WO2009070649A1 - Multi-zone pressure control system - Google Patents
Multi-zone pressure control system Download PDFInfo
- Publication number
- WO2009070649A1 WO2009070649A1 PCT/US2008/084807 US2008084807W WO2009070649A1 WO 2009070649 A1 WO2009070649 A1 WO 2009070649A1 US 2008084807 W US2008084807 W US 2008084807W WO 2009070649 A1 WO2009070649 A1 WO 2009070649A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- manifold
- zone
- fluid
- pressure
- control system
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims abstract description 52
- 238000005259 measurement Methods 0.000 claims abstract description 11
- 238000005498 polishing Methods 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 2
- 238000000034 method Methods 0.000 description 14
- 239000002002 slurry Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 238000011109 contamination Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D16/00—Control of fluid pressure
- G05D16/20—Control of fluid pressure characterised by the use of electric means
- G05D16/2006—Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
- G05D16/2013—Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
- G05D16/2026—Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means with a plurality of throttling means
- G05D16/206—Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means with a plurality of throttling means the plurality of throttling means being arranged for the control of a plurality of diverging pressures from a single pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D16/00—Control of fluid pressure
- G05D16/20—Control of fluid pressure characterised by the use of electric means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/86493—Multi-way valve unit
Definitions
- fluid pressure must be regulated in coupled or non- coupled volumes that are remotely placed with respect to the pressure sensor and the fluid flow actuator.
- applications may include, but are not limited to, semiconductor processing systems such as CMP (chemical mechanical polishing) tools. Improving the reliability and serviceability of pressure control systems (PCS) for such applications is a high priority.
- CMP chemical mechanical polishing
- a pressure control system that controls the pressure of a fluid in a plurality of zones includes a distribution manifold, at least one main manifold connected to the distribution manifold, and at least one disposable manifold connected to the distribution manifold and the main manifold.
- the disposable manifold is adapted to be replaced independent of the distribution manifold and the main manifold, and is connected to each zone and to at least one vacuum source.
- the distribution manifold is configured to distribute the fluid from a pressurized source of the fluid to the plurality of zones, so as to cause flow of the fluid into and out of a measurement chamber located within each zone.
- the main manifold includes, for each zone, a pressure sensor configured to measure pressure in the measurement chamber in that zone, and a control valve configured to regulate the flow of the fluid through that zone.
- FIG. 1 is a block diagram of a multi-zone pressure control system in accordance with one embodiment of the present disclosure, including a schematic overview of a pneumatic circuit inside the multi-zone pressure control system.
- FIG. 2 illustrates a disposable manifold for the multi-zone pressure control system shown in FIG. 1 .
- FIG. 3 illustrates a main manifold for the multi-zone pressure control system shown in FIG. 1.
- FIG. 4 illustrates a distribution manifold for the multi-zone pressure control system shown in FIG. 1 .
- FIG. 5 illustrates an overall perspective view of a multi-zone pressure control system in accordance with one embodiment of the present disclosure.
- Systems and methods are described in which pressure is controlled in a plurality of zones. These systems and methods provide a distribution manifold, at least one manifold, and at least one disposable manifold that is independently replaceable, in order to control the pressure in the plurality of zones. In case a failure, such as slurry contamination, occurs in one of the zones, the systems and methods described below permit only the failed zone to be replaced without having to replace the other zones. Also, such a replacement can be performed directly on the tool, resulting in shorter change over time. The systems and methods described below provide a more robust design for a multi-zone pressure control system.
- FIG. 1 is a block diagram of a multi-zone pressure control system 100 in accordance with one embodiment of the present disclosure, and includes a schematic overview of a pneumatic circuit inside the pressure control system 100.
- the pressure control system 100 is configured to control pressure in a plurality of zones 160, 170, 180, and 190. These zones are independently controllable pressure control zones.
- the pressure control system 100 includes a manifold assembly that is designed in three sections: a distribution manifold 1 10, a main manifold assembly 120 comprising a plurality of main manifolds 120-a, ..., 120-d, and a disposable manifold assembly 130 comprising a plurality of disposable manifolds 130-a, ..., 130-d.
- the pressure control system 100 provides, for each one of the plurality of zones, a control valve 124, a pressure sensor 122, a first valve 134, a second valve126, and a third valve136.
- the pressure sensor 122 may be a capacitance-based pressure transducer, or other type of pressure transducer.
- the distribution manifold 1 10 also referred to in this patent as a pressure and vacuum distribution manifold or a fluid distribution manifold, does not house any field replaceable parts.
- the words "distribution manifold,” “fluid distribution manifold”, and “pressure and vacuum distribution manifold” have the same meaning, and are used interchangeably.
- the distribution manifold 1 10 is fed from a regulated pressure line 1 12 and a vacuum line 1 14.
- At least one main manifold is coupled to the distribution manifold 120.
- several main manifolds 120-a, ..., 120-d), constituting a main manifold assembly 120, are coupled to the distribution manifold 1 10.
- one main manifold is provided for each zone.
- Each main manifold (120-a ... 120-d) in the main manifold assembly 120 holds a pressure sensor 122 and a control valve 124, as well as second valve 126.
- the number of measurement chambers in the pressure control system 100 equals the numbers of zones.
- each disposable manifold including a vacuum port 135 that connects to a vacuum source, and a zone port 138 that connects to a respective zone (one of 160, 170, 180, and 190) via a conduit.
- Each disposable manifold (130-a ... 130-d) in the disposable manifold assembly 130 is designed to be field removable and independently replaceable, in the event of failures such as slurry contamination.
- one main manifold is provided for each one of the plurality of zones, and likewise one disposable manifold is provided for each one of the plurality of zones, other embodiments of the present disclosure may include different combinations of the main manifold and/or the disposable manifold, for the different zones. In general, at least one main manifold and at least one disposable manifold may be provided for each zone.
- the pressure control system 100 may be used for pressure control in a CMP (chemical mechanical polishing) application, and the plurality of zones may be resilient bladders found in internal chambers of a CMP carrier head system.
- CMP is a commonly used method of planarization of semiconductor substrate surfaces. As a series of silicon layers are sequentially deposited and etched, the outer or uppermost surface of the substrate, i.e., the exposed surface of the substrate, may become increasingly non-planar, and may need to be periodically planarized in order to avoid problems in the photolithographic steps of the integrated circuit fabrication process. Therefore, there may be a need to periodically planarize the substrate surface, and CMP is one of the widely used methods of planarization.
- An illustrative CMP carrier head system is shown for example in published U.S. application No. US 2004/0250859 to Poulin and Clark, which is hereby incorporated by reference in its entirety.
- An exemplary CMP carrier head system may be rotatable about its rotation axis, and may include a carrier head connected to a rotation motor.
- the carrier head may have a number of internal chambers, which are formed at least in part by resilient bladders which expand when the chambers are pressurized, and which contract when a vacuum is created within the chambers.
- pressurizing a chamber in the carrier head can be used to press a substrate against a rotating polishing pad, while creating a vacuum in the chamber can be used to provide suction for holding the substrate against the carrier head during transfer of the substrate to and from the polishing pad.
- the pressure control system 100 may be coupled to the CMP carrier head through a rotary coupling, and may control pressure of a fluid (such as nitrogen) in the plurality of bladders in the carrier head.
- a fluid such as nitrogen
- FIG. 2 illustrates a disposable manifold 200 for the multi-zone pressure control system 100 shown in FIG. 1 .
- the disposable manifold 200 is typically one of a plurality of disposable manifolds in a disposable manifold assembly that includes a plurality of disposable manifolds corresponding to the plurality of zones, as explained above in conjunction with FIG. 1 .
- the disposable manifold 200 includes a zone port 220 that connects to a respective zone, for example one of the bladders in a CMP carrier head; a vacuum port 210 that connects to a vacuum source (for example, a vacuum pump); and first and third valves 230 and 240.
- a vacuum source for example, a vacuum pump
- the third valve 240 may be opened when it is desired to decrease the pressure of the fluid flowing through the zone to which the disposable manifold is connected.
- the first valve 230 may be opened when it is desired to slow down a rate of decrease of the pressure of the fluid flowing through the zone to which the disposable manifold is connected.
- a CMP tool there is typically a barrier in between the pressure control system (PCS) and the wet mixture (slurry) contained in the bladder.
- the bladder can rupture, due to lack of preventative maintenance, and allow the slurry enter the vacuum line that results in exposure of the valve to the slurry. Over time slurry can cause valve failure.
- the disposable manifold In the event of slurry contamination, the disposable manifold is the only subassembly that would get contaminated.
- the disposable manifold 200 is designed to be field removable and replaceable in the event of failure, such as slurry contamination in a CMP carrier head. The disposable manifold 200 can be removed while the PCS (pressure control system) 100 is on the CMP tool.
- FIG. 3 illustrates a main manifold 300 for a multi-zone pressure control system 100 shown in FIG. 1 .
- the main manifold 300 includes a pressure sensor 320, a control valve 330 that controls flow of the fluid (whose pressure the system 100 is designed to control) throughout a corresponding zone, and a second valve 310.
- the main manifold 300, as well as the disposable manifold 200, may also be replaceable.
- FIG. 4 illustrates a fluid distribution manifold 400 for a multi-zone pressure control system 100 shown in FIG. 1 .
- the fluid distribution manifold 400 (or pressure and vacuum distribution manifold 400) does not house any field replaceable parts.
- the fluid distribution manifold 400 includes a pressure inlet port 420 that connects to the pressurized source of fluid, and a vacuum outlet port 410 that connects to a vacuum exhaust.
- the fluid distribution manifold 400 is configured to distribute the fluid from a pressurized source of fluid to the plurality of zones (illustrated in FIG. 1 as 160, 170, 180, and 190), so as to cause flow of the fluid into and out of a measurement chamber located within each zone. All other manifolds, i.e., the main manifold 300 and the disposable manifold 200, attach to the fluid distribution manifold 400, and are held together via the fluid distribution manifold 400.
- FIG. 5 illustrates an overall perspective view of a multi-zone pressure control system 500 in accordance with one embodiment of the present disclosure.
- all of the plurality of zones are fed by a single source, with a dump into a single vacuum exhaust.
- the design described above introduces a significant improvement over prior methods of controlling pressure in remote zones.
- PCS pressure control system
- Using the modular design for the pressure control system (PCS) would allow to serve the PCS on the tool, which would reduce the tool down time and cost of serviced parts.
- all zones would have to be replaced, once one zone was exposed to slurry.
- Using the systems and methods described in the present disclosure only the failed zone would have to be replaced, and such a replacement can be done on the tool resulting in shorter change over time.
- the design described above also helps with the robustness of the PCS.
- the systems and methods described in the present disclosure may be used by customers to regulate, for example, the pressure in the carriage head for CMP applications.
- the PCS described above may be used in many other applications, including but not limited to semiconductor processing systems.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Control Of Fluid Pressure (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200811003261 DE112008003261T5 (de) | 2007-11-28 | 2008-11-26 | Mehrzoniges Drucksteuerungs- bzw. Regelungssystem |
JP2010536155A JP2011505050A (ja) | 2007-11-28 | 2008-11-26 | 多区域圧力制御システム |
GB201008935A GB2467692A (en) | 2007-11-28 | 2008-11-26 | Multi zone pressure control system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/946,388 | 2007-11-28 | ||
US11/946,388 US20090137192A1 (en) | 2007-11-28 | 2007-11-28 | Multi-zone pressure control system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009070649A1 true WO2009070649A1 (en) | 2009-06-04 |
Family
ID=40456198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/084807 WO2009070649A1 (en) | 2007-11-28 | 2008-11-26 | Multi-zone pressure control system |
Country Status (6)
Country | Link |
---|---|
US (1) | US20090137192A1 (ja) |
JP (1) | JP2011505050A (ja) |
KR (1) | KR20100092027A (ja) |
DE (1) | DE112008003261T5 (ja) |
GB (1) | GB2467692A (ja) |
WO (1) | WO2009070649A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102416879B1 (ko) * | 2020-10-31 | 2022-07-05 | (주)에스디플렉스 | 순차적 공정 압력 측정 시스템 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020094759A1 (en) * | 2001-01-16 | 2002-07-18 | Speedfam-Ipec Corporation | Multi-zone pressure control carrier |
US20040250859A1 (en) * | 2003-06-12 | 2004-12-16 | Poulin James M. | Method for protecting a pneumatic control system from ingested contamination |
US20050199287A1 (en) * | 2004-03-09 | 2005-09-15 | Ali Shajii | System and method for controlling pressure in remote zones |
WO2007067882A2 (en) * | 2005-12-05 | 2007-06-14 | Sencal Llc | Single-use manifold for automated, aseptic transfer of solutionspin bioprocessing applications comprising at least one conductivity sensor applications |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5261704A (en) * | 1992-06-03 | 1993-11-16 | Mario Araujo | Air manifold |
DE29706400U1 (de) * | 1997-04-11 | 1997-05-28 | Rötelmann GmbH & Co., 58791 Werdohl | Vorrichtung zum Verteilen oder Mischen von fluiden Medien |
US6263918B1 (en) * | 1999-04-29 | 2001-07-24 | The Regents Of The University Of California | Multiple feed powder splitter |
US6418960B1 (en) * | 1999-10-06 | 2002-07-16 | Applied Materials, Inc. | Ultrasonic enhancement for solvent purge of a liquid delivery system |
US6333272B1 (en) * | 2000-10-06 | 2001-12-25 | Lam Research Corporation | Gas distribution apparatus for semiconductor processing |
US6418954B1 (en) * | 2001-04-17 | 2002-07-16 | Mks Instruments, Inc. | System and method for dividing flow |
JP2002349797A (ja) * | 2001-05-23 | 2002-12-04 | Fujikin Inc | 流体制御装置 |
US6834669B2 (en) * | 2001-11-12 | 2004-12-28 | Otto Herman Seyfarth | Integrated pneumatic manifold |
US6907904B2 (en) * | 2003-03-03 | 2005-06-21 | Redwood Microsystems, Inc. | Fluid delivery system and mounting panel therefor |
-
2007
- 2007-11-28 US US11/946,388 patent/US20090137192A1/en not_active Abandoned
-
2008
- 2008-11-26 DE DE200811003261 patent/DE112008003261T5/de not_active Ceased
- 2008-11-26 JP JP2010536155A patent/JP2011505050A/ja active Pending
- 2008-11-26 KR KR1020107013813A patent/KR20100092027A/ko not_active Application Discontinuation
- 2008-11-26 WO PCT/US2008/084807 patent/WO2009070649A1/en active Application Filing
- 2008-11-26 GB GB201008935A patent/GB2467692A/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020094759A1 (en) * | 2001-01-16 | 2002-07-18 | Speedfam-Ipec Corporation | Multi-zone pressure control carrier |
US20040250859A1 (en) * | 2003-06-12 | 2004-12-16 | Poulin James M. | Method for protecting a pneumatic control system from ingested contamination |
US20050199287A1 (en) * | 2004-03-09 | 2005-09-15 | Ali Shajii | System and method for controlling pressure in remote zones |
WO2007067882A2 (en) * | 2005-12-05 | 2007-06-14 | Sencal Llc | Single-use manifold for automated, aseptic transfer of solutionspin bioprocessing applications comprising at least one conductivity sensor applications |
Also Published As
Publication number | Publication date |
---|---|
KR20100092027A (ko) | 2010-08-19 |
JP2011505050A (ja) | 2011-02-17 |
GB201008935D0 (en) | 2010-07-14 |
GB2467692A (en) | 2010-08-11 |
DE112008003261T5 (de) | 2010-09-16 |
US20090137192A1 (en) | 2009-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10486285B2 (en) | Substrate processing apparatus, substrate processing method, substrate holding mechanism, and substrate holding method | |
US8985152B2 (en) | Point of use valve manifold for semiconductor fabrication equipment | |
KR100939555B1 (ko) | 기판 유지 장치 | |
TWI550705B (zh) | 硏磨裝置及硏磨方法 | |
JP4108023B2 (ja) | 圧力コントロールシステム及び研磨装置 | |
US20070082589A1 (en) | Carrier head with multiple chambers | |
US8127783B2 (en) | Pressure-insensitive mass flow controller | |
JPH11221755A (ja) | 半導体ウェーハの研摩方法および装置 | |
WO2014172142A1 (en) | Pressure controller configuration for semiconductor processing applications | |
WO1999015818A1 (en) | Modular fluid flow system with integrated pump-purge | |
WO2015178110A1 (ja) | 圧力校正用治具、及び、基板処理装置 | |
CN111315533B (zh) | 多端口流体输送系统中的堵塞检测 | |
WO2007141828A1 (ja) | ガス供給ユニット及びガス供給システム | |
US20090137192A1 (en) | Multi-zone pressure control system | |
US20050070205A1 (en) | Integrated pressure control system for workpiece carrier | |
EP1458984B1 (en) | Apparatus for conveying fluids and base plate | |
US7008309B2 (en) | Back pressure control system for CMP and wafer polishing | |
US20040250859A1 (en) | Method for protecting a pneumatic control system from ingested contamination | |
JP2016078155A (ja) | 研磨装置、及び、基板処理装置 | |
CN221248350U (zh) | 化学机械研磨设备的研磨头 | |
CN116693081A (zh) | 超纯水供应装置、衬底处理系统和衬底处理方法 | |
TW202337540A (zh) | 超純水供給裝置、包含其的基板處理系統以及使用其的基板處理方法 | |
TW202337551A (zh) | 超純水供給裝置、包含該裝置的基板處理系統以及使用該裝置的基板處理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08854040 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 1008935 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20081126 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010536155 Country of ref document: JP Ref document number: 1008935.7 Country of ref document: GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120080032610 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 20107013813 Country of ref document: KR Kind code of ref document: A |
|
RET | De translation (de og part 6b) |
Ref document number: 112008003261 Country of ref document: DE Date of ref document: 20100916 Kind code of ref document: P |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08854040 Country of ref document: EP Kind code of ref document: A1 |