12、 对生成的单元块加权重复;
所述经过处理的单元块为经过加权重复处理的单元块。
或者, 步骤 B所述对转换到频域的数据符号块进行单元块调制和块重复调 制具体为:
B21、 对转换到频域的数据符号块进行加权重复;
B22、 对加权重复的数据符号块调制映射为单元块;
所述经过处理的单元块为步驟 B22生成的单元块。
上述方案中, 所述加权重复在时域上重复。 不同用户沿功率轴复用, 且不 同用户采用不同的块重复加权序列进行区分。
本发明还提供了一种宽带无线通信中的信号生成装置,包括数据调制模块、 串并转换模块、 DFT模块、 IFFT模块以及循环前缀模块; 关键在于, 在 DFT 模块和 IFFT模块之间, 还包括单元块及块重复调制模块, 用于完成块重复调 制和单元块调制。
其中, 所述单元块及块重复调制模块进一步包括单元块调制模块和块重复 调制模块; 所述单元块调制模块的输入与 DFT模块的输出相连,用于对转换到 频域的数据符号块进行调制映射, 生成单元块; 所述块重复调制模块的输入与 单元块调制模块的输出相连, 输出与 IFFT模块的输入相连, 用于对生成的单 元块加权重复, 映射到指定时频位置上。
或者, 所述单元块及块重复调制模块进一步包括块重复调制模块和单元块 调制模块; 所述块重复调制模块的输入与 DFT模块的输出相连,用于对转换到 频域的数据符号块进行加权重复; 所述单元块调制模块的输入与块重复调制模 块的输出相连, 输出与 IFFT模块的输入相连, 用于对加权重复的数据符号块 调制映射为单元块, 并映射到指定时频位置上。
本发明还提供了一种宽带无线通信中的信息传输系统, 包括发送端和接收 端, 发送端和接收端之间通过调制信道连接, 其中, 发送端进一步包括数据调 制模块、 串并转换模块、 DFT模块和 IFFT模块, 接收端进一步包括快速傅立 叶变换 FFT模块、 离散傅立叶反变换 IDFT模块、 并串转换模块以及数据解调 模块; 关键是在发送端的 DFT模块和 IFFT模块之间, 还包括单元块及块重复 调制模块, 用于完成块重复调制和单元块调制; 相应的, 在接收端的 FFT模块 和 IDFT模块之间, 还包括单元块及块重复解调模块, 用于完成块重复解调和 单元块解调。
本发明又提供了一种宽带无线通信中的信息传输方法, 包括发送流程和接 收流程; 其中, 发送流程包括:
al、 要发送的信号数据先经过调制、 分段以及串并转换, 再对经过串并转 换处理的数据进行 DFT处理转换到频域;
bl、 对转换到频域的数据符号块进行单元块调制和块重复调制, 将经过处 理的单元块映射到指定时频位置上;
cl、 对映射到时频位置上的单元块进行 IFFT处理, 加上 CP生成时域上的 随机序列发送;
接收流程包括:
a2、 对时域上收到的信号去除 CP, 并进行 FFT处理;
b2、 在指定时频位置上对重复单元块进行块重复解调和单元块解调, 得到 待解调的数据符号块;
c2、 对得到数据符号块进行解调, 生成接收数据。
本发明所提供的宽带无线通信中信号生成方法及装置、 信息传输方法及装 置, 可以实现无线通信信道中信息的有效可靠和可变速率的传输, 还可以实现 无线通信信道资源的多址接入; 应用于无线移动蜂窝系统中, 可以方便的实现 同频组网, 提高系统的容量和性能。 由于所采用的块重复技术是以基本物理资 源块为单位, 就使多小区间协调筒单很多, 只需要静态或半静态协调即可, 因 此,本发明能够很好地解决无线通信中资源的分配调度和干扰的协调控制问题, 包括对小区内和小区间干扰的控制, 从而极大地提高了系统容量和性能, 为宽 带无线通信系统提供了有效的解决方案。 附图说明
图 1为现有技术中 DFT-S OFDM信号生成方式的实现流程示意图; 图 2为现有技术中 MC-CDMA信号生成方式的实现原理示意图; 图 3为现有技术中 MC-DS-CDMA信号生成方式的实现原理示意图; 图 4为现有技术中时频域二维扩频的 OFCDM信号生成方式的实现原理示 意图;
图 5为本发明中 OFDM调制方式的信道资源分配情况示意图;
图 6为本发明 OFDM调制方式中一个物理资源块的结构示意图; 图 7为本发明中块重复传输方式的信号结构示意图;
图 8为本发明中块重复多址方式的信号结构示意图;
图 9为本发明中块重复传输发送系统的一种实现方案示意图;
图 10为本发明中块重复传输发送系统的另一种实现方案示意图; 图 11为本发明中块重复传输接收系统的一种实现方案示意图;
图 12为本发明中块重复传输接收系统的另一种实现方案示意图; 图 13为本发明 BR DFT-S OFDM信号生成方式的一种实现流程示意图; 图 14为本发明 BR DFT-S OFDM信号生成方式的另一种实现流程示意图; 图 15为本发明中单用户釆用时域块重复的示意图;
图 16为本发明中两用户采用时域块重复的示意图;
图 17为本发明 BR DFT-S OFDM传输通信系统一种实现结构示意图; 图 18为本发明 BR DFT- S OFDM传输通信系统另一种实现结构示意图。 具体实施方式
为解决现有技术的问题, 提出了一种基于块重复的信息传输及多路复用和 多址接入的方案, 即块重复 (BR, Block Repeat )传输方案, 以及块重复复用 ( BRDM, Block Repeat Division Multiplex ) /块重复多址接入 ( BRDMA, Block Repeat Division Multiple Access ) 方案。 所述方案与 OFDM结合可称为块重复 正交频分复用 (BR- OFDM ) /块重复正交频分多址 (BR-OFDMA )。 由于块重 复的多址方式是基于基本物理资源块的重复来实现的, 并不限制低层的调制多 址方式, 因此, 不仅可与 OFDM多址方式结合, 还可与多种多址方式相结合, 比如: 与 FDMA、 TDM A, CDMA等多址方式相结合, 构成多种方案。
以 OFDM为例来说, 在 OFDM调制方式下, 信道资源的分配和使用情况 如图 5所示, 图 5中每个方框内是一个物理资源块(PRB, Physical Resource Block ), 是传送数据映射到物理层的基本单位。 图 5中标记的入、 B、 C、 D、 E、 F表示不同用户, 从图中可以看出相邻的物理资源块可以分给同一用户, 也 可以分给不同用户, 比如: 用户 B拥有两个相邻的物理资源块, 而用户 A和用 户 E拥有不相邻的两个物理资源块。
OFDM调制方式下, 信道资源是一个时频二维的结构。 每个物理资源块的 具体组成结构如图 6所示, 图 6是一个 OFDM的物理资源块, 它占用了整个 OFDM时频资源的一部分, 该物理资源块在时间上包含 Ντ个 OFDM符号, 在 频域上包含 NF个 OFDM子载波,物理资源块可提供的传输数目为 N = N N个 数据符号,每个数据符号传输一个调制后的符号,整个 OFDM时频资源包含一 个或多个物理资源块。 其中, Ντ、 >½一般大于 1, Ν就是一个物理资源块的大 小, 比如, 在 LTE中, Ν=9χ12。
将一个物理资源块作为一个单元块,单元块是块重复的基本单位,对应的, 块重复 OFDM ( BR-OFDM ) 的信号结构如图 7和图 8所示, 其中, 图 7给出 的是单个用户的 BR-OFDM例子, 图 8给出的是多个用户的 BR-OFDM例子。 图 7和图 8中, BU1~BU6表示一个单元块被重复传输的次数, 可将块重复次 数称作块重复系数 RF ( Repeat Factor ), 图 7和图 8中 RP=6。 其中, RF的取 值可以根据需要设置, 一般取值为 1 ~ 8之间的任意值, 如果 RF取值过大会导 致计算复杂度增大。图 8中, 两个用户占用相同的时频信道资源做块重复传输, 沿着功率轴的方向, 上面是用户 1 , 下面是用户 2。
在块重复传输中, 发送端给出一个块重复加权因子序列或称重复码 C,C2…… 每个重复的单元块经一个加权因子加权, 重复传输并映射到指定 的时频位置上。 这里, 所述加权因子的作用相当于扩频。
基于图 7和图 8所示的块重复传输方式, 在发送信号时需要对单元块和块 重复分别进行调制, 因此, 本发明中的块重复传输发送装置有两种实现方式: 一种是先进行单元块调制,之后再做块重复调制; 另一种是先进行块重复调制, 之后再做单元块调制。
具体的, 第一种实现方式的发送装置结构框图如图 9所示, 要发送的数据 通过三级调制生成最终的发送信号: 第一级是发送数据调制, 由发送数据调制 模块实现, 对发送数据进行调制和分块, 生成数据符号块(DB ); 第二级是单 元块调制, 由单元块调制模块实现, 对生成的数据符号块进行调制映射, 生成 单元块(BU ), 这里, 所述单元块的生成是将生成的数据符号序列或说数据流, 按照某种次序依次填充到单元块对应的各个时频点上, 比如: 采用一种交织器 进行交织处理, 本方案中, 数据符号块是直接放置在单元块中的; 第三級是块 重复调制, 由块重复调制模块实现, 将单元块加权重复(BR )并映射到指定的 时频位置上, 生成最终的发送信号, 这里, 所述加权重复就是将每个单元块乘 以一个重复码或称重复加权因子 G, 映射到物理资源上; 之后就发送所生成的 发送信号。 这里, 所述要发送的数据为经过信道编码、 速率匹配和组合映射处 理的数据。
第二种实现方式的发送装置结构框图如图 10所示,要发送的数据通过三级 调制生成最终的发送信号: 第一级是发送数据调制, 由发送数据调制模块实现, 对发送数据进行调制和分块, 生成数据符号块; 第二级是块重复调制, 由块重 复调制模块实现, 将数据符号块加权重复; 第三级是单元块调制, 由单元块调 制模块实现, 将加权重复的数据符号块映射到单元块, 并映射到指定的时频位 置, 这里, 所述映射是将数据符号块按照某种次序依次填充到单元块对应的各 个时频点上, 比如: 采用一种交织器进行交织处理, 简单的, 可以将数据符号 块直接排列放置在单元块中。
对于上述两种方式各自具有各自的优点, 对于图 9所示的方式来说, 先将 数据填满一个单元块, 在以单元块为重复的单位进行块重复调制, 这样与现有 LTE系统的兼容性较强, 不改变以单元块为单位的映射方式, 但是数据间的相 关性降低。但对于图 10所示的方式来说, 先将数据分成小块, 以小块为单位进 行块重复调制, 再将块重复后的数据填到单元块中, 这样数据重复在较小的范 围中, 数据的相关性较强, 可以采用复杂度低的检测算法, 但是对原有的数据 映射方式有调整。 从上述描述可以看出, 上述两种方式各有优缺点, 但均可应 用于本发明中,可根据具体的应用场景进行选择。对应图 9和图 10的块重复发 送装置, 罔 11和图 12分别给出了相应的两种块重复接收装置, 其中, 图 12 是对应图 9发送装置的接收装置, 图 11是对应图 10发送装置的接收装置。 如 图 11所示,一种块重复接收装置的具体实现过程为:接收信号经过三级解调得 到最终的接收数据: 第一级是单元块解调, 由单元块调制模块实现, 对指定时 频位置上的各个重复单元块进行检测, 并逆映射得到数据符号块; 第二級是块 重复解调, 由块重复解调模块实现, 对各个重复单元块得到的数据符号块进行 加权合并, 得到待解调的数据符号块; 第三级是数据解调, 由数据解调模块实 现, 对得到的数据符号块进行解调, 生成接收数据。
如图 12所示,另一种块重复接收装置的具体实现过程为:接收信号经过三 级解调得到最终的接收数据: 第一级是块重复解调, 由块重复解调模块实现, 对指定时频位置上的各个重复单元块进行加权合并, 解调出数据符号块; 第二 级是单元块解调, 由单元块调制模块实现, 对解调的数据符号块进行检测, 逆 映射到数据符号块; 第三级是数据解调, 由数据解调模块实现, 对得到的数据 符号块进行解调, 生成接收数据。
由于 OFDM与 DFT-S OFDM的信号生成方式相似, 因此可将 BR-OFDMA 应用于 LTE上行信号传输中。 通过块重复方式, 能够降低 DFT-S OFDM上行 信号传输方式在同频组网中的干扰, 提高系统容量和资源利用率。
本发明的基本思想是: 将块重复与 DFT-S OFDM相结合,可以称之为块重 复单载波多址( BR- OFDMA )。 在 DFT-S OFDM调制方式下, 频域信道资源也 是一个时频二维结构, 一个 DFT-S OFDM的物理资源块单元, 占用整个时频资 源的一部分。 每个物理资源块单元在时间上包含 Ντ个时域长块符号, 在频域 上包含 Ντ个频域子载波, 单元块可提供的传输数目为 N = N Nf个数据符号。
作为本发明的一个实施例, BR DFT-S OFDM的信号生成方式可如图 13或 图 14所示, 在 DFT处理与 IFFT处理之间,增加单元块调制和块重复调制, 也 就是说,将经过 DFT处理转换到频域的数据符号块,先进行调制映射及加权重 复处理, 再进行 IFFT处理, 最后再加上 CP生成时域上的随机序列。 这里, 所 述调制映射和加权重复可以先对数据符号块进行加权重复, 再对加权重复的数 据符号块调制映射为单元块, 并映射到指定时频位置上。 可选择地, 也可以先 对数据符号块进行调制映射, 生成单元块, 再对单元块加权重复, 并映射到指 定时频位置上。
更为具体地,如图 13所示,本发明 BR DFT-S OFDM的一种信号生成方式 包括: 步骤 131 : 要发送的信号数据先经过调制, 对发送数据流进行分段, 再对 分段数据流进行串并转换;
步驟 132: 对经过串并转换处理的数据进行 DFT处理转换到频域; 步骤 133: 对转换到频域的数据符号块进行调制映射, 生成单元块; 步骤 134: 对生成的单元块加权重复, 映射到指定时频位置上;
步骤 135 - 136: 对映射到时频位置上的单元块进行 IFFT处理, 加上 CP 生成时域上的随机序列。
如图 14所示, 本发明 BR DFT- S OFDM的另一种信号生成方式包括: 步骤 141 : 要发送的信号数据先经过调制, 对发送数据流进行分段, 再对 分段数据流进行串并转换;
步驟 142: 对经过串并转换处理的数据进行 DFT处理转换到频域; 步骤 143: 对转换到频域的数据符号块进行加权重复;
步骤 144: 对加权重复的数据符号块调制映射为单元块, 并映射到指定时 频位置上;
步骤 145 146: 对映射到时频位置上的单元块进行 IFFT处理, 加上 CP 生成时域上的随机序列。
在实现图 13或图 14给出的信号生成方式时, 可采用对应的模块完成相应 的功能, 例如, 由数据调制模块完成数据调制, 串并转换模块完成串并转换, DFT模块完成 DFT处理, 单元块调制模块完成单元块调制, 块重复调制模块 完成块重复调制, IFFT模块完成 IFFT处理, CP模块增力。CP。 其中, 单元块 调制模块和块重复调制模块可以合并由一个模块实现, 可称为单元块及块重复 调制模块, 该模块用于完成块重复调制和单元块调制。
在 BR DFT-S OFDM调制方式中,为保持 DFT-S OFDM方式的单载波特性, 块重复只采用时域上重复的方式, 如果信号变成多载波发送形式, 将会损害上 行信号的覆盖性能。 以图 13为例, 经过 DFT处理的数据符号块先调制映射生 成单元块 BU1,设重复次数为 8,则将 BU1重复 8次,分别生成 BU1 , BU2, BU8 , 块重复加权因子序列为 C,C2…… C8 , 与生成的重复块相乘后, 生成重复 加权块并按时间顺序依次映射到相应的物理子载波上, 不同重复加权块采用时 分方式发送, 如图 15所示。 图 15中, 从左到右依次为 BUI , BU2, BU8, 分别对应加权因子 c,、 c2、……、 c8
图 16给出了两个用户采用时域块重复传输的示意图,不同用户之间釆用不 同的块重复加权序列进行区分。
在上述信号生成的基础上,图 17给出了 BR DFT-S OFDM通信系统的一种 实现结构, 包括发送端和接收端两部分, 发送端和接收端之间通过调制信道连 接。 其中, 发送端包括数据调制模块、 串并转换模块、 DFT模块、 单元块调制 模块、 块重复调制模块以及 IFFT模块; 接收端包括快速傅立叶变换(FFT )模 块、 块重复解调模块、 单元块解调模块、 离散傅立叶反变换(IDFT )模块、 并 串转换模块以及数据解调模块。
这里,数据调制模块用于完成数据调制, 串并转换模块用于进行串并转换, DFT模块进行 DFT处理, 单元块调制模块用于完成单元块调制, 即对转换到 频域的数据符号块进行调制映射生成单元块, 块重复调制模块用于完成块重复 调制,即对生成的单元块加权重复,映射到指定时频位置上, IFFT模块完成 IFFT 处理;相应的, FFT模块完成 FFT处理,块重复解调模块用于完成块重复解调, 即对指定时频位置上的各个重复单元块进行加权合并, 解调出数据符号块, 单 元块解调模块用于完成单元块解调, 即对解调的数据符号块进行检测, 逆映射 到数据符号块, IDFT模块完成 IDFT处理, 数据解调模块用于解调数据。
在实际应用中, 单元块调制模块和块重复调制模块可以合并由一个模块实 现, 可称为单元块及块重复调制模块, 该模块用于完成块重复调制和单元块调 制; 相应的, 单元块解调模块和块重复解调模块可以合并由一个模块实现, 可 称为单元块及块重复解调模块, 该模块用于完成块重复解调和单元块解调。
基于图 17的信息传输方法包括发送流程和接收流程;其中,发送流程包括: al、 要发送的信号数据先经过调制、 分段以及串并转换, 再对经过串并转 换处理的数据进行 DFT处理转换到频域;
bl、 对转换到频域的数据符号块进行单元块调制和块重复调制, 将经过处 理的单元块映射到指定时频位置上;
cl、对映射到时频位置上的单元块进行 IFFT处理, 加上 CP生成时域上的 随机序列发送;
接收流程包括: a2、 对时域上收到的信号去除 CP, 并进行 FFT处理;
b2、 在指定时频位置上对重复单元块进行块重复解调和单元块解调, 得到 待解调的数据符号块;
c2、 对得到数据符号块进行解调, 生成接收数据。
图 18给出了 BR DFT-S OFDM通信系统另一种实现结构, 实现原理、 流程 以及系统组成与图 17基本类似, 区别仅在于交换了单元块调制 /解调模块和块 重复调制 /解调模块的顺序, 相应的, 单元块调制 /解调的处理与块重复调制 /解 调的处理也交换了。
本发明所提供的宽带无线通信中信号生成方法及装置、 信息传输方法及装 置, 可以实现无线通信信道中信息的有效可靠和可变速率的传输, 还可以实现 无线通信信道资源的多址接入; 应用于无线移动蜂窝系统中, 可以方便的实现 同频组网, 提高系统的容量和性能。 由于所采用的块重复技术是以基本物理资 源块为单位, 就使多小区间协调简单很多, 只需要静态或半静态协调即可, 因 此,本发明能够很好地解决无线通信中资源的分配调度和干扰的协调控制问题, 包括对小区内和小区间干扰的控制, 从而极大地提高了系统容量和性能, 为宽 带无线通信系统提供了有效的解决方案。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范 围。

Claims

权利要求书
1、 一种宽带无线通信中的信号生成方法, 其特征在于, 该方法包括:
A、 要发送的信号数据先经过调制、 分段以及串并转换, 再对经过串并转 换处理的数据进行离散傅立叶变换 DFT处理转换到频域;
B、 对转换到频域的数据符号块进行单元块调制和块重复调制, 将经过处 理的单元块映射到指定时频位置上;
C、 对映射到时频位置上的单元块进行快速傅立叶反变换 IFFT处理, 加上 循环前缀 CP生成时域上的随机序列。
2、 根据权利要求 1所述的信号生成方法, 其特征在于, 步驟 B所述对转 换到频域的数据符号块进行单元块调制和块重复调制具体为:
B1 K 对转换到频域的数据符号块进行调制映射, 生成单元块;
B12、 对生成的单元块加权重复;
所述经过处理的单元块为经过加权重复处理的单元块。
3、 根据权利要求 1所述的信号生成方法, 其特征在于, 步骤 B所述对转 换到频域的数据符号块进行单元块调制和块重复调制具体为:
B21、 对转换到频域的数据符号块进行加权重复;
B22、 对加权重复的数据符号块调制映射为单元块;
所述经过处理的单元块为步驟 B22生成的单元块。
4、根据权利要求 2或 3所述的信号生成方法, 其特征在于, 所述加权重复 在时域上重复。
5、根据权利要求 2或 3所述的信号生成方法, 其特征在于, 不同用户沿功 率轴复用 , 且不同用户采用不同的块重复加权序列进行区分。
6、一种宽带无线通信中的信号生成装置,其特征在于,包括数据调制模块、 串并转换模块、 DFT模块、 IFFT模块以及循环前缀模块, 且在所述 DFT模块 和所述 IFFT模块之间, 还包括有单元块及块重复调制模块, 用于完成块重复 调制和单元块调制。
7、根据权利要求 6所述的信号生成装置, 其特征在于,所述单元块及块重 复调制模块进一步包括单元块调制模块和块重复调制模块;
所述单元块调制模块的输入与 DFT模块的输出相连,用于对转换到频域的 数据符号块进行调制映射, 生成单元块;
所述块重复调制模块的输入与单元块调制模块的输出相连., 输出与 IFFT 模块的输入相连, 用于对生成的单元块加权重复, 映射到指定时频位置上。
8、根据权利要求 6所述的信号生成装置,其特征在于, 所述单元块及块重 复调制模块进一步包括块重复调制模块和单元块调制模块;
所述块重复调制模块的输入与 DFT模块的输出相连,用于对转换到频域的 数据符号块进行加权重复;
所述单元块调制模块的输入与块重复调制模块的输出相连, 输出与 IFFT 模块的输入相连, 用于对加权重复的数据符号块调制映射为单元块, 并映射到 指定时频位置上。
9、根据权利要求 7或 8所述的信号生成装置, 其特征在于, 所述加权重复 在时域上重复。
10、 '根据权利要求 7或 8所述的信号生成装置, 其特征在于, 不同用户沿 功率轴复用, 且不同用户采用不同的块重复加权序列进行区分。
11、 一种宽带无线通信中的信息传输系统, 包括发送端和接收端, 发送端 和接收端之间通过调制信道连接, 其中, 发送端进一步包括数据调制模块、 串 并转换模块、 DFT模块和 IFFT模块, 接收端进一步包括快速傅立叶变换 FFT 模块、 离散傅立叶反变换 IDFT模块、 并串转换模块以及数据解调模块; 其特 征在于,
在发送端的 DFT模块和 IFFT模块之间 ,还包括单元块及块重复调制模块, 用于完成块重复调制和单元块调制;
相应的, 在接收端的 FFT模块和 IDFT模块之间, 还包括单元块及块重复 解调模块, 用于完成块重复解调和单元块解调。
12、根据权利要求 11所述的信息传输系统, 其特征在于, 所述单元块及块 重复调制模块进一步包括单元块调制模块和块重复调制模块;
所述单元块调制模块的输入与 DFT模块的输出相连,用于对转换到频域的 数据符号块进行调制映射, 生成单元块;
所述块重复调制模块的输入与单元块调制模块的输出相连, 输出与 IFFT 模块的输入相连, 用于对生成的单元块加权重复, 映射到指定时频位置上; 所述单元块及块重复解调模块进一步包括块重复解调模块和单元块解调模 块;
所述块重复调制模块的输入与 FFT模块的输出相连,用于对指定时频位置 上的各个重复单元块进行加权合并, 解调出数据符号块;
所述单元块解调模块的输入与块重复调制模块的输出相连, 输出与 IDFT 模块的输入相连, 用于对解调的数据符号块进行检测, 逆映射到数据符号块。
13、根据权利要求 11所述的信息传输系统, 其特征在于, 所述单元块及块 重复调制模块进一步包括块重复调制模块和单元块调制模块;
所述块重复调制模块的输入与 DFT模块的输出相连,用于对转换到频域的 数据符号块进行加权重复;
所述单元块调制模块的输入与块重复调制模块的输出相连, 输出与 IFFT 模块的输入相连, 用于对加权重复的数据符号块调制映射为单元块, 并映射到 指定时频位置上;
所述单元块及块重复解调模块进一步包括单元块解调模块和块重复解调模 块;
所述单元块解调模块的输入与 FFT模块的输出相连,用于对指定时频位置 上的各个重复单元块进行检测, 并逆映射得到数据符号块;
所述块重复解调模块的输入与单元块解调模块的输出相连, 输出与 IDFT 模块的输入相连, 用于对各个重复单元块得到的数据符号块进行加权合并, 得 到待解调的数据符号块。
14、 一种宽带无线通信中的信息传输方法, 其特征在于, 该方法包括发送 流程和接收流程; 其中,
发送流程包括:
al、 要发送的信号数据先经过调制、 分段以及串并转换, 再对经过串并转 换处理的数据进行 DFT处理转换到频域;
bl、 对转换到频域的数据符号块进行单元块调制和块重复调制, 将经过处 理的单元块映射到指定时频位置上;
cl、对映射到时频位置上的单元块进行 IFFT处理, 加上 CP生成时域上的 随机序列发送; 接收流程包括:
a2、 对时域上收到的信号去除 CP, 并进行 FFT处理;
b2、 在指定时频位置上对重复单元块进行块重复解调和单元块解调, 得到 待解调的数据符号块;
c2、 对得到数据符号块进行解调, 生成接收数据。
15、 据权利要求 14所述的信息传输方法, 其特征在于, 步骤 bl所述对 转换到频域的数据符号块进行单元块调制和块重复调制进一步包括:
对转换到频域的数据符号块进行调制映射, 生成单元块;
再对生成的单元块加权重复, 映射到指定时频位置上;
相应的,步骤 b2所述对重复单元块进行块重复解调和单元块解调进一步包 括:
对指定时频位置上的各个重复单元块进行加权合并, 解调出数据符号块; 对解调的数据符号块进行检测, 逆映射到数据符号块。
16、 根据权利要求 14所述的信息传输方法, 其特征在于, 步骤 bl所述对 转换到频域的数据符号块进行单元块调制和块重复调制进一步包括:
对转换到频域的数据符号块进行加权重复;
对加权重复的数据符号块调制映射为单元块, 并映射到指定时频位置上; 相应的,步驟 b2所述对重复单元块进行块重复解调和单元块解调进一步包 括:
对指定时频位置上的各个重复单元块进行检测,并逆映射得到数据符号块; 对各个重复单元块得到的数据符号块进行加权合并, 得到待解调的数据符 号块。
PCT/CN2008/001932 2007-11-26 2008-11-26 Procédé, système et appareil de génération de signal et de transmission de message dans des communications sans fil à large bande WO2009070983A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107013621A KR101147492B1 (ko) 2007-11-26 2008-11-26 광대역 무선 통신에서의 신호 생성과 정보 전송 방법, 시스템 및 장치
US12/744,550 US8670298B2 (en) 2007-11-26 2008-11-26 Method, system and apparatus for signal generation and message transmission in broadband wireless communications
EP08856866.2A EP2216953B1 (en) 2007-11-26 2008-11-26 Method, system and apparatus for signal generation and message transmission in broadband wireless communications
JP2010534344A JP2011504694A (ja) 2007-11-26 2008-11-26 ブロードバンド無線通信における信号生成及び情報伝送方法・システム及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710178100.3A CN101447961A (zh) 2007-11-26 2007-11-26 宽带无线通信中信号生成和信息传输方法、系统及装置
CN200710178100.3 2007-11-26

Publications (1)

Publication Number Publication Date
WO2009070983A1 true WO2009070983A1 (fr) 2009-06-11

Family

ID=40717291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001932 WO2009070983A1 (fr) 2007-11-26 2008-11-26 Procédé, système et appareil de génération de signal et de transmission de message dans des communications sans fil à large bande

Country Status (6)

Country Link
US (1) US8670298B2 (zh)
EP (1) EP2216953B1 (zh)
JP (1) JP2011504694A (zh)
KR (1) KR101147492B1 (zh)
CN (1) CN101447961A (zh)
WO (1) WO2009070983A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8725243B2 (en) 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
KR20100097584A (ko) * 2009-02-26 2010-09-03 엘지전자 주식회사 다중안테나 시스템에서 데이터 전송 장치 및 방법
CN106453169B (zh) * 2010-09-02 2019-11-15 索尼公司 无线通信系统中的信号发送和接收方法与装置
CN102185821B (zh) * 2011-05-10 2014-04-23 哈尔滨工业大学 恶劣电磁环境下基于认知无线电的通信弱信号高质量抗干扰通信系统
CN105024950B (zh) * 2014-04-16 2018-06-05 普天信息技术有限公司 一种数据检测方法
EP3142274B1 (en) 2014-05-09 2019-07-03 Panasonic Intellectual Property Corporation of America Terminal, base station, transmission method, and reception method
CN104485975A (zh) * 2014-12-31 2015-04-01 电子科技大学 一种在直接序列扩频技术中的序列重构方法
CN105871339B (zh) * 2015-01-20 2020-05-08 普源精电科技股份有限公司 一种灵活的可分段调制的信号发生器
WO2016179838A1 (en) * 2015-05-14 2016-11-17 Nec Corporation Method and apparatus for signal transmission
CN106301693B (zh) * 2015-05-21 2019-07-02 上海无线通信研究中心 一种基于码本映射的无线信号调制方法
US10602508B2 (en) 2015-08-10 2020-03-24 Qualcomm Incorporated LTE-direct communication for vehicle-to-vehicle
US10601620B2 (en) * 2015-09-04 2020-03-24 National Taiwan University Device of handling block transmission in multicarrier system
EP3355500B1 (en) * 2015-09-24 2021-06-02 NTT DoCoMo, Inc. Radio base station and radio communication method
CN106992793A (zh) * 2017-03-06 2017-07-28 无锡德思普科技有限公司 基于频域实现的直接序列扩频通信的发射机装置及方法
CN107017898A (zh) * 2017-03-06 2017-08-04 无锡德思普科技有限公司 一种基于不同带宽配置的卫星信号发射装置
CN107017896A (zh) * 2017-03-06 2017-08-04 无锡德思普科技有限公司 一种基于宽带和窄带信号的电台发射装置
CN108965185B (zh) * 2017-05-26 2020-11-13 中国移动通信集团公司 一种混合调制和解调多载波的方法及装置
WO2019028874A1 (en) * 2017-08-11 2019-02-14 Zte Corporation PROCESSING AND TRANSMISSION OF SYMBOL BLOCKS IN WIRELESS COMMUNICATIONS
CN111630823A (zh) * 2018-01-31 2020-09-04 三菱电机株式会社 发送装置、接收装置和发送方法
CN109462895B (zh) * 2018-12-14 2022-03-25 京信网络系统股份有限公司 用户设备上行调度方法和装置
WO2021171084A1 (en) * 2020-02-27 2021-09-02 Zeku Inc. Bus-traffic reduction mechanism and related methods of operation
CN117560029B (zh) * 2024-01-11 2024-04-02 航天科工空间工程网络技术发展(杭州)有限公司 一种信道化接收机及接收方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367615A (zh) * 2002-02-01 2002-09-04 清华大学 低峰值平均功率比的时域同步正交频分复用调制方法
US20030067961A1 (en) * 2001-10-04 2003-04-10 Hudson John E. Wireless spread spectrum communications system, communications apparatus and method therefor
CN1571414A (zh) * 2004-04-30 2005-01-26 焦秉立 多用户块传输通信发射方法和接收方法
WO2005088853A1 (en) * 2004-03-09 2005-09-22 Neocific Inc. Methods and apparatus for random access in multi-carrier communication systems
CN101232484A (zh) * 2007-01-26 2008-07-30 大唐移动通信设备有限公司 信号传输方法、装置及通信系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215762B1 (en) 1997-07-22 2001-04-10 Ericsson Inc. Communication system and method with orthogonal block encoding
JP3236273B2 (ja) * 1999-05-17 2001-12-10 三菱電機株式会社 マルチキャリア伝送システムおよびマルチキャリア変調方法
KR100401801B1 (ko) * 2001-03-27 2003-10-17 (주)텔레시스테크놀로지 데이터 전송 성능을 개선하기 위한 직교주파수 분할 다중통신 시스템 및 방법
JP4402425B2 (ja) 2003-10-24 2010-01-20 スタンレー電気株式会社 車両前照灯
JP3997226B2 (ja) * 2003-11-11 2007-10-24 株式会社エヌ・ティ・ティ・ドコモ 受信装置及び受信タイミング検出方法
US8000268B2 (en) 2004-06-30 2011-08-16 Motorola Mobility, Inc. Frequency-hopped IFDMA communication system
EP1916856A1 (en) * 2005-09-30 2008-04-30 Matsushita Electric Industrial Co., Ltd. Wireless communication mobile station apparatus and rach data transmitting method
US7808886B2 (en) * 2006-01-18 2010-10-05 Freescale Semiconductor, Inc. Pilot signal in an FDMA communication system
CN101043485A (zh) * 2006-03-22 2007-09-26 松下电器产业株式会社 发送方法、接收方法和设备及通信系统
US7864663B2 (en) * 2007-05-25 2011-01-04 Telefonaktiebolaget Lm Ericsson (Publ) Orthogonal spread-spectrum waveform generation with non-contiguous spectral occupancy for use in CDMA communications
CN101499988B (zh) 2008-02-01 2012-03-21 电信科学技术研究院 宽带无线移动通信方法、系统和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067961A1 (en) * 2001-10-04 2003-04-10 Hudson John E. Wireless spread spectrum communications system, communications apparatus and method therefor
CN1367615A (zh) * 2002-02-01 2002-09-04 清华大学 低峰值平均功率比的时域同步正交频分复用调制方法
WO2005088853A1 (en) * 2004-03-09 2005-09-22 Neocific Inc. Methods and apparatus for random access in multi-carrier communication systems
CN1571414A (zh) * 2004-04-30 2005-01-26 焦秉立 多用户块传输通信发射方法和接收方法
CN101232484A (zh) * 2007-01-26 2008-07-30 大唐移动通信设备有限公司 信号传输方法、装置及通信系统

Also Published As

Publication number Publication date
EP2216953B1 (en) 2017-08-30
US8670298B2 (en) 2014-03-11
KR101147492B1 (ko) 2012-05-21
EP2216953A8 (en) 2010-09-15
EP2216953A1 (en) 2010-08-11
CN101447961A (zh) 2009-06-03
US20100254253A1 (en) 2010-10-07
EP2216953A4 (en) 2013-04-24
JP2011504694A (ja) 2011-02-10
KR20100076079A (ko) 2010-07-05

Similar Documents

Publication Publication Date Title
WO2009070983A1 (fr) Procédé, système et appareil de génération de signal et de transmission de message dans des communications sans fil à large bande
CN106302300B (zh) 一种基于滤波器组多载波系统的信号发送和接收的方法及装置
US9094158B2 (en) Radio access method for reduced PAPR
US20180006782A1 (en) Method and apparatus for allocating a plurality of data symbols in a wireless communication system
KR100539925B1 (ko) 직교주파수분할다중 시스템에서 부반송파 할당 장치 및 방법
JP5496197B2 (ja) 多重アンテナシステムにおける参照信号の送信方法
JP5080330B2 (ja) ユーザ装置及び基地局装置並びに通信制御方法
KR101445388B1 (ko) 반복 코딩을 이용한 데이터 전송 방법
EP2734003A1 (en) Method and apparatus for allocating a control channel resource of a relay node in a backhaul subframe
WO2008092387A1 (en) A method and apparatus for transmitting signal and a communication system
JP2015130681A (ja) シングルキャリアベースの制御チャネル用のハイブリッドfdm−cdm構造の方法および装置
WO2010101097A1 (ja) 符号多重伝送方法、送信装置及び受信装置
KR20070034905A (ko) 광대역 무선 접속 통신 시스템에서 주파수 자원 운용 장치및 방법
CN101849037A (zh) 复极式氧阴极离子膜电解单元槽
US10128995B2 (en) Filter bank multicarrier modulation-based signal transmitting method, signal receiving method and device
CN115835379A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2009097805A1 (zh) 宽带无线移动通信方法、系统和设备
KR102599769B1 (ko) 필터 뱅크 멀티 캐리어 변조 기반 신호 송신 방법, 신호 수신 방법 및 디바이스
Memisoglu et al. Fading-aligned OFDM with index modulation for mMTC services
CN102932127B (zh) Td-lte扩频ofdm系统的多基站协同通信方法
Liu et al. Application of OFDM technology in 4G mobile network
US20050007946A1 (en) Multi-carrier transmission
CN107949060A (zh) 一种用于混合循环前缀正交频分多址的功率分配方法
CN115868147A (zh) 用于单载波多址传输的系统及方法
KR101513512B1 (ko) 직교 주파수 분할 다중 접속 시스템에서의 이종 서브프레임간 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08856866

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534344

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2008856866

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008856866

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12744550

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107013621

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3945/CHENP/2010

Country of ref document: IN