WO2009097805A1 - 宽带无线移动通信方法、系统和设备 - Google Patents

宽带无线移动通信方法、系统和设备 Download PDF

Info

Publication number
WO2009097805A1
WO2009097805A1 PCT/CN2009/070280 CN2009070280W WO2009097805A1 WO 2009097805 A1 WO2009097805 A1 WO 2009097805A1 CN 2009070280 W CN2009070280 W CN 2009070280W WO 2009097805 A1 WO2009097805 A1 WO 2009097805A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
block
module
symbol
fourier transform
Prior art date
Application number
PCT/CN2009/070280
Other languages
English (en)
French (fr)
Inventor
Yang Yu
Shaohui Sun
Yingmin Wang
Original Assignee
Da Tang Mobile Communications Equipment Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Da Tang Mobile Communications Equipment Co., Ltd. filed Critical Da Tang Mobile Communications Equipment Co., Ltd.
Publication of WO2009097805A1 publication Critical patent/WO2009097805A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/04Arrangements for detecting or preventing errors in the information received by diversity reception using frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only

Definitions

  • the present invention relates to mobile communication technologies, and more particularly to broadband wireless mobile communication methods, systems and devices.
  • broadband wireless mobile communication has become a major development direction of mobile communication.
  • ITU International Advanced Telecommunications
  • ITU International Telecommunications Union
  • the maximum bandwidth of wireless mobile communication can reach 100MHz, and the maximum transmission rate can reach 1Gbps, which can satisfy users for wireless.
  • Great demand for mobile communications Through broadband wireless mobile communication, users can enjoy high-speed data download, online shopping, mobile video chat and mobile TV and many other wireless mobile services.
  • Orthogonal Frequency Division Multiplexing (OFDM) technology has become the most competitive technology in broadband wireless mobile communications.
  • the technology has high spectral efficiency, strong bandwidth scalability, strong multipath fading resistance, flexible spectrum resource allocation, and comparison with technologies such as multiple-input multiple-out-put (MIMO).
  • MIMO multiple-input multiple-out-put
  • this technology also has certain defects in practical applications, such as: sensitive to frequency offset, large peak-to-average power ratio (PAPR) of transmitted signals, and narrow-band subcarriers of OFDM are susceptible to deep fading Channel
  • PAPR peak-to-average power ratio
  • OFDM narrow-band subcarriers of OFDM are susceptible to deep fading Channel
  • there is one of the biggest drawbacks that is, the ability to resist co-channel interference is very weak, and it is impossible to guarantee the same-frequency networking of the cellular system.
  • the same frequency networking is a basic requirement for operators.
  • LTE Long Term Evolution
  • This method divides the frequency resources into several multiplexed sets.
  • the users in the cell center occupy all the time-frequency resources, but use lower power transmission.
  • Strong interference so the frequency reuse coefficient of the cell center part is 1; while the user at the cell edge needs to transmit signals with higher power, but in this case, if the neighboring cell users use the same frequency resource, it is possible A strong interference is generated. Therefore, the frequency resources at the cell edge are usually divided into N parts, and different cell allocations use one-ninth frequency resources. Correspondingly, the frequency reuse coefficient of the cell edge is N.
  • the soft frequency reuse technology can effectively avoid inter-cell interference, its defects are also obvious.
  • the spectrum resources at the edge of the cell are limited, and it is difficult to support a large number of users and a data rate of 4 ⁇ .
  • the power consumption of the cell center user is used to avoid interference of the neighboring cell, which will reduce the system power utilization, resulting in a cell. The decline in average throughput.
  • the smart antenna uses the Space Division Multiple Access (SDMA) technology to distinguish the signals of the simultaneous frequency resources by using the difference of the signals in the transmission direction to maximize the use of limited wireless time-frequency resources. Since the antenna lobes point directly to the user, interference with other users in the cell and with neighboring cell users is reduced, and multipath effects are also reduced. At the same time, compared with the non-directional antenna, the antenna gain of the uplink and downlink is greatly improved, the transmission power level is lowered, the signal-to-noise ratio is improved, and the influence of channel fading is effectively overcome.
  • the application of smart antennas achieves two goals of increasing antenna gain and reducing co-channel interference, thereby significantly expanding system capacity and increasing spectrum utilization.
  • the application of smart antennas has certain limitations. For example, if the beams pointing to different users belonging to two neighboring cells do not collide, the interference of the user's neighboring cell signals can be neglected, thereby effectively avoiding interference between adjacent cells; however, for IMT-Advanced
  • the number of cells to be considered is very large, and the beam spread angle is not ideal. Therefore, users at the edge of the cell tend to be at the intersection of two cell beams. At this time, the interference of the neighboring cell will be quite strong, if only Relying on the traditional smart antenna technology, the effect of resisting neighbor cell interference is not obvious.
  • the main purpose of the present invention is to provide a broadband wireless mobile communication method, which can effectively overcome the same-frequency interference problem and improve the spectrum utilization rate of the system.
  • Another object of the present invention is to provide a broadband wireless mobile communication system capable of effectively overcoming the same frequency interference problem and improving the spectrum utilization rate of the system.
  • Still another object of the present invention is to provide two types of broadband wireless mobile communication devices, which can effectively overcome the problem of co-channel interference and improve the spectrum utilization of the system.
  • a broadband wireless mobile communication method comprising:
  • the transmitting end performs signal transmission according to the smart antenna and the block repeated orthogonal frequency division multiple access.
  • a broadband wireless mobile communication system comprising: a transmitting end and a receiving end; and the transmitting end is configured to perform signal transmission according to a smart antenna and a block repeated orthogonal frequency division multiple access combination;
  • the receiving end is configured to receive and demodulate the transmitting signal.
  • a broadband wireless mobile communication device comprising: a symbol modulation module, a unit block modulation module, a block repetition modulation module, a serial-to-parallel conversion module, and an inverse Fourier transform module; the symbol modulation module, configured to transmit bit data to be transmitted Stream modulation into a symbol data stream;
  • the unit block modulation module is configured to block the symbol data stream to obtain a data symbol block, and perform modulation mapping on the data symbol block to obtain a unit block.
  • the block repetition modulation module is configured to perform repeated weighting on the unit block
  • the serial-to-parallel conversion module is configured to copy the weighted data by M parts, and weight each piece of data separately using each element in a space vector related to a spatial location of the receiving end;
  • the value of the value is equal to that in the smart antenna array on the transmitting end. Number of transmitting antennas;
  • the inverse Fourier transform module is configured to perform inverse Fourier transform on each weighted data, and send the inverse Fourier transformed data to a transmitting antenna for transmission.
  • a broadband wireless mobile communication device comprising: a Fourier transform module, a parallel-to-serial conversion module, a block repetition demodulation module, a unit block demodulation module, and a symbol demodulation module;
  • a Fourier transform module configured to perform a Fourier transform on the received signal
  • the parallel-to-serial conversion module is configured to perform spatial vector weighted combining on the data subjected to the Fourier transform transform
  • the space vector is pre-acquired a space vector related to the spatial location of the sender
  • the block repeating demodulation module is configured to perform multi-user joint detection on the parallel-converted data to obtain unit block data
  • the unit block demodulation module is configured to demodulate the unit block data to obtain a data symbol block
  • the symbol demodulation module is configured to perform symbol level demodulation on the data symbol block to obtain a bit data stream.
  • the transmitting end performs signal transmission in the uplink and downlink according to the combination of the smart antenna and the block repeating orthogonal frequency division multiple access; the receiving end receives and demodulates the transmitting signal.
  • the solution of the present invention combines the smart antenna with the block repeated orthogonal frequency division multiple access technology, effectively avoids co-channel interference between adjacent cells, and improves the performance of the cell edge user. Improve the spectrum utilization of the system.
  • FIG. 1 is a schematic diagram of transmitting downlink signals by using BF-BR-OFDMA technology according to an embodiment of the present invention; Schematic diagram of the process.
  • FIG. 2 is a schematic flowchart of downlink signal reception by using BF-BR-OFDMA technology according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of uplink signal transmission by using BF-BR-OFDMA technology according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of uplink signal reception by using BF-BR-OFDMA technology according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a transmitting end of a downlink signal transmission using a BF-BR-OFDMA technology according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a receiving end of a downlink signal receiving by using a BF-BR-OFDMA method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a transmitting end of an uplink signal transmission using a BF-BR-OFDMA technology according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a receiving end of an uplink receiving signal using a BF-BR-OFDMA technology according to an embodiment of the present invention. Mode for carrying out the invention
  • BR-OFDMA Block Repeat-Orthogonal Frequency
  • the Division Multiple Access technology that is, the transmitting end performs signal transmission in a manner of combining a smart antenna and a block repeat orthogonal frequency division multiple access; the receiving end receives and demodulates the transmitted signal.
  • the BR-OFDMA technology mentioned here refers to OFDMA and code division multiple access (CDMA, Code Division). Multiple Access) technology combines block repetition to replace chip repetition in conventional CDMA on the basis of OFDM modulation, and replaces the spreading code with block repetition code to obtain code domain spreading gain.
  • Different or low-correlation block repetition codes are used between different cells or users, and multi-user joint detection and reception methods are used at the receiving end to eliminate inter-cell or inter-user interference to improve system performance.
  • the number of array elements of the smart antenna is limited. For example, for a smart antenna with M array elements, only M-1 interference sources can be suppressed, and the formed side lobes are still interference to other users, combined with BR-OFDMA technology. This interference can be reduced later.
  • TDD Time Division Duplexing
  • a technology combining a smart antenna with BR-OFDMA is called a BF-BR-OFDMA technology.
  • BF is the abbreviation of Beam Forming, which is beamforming.
  • FIG. 1 is a schematic flowchart of downlink signal transmission by using BF-BR-OFDMA technology according to an embodiment of the present invention. As shown in Figure 1, the following steps are included:
  • Step 101 Modulate the bit data stream to be transmitted into a symbol data stream.
  • Step 102 Block the modulated symbol data stream, generate a data symbol block, and perform modulation mapping on the data symbol block to generate a unit block.
  • Step 103 Perform repeated weighting on the generated unit block data.
  • steps 101-103 The specific implementation of steps 101-103 is prior art and will not be described again.
  • Step 104 The data subjected to the repeated weighting is serial-to-parallel transformed according to the time-frequency domain unit of the data transmission, and mapped to different orthogonal frequency division multiplexing sub-carriers.
  • W [ W (j , Wl , - , w how to obtain space
  • the vector W is well known in the art and will not be described again.
  • the data after repeated weighting is copied into M parts, and the value of M is equal to the number of transmitting antennas, and each element in the space vector W is weighted for each set of data; Performing an inverse Fourier transform (IFFT) transform on each set of weighted data; and transmitting the IFFT-transformed data to the M transmit antennas for transmission.
  • IFFT inverse Fourier transform
  • FIG. 2 is a schematic flowchart of downlink signal reception by using BF-BR-OFDMA technology according to an embodiment of the present invention. As shown in FIG. 2, the following steps are included: Step 201: Perform Fourier transform (FFT) transform and parallel-to-serial conversion on the received data. Step 202: Perform multi-user joint detection on the parallel block-converted duplicate block data to generate unit block data.
  • FFT Fourier transform
  • Step 203 Demodulate the generated unit block data to generate a data symbol block.
  • Step 204 Perform symbol level demodulation on the generated data symbol block to generate a bit data stream. After that, the generated bit stream is input to the channel decoding and other related modules for subsequent processing.
  • the specific implementation of the process shown in Figure 2 is basically the same as the corresponding process in the existing BR-OFDMA. The only difference is that the subsequent channel estimation process needs to use dedicated pilots, and will not be described again.
  • the embodiment shown in FIG. 1 and FIG. 2 above is a specific implementation flow when the BF-BR-OFDMA technology is used for downlink signal transmission and reception. The following uses a BF-BR-OFDMA technology through a specific embodiment. The specific implementation flow when transmitting and receiving uplink signals will be described.
  • FIG. 3 is a schematic flowchart of uplink signal transmission by using BF-BR-OFDMA technology according to an embodiment of the present invention. As shown in Figure 3, the following steps are included:
  • Step 301 Modulate the bit data stream to be transmitted into a symbol data stream.
  • Step 302 Block the modulated symbol data stream, generate a data symbol block, and perform modulation mapping on the data symbol block to generate a unit block.
  • Step 303 Performing repeated weighting on the generated unit block data.
  • Step 304 Perform serial-to-parallel transformation and inverse Fourier transform on the data subjected to the repeated weighting, and map to different orthogonal frequency division multiplexing subcarriers for transmission.
  • steps 301-304 is substantially the same as steps 101-104 shown in FIG. 1, except that step 304 only needs to perform data mapping according to the existing mapping manner.
  • FIG. 4 is a schematic flowchart of performing uplink signal reception by using the BF-BR-OFDMA technology according to an embodiment of the present invention. As shown in FIG. 4, the method includes the following steps:
  • Step 401 Each antenna unit in the receiving antenna array performs Fourier transform on the received signal.
  • Step 402 Perform spatial vector W-weighted combining on the transformed data in each antenna unit.
  • the space vector W is a pre-acquired spatial vector related to the spatial position of the transmitting end.
  • Step 403 Perform multi-user joint detection on the parallel block-converted duplicate block data to generate unit block data.
  • Step 404 Demodulate the generated unit block data to generate a data symbol block.
  • Step 405 Perform symbol level demodulation on the generated data symbol block to generate a bit data stream. After that, the generated bit stream is input to the channel decoding and other related modules for subsequent processing.
  • each base station needs to perform multi-cell policy negotiation first, that is, each cell negotiates parameters required for communication, and then according to The result of the negotiation communicates with the respective user terminals. For each beam, all time-frequency resources allocated by the cell can be used.
  • the base station can communicate with the traditional OFDMA mode or the BF-BR-OFDMA mode, and the specific implementation manner is not limited; but for the user at the cell edge, the BF needs to be used.
  • -BR-OFDMA mode to avoid co-channel interference.
  • the parameters determined by negotiation between the cells include:
  • each cell should use the same RF.
  • a broadband wireless mobile communication system including a transmitting end and a receiving end.
  • the transmitting end is configured to perform signal transmission according to a combination of a smart antenna and a block repeating orthogonal frequency division multiple access; and a receiving end, configured to receive and demodulate the transmitted signal.
  • FIG. 5 is a schematic structural diagram of a transmitting end of a downlink signal transmission using a BF-BR-OFDMA technology according to an embodiment of the present invention. As shown in FIG. 5, it mainly includes: a symbol modulation module 501, a unit block modulation module 502, a block repetition modulation module 503, a serial to parallel conversion module 504, and an inverse Fourier transform module 505.
  • a symbol modulation module 501 configured to modulate a bit data stream to be transmitted into a symbol data stream
  • a unit block modulation module 502 configured to block the symbol data stream, obtain a data symbol block, and block the data symbol block Perform modulation mapping to obtain a unit block
  • a block repetition modulation module 503, configured to perform repeated weighting on the unit block
  • the serial-to-parallel conversion module 504 is configured to copy the weighted data by M parts, and use each element in the space vector that is pre-acquired and related to the spatial position of the receiving end to be weighted for each piece of data;
  • the value is equal to the number of transmit antennas in the smart antenna array;
  • the inverse Fourier transform module 505 is configured to perform inverse Fourier transform on each weighted data, and send the inverse Fourier transformed data to the transmitting antenna for transmission.
  • FIG. 6 is a schematic structural diagram of a receiving end of a downlink receiving signal using a BF-BR-OFDMA method according to an embodiment of the present invention. As shown in FIG. 6, the method includes: a Fourier transform module 601, a parallel-serial conversion module 602, a block repetition demodulation module 603, a unit block demodulation module 604, and a symbol demodulation module 605.
  • a Fourier transform module 601 configured to perform a Fourier transform on the received signal
  • a parallel-to-serial conversion module 602 configured to perform parallel-to-serial conversion on the data subjected to the Fourier transform transform
  • a block repetition demodulation module 603, configured to perform multi-user joint detection on the parallel-converted data to obtain unit block data
  • a unit block demodulation module 604 configured to demodulate the unit block data to obtain a data symbol block;
  • the symbol demodulation module 605 is configured to perform symbol level demodulation on the data symbol block to obtain a bit data stream.
  • the receiving end shown in FIG. 6 further includes a descrambling module 606, and the descrambling module 606 and the block repeating demodulating module 603 perform the function of the block repeating demodulation module 603.
  • the module may not be shown in the figure, but the module and the block repetition demodulation module 603 are collectively referred to as a block repetition demodulation module. Similar situations appearing in Figures 7 and 8 below are not repeated here.
  • FIG. 7 is a schematic structural diagram of a transmitting end of an uplink signal transmission using a BF-BR-OFDMA technology according to an embodiment of the present invention. As shown in FIG. 7, the method includes: a symbol modulation module 701, a unit block modulation module 702, a block repetition modulation module 703, a serial to parallel conversion module 704, and an inverse Fourier transform module 705;
  • a symbol modulation module 701 configured to modulate a bit data stream to be transmitted into a symbol data stream
  • a unit block modulation module 702 configured to block the symbol data stream, obtain a data symbol block, and block the data symbol block Perform modulation mapping to obtain a unit block
  • the serial-to-parallel conversion module 704 is configured to perform serial-to-parallel conversion on the repeatedly weighted data
  • the inverse Fourier transform module 705 is configured to perform inverse Fourier transform on the serial-converted data, and transmit the inverse Fourier transformed data.
  • FIG. 8 is a schematic structural diagram of a receiving end of an uplink receiving signal using a BF-BR-OFDMA technology according to an embodiment of the present invention. As shown in FIG. 8, the method includes: a Fourier transform module 801, a parallel/serial conversion module 802, a block repetition demodulation module 803, a unit block demodulation module 804, and a symbol demodulation module 805;
  • a Fourier transform module 801 configured to perform Fourier transform on the received signal
  • a parallel-to-serial conversion module 802 configured to perform spatial vector weighted combining on the Fourier transform-transformed data; the space vector is pre-acquired and transmitted Space vector related to the position of the end space;
  • a block repetition demodulation module 803, configured to perform multi-user joint detection on the parallel-converted data to obtain unit block data
  • a unit block demodulation module 804 configured to demodulate the unit block data to obtain a data symbol block;
  • the symbol demodulation module 805 is configured to perform symbol level demodulation on the data symbol block to obtain a bit data stream.
  • the transmitting end shown in FIG. 5 may be a base station, and the receiving end shown in FIG. 6 is a user terminal; or, the transmitting end shown in FIG. 7 is a user terminal, and the receiving end shown in FIG. 8 is a base station.
  • each base station will have the functions shown in FIG. 5 and FIG. 8, and each user terminal also has the functions shown in FIG. 6 and FIG. 7.
  • the specific composition structures corresponding to the base station and the user terminal when respectively transmitting or receiving signals are separately introduced.
  • the specific working process of the foregoing system and device embodiments refer to the description of corresponding parts in the method embodiments, and details are not described herein.
  • the multi-cell strategy coordination mode is given, which provides an effective solution for solving the same-frequency networking in the broadband wireless mobile communication system and improving the capacity of the broadband wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

宽带无线移动通信方法、 系统和设备
技术领域
本发明涉及移动通信技术, 特别涉及宽带无线移动通信方法、 系统 和设备。 发明背景 当前, 宽带无线移动通信已成为移动通信的主要发展方向。 在国际 电信联 ( ITU, International Communication Union )的国际高级移动通 信 ( IMT- Advanced, Advanced International Telecommunications )系统中 , 无线移动通信的最大带宽可达 100MHz, 最大传输速率可达 lGbps, 能 够满足用户对于无线移动通信的极大需求。 通过宽带无线移动通信, 用 户可以享受高速的数据下载、 网上购物、 移动视频聊天以及手机电视等 众多的无线移动服务。
在实际应用中, 现实可用的无线频谱资源是非常有限的, 所以, 为 了实现高速无线移动通信的目标, 需要提高频谱资源的利用率以及增加 系统容量, 特别是解决小区边缘用户的吞吐量不高问题。
当前, 正交频分复用 ( OFDM , Orthogonal Frequency Division Multiplexing )技术已成为宽带无线移动通信中最有竟争力的技术。 该技 术具有频谱效率高, 带宽可扩展性强, 抗多径衰落能力强、 频谱资源分 配灵活以及与多路进、 多路出 (MIMO, Multiple-input Multiple- out-put ) 等技术相结合比较方便等优点。 但是, 该技术在实际应用中也存在一定 的缺陷, 比如: 对频偏比较敏感、 发送信号的峰均功率比(PAPR, Peak to Average Ratio )较大, 以及 OFDM的窄带子载波容易受到深衰信道的 影响等; 另外, 还有一个最大的缺陷, 就是抗同频干扰能力很弱, 无法 保证蜂窝系统的同频组网。 可是就目前来看, 在宽带无线移动通信系统 中, 同频组网对于运营商是一个基本要求。
现有技术中通常采用以下两种方式来解决上述问题, 即软频率复用 技术以及智能天线技术。
长期演进技术( LTE, Long Term Evolution )中考虑用软频率复用技 术来克服同频干扰。 这种方法将频率资源分为若干个复用集, 小区中心 的用户占用所有的时频资源, 但是采用较低的功率发射, 这样, 即使相 邻小区用户使用相同的频率资源也不会造成较强的干扰, 因此小区中心 部分频率复用系数为 1 ; 而小区边缘的用户则需要采用较高的功率发送 信号, 但是这样一来, 如果相邻小区用户使用了相同的频率资源, 则有 可能造成较强的干扰, 因此通常会将小区边缘的频率资源分为 N份, 不 同的小区分配使用 N分之一的频率资源, 相应地, 小区边缘的频率复用 系数为 N。
软频率复用技术虽然能够有效地避免小区间的干扰, 但是它的缺陷 也比较明显。 一是小区边缘的频谱资源受到限制, 难以支持大量的用户 以及 4艮高的数据速率; 二是对小区中心用户采用功率限制的方式避免邻 小区干扰后,会使得系统功率利用率降低,导致小区平均吞吐量的下降。
现有技术中可用于解决同频干扰问题的另一技术为智能天线技术。 在现有宽带无线移动通信系统的蜂窝移动通信系统中, 由于用户通常分 布在各个不同的方向, 加之多径效应, 上下行信号是空间分布的。 对于 上行信号, 来自各个用户的有用信号达到基站的方向很可能不同; 而对 于下行信号, 被用户有效接收的也只是部分能量。 考虑到这一因素, 调 整天线方向图以使其能够实现指向性地接收与发射是很自然的想法, 这 就是波束赋形概念的最初来源。 随着信号处理, 尤其是数字信号处理芯 片的普及以及算法的发展, 原来必须依靠射频硬件实现的波束赋形转为 可以使用中频或基带数字信号处理来实现。 在这一基础上, 结合无线移 动通信系统的发展, 即出现了智能天线的概念。
智能天线采用空分多址( SDMA, Space Division Multiple Access ) 技术, 利用信号在传输方向上的差别, 将同时频资源的信号区分开来, 最大限度地利用有限的无线时频资源。 由于天线波瓣直接指向用户, 减 小了与本小区内其它用户之间, 以及与相邻小区用户之间的干扰, 而且 也减少了多径效应。 同时, 与无方向性天线相比较, 其上下行链路的天 线增益大大提高, 降低了发射功率电平, 提高了信噪比, 有效地克服了 信道衰落造成的影响。 总之, 智能天线的应用达到了提高天线增益以及 减少同频干扰的两大目的, 从而显著的扩大了系统容量, 提高了频谱利 用率。
但是, 智能天线的应用也有一定的局限性。 比如, 如果指向从属于 两个相邻小区的不同用户的波束没有发生碰撞, 那么用户受到邻小区信 号的干扰基本可以忽略, 从而有效地避免了相邻小区间的干扰; 但是, 对于 IMT-Advanced等应用场景, 需要考虑的小区数量非常多, 波束扩 展角并非理想的, 所以小区边缘的用户往往会处在两个小区波束的交汇 点, 此时, 邻小区的干扰就会相当强, 如果仅仅依赖传统的智能天线技 术, 抗邻小区干扰的效果就不明显了。
可见, 现有技术中提供的软频率复用技术以及智能天线技术虽然都 能够在一定程度上解决相邻小区间的同频干扰问题, 但是这两种技术在 实际应用中均存在各自的缺陷, 所以并不是理想的解决方式。 发明内容
有鉴于此, 本发明主要目的在于提供一种宽带无线移动通信方法, 能够有效克服同频干扰问题, 提高系统的频谱利用率。
本发明另一个目的在于提供一种宽带无线移动通信系统, 能够有效 克服同频干扰问题, 提高系统的频谱利用率。
本发明再一个目的在于提供两种宽带无线移动通信设备, 能够有效 克服同频干扰问题, 提高系统的频谱利用率。
为达到上述目的, 本发明的技术方案是这样实现的:
一种宽带无线移动通信方法, 该方法包括:
发送端按照智能天线以及块重复正交频分多址结合的方式进行信 号发射。
一种宽带无线移动通信系统, 该系统包括: 发送端以及接收端; 所述发送端, 用于按照智能天线以及块重复正交频分多址结合的方 式进行信号发射;
所述接收端, 用于接收并解调所述发射信号。
一种宽带无线移动通信设备, 该设备包括: 符号调制模块、 单元块 调制模块、 块重复调制模块、 串并转换模块以及逆傅立叶变换模块; 所述符号调制模块, 用于将待发送的比特数据流调制为符号数据 流;
所述单元块调制模块, 用于对所述符号数据流进行分块, 得到数据 符号块, 并对所述数据符号块进行调制映射, 得到单元块;
所述块重复调制模块, 用于对所述单元块进行重复加权;
所述串并转换模块, 用于将所述进行重复加权后的数据复制 M份, 对每份数据分别使用预先获取的与接收端空间位置有关的空间矢量中 的各个元素进行加权;所述 M的取值大小等于发送端智能天线阵列中的 发射天线数;
所述逆傅立叶变换模块, 用于对每份加权后的数据进行逆傅立叶变 换, 并将所述进行逆傅立叶变换后的数据送往发射天线进行发射。
一种宽带无线移动通信设备, 该设备包括: 傅立叶变换模块、 并串 转换模块、 块重复解调模块、 单元块解调模块以及符号解调模块;
所述傅立叶变换模块, 用于对接收到的信号进行傅立叶变换; 所述并串转换模块, 用于将所述进行傅立叶变换变换后的数据进行 空间矢量加权合并; 所述空间矢量为预先获取的与发送端空间位置有关 的空间矢量;
所述块重复解调模块, 用于对所述并串转换后的数据进行多用户联 合检测, 得到单元块数据;
所述单元块解调模块, 用于对所述单元块数据进行解调, 得到数据 符号块;
所述符号解调模块, 用于将所述数据符号块进行符号级解调, 得到 比特数据流。
可见, 采用本发明的技术方案, 发送端按照智能天线以及块重复正 交频分多址结合的方式, 在上下行链路中进行信号发射; 接收端接收并 解调所述发射信号。 与现有技术相比, 本发明所述方案通过将智能天线 与块重复正交频分多址技术进行结合, 有效避免了相邻小区间的同频干 扰, 改善了小区边缘用户的性能, 从而提高了系统的频谱利用率。 附图简要说明
下面将通过参照附图详细描述本发明的示例性实施例, 使本领域的 普通技术人员更清楚本发明的上述及其它特征和优点, 附图中:
图 1为本发明实施例中采用 BF-BR-OFDMA技术进行下行信号发送 的流程示意图。
图 2为本发明实施例中采用 BF-BR-OFDMA技术进行下行信号接收 的流程示意图。
图 3为本发明实施例中采用 BF-BR-OFDMA技术进行上行信号发送 的流程示意图。
图 4为本发明实施例中采用 BF-BR-OFDMA技术进行上行信号接收 的流程示意图。
图 5为本发明实施例中采用 BF-BR-OFDMA技术进行下行信号发送 的发送端组成结构示意图。
图 6为本发明实施例中采用 BF-BR-OFDMA方式进行下行信号接收 的接收端组成结构示意图。
图 7为本发明实施例中采用 BF-BR-OFDMA技术进行上行信号发送 的发送端组成结构示意图。
图 8为本发明实施例中采用 BF-BR-OFDMA技术进行上行信号接收 的接收端组成结构示意图。 实施本发明的方式
为使本发明的目的、 技术方案及优点更加清楚明白, 以下参照附图 并举实施例, 对本发明作进一步地详细说明。
为解决现有技术中存在的问题, 本发明中提出一种新的宽带无线移 动通信方法, 在智能天线技术的基础上使用块重复正交频分多址 ( BR-OFDMA, Block Repeat- Orthogonal Frequency Division Multiple Access )技术, 即, 发送端按照智能天线以及块重复正交频分多址结合 的方式进行信号发射; 接收端接收并解调所述发射信号。 这里所提到的 BR-OFDMA技术,是指将 OFDMA以及码分多址( CDMA, Code Division Multiple Access )技术相结合, 在 OFDM调制的基 上, 用块重复来代 替传统 CDMA 中的码片重复, 用块重复码来替代扩频码, 以获得码域 扩频增益。 在不同小区或用户之间使用不同或低相关性的块重复码, 在 接收端使用多用户联合检测接收方式消除小区间或用户间的干扰, 以提 高系统性能。
本发明中将智能天线以及 BR-OFDMA技术进行结合的优势在于:
1 )利用智能天线进行空域滤波, 利用 BR-OFDMA进行多用户联合 检测进一步消除干扰, 两者配合使用可使得性能增益更加明显。
2 ) 由于智能天线的使用减少了潜在的多用户, 所以可以降低 BR-OFDMA中多用户联合检测的计算量。
3 )智能天线的阵元数有限, 比如对于有 M个阵元的智能天线只能 抑制 M-1个干扰源, 而且所形成的副瓣对其它用户而言仍然是干扰, 结 合 BR-OFDMA技术后可以减少这些干扰。
4 ) 当用户作高速移动时, 时分双工模式 ( TDD , Time Division Duplexing )下的上下行采用同样的空间参数, 使得波束成型有一定的偏 差, 当用户在同一方向时, 智能天线不能起到抑制干扰作用, 这些问题 均需要 BR-OFDMA技术来弥补。
下面通过具体的实施例对本发明所述方案作进一步地详细说明。 本 发明实施例中, 将智能天线与 BR-OFDMA 结合的技术称为 BF-BR-OFDMA技术。其中, BF为 Beam Forming的缩写, 即波束赋形。
图 1为本发明实施例中采用 BF-BR-OFDMA技术进行下行信号发送 的流程示意图。 如图 1所示, 包括以下步骤:
步骤 101: 将待发送的比特数据流调制为符号数据流。
本步骤中, 发送端, 即基站对经过信道编码以及其它处理后的比特 数据流进行符号调制, 将比特数据流调制为符号数据流。 步骤 102: 对调制后的符号数据流进行分块, 生成数据符号块, 并 对数据符号块进行调制映射, 生成单元块。
步骤 103: 对生成的单元块数据进行重复加权。
步骤 101 - 103的具体实现为现有技术, 不再赘述。
步骤 104: 将进行重复加权后的数据根据数据发送的时频域单元进 行串并变换, 映射到不同的正交频分复用子载波上。
本步骤的具体实现包括: ¾殳智能天线阵列中有 M根发射天线,并 且已经根据用户信号获得了与用户终端空间位置相关的空间矢量 W = [W (j , Wl , - , w 如何获得空间矢量 W为本领域公知, 不再赘述。 将 进行重复加权后的数据复制 M份, M的取值大小等于发射天线数, 对 每组数据分别使用空间矢量 W中的各个元素进行加权处理;再对每组加 权后的数据进行逆傅立叶 (IFFT ) 变换; 将进行 IFFT变换后的数据分 别送往 M根发射天线进行发射。
相应地, 接收端, 即用户终端在接收到发射出的信号数据后, 按照 图 2所示方式进行相应处理。图 2为本发明实施例中采用 BF-BR-OFDMA 技术进行下行信号接收的流程示意图。 如图 2所示, 包括以下步骤: 步骤 201: 对接收到的数据进行傅立叶(FFT ) 变换以及并串转换。 步骤 202: 对并串转换后的重复块数据进行多用户联合检测, 生成 单元块数据。
步骤 203: 对生成的单元块数据进行解调, 生成数据符号块。
步骤 204: 将生成的数据符号块进行符号级解调, 生成比特数据流。 之后, 将生成的比特数据流输入信道译码及其它相关模块进行后续 处理。
图 2所示流程的具体实现与现有 BR-OFDMA中的相应流程基本相 同, 区别仅在于后续的信道估计过程需要采用专用导频, 不再赘述。 以上图 1和图 2所示实施例中介绍的是当采用 BF-BR-OFDMA技术 进行下行信号发送以及接收时的具体实现流程, 下面通过具体的实施 例,对采用 BF-BR-OFDMA技术进行上行信号发送及接收时的具体实现 流程进行说明。
图 3为本发明实施例中采用 BF-BR-OFDMA技术进行上行信号发送 的流程示意图。 如图 3所示, 包括以下步骤:
步骤 301: 将待发送的比特数据流调制为符号数据流。
步骤 302: 对调制后的符号数据流进行分块, 生成数据符号块, 并 对数据符号块进行调制映射, 生成单元块。
步骤 303: 对生成的单元块数据进行重复加权。
步骤 304: 将进行重复加权后的数据进行串并变换以及逆傅立叶变 换, 并映射到不同的正交频分复用子载波上进行发射。
步骤 301 - 304的具体实现与图 1所示步骤 101 - 104基本相同, 区 别仅在于步骤 304只需按照现有的映射方式进行数据映射即可。
相应地, 接收端在接收到发射的数据后, 按照图 4所示方式进行相 应处理。图 4为本发明实施例中采用 BF-BR-OFDMA技术进行上行信号 接收的流程示意图, 如图 4所示, 包括以下步骤:
步骤 401: 接收端天线阵列中的每个天线单元将接收到的信号进行 傅立叶变换。
步骤 402:将每个天线单元中变换后的数据进行空间矢量 W加权合 并。
其中, 空间矢量 W 为预先获取的与发送端空间位置有关的空间矢 量。
步骤 403: 对并串转换后的重复块数据进行多用户联合检测, 生成 单元块数据。 步骤 404: 对生成的单元块数据进行解调, 生成数据符号块。
步骤 405: 将生成的数据符号块进行符号级解调, 生成比特数据流。 之后, 将生成的比特数据流输入信道译码及其它相关模块进行后续 处理。
需要说明的是, 本发明实施例中, 基站和用户终端在采用 BF-BR-OFDMA技术进行通信之前, 各基站需要首先进行多小区策略协 商, 即各小区协商确定通信所需的参数, 然后按照协商结果与各自所属 用户终端进行通信。 对于每个波束而言, 可以使用本小区所分配的全部 时频资源。 在具体通信过程中, 对于小区内部的用户, 基站既可以使用 传统的 OFDMA方式与其进行通信, 也可以采用 BF-BR-OFDMA方式, 具体实现方式不限; 但对于小区边缘的用户则需要使用 BF-BR-OFDMA 方式, 以避免同频干扰。
各小区间所需协商确定的参数包括:
1 )统计各自小区中的平均小区边缘用户的数量及占用资源需求, 据此分配每一个波束中用于小区边缘 BF-BR-OFDMA的时频资源。
2 )协商确定块重复因子(RF, Repeat Factor ) , 为减小后续方案实 现复杂度, 各小区应采用相同的 RF。
3 )协商确定块重复图样, 为便于后续方案的实现, 各小区间应采 用相同的块重复方式。
4 )协商确定各小区采用的扰码, 各个小区采用的扰码与小区自身 ID有关, 为了使系统开销尽量减小, 可以采用静态协商方式来规定小区 ID与 4尤码 ID之间的映射关系。
5 )协商确定各个小区使用的块重复码, 块重复码与小区扰码结合, 使得各小区间有正交性能良好的码序列, 这样可以保证后续方案在当较 大范围内的小区间发生相互干扰的情况下也能正常工作。 BF-BR-OFDMA技术的实现不需要很大的系统开销, 所以小区间进 行策略协商时可以采用静态方式或半静态方式。 通常, 静态方式的时间 尺度为天, 半静态方式的时间尺度为秒或分。
基于上述方法, 本发明实施例中提出一种宽带无线移动通信系统, 包括发送端和接收端。 其中, 发送端, 用于按照智能天线以及块重复正 交频分多址结合的方式进行信号发射; 接收端, 用于接收并解调所述发 射信号。
图 5为本发明实施例中采用 BF-BR-OFDMA技术进行下行信号发送 的发送端组成结构示意图。 如图 5所示, 主要包括: 符号调制模块 501、 单元块调制模块 502、 块重复调制模块 503、 串并转换模块 504以及逆 傅立叶变换模块 505。
符号调制模块 501 ,用于将待发送的比特数据流调制为符号数据流; 单元块调制模块 502, 用于对所述符号数据流进行分块, 得到数据 符号块, 并对所述数据符号块进行调制映射, 得到单元块;
块重复调制模块 503 , 用于对所述单元块进行重复加权;
串并转换模块 504, 用于将所述进行重复加权后的数据复制 M份, 对每份数据分别使用预先获取的与接收端空间位置有关的空间矢量中 的各个元素进行加权;其中 M的取值大小等于智能天线阵列中的发射天 线数;
逆傅立叶变换模块 505 , 用于对每份加权后的数据进行逆傅立叶变 换, 并将进行逆傅立叶变换后的数据送往发射天线进行发射。
需要说明的是, 在实际应用中, 图 5所示发送端中进一步包括加扰 ( Scrambling )模块 506,加扰模块 506与块重复调制模块 503共同完成 块重复调制模块 503的功能。 当然, 也可以不在图中显示该模块, 而是 将该模块与块重复调制模块 503统称为块重复调制模块。 图 6为本发明实施例中采用 BF-BR-OFDMA方式进行下行信号接收 的接收端组成结构示意图。 如图 6所示, 包括: 傅立叶变换模块 601、 并串转换模块 602、 块重复解调模块 603、 单元块解调模块 604以及符 号解调模块 605。
傅立叶变换模块 601 , 用于对接收到的信号进行傅立叶变换; 并串转换模块 602, 用于将所述进行傅立叶变换变换后的数据进行 并串转换;
块重复解调模块 603 , 用于对所述并串转换后的数据进行多用户联 合检测, 得到单元块数据;
单元块解调模块 604, 用于对所述单元块数据进行解调, 得到数据 符号块;
符号解调模块 605 , 用于将所述数据符号块进行符号级解调, 得到 比特数据流。
需要说明的是, 在实际应用中, 图 6所示接收端中进一步包括解扰 模块 606, 解扰模块 606与块重复解调模块 603共同完成块重复解调模 块 603的功能。 当然, 也可以不在图中显示该模块, 而是将该模块与块 重复解调模块 603统称为块重复解调模块。 以下图 7和 8中出现的类似 情况不再赘述。
图 7为本发明实施例中采用 BF-BR-OFDMA技术进行上行信号发送 的发送端组成结构示意图。 如图 7所示, 包括: 符号调制模块 701、 单 元块调制模块 702、 块重复调制模块 703、 串并转换模块 704以及逆傅 立叶变换模块 705;
符号调制模块 701 ,用于将待发送的比特数据流调制为符号数据流; 单元块调制模块 702, 用于对所述符号数据流进行分块, 得到数据 符号块, 并对所述数据符号块进行调制映射, 得到单元块; 块重复调制模块 703 , 用于对所述单元块进行重复加权;
串并转换模块 704, 用于对所述进行重复加权后的数据进行串并变 换;
逆傅立叶变换模块 705 , 用于对所述串并转换后的数据进行逆傅立 叶变换, 并将所述进行逆傅立叶变换后的数据进行发射。
图 8为本发明实施例中采用 BF-BR-OFDMA技术进行上行信号接收 的接收端组成结构示意图。 如图 8所示, 包括: 傅立叶变换模块 801、 并串转换模块 802、 块重复解调模块 803、 单元块解调模块 804以及符 号解调模块 805;
傅立叶变换模块 801 , 用于对接收到的信号进行傅立叶变换; 并串转换模块 802, 用于将所述进行傅立叶变换变换后的数据进行 空间矢量加权合并; 所述空间矢量为预先获取的与发送端空间位置有关 的空间矢量;
块重复解调模块 803 , 用于对所述并串转换后的数据进行多用户联 合检测, 得到单元块数据;
单元块解调模块 804, 用于对所述单元块数据进行解调, 得到数据 符号块;
符号解调模块 805 , 用于将所述数据符号块进行符号级解调, 得到 比特数据流。
在实际应用中, 图 5所示发送端可以是基站, 而图 6所示接收端为 用户终端; 或者, 图 7所示发送端为用户终端, 而图 8所示接收端为基 站。 当然, 在实际应用中, 每一个基站都会同时具备图 5和图 8所示功 能, 每一个用户终端也都会同时具备图 6和图 7所示功能。 本发明实施 例中只是为便于描述, 才将基站和用户终端分别用于发送或接收信号时 对应的具体组成结构分开进行介绍。 上述系统和设备实施例的具体工作流程请参照方法实施例中相应 部分的说明, 不再赘述。
总之, 采用本发明的技术方案, 通过将智能天线与 BR-OFDMA技 术进行结合, 有效地避免了相邻小区间的同频干扰, 改善了小区边缘用 户的性能, 从而提高了系统频谱利用率; 并进一步给出了多小区策略协 调方式, 为解决宽带无线移动通信系统中的同频组网以及提高宽带无线 移动通信系统的容量提供了有效的解决方案。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均 应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种宽带无线移动通信方法, 其特征在于, 该方法包括: 发送端按照智能天线以及块重复正交频分多址结合的方式进行信 号发射。
2、 根据权利要求 1所述的方法, 其特征在于, 该方法进一步包括: 接收端接收并解调所述发射信号。
3、 根据权利要求 2所述的方法, 其特征在于, 所述发送端按照智 能天线以及块重复正交频分多址结合的方式进行信号发射包括:
将待发送的比特数据流调制为符号数据流;
对所述调制后的符号数据流进行分块, 得到数据符号块, 并对所述 数据符号块进行调制映射, 得到单元块;
对所述单元块进行重复加权;
将所述进行重复加权后的数据根据数据发送的时频域单元进行串 并变换, 映射到不同的正交频分复用子载波上。
4、 根据权利要求 3所述的方法, 其特征在于, 所述将进行重复加 权后的数据根据数据发送的时频域单元进行串并变换, 映射到不同的正 交频分复用子载波上包括:
将所述进行重复加权后的数据复制 M份, 对每份数据分别使用预 先获取的与接收端空间位置有关的空间矢量中的各个元素进行加权; 所 述 M的取值大小等于发送端智能天线阵列中的发射天线数;
对每份加权后的数据进行逆傅立叶变换;
将所述进行逆傅立叶变换后的数据送往发射天线进行发射。
5、 根据权利要求 4所述的方法, 其特征在于, 所述接收端接收并 解调所述发射信号包括: 对接收到的数据进行傅立叶变换以及并串转换; 对所述转换后的数 据进行多用户联合检测, 得到单元块数据;
对所述单元块数据进行解调, 得到数据符号块; 将所述数据符号块 进行符号级解调, 得到比特数据流。
6、 根据权利要求 2所述的方法, 其特征在于, 所述发送端按照智 能天线以及块重复正交频分多址结合的方式进行信号发射包括:
将待发送的比特数据流调制为符号数据流;
对所述调制后的符号数据流进行分块, 得到数据符号块, 并对所述 数据符号块进行调制映射, 得到单元块;
对所述单元块进行重复加权;
将所述进行重复加权后的数据进行串并变换以及逆傅立叶变换, 并 映射到不同的正交频分复用子载波上。
7、 根据权利要求 6所述的方法, 其特征在于, 所述接收端接收并 解调所述发射信号包括:
接收端智能天线阵列中的每个天线单元将接收到的信号进行傅立 叶变换;
将所述每个天线单元中变换后的数据进行空间矢量加权合并; 所述 空间矢量为预先获取的与发送端空间位置有关的空间矢量;
对所述转换后的数据进行多用户联合检测, 得到单元块数据; 对所述单元块数据进行解调, 得到数据符号块; 将所述数据符号块 进行符号级解调, 得到比特数据流。
8、 根据权利要求 1 ~ 7中任一项所述的方法, 其特征在于, 所述发 送端按照智能天线以及块重复正交频分多址结合的方式进行信号发射 之前, 进一步包括: 各发送端所在小区协商确定通信所需的参数。
9、 根据权利要求 8所述的方法, 其特征在于, 所述各发送端所在 小区协商确定通信所需的参数包括:
统计各自小区中的平均小区边缘用户数量及占用资源需求,据此分 配每一个波束中用于小区边缘块重复正交频分多址的时频资源;
协商确定各小区的块重复因子、 块重复图样、 扰码以及块重复码。
10、 根据权利要求 9所述的方法, 其特征在于, 所述确定的各小区 的块重复因子以及块重复图样相同; 所述各小区的重复码为正交性能优 良的重复码。
11、 根据权利要求 8所述的方法, 其特征在于, 所述各发送端所在 小区协商确定通信所需的参数包括: 采用静态或半静态方式协商确定通 信所需的参数。
12、 一种宽带无线移动通信系统, 其特征在于, 该系统包括: 发送 端以及接收端;
所述发送端, 用于按照智能天线以及块重复正交频分多址结合的方 式进行信号发射;
所述接收端, 用于接收并解调所述发射信号。
13、 根据权利要求 12所述的系统, 其特征在于, 所述发送端包括: 符号调制模块、 单元块调制模块、 块重复调制模块、 串并转换模块以及 逆傅立叶变换模块;
所述符号调制模块, 用于将待发送的比特数据流调制为符号数据 流;
所述单元块调制模块, 用于对所述符号数据流进行分块, 得到数据 符号块, 并对所述数据符号块进行调制映射, 得到单元块;
所述块重复调制模块, 用于对所述单元块进行重复加权;
所述串并转换模块, 用于将所述进行重复加权后的数据复制 M份, 对每份数据分别使用预先获取的与接收端空间位置有关的空间矢量中 的各个元素进行加权;所述 M的取值大小等于发送端智能天线阵列中的 发射天线数;
所述逆傅立叶变换模块, 用于对每份加权后的数据进行逆傅立叶变 换, 并将所述进行逆傅立叶变换后的数据送往发射天线进行发射。
14、 根据权利要求 13所述的系统, 其特征在于, 所述接收端包括: 傅立叶变换模块、 并串转换模块、 块重复解调模块、 单元块解调模块以 及符号解调模块;
所述傅立叶变换模块, 用于对接收到的信号进行傅立叶变换; 所述并串转换模块, 用于将所述进行傅立叶变换变换后的数据进行 并串转换;
所述块重复解调模块, 用于对所述并串转换后的数据进行多用户联 合检测, 得到单元块数据;
所述单元块解调模块, 用于对所述单元块数据进行解调, 得到数据 符号块;
所述符号解调模块, 用于将所述数据符号块进行符号级解调, 得到 比特数据流。
15、 根据权利要求 12所述的系统, 其特征在于, 所述发送端包括: 符号调制模块、 单元块调制模块、 块重复调制模块、 串并转换模块以及 逆傅立叶变换模块;
所述符号调制模块, 用于将待发送的比特数据流调制为符号数据 流;
所述单元块调制模块, 用于对所述符号数据流进行分块, 得到数据 符号块, 并对所述数据符号块进行调制映射, 得到单元块;
所述块重复调制模块, 用于对所述单元块进行重复加权;
所述串并转换模块, 用于对所述进行重复加权后的数据进行串并变 换;
所述逆傅立叶变换模块, 用于对所述串并转换后的数据进行逆傅立 叶变换, 并将所述进行逆傅立叶变换后的数据进行发射。
16、 根据权利要求 15所述的系统, 其特征在于, 所述接收端包括: 傅立叶变换模块、 并串转换模块、 块重复解调模块、 单元块解调模块以 及符号解调模块;
所述傅立叶变换模块, 用于对接收到的信号进行傅立叶变换; 所述并串转换模块, 用于将所述进行傅立叶变换变换后的数据进行 空间矢量加权合并; 所述空间矢量为预先获取的与发送端空间位置有关 的空间矢量;
所述块重复解调模块, 用于对所述并串转换后的数据进行多用户联 合检测, 得到单元块数据;
所述单元块解调模块, 用于对所述单元块数据进行解调, 得到数据 符号块;
所述符号解调模块, 用于将所述数据符号块进行符号级解调, 得到 比特数据流。
17、 一种宽带无线移动通信设备, 其特征在于, 该设备包括: 符号 调制模块、 单元块调制模块、 块重复调制模块、 串并转换模块以及逆傅 立叶变换模块;
所述符号调制模块, 用于将待发送的比特数据流调制为符号数据 流;
所述单元块调制模块, 用于对所述符号数据流进行分块, 得到数据 符号块, 并对所述数据符号块进行调制映射, 得到单元块;
所述块重复调制模块, 用于对所述单元块进行重复加权;
所述串并转换模块, 用于将所述进行重复加权后的数据复制 M份, 对每份数据分别使用预先获取的与接收端空间位置有关的空间矢量中 的各个元素进行加权;所述 M的取值大小等于发送端智能天线阵列中的 发射天线数;
所述逆傅立叶变换模块, 用于对每份加权后的数据进行逆傅立叶变 换, 并将所述进行逆傅立叶变换后的数据送往发射天线进行发射。
18、 一种宽带无线移动通信设备, 其特征在于, 该设备包括: 傅立 叶变换模块、 并串转换模块、 块重复解调模块、 单元块解调模块以及符 号解调模块;
所述傅立叶变换模块, 用于对接收到的信号进行傅立叶变换; 所述并串转换模块, 用于将所述进行傅立叶变换变换后的数据进行 空间矢量加权合并; 所述空间矢量为预先获取的与发送端空间位置有关 的空间矢量;
所述块重复解调模块, 用于对所述并串转换后的数据进行多用户联 合检测, 得到单元块数据;
所述单元块解调模块, 用于对所述单元块数据进行解调, 得到数据 符号块;
所述符号解调模块, 用于将所述数据符号块进行符号级解调, 得到 比特数据流。
PCT/CN2009/070280 2008-02-01 2009-01-22 宽带无线移动通信方法、系统和设备 WO2009097805A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810057458.5 2008-02-01
CN2008100574585A CN101499988B (zh) 2008-02-01 2008-02-01 宽带无线移动通信方法、系统和设备

Publications (1)

Publication Number Publication Date
WO2009097805A1 true WO2009097805A1 (zh) 2009-08-13

Family

ID=40946871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070280 WO2009097805A1 (zh) 2008-02-01 2009-01-22 宽带无线移动通信方法、系统和设备

Country Status (2)

Country Link
CN (1) CN101499988B (zh)
WO (1) WO2009097805A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2216953A1 (en) * 2007-11-26 2010-08-11 Da Tang Mobile Communications Equipment Co., Ltd. Method, system and apparatus for signal generation and message transmission in broadband wireless communications
CN111147408A (zh) * 2018-11-05 2020-05-12 中兴通讯股份有限公司 一种非正交多址接入的信号处理方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710309B (zh) * 2012-05-31 2015-10-07 东南大学 适用于大规模天线阵列的同步信号发射方法
CN108738035B (zh) * 2017-04-13 2021-07-20 深圳市中兴微电子技术有限公司 一种多制式基带芯片的数据处理方法及装置、处理设备
WO2019028874A1 (en) * 2017-08-11 2019-02-14 Zte Corporation PROCESSING AND TRANSMISSION OF SYMBOL BLOCKS IN WIRELESS COMMUNICATIONS
US10945153B2 (en) * 2018-02-15 2021-03-09 Qualcomm Incorporated Network-assisted scheduling for packet duplication in vehicle-based sidelink communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512791A (zh) * 2002-12-30 2004-07-14 中国科学院声学研究所 一种基于智能天线的信道自适应分配方法
WO2006077620A1 (ja) * 2005-01-18 2006-07-27 Fujitsu Limited Ofdm-cdma通信システムにおける送信方法および送信装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047683B (zh) * 2006-05-16 2011-06-15 华为技术有限公司 一种无线信号发射/接收方法及发射/接收装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512791A (zh) * 2002-12-30 2004-07-14 中国科学院声学研究所 一种基于智能天线的信道自适应分配方法
WO2006077620A1 (ja) * 2005-01-18 2006-07-27 Fujitsu Limited Ofdm-cdma通信システムにおける送信方法および送信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRANK T. ET AL.: "IEEE Wireless Communications Magazine", 31 December 2007, article "IFDMA - a scheme combining the advantages of OFDMA and CDMA", pages: 3 - 5 *
SHEN JIA: "COMMUNICATION WORLD", 2 August 2007, article "NATIONAL 4G TECHNOLOGY SCHEME BASIC", pages: 1 - 3 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2216953A1 (en) * 2007-11-26 2010-08-11 Da Tang Mobile Communications Equipment Co., Ltd. Method, system and apparatus for signal generation and message transmission in broadband wireless communications
EP2216953A4 (en) * 2007-11-26 2013-04-24 China Academy Of Telecomm Tech METHOD, SYSTEM AND APPARATUS FOR SIGNAL GENERATION AND MESSAGE TRANSMISSION IN BROADBAND WIRELESS COMMUNICATIONS
US8670298B2 (en) 2007-11-26 2014-03-11 China Academy Of Telecommunications Technology Method, system and apparatus for signal generation and message transmission in broadband wireless communications
CN111147408A (zh) * 2018-11-05 2020-05-12 中兴通讯股份有限公司 一种非正交多址接入的信号处理方法及装置
CN111147408B (zh) * 2018-11-05 2022-07-12 中兴通讯股份有限公司 一种非正交多址接入的信号处理方法及装置

Also Published As

Publication number Publication date
CN101499988A (zh) 2009-08-05
CN101499988B (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
US9960887B2 (en) Method and apparatus of signal transmission and reception in a filter bank multiple carrier system
US10355812B2 (en) Multiple access method, and corresponding transmission method, receiver and transmitter
US10263670B2 (en) System and method for reducing pilot signal contamination using orthogonal pilot signals
US10523483B2 (en) Support of frequency diversity mode for block code based transmission in OFDMA
CN103986682B (zh) 一种无线mimo通信系统的通信方法
KR100933155B1 (ko) 주파수분할다중접속 이동통신시스템에서 가상 셀의 자원할당장치 및 방법
JP4171261B2 (ja) 無線通信装置及び無線通信方法
JP4865536B2 (ja) 動的空間周波数分割多重通信システム及び方法
US20110211549A1 (en) Multiple access communication system
WO2011029989A1 (en) Apparatus and method for input/output mapping of spatial resources of a relay node in a communication system
WO2009097805A1 (zh) 宽带无线移动通信方法、系统和设备
WO2017051583A1 (ja) 装置、方法及びプログラム
Zhang et al. Low density spreading signature vector extension (LDS-SVE) for uplink multiple access
Kim et al. Performance enhancement using receive diversity with power adaptation in the NOMA system
Falconetti et al. Distributed uplink macro diversity for cooperating base stations
US20200177241A1 (en) Mimo-ofdm-based cooperative communication system for interference mitigation between cells in heterogeneous network and cooperative communication method using the same
Bhuvanasundaram et al. non-orthogonal Multiple Access Schemes for next-Generation 5G networks: A Survey
CN117063449A (zh) 一种信号传输方法及装置
CN103780529B (zh) 通信系统及其信号发送方法与装置、信号接收方法与装置
Bhatia Multiple Access Techniques for 5G Networks
US11381285B1 (en) Transmit pre-coding
Durgarao et al. Wireless-Powered Relaying Communication based on MIMO-OFDM: A Comprehensive Survey
Nordin Interference-aware subcarrier allocation in a correlated MIMO downlink transmission
Chouksey et al. BER Reduction of Distributed Spatial Modulation in Cooperative Relay Network based Cellular System
Pirayesh Wireless IoT Communications and Networking: Energy Efficiency, Spectral Efficiency, and Security

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707132

Country of ref document: EP

Kind code of ref document: A1