WO2009056744A2 - Procédé de fabrication d'une structure poreuse ordonnée à partir d'un substrat d'aluminium - Google Patents

Procédé de fabrication d'une structure poreuse ordonnée à partir d'un substrat d'aluminium Download PDF

Info

Publication number
WO2009056744A2
WO2009056744A2 PCT/FR2008/051921 FR2008051921W WO2009056744A2 WO 2009056744 A2 WO2009056744 A2 WO 2009056744A2 FR 2008051921 W FR2008051921 W FR 2008051921W WO 2009056744 A2 WO2009056744 A2 WO 2009056744A2
Authority
WO
WIPO (PCT)
Prior art keywords
porous structure
layer
thickness
carried out
abrasion
Prior art date
Application number
PCT/FR2008/051921
Other languages
English (en)
Other versions
WO2009056744A3 (fr
Inventor
Laurent Arurault
François LE COZ
René BES
Original Assignee
Universite Paul Sabatier Toulouse Iii
Centre National De La Recherche Scientifique (C.N.R.S.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Paul Sabatier Toulouse Iii, Centre National De La Recherche Scientifique (C.N.R.S.) filed Critical Universite Paul Sabatier Toulouse Iii
Priority to US12/739,785 priority Critical patent/US20100258445A1/en
Priority to AT08844577T priority patent/ATE522640T1/de
Priority to EP08844577A priority patent/EP2207915B1/fr
Priority to JP2010530531A priority patent/JP5199376B2/ja
Publication of WO2009056744A2 publication Critical patent/WO2009056744A2/fr
Publication of WO2009056744A3 publication Critical patent/WO2009056744A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing

Definitions

  • the invention relates to a method of manufacturing an ordered porous structure from an aluminum substrate.
  • a porous structure is said to be "ordered” when it has pores, in the form of rectilinear channels, of the same cross section (shape and dimensions), parallel and adjacent in a radial plane, and uniformly distributed in the radial plane.
  • the aluminum part and the anode structures resulting from the anodizing of said aluminum part are oriented according to their two opposite faces, a first face, referred to as the outer face, in contact with the electrolyte solution. and a second face, said substrate face, which is not in contact with the electrolytic solution.
  • the term "alumina” refers to the general term covering oxidized forms of aluminum, namely aluminum oxides, aluminum hydroxides and aluminum oxy-hydroxides.
  • porous structures For this purpose, it is known to produce, by anodizing aluminum metal substrates, ordered porous structures, based on the aluminum chemical element, the surface of which extends over several ⁇ m 2 .
  • porous structures also called porous anodic films
  • These porous structures can be used as support or as matrix for original applications such as nanofiltration or the realization of nanoscale functional elements such as nanoscreens, nanowires and nanotubes.
  • the improvement of the technical performances of these materials, whose ultrastructures are of meso- or nanometric dimension, follows directly from the technological advances allowing the realization of porous anodic films, of big dimension and controlled thickness.
  • this document describes a reference process for the manufacture of an aluminum-based porous structure, by means of several successive treatments that are all chemical or electrochemical.
  • This document presents the surface state of the substrate face of the porous structure, after removal of the residual substrate and the barrier layer. It does not describe the state of the porous structure within its thickness, especially at the outer face.
  • an ordered porous structure by anodizing an aluminum substrate having, on its outer surface, a plurality of concavities, of the same shape, and regularly distributed.
  • Such a print can be obtained by nanoindentation of the aluminum substrate, for example, by applying and pressing on the aluminum substrate, a hard matrix, in particular of silicon carbide having a plurality of convexities.
  • this nanoindentation step is technologically very difficult to implement because of the technical difficulties to achieve, on the meso- and nanometric scales, the silicon carbide matrix having a plurality of convexities. This step of producing a matrix is, consequently, an expensive step.
  • Double anodizing Another known method for obtaining a plurality of concavities, of the same shape, and regularly distributed on the surface of the aluminum or aluminum alloy substrate, is called “double anodizing".
  • a first anodizing step makes it possible to form a plurality of concavities at the interface of the initially smooth aluminum substrate and the porous structure resulting from this anodization.
  • the complete dissolution, by chemical means, of the porous structure resulting from the anodization then reveals the plurality of underlying concavities.
  • These concave impressions then serve as a guide for the growth, during a second anodization step, of an ordered porous structure.
  • This "double anodizing" process is slow to implement because of the duplication of the anodizing step.
  • This method also requires a step of chemical dissolution of the porous structure resulting from the first anodization, which is difficult to implement, and is therefore not or hardly compatible with industrial scale operation. .
  • this The process requires the implementation, during the dissolution step, of toxic chemicals, such as chromium derivatives, in particular chromium VI.
  • the porous structure thickness, produced at the end of the initial anodizing treatment of the aluminum substrate, then dissolved by chemical treatment is not valued.
  • EP 1715085 proposes a method in which the chemical dissolution treatment is replaced by an electrochemical treatment, leading to the separation of the residual aluminum substrate and the entirety of the structure resulting from the first anodization.
  • this process is slow to implement, relatively complex, expensive and not very compatible with industrial scale operation.
  • the invention aims to overcome all these drawbacks by proposing a method of manufacturing, by anodizing an aluminum or smooth aluminum alloy substrate, an ordered porous structure, which avoids the use of double anodization, and which does not require the achievement of a prior step of mechanical nanoindentation of the aluminum substrate or aluminum alloy.
  • the object of the invention is more particularly to provide a process for the production, by anodization, of an ordered porous structure which is simple, fast, inexpensive, environmentally friendly, and which is compatible with a exploitation on an industrial scale.
  • the object of the invention is more particularly to provide a method for obtaining an ordered porous structure of high quality, homogeneous throughout its thickness, and in which the shape, the pore diameter and the pore ordering are perfectly controlled.
  • the invention aims more particularly to provide a method for obtaining an ordered porous structure that can have a large thickness, especially greater than 50 microns.
  • the invention also aims at providing a method of manufacturing an ordered porous structure that does not require the use of toxic chemical compounds such as chromium derivatives, in particular chromium VI.
  • the invention therefore relates to a method of manufacturing a porous structure in which an outer surface layer comprising an ordered porous structure is produced by anodizing an aluminum substrate, characterized in that:
  • an anodizing treatment is carried out on a smooth aluminum substrate with a sufficient duration to make it possible to obtain at least one ordered porous structure thickness; then, by mechanical machining, part of the thickness of said thickness is removed; an anodizing layer, that portion of thickness extending from the outer surface of said anodized layer, retaining a non-zero thickness of an ordered porous structure and such that the ordered porous structure forms the free outer surface of the residual layer.
  • the porous structure obtained by simple anodization of a smooth aluminum substrate has, on its outer face side, a porous structure of imperfectly ordered thickness, that is to say which does not have pores in the form of straight channels, of the same cross section (shape and dimensions), parallel and adjacent in a radial plane, and uniformly distributed in the radial plane. But, if the anodization time is sufficiently long, the porous structure also has, underlying this imperfectly ordered porous structure, a porous structure, perfectly ordered, that is to say having pores in the form of rectilinear channels , of the same cross section (shape and dimensions), parallel and adjacent in a radial plane, and uniformly distributed in the radial plane.
  • the only fact of directly producing anodization on a smooth aluminum substrate that is to say, having an arithmetic roughness of less than 5 nm and therefore not having a plurality of concavities resulting from a prior anodization, -proceded by double anodizing-, or a mechanical nanoindentation step, allows, in fact, if the duration of anodization is long enough, to obtain an ordered porous structure thickness, below one imperfectly ordered porous layer extending to the surface.
  • the thickness corresponding to this imperfectly ordered layer is removed by mechanical machining so as to open the pores of the ordered porous structure on the surface.
  • anodizing treatment is carried out from an aluminum alloy substrate of the IXXX series, for example the aluminum alloy 1050A, or else aluminum refined, in particular chosen from the group consisting of 4N aluminum and 5N aluminum.
  • the outer surface layer comprising at least one porous structure thickness
  • the outer surface layer is obtained after an anodizing time which depends on the growth rate of said outer surface layer.
  • the growth rate of the outer surface layer depends on the operating conditions chosen for the realization of the physical properties of the porous structure.
  • the process according to the invention makes it possible to carry out quickly and simply in a single anodization and without requiring either a subsequent chemical treatment of selective dissolution or separation.
  • electrochemical a porous structure having a non-zero thickness of an ordered porous structure.
  • This ordered porous structure has an open porosity, at least on one of its faces, said outer face, and an ordered porous structure thickness on a micrometer scale.
  • an anodizing treatment comprising a plurality of successive anodizing steps, none of said steps of the anodization treatment being followed by a treatment by selective chemical dissolution or electrochemical separation of part of the thickness of the layer formed by anodization.
  • the various steps of the anodization treatment are carried out under anodizing conditions in which at least one of the anodizing parameters selected in the method is modified between two successive anodizing steps. group consisting of the anodizing voltage, the temperature of the anodization solution, the chemical composition of the anodizing solution, the density of the anodizing current.
  • a process according to the invention it is possible to use any known process for removing material by mechanical machining to effect the removal of a part of the thickness of said layer formed by anodization, this part of thickness being extending from the outer surface of said layer, retaining at least one non-zero thickness of an ordered porous structure and such that the ordered porous structure forms the free outer surface of the residual layer.
  • mechanical machining is understood to mean any suitable method for superficial removal of particles of material.
  • these particles of material removed by mechanical machining are particles in the solid state.
  • the particles of material removed by machining mechanical may be in the gaseous state.
  • a process according to the invention it is possible to use any known method for removing material by mechanical machining, excluding chemical etching treatments, in particular chemical treatments of the layer formed by anodizing with a solution, capable of penetrating by capillarity in the pores of said porous layer and change the shape and size of the pores of the porous structure.
  • Such mechanical machining can be carried out in a single step, or on the contrary by a plurality of successive steps. It is also possible to perform such mechanical machining with a single mechanical machining technique implemented during the various machining steps, or on the contrary by implementing a plurality of mechanical machining techniques during stages of machining. successive mechanical machining.
  • Such a mechanical machining according to the invention can be carried out in particular by ionic polishing using an ion flux, notably an IPS Precision Polishing System (PIPS), or by using the broad and energetic primary beam of a Secondary Ions Mass Spectrometry (SIMS).
  • an ion flux notably an IPS Precision Polishing System (PIPS)
  • SIMS Secondary Ions Mass Spectrometry
  • the outer surface layer anodized to at least one, for a period of several hours, in particular between 1 h and 20 h, in particular between 3 and 6 h is subjected to accelerated argon ion beam at a voltage of between 1 keV and 6 keV, in particular of the order of 5 keV under secondary vacuum of the order of 1.33 10 -3 Pa.
  • said thickness portion is removed by mechanical abrasion, that is to say by solid / solid dynamic friction, by means of a mobile abrasive solid tool, which is applied to the surface outer of the porous layer formed by anodizing, and exerting pressure on said movable abrasive solid tool.
  • this mechanical abrasion is performed so as to obtain an ordered porous structure whose outer surface is flat.
  • said thickness portion is removed by a mechanical machining treatment, in particular by mechanical abrasion, which only affects the outer surface of the porous layer formed by anodizing, and which does not affect, in the thickness of the porous structure, the pore diameter of the ordered porous structure and the shape of said pores revealed during the abrasive treatment.
  • This mechanical abrasion treatment is distinguished from a chemical dissolution treatment which necessarily affects not only the thickness of the porous layer formed by anodization, but also the shape and pore diameter of said layer.
  • the mechanical abrasion is carried out by means of a piece of fabric, in particular a piece of felt-, impregnated with a suspension, called an abrasive suspension, of a powder in an aqueous phase.
  • said powder comprising at least one mineral selected from the group of abrasive minerals, consisting of diamond and ceramics, in particular corundum.
  • a piece of fabric impregnated with an abrasive suspension makes it possible to obtain regular abrasion and great fineness.
  • it also allows the permanent wetting of the surface of the porous layer obtained by anodization and the maintenance of the temperature thereof, even during mechanical abrasion. It thus avoids the deterioration of the porous anodic structure during said abrasion.
  • the choice of the abrasive mineral also makes it possible to select the hardness of said mineral, so as to control the abrasion speed of the porous structure.
  • the hardness of the abrasive mineral contained in the abrasive suspension is greater than the hardness of the porous layer whose composition is based on alumina, in particular oxidized, hydroxylated and / or oxy-hydroxylated derivatives of the aluminum.
  • the mechanical abrasion is carried out in a single step, or on the contrary, by a plurality of successive stages of abrasion, each of said successive abrasion stages being carried out by means of an abrasive suspension.
  • the abrasive suspensions of each of the successive abrasion stages being chosen so as to have a decreasing particle size from one step to another.
  • the mechanical abrasion is carried out by a succession of abrasion steps ranging from a less fine and faster abrasion to a finer and slower abrasion.
  • the choice of the particle size of the mineral powder makes it possible to control both the abrasion speed of the porous structure and the quality of the finish of the surface of the porous structure.
  • the succession of abrasion steps carried out by means of abrasive suspensions of decreasing particle size makes it possible moreover to reduce the abrasion time while conferring on the surface of the porous structure a low roughness and an excellent finish.
  • each of the plurality of successive stages of abrasion is carried out by means of a piece of fabric impregnated with an abrasive suspension, said piece of fabric being applied to the surface of the abrasion.
  • a rigid support selected from the group consisting of a vibrating support and a rotatable support.
  • each of the plurality of successive abrasion steps is carried out by means of a piece of fabric impregnated with an abrasive suspension, said piece of fabric being applied to the surface of a rigid support chosen from the group consisting of a vibrating support and a rotatable support, the smallest dimension of the piece of fabric and the rigid support being greater than the largest dimension of the outer surface layer.
  • each abrasion step of the plurality of successive stages of abrasion is carried out by means of a rotary support having a rotation speed of less than 30 rad / s, in particular included between 2 rad / s and 20 rad / s.
  • the pressure applied to the surface of the porous layer during mechanical abrasion is in particular between 1 kPa and 50 kPa.
  • the mechanical abrasion is carried out by a first abrasion step by means of a piece of felt impregnated with a diamond suspension whose average particle size is between 0.8 ⁇ m and 1.5 ⁇ m. ⁇ m, in particular of the order of 1 ⁇ m, and by a second abrasion step by means of a piece of felt impregnated with a diamond suspension whose average particle size is between 0.2 ⁇ m and 0.4 ⁇ m. , in particular of the order of 0.25 microns.
  • the total duration of the mechanical abrasion is less than 30 min, in particular between 10 min and 20 min. This time makes it possible in practice to eliminate the entire thickness of the unordered porous layer formed on the outer surface during the anodization.
  • abrasion step is carried out by means of a piece of felt impregnated with a diamond suspension whose average particle size is close to 1 ⁇ m, and then the second stage by means of a piece of felt impregnated with a suspension diamond whose average particle size is close to 0.25 microns, and finally the third step by means of a piece of felt impregnated with a diamond suspension whose average particle size is close to 0.10 microns.
  • a thickness of the outer surface layer of between 15 ⁇ m and 25 ⁇ m, in particular of the order of 17 ⁇ m to 20 ⁇ m, is removed. This thickness is at least the thickness of the imperfectly ordered porous structure extending from the outer surface of the anodized layer.
  • an anodizing treatment is carried out on a smooth aluminum substrate, with a duration adapted to obtain an outer surface layer formed by anodizing having a total thickness of between 25 ⁇ m and 300 ⁇ m, especially between 100 ⁇ m and 200 ⁇ m.
  • a single anodization treatment is carried out on a smooth aluminum substrate, said treatment having a duration of between 1 h and 12 h, in particular of the order of 4 h.
  • a method according to the invention consists in producing a single anodizing treatment, comprising at least one anodizing step, then a step of removing the thickness portion of the outer surface layer whose porous structure is imperfectly ordered.
  • the anodizing step marking the end of the anodization treatment is immediately followed by mechanical machining treatment, including mechanical abrasion.
  • a single anodizing treatment is carried out on a smooth aluminum substrate for a period of time adapted so that the thickness of the ordered porous structure formed by anodization is between 1 ⁇ m and 150 ⁇ m, in particular between 50 ⁇ m and 150 ⁇ m.
  • anodization is carried out in an aqueous electrolyte solution chosen from the group consisting of aqueous solutions of acids, in particular sulfuric acid, a mixture of sulfuric acid and boric acid, oxalic acid, phosphoric acid, malonic acid, tartaric acid and citric acid.
  • anodizing in an aqueous electrolyte solution whose composition is adapted to provide an ordered porous structure whose pores have a diameter of between 10 nm and 500 nm, in particular between 100 nm and 200 nm.
  • anodization is carried out at a temperature of between -2 ° C. and + 20 ° C., in particular of the order of -1.5 ° C.
  • anodization is carried out under a voltage of between 19 V and 240 V, in particular between 125 V and 195 V with an aqueous solution comprising phosphoric acid as the electrolyte.
  • at least one anodization is carried out in a single step, or in a set of immediately successive anodizing steps, and then a mechanical abrasion treatment.
  • a porous structure is obtained comprising at least one ordered porous structure thickness.
  • a single anodizing treatment of the aluminum substrate is carried out.
  • the mechanically machining removal step of the unordered structure in particular by mechanical abrasion, it is possible to proceed to further subsequent treatments, but it is not necessary to perform, chemical or electrochemical dissolution, or new treatment by anodization.
  • the non-oxidized aluminum substrate and a portion of non-porous thickness of said layer are removed in order to retain only the ordered porous structure.
  • a chemical treatment of the ordered porous structure adapted to increase the pore diameter of said porous structure is then carried out.
  • Such a chemical treatment is particularly suitable for partially dissolving the pore wall, from the face of said partition which faces the pore and towards the internal part of the partition.
  • the inventor has observed that the chemical composition of the layer of material constituting said partition varies along the radial axis of the pores.
  • the chemical composition of the face of the layer of material constituting the partition, which is opposite the pore is a mixture based on oxidized aluminum, hydroxylated and / or oxyhydroxylated, and comprising up to 20% of compounds from the electrolytic solution used for anodization.
  • the inner part of said partition is composed essentially of oxides, hydroxides and / or aluminum oxyhydroxide.
  • the invention also relates to a method of manufacturing a porous structure characterized in combination by all or some of the characteristics mentioned above or below.
  • FIGS. 1a to 1b are illustrative cross-sectional diagrams on which the thickness and width scales are not realistic, illustrating successive steps of a method according to the invention.
  • FIG. 2 is a schematic flow diagram of a method according to the invention.
  • FIG. 3 presents a field scanning electron microscopy (MEB-FEG), a section along the axis of growth of an ordered porous structure according to the invention.
  • MEB-FEG field scanning electron microscopy
  • FIG. 4 presents a field scanning electron microscopy (MEB-FEG), an ordered porous structure according to the invention, without an aluminum substrate, but with the barrier layer, seen from the side of the barrier layer.
  • MEB-FEG field scanning electron microscopy
  • FIG. 5 shows a field scanning electron microscopy (MEB-FEG), the outer face of an outer surface layer according to the invention, after anodization and before mechanical abrasion.
  • FIG. 6 shows a field-effect scanning electron microscopy (MEB-FEG), of the outside face of an ordered porous structure according to the invention, after mechanical abrasion, said porous structure being inclined with respect to the direction of anodization.
  • MEB-FEG field scanning electron microscopy
  • FIG. 7 shows a field scanning electron microscopy (MEB-FEG), the outside face of an ordered porous structure according to the invention, said porous structure being inclined with respect to the direction of anodization and not comprising an aluminum substrate or a barrier layer, said porous structure being characteristic of nano structuring of the "honeycomb" type.
  • FIG. 8 shows a field scanning electron microscopy (MEB-FEG), the outside face of an ordered porous structure according to the invention, without an aluminum substrate and without a barrier layer, which is characteristic of a nano structuration type "wasp nest".
  • Figure la represents a piece 1 of aluminum or aluminum alloy serving as a substrate for the 24 treatment by anodization and to obtain an ordered porous structure 7 according to the invention.
  • This piece 1 of aluminum has at least one face, called the outer face 2, subjected to a set of physical or chemical treatments of the part 1 as indicated below.
  • the aluminum substrate used may be, for example, made of aluminum alloy of the IXXX series, for example alloy 1050A, or of refined aluminum type 4N (99.99% pure) or type 5N (99.999% pure).
  • Pretreatment 18 of the piece 1 is carried out in order to prepare it for its anodization 24.
  • This pretreatment 18 has the objective of promoting the obtaining of an ordered porous structure thickness. It allows on the one hand to increase the wettability of the piece 1 in aqueous solution, and on the other hand to reduce or eliminate pre-existing defects on the surface of the part 1.
  • the pretreatment 18 contributes to the establishment of a contact a regular between the piece 1 and the anodizing solution 24.
  • This pretreatment 18 of the part 1 comprises a succession of four treatments 19, 20, 21, 22.
  • the first treatment 19 is a degreasing of the part 1 by means of organic or aqueous chemical solvents. This first treatment can be carried out by dipping the part 1 in a hydroalcoholic solution which makes it possible to dissolve and then rinse off the dirt, grease, oils or lubricants originating from the previous methods of shaping said part 1, for example rolling. Piece 1 is then rinsed with distilled water.
  • the second treatment 20 is a mechanical polishing to reduce the roughness of the surface of the workpiece 1 and thus to obtain a smooth substrate.
  • the inventor has shown that it is, on the contrary, preferable to perform anodizing from an outer surface as smooth and even as possible. Indeed, structural defects of the substrate, which are known to be irregularly distributed on the outer face 2 of the substrate, are at the origin of the formation of irregular pores, and the growth of imperfectly ordered porous structures.
  • abrasive discs of finer and finer, rotating or vibrating nature are used, followed by pieces of fabric. particularly of felt, impregnated with abrasive suspensions.
  • a sheet impregnated with a suspension of diamond powder, the average diamond grain size of which is of the order of 1 ⁇ m makes it possible to obtain a finish suitable for carrying out the process according to the invention.
  • the piece 1 is rinsed with distilled water.
  • the third treatment 21 consists of a heat treatment of the part 1 to release the internal stresses and to increase the size of the aluminum grains.
  • this thermal treatment is preferably carried out under a non-oxidizing atmosphere, typically in a neutral or even reducing atmosphere, namely under an inert gas atmosphere, typically under a nitrogen atmosphere or under partial vacuum.
  • the part 1 is heated, in an oven, at a temperature between 35O 0 C and 600 0 C, preferably at 45O 0 C.
  • the heat treatment lasts between 0.1 h and 8 h, in particular between 0.5 h and 5 h h, preferably for 1 h at an effective temperature of 450 ° C. under a nitrogen atmosphere.
  • the fourth treatment is an electropolishing 22 of the piece 1. It aims to improve the surface condition of the outer face 2 of the part 1 which, as indicated above, must be as smooth as possible.
  • the part 1 is subjected, for a period of between 1 min and 1 h, to electrolysis under a voltage of between 25 V and 26 V in a cell containing a controlled bath at a temperature of between 20 ° C. and 30O 0 C.
  • Said bath may be an alkaline bath or an acid bath.
  • This is, for example, a Jacquet bath.
  • the Jacquet bath consists of the 33% by volume mixture of perchloric acid and 66% by volume of glacial acetic acid, the piece 1 constituting the anode of the electrolysis.
  • an electropolishing 22 according to the invention is obtained by treating, for 2 min, the part 1, by electrolysis under 25 V, in a Jacquet bath thermoregulated at 20 ° C.
  • the piece 1 is then rinsed with distilled water and subjected, immediately after rinsing, to the anodizing treatment 24.
  • a part 1 is obtained whose external face 2 has a low and regular arithmetic roughness, in particular of arithmetic roughness of less than 5 nm.
  • This piece 1 is used to prepare a porous structure 7 ordered by a treatment 23 comprising anodization 24 followed by an abrasion 25.
  • the piece 1 is subjected to a single anodization 24, in which the piece 1 constitutes the anode.
  • single anodization 24 is meant a treatment comprising either a single anodization step or successive anodizing steps, without intermediate chemical or electrochemical treatment step of the porous structure.
  • the anodizing conditions are preferably of the "hard anodizing" type as described, for example, in Lee W., J., R., Gosele, U. and Nielsch K., (2006), Nature Mat. ; 9, 741-747 "Fast manufacture of long-range controlled porous alumina membranes by hard anodization".
  • the oxidation rate of the aluminum is advantageously greater than the dissolution rate, by the electrolyte, of the alumina formed.
  • Anodization 24 leads to the formation of an anode structure comprising a layer 3 of outer surface, supported by a layer 4 of residual aluminum.
  • the anodization 24 may be carried out in an electrolyte chosen from sulfuric acid, the mixture of sulfuric acid and boric acid, oxalic acid, phosphoric acid, malonic acid, tartaric acid or citric acid.
  • the use as electrolyte of a mixture of sulfuric acid and boric acid provides a structural thickness of up to 300 microns. Such anodic structure thickness, however, does not have an ordered porous structure over its entire thickness.
  • an aqueous solution of phosphoric acid with a mass concentration of between 1% and 8%, preferably 8%, is employed in a cell whose temperature is regulated between -2 ° C. and +2 ° C. 0 C, preferably at -1.5 0 C.
  • the solution is homogenized, continuously, by stirring.
  • the voltage applied to the aluminum piece 1 is typically between 125 V and 195 V.
  • the anodizing treatment 24 is carried out for a sufficient time so that the outer surface layer 3 has a sufficient thickness and the outer surface layer 3 has, over a part of its thickness, an ordered porous structure thickness.
  • a layer 3 of outer surface 130 ⁇ m thick for an anodizing time of 4 hours there is obtained, for example, a layer 3 of outer surface 130 ⁇ m thick for an anodizing time of 4 hours.
  • the anodic structure is shown diagrammatically in FIG. 1b.
  • FIG. 1b is only schematic and illustrative, and the scales are not respected. It comprises a layer 4 of residual aluminum, unoxidized, supporting a layer 3 of outer surface.
  • the outer surface layer 3 consists of a barrier layer, non-porous, also called a compact layer, defining on its inner face 6 the interface between the residual aluminum layer 4 and the outer surface layer 3 and on its outer face, the non-emergent end of the pores 8.
  • the outer surface layer 3 comprises on its outer face an unordered porous layer 11 extending from the outer face of the outer surface layer 3 to the ordered / unordered interface 14 with the ordered porous structure 7.
  • the ordered porous structure 7 has a regular juxtaposition of pores 8 empty of material, in the form of linear tubular channels, of constant diameter, extending axially in a main direction, corresponding to the direction of anodization, orthogonal to the outer face 2 of the anodic structure, and partitions 9, separating the pores 8.
  • the partitions 9 have, in addition, a constant thickness over the entire thickness of the porous structure.
  • the average distance joining the centers of two adjacent pores varies from 50 nm to 600 nm and the mean diameter of said pores varies from 10 nm to 500 nm.
  • the unordered porous layer 11 is formed by an irregular juxtaposition of empty pores of material, shapes, orientations, and variable dimensions, separated by partitions, also of varying shapes, orientations and dimensions of thickness on the wall. set of the unordered porous layer 11.
  • unordered porous layer 1 1 superimposed on the ordered porous structure 7 partially masks and obstructs the outer surface of said ordered porous structure 7.
  • the unordered porous layer 11 is then removed from the anode structure so as to reveal at least one ordered porous structure thickness.
  • the unordered porous layer 11 is removed by removal of material, in particular by at least one mechanical abrasion treatment.
  • a solid tool 12 is applied to the outer face of the outer surface layer 3, such as a discoidal, rigid, plane rotary device, and on the surface of which a piece 13 of fabric is fixed. , in particular felt, previously impregnated with an abrasive suspension.
  • the abrasive suspension consists of an aqueous dispersion of particles, insoluble in water, characterized by their hardness as well as by their size.
  • the solid particles of the abrasive suspensions are selected from the group consisting of solid and abrasive materials, for example diamond and ceramics, especially corundum.
  • a first portion of the unordered porous layer 11 is removed by abrasion from the outer face of the outer surface layer 3 for a few minutes, for example 10 minutes, with an abrasive suspension formed of a suspension of diamond, the average diameter of said particles being close to 1 ⁇ m.
  • the surface of the porous layer is rinsed with distilled water.
  • a second portion of the unordered porous layer 11 is removed by fine abrasion from the outer face of the anode structure for a few minutes, for example 10 minutes, with an abrasive suspension formed of an aqueous suspension of diamond particles, the average diameter of said particles being close to 0.25 microns.
  • Part 15 resulting from the abrasion of the outer face of the outer surface layer 3 by removal of the unordered porous layer 11, is shown schematically in FIG.
  • This part 15 comprises an anodized layer 36, supported on a layer 4 of residual aluminum, said layer 36 having a through porosity, but non-emerging because of the presence of a barrier layer and the aluminum layer 4.
  • the outer surface has an even distribution of tabular pores of circular cross-section, organized in a hexagonal pattern, that is, in a "honeycomb" configuration.
  • the pores 8 have a circular cross section and have, for example, a diameter of the order of 250 nm.
  • this part 15 can be used without further modification, with the barrier layer and the residual aluminum layer 4. In other applications, this part is subjected to at least one of the subsequent treatments 26, 30 for adjusting the functional properties of the part 15.
  • the residual aluminum layer 4 is removed by electrochemical separation of the anodized layer 36 and the residual aluminum layer 4.
  • This separation 31 is carried out in a stirred solution of phosphoric acid at a mass concentration of between 5% and 20%, typically 16%, and at a temperature between 25 ° C. and 35 ° C., typically 30 ° C. under tension. alternative of 30 volts for 30 min.
  • this treatment 30 leads simultaneously to the removal of the barrier layer and to the opening of the pores 8, in particular on the inner face of the porous structure 33.
  • the piece 34 obtained has a through porosity and opening on both faces-outer surface 16 and inner surface 17-of the ordered porous structure 7, and is shown schematically in Figure 1c.
  • a treatment 32 by chemical dissolution, leading to the enlargement of the pores 8 of the ordered porous structure 7.
  • the piece 34 is immersed in a solution of phosphoric acid at a mass concentration of between 5% and 16%, typically 16%.
  • the duration of the treatment 32, and the mass concentration of phosphoric acid are chosen to increase the diameter of the pores 8, until reaching a value of diameter which is, for example, of the same order of magnitude as the distance separating the center. two pores adjacent in the ordered porous structure 7.
  • a succession of three treatments 27, 28, 29 is obtained from the part obtained at the end of the mechanical abrasion 25 by selective dissolution of the constituents of the part 15: a first treatment 27 for controlled opening of the pores 8, a second treatment 28 for the chemical / redox dissolution of the residual aluminum layer 4, then a third treatment 29 for the chemical dissolution of the barrier layer.
  • the first treatment 27 consists of a partial chemical dissolution of the partitions 9 and makes it possible to increase the diameter of the pores 8 to a value which depends on the reaction time and the mass concentration of the acid used.
  • This first treatment 27 perfectly controls not only the diameter but also the geometry of the transverse cross section of the pores 8, from a circular section to a hexagonal section.
  • This first treatment 27 also makes it possible to modify the diameter of the pores 8, without however affecting the barrier layer or the residual aluminum layer 4.
  • This first treatment 27 is carried out by immersing the part 15 in a solution of phosphoric acid at a mass concentration of between 5 and 16%, at a controlled temperature, in particular between 25 and 35 ° C. Typically, the concentration of the solution phosphoric acid is 16% and the temperature of 3O 0 C. the duration of the treatment varies according to the desired geometry on the surface 16 of the anodized layer 36.
  • a treatment time of 65 min results in an ordered porous structure 7 in which the pores 8 are hexagonally ordered and have a hexagonal cross section, a diameter of the order of 400 nm, in a "wasp nest" configuration.
  • Intermediate processing times lead to intermediate configurations between the "honeycomb” configuration and the "nest of wasps" configuration, in which the pore diameter varies between 250 nm and 400 nm.
  • the second treatment 28 by chemical dissolution or redox of the aluminum layer 4 makes it possible to specifically eliminate the layer 4 residual aluminum.
  • the part 15 is immersed in an oxidizing solution at room temperature.
  • This oxidizing solution may be a mixture of CuCl or else CUCI 2 at a concentration of 0.1 mol / l and hydrochloric acid at a mass concentration of 18%. This immersion simultaneously causes the oxidation of metallic aluminum and the reduction of copper cations.
  • Other redox couples, having a large difference in redox potential with the A1 3+ / A1 pair, can advantageously be used, in particular the Hg 2+ / Hg pair.
  • amalgam is made of a liquid metal at room temperature, in particular gallium or mercury, with the aluminum of the residual aluminum layer 4. Extraction of the amalgam thus makes it possible to eliminate the aluminum from the support.
  • This second treatment 28 leads to a piece 33 having a through porosity, without aluminum substrate, but not open due to the presence of the barrier layer.
  • the third treatment 29 consists of the chemical dissolution of the barrier layer by immersion of the piece 33 in a solution of phosphoric acid at a mass concentration of between 5% and 20%, for example of the order of 16%, the temperature of said solution being controlled between 25 0 C and 35 0 C, in particular to 3O 0 C.
  • the piece 34 whose hardness is low, in particular of the order of 150 Hv, is then heat treated in order to increase its hardness, in particular up to a value of 2000 Hv.
  • a piece 1 of refined aluminum of 4N quality, of disc shape, of 10 -2 m in diameter, and 10 -3 m thick, is subjected to mechanical polishing, by means of a polisher, and abrasive discs and a fabric impregnated with a suspension of diamond particles whose average size decreases to 1 ⁇ m.
  • the total duration of abrasion is approximately 20 minutes to 30 minutes.
  • the aluminum piece 1 is then rinsed with distilled water and placed in an oven, under a nitrogen atmosphere, at 45O 0 C for 2 h.
  • the piece 1 of aluminum is subjected to a treatment 22 by electropolishing in a Jacquet bath, whose volume composition is 33% perchloric acid and 66% glacial acetic acid, regulated at 20 ° C. for 2 minutes under a voltage of 25 V.
  • the piece 1 of aluminum is placed in an anodizing tank containing an aqueous bath of 8% phosphoric acid (mass), homogenized by rotary stirring at a speed of 37 rad / s and regulated at a temperature of -1.5 ° C.
  • the voltage is fixed at 180 V and the duration of the anodization is 4 h.
  • FIG. 5 The analysis, by field-effect electron microscopy, of the outer face 2 of the outer surface layer 3 obtained after anodizing 24 and before polishing 25 is shown in FIG. 5.
  • This photograph shows a plurality of pores, irregularly distributed on the entire surface, and of heterogeneous cross-section in size and shape. It is noted, moreover, that a minority of these pores has an open porosity.
  • Example 2 A piece 1 of aluminum is prepared as described in Example 1, and subjected to anodization at a voltage of 185 V for 4 h.
  • the outer surface of the anode structure is removed by abrasion 25 by means of a piece of felt impregnated with a suspension of diamond particles having an average diameter of 1 ⁇ m for 10 minutes. then by means of a piece of felt impregnated with a suspension of diamond particles whose average diameter is 0.25 microns, for another 10 min.
  • the aluminum part 1 supporting the porous structure is then treated with a solution of phosphoric acid at a mass concentration of 16%, regulated at a temperature of 30 ° C., homogenized by stirring. rotational at a speed of 37 rad / s, for 1 h.
  • the aluminum part 1 supporting the porous structure is treated with a solution of CuCl and HCl at a temperature of 20 ° C. until the residual aluminum thickness is completely dissolved.
  • the electron field-effect microscopy analysis of the longitudinal section of the ordered porous structure 7 obtained is shown in FIG. 3. A juxtaposition of sections of linear tubes, elongated in the direction of growth of the porous structure, is observed. whose average width is 360 nm.
  • a piece 1 of aluminum is prepared as described in Example 1, then anodized at a voltage of 185 V for 4 h and finally subjected to mechanical abrasion as described in Example 2.
  • the ordered porous structure is immersed in a solution of CuCl and HCl, regulated at a temperature of 20 ° C., until the residual aluminum thickness is completely dissolved. There is obtained a piece 33, without layer 4 of residual metallic aluminum, with through porosity and non-emerging with a barrier layer.
  • FIG. 4 The electron field effect microscopy analysis of the surface of the barrier layer of the part 33 is shown in FIG. 4. A juxtaposition of non-emerging hexagonal cross-section hexagonal hexagonal cross sections regularly observed is observed. hexagonal arrangement centered, and whose average diameter of the circle describing this hexagon is 460 nm.
  • FIG. 6 the analysis, by field-effect electron microscopy, of the polished outer face 2 of the part 33 is shown in FIG. 6.
  • a piece 1 of aluminum is prepared as described in Example 1, then is anodized at a voltage of 180 V for 4 hours and finally subjected to mechanical abrasion as described in Example 2.
  • the porous structure is treated, by electrochemistry, at a voltage of 30 V / 50 Hz, in a solution of phosphoric acid at a mass concentration of 16%, regulated at a temperature of 30 ° C., homogenized by stirring. rotating at a speed of 37 rad / s, for 45 min.
  • a piece 33, without layer 4 of residual aluminum, porosity through, open, without barrier layer, and the diameter of the pores 8 has been enlarged.
  • FIG. 7 A juxtaposition of regularly ordered circular-section pores with a mean diameter of 240 nm type "honeycomb".
  • Example 5 A piece 1 of aluminum is prepared as described in Example 1, then anodized at a voltage of 210 V for 15 h and finally subjected to mechanical abrasion as described in Example 2.
  • the structure is electrochemically treated, as described in Example 4, at 35 V / 50 Hz for 65 min. There is obtained a piece 33, without layer 4 of metallic aluminum, with porosity through, without barrier layer, and opening on both sides of the structure
  • FIG. 8 The analysis, by field-effect electron microscopy, of the outer surface of the ordered porous structure 7 thus obtained is shown in FIG. 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une structure poreuse dans lequel on produit, par anodisation d'un substrat d'aluminium, une couche (3) de surface extérieure comprenant une épaisseur de structure (7) poreuse ordonnée, caractérisé en ce qu'on réalise une étape d'anodisation sur un substrat d'aluminium lisse avec une durée suffisante pour permettre l'obtention d'une épaisseur de structure (7) poreuse ordonnée. On enlève ensuite par usinage mécanique une partie de l'épaisseur de ladite couche (3) formée par anodisation, cette partie d'épaisseur s'étendantà partir de la surface extérieure de ladite couche (3) formée par anodisation, en conservant une épaisseur non nulle de structure (7) poreuse ordonnée et de façon que cette structure poreuse ordonnée forme la surface extérieure libre de la couche résiduelle.

Description

PROCÉDÉ DE FABRICATION D'UNE STRUCTURE POREUSE ORDONNÉE A PARTIR D'UN SUBSTRAT D'ALUMINIUM
L'invention concerne un procédé de fabrication d'une structure poreuse ordonnée, à partir d'un substrat d'aluminium.
Dans tout le texte, une structure poreuse est dite « ordonnée » lorsqu'elle présente des pores, en forme de canaux rectilignes, de même section droite transversale (forme et dimensions), parallèles et adjacents dans un plan radial, et uniformément distribués dans le plan radial. Egalement, dans tout le texte, on oriente la pièce d'aluminium et les structures anodiques résultant de l'anodisation de ladite pièce d'aluminium selon leurs deux faces opposées, une première face, dite face extérieure, en contact avec la solution électrolyte, et une seconde face, dite face substrat, qui n'est pas en contact avec la solution électrolytique. Egalement, dans tout le texte, on entend par alumine, le terme général recouvrant des formes oxydées de l'aluminium, à savoir les oxydes d'aluminium, les hydroxydes d'aluminium, ainsi que les oxy-hydroxydes d'aluminium.
De nombreux systèmes électroniques, mécaniques, biotechnologiques ou chimiques tendent vers une miniaturisation extrême, ouvrant un vaste champ d'applications dans des domaines aussi variés que la médecine, l'aéronautique, l'espace, l'électronique, l'informatique ou la photonique. Dans cet objectif, le contrôle de la structure des matériaux, des dimensions et de la régularité de leurs ultrastructures devient essentiel afin de réduire les dimensions de ces systèmes, augmenter le rapport entre la surface spécifique et le volume total de l'échantillon et/ou obtenir des phénomènes physiques spécifiques.
Dans ce but, on sait réaliser, par anodisation de substrats d'aluminium métal, des structures poreuses ordonnées, à base de l'élément chimique aluminium, dont la surface s'étend sur plusieurs μm2. Ces structures poreuses, aussi appelées films anodiques poreux, peuvent être utilisées comme support ou comme matrice pour des applications originales telles que la nanofiltration ou encore la réalisation d'éléments fonctionnels de dimension nanométrique comme les nanoplots, les nanofils et les nanotubes. L'amélioration des performances techniques de ces matériaux, dont les ultrastructures sont de dimension méso- ou nanométrique, découle directement des avancées technologiques permettant la réalisation de films anodiques poreux, de grande dimension et d'épaisseur contrôlée.
La croissance d'une structure poreuse au cours de l'anodisation d'un substrat d'aluminium est guidée par un processus complexe, impliquant un équilibre entre, d'une part une réaction d'oxydation de l'aluminium en dérivés oxydés, hydroxylés ou encore oxy-hydroxylés de l'aluminium, et, d'autre part, une réaction de dissolution de cette alumine formée. Ainsi, il est connu que la formation d'une structure poreuse résulte de l'équilibre, dépendant des conditions opératoires de l'anodisation, entre les contributions respectives de ces deux réactions chimiques antagonistes.
La publication Masuda H., Yada K. et Osaka A., (1998), Jpn. J. Appl. Phys., 37, 1340-1342 « Self-Ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution » décrit un procédé d'obtention d'une structure poreuse, regroupant plusieurs traitements, à savoir, un traitement par anodisation, pendant une durée variant de 0,5 h à 16 h, d'un substrat d'aluminium non prétexturé dans une solution d'acide phosphorique, à une concentration de 0,3 mol/L, sous une tension de 195 V, un traitement de dissolution chimique du substrat d'aluminium résiduel au moyen d'une solution saturée de HgCl2, un traitement de dissolution chimique de la couche barrière, aussi appelée couche compacte, au moyen d'une solution d'acide phosphorique à une proportion massique de 10%, et enfin un traitement chimique d'agrandissement du diamètre des pores de la structure poreuse, au moyen d'une solution d'acide phosphorique.
Ainsi, ce document décrit un procédé de référence pour la fabrication d'une structure poreuse à base d'aluminium, au moyen de plusieurs traitements successifs qui sont tous de nature chimique ou électrochimique. Ce document présente l'état de surface de la face substrat de la structure poreuse, après élimination du substrat résiduel et de la couche barrière. Il ne décrit pas l'état de la structure poreuse au sein de son épaisseur, notamment au niveau de la face extérieure.
Par ailleurs, on sait qu'il est possible d'obtenir une structure poreuse ordonnée par anodisation d'un substrat d'aluminium présentant, à sa surface extérieure, une pluralité de concavités, de même forme, et régulièrement distribuées. Une telle empreinte peut être obtenue par nanoindentation du substrat d'aluminium, par exemple, en appliquant et en pressant sur le substrat d'aluminium, une matrice dure, notamment en carbure de silicium présentant une pluralité de convexités. Néanmoins, cette étape de nanoindentation est technologiquement très difficile à mettre en œuvre en raison des difficultés techniques pour réaliser, aux échelles méso- et nanométrique, la matrice en carbure de silicium présentant une pluralité de convexités. Cette étape de réalisation d'une matrice est, par conséquence, une étape coûteuse.
Un autre procédé connu, permettant d'obtenir une pluralité de concavités, de même forme, et régulièrement distribuées sur la surface du substrat d'aluminium ou d'alliage d'aluminium, est appelé « double anodisation ». Selon ce procédé de « double anodisation », une première étape d' anodisation permet de former une pluralité de concavités à l'interface du substrat d'aluminium initialement lisse et de la structure poreuse résultant de cette anodisation. La dissolution complète, par voie chimique, de la structure poreuse résultant de l'anodisation, révèle alors la pluralité de concavités sous-jacente. Ces empreintes concaves servent ensuite de guide pour la croissance, lors d'une seconde étape d' anodisation, d'une structure poreuse ordonnée. Ce procédé de « double anodisation » est long à mettre en œuvre en raison de la duplication de l'étape d' anodisation. Ce procédé nécessite, en outre, une étape de dissolution chimique de la structure poreuse résultant de la première anodisation, qui est délicate à mettre en œuvre, et n'est, par conséquence, peu ou pas compatible avec une exploitation à l'échelle industrielle. Par ailleurs, ce procédé nécessite la mise en œuvre, lors de l'étape de dissolution, de produits chimiques toxiques, tels que des dérivés du chrome, en particulier du chrome VI. Enfin, l'épaisseur de structure poreuse, produite à l'issue du traitement initial d'anodisation du substrat d'aluminium, puis dissoute par traitement chimique, n'est pas valorisée.
D'autres procédés ont été proposés pour perfectionner l'élaboration d'une structure poreuse ordonnée sans toutefois parvenir à éviter la réalisation d'une "double anodisation" avec élimination intermédiaire d'une structure formée par une première anodisation. Ainsi, EP 1715085 propose un procédé dans lequel le traitement de dissolution chimique est remplacé par un traitement électrochimique, conduisant à la séparation du substrat d'aluminium résiduel et de l'intégralité de la structure résultant de la première anodisation. Là encore, ce procédé est long à mettre en œuvre, relativement complexe, coûteux et peu compatible avec une exploitation à l'échelle industrielle. Ainsi, jusqu'à maintenant, pour obtenir une structure poreuse ordonnée, présentant des pores en forme de canaux rectilignes, de même section droite transversale (forme et dimensions), parallèles et adjacents dans un plan radial, et uniformément distribués dans le plan radial, il était toujours considéré comme nécessaire de réaliser une prétexturisation du substrat d'aluminium, soit par nanoindentation dudit substrat d'aluminium, soit par une première anodisation, suivie d'une dissolution chimique/séparation électrochimique.
Dans ce contexte, l'invention vise à pallier l'ensemble de ces inconvénients en proposant un procédé de fabrication, par anodisation d'un substrat d'aluminium ou d'alliage d'aluminium lisse, d'une structure poreuse ordonnée, qui évite le recours à une double anodisation, et qui ne nécessite pas non plus la réalisation d'une étape préalable de nanoindentation mécanique du substrat d'aluminium ou d'alliage d'aluminium.
L'invention vise plus particulièrement à proposer un procédé de fabrication, par anodisation, d'une structure poreuse ordonnée qui est simple, rapide, peu coûteux, respectueux de l'environnement, et qui est compatible avec une exploitation à l'échelle industrielle.
L'invention vise plus particulièrement à proposer un procédé permettant l'obtention d'une structure poreuse ordonnée de grande qualité, homogène dans toute son épaisseur, et dans laquelle, la forme, le diamètre des pores et l'ordonnancement des pores, sont parfaitement maîtrisés.
L'invention vise plus particulièrement à proposer un procédé permettant l'obtention d'une structure poreuse ordonnée pouvant présenter une grande épaisseur, -notamment supérieure à 50 μm-.
L'invention vise également à proposer un procédé de fabrication d'une structure poreuse ordonnée ne nécessitant pas l'emploi de composés chimiques toxiques tels que les dérivés du chrome, en particulier du chrome VI.
L'invention concerne donc un procédé de fabrication d'une structure poreuse dans lequel on produit, par anodisation d'un substrat d'aluminium, une couche de surface extérieure comprenant une structure poreuse ordonnée caractérisé en ce que :
- on réalise un traitement d'anodisation sur un substrat d'aluminium lisse avec une durée suffisante pour permettre l'obtention d'au moins une épaisseur de structure poreuse ordonnée, - on enlève ensuite par usinage mécanique une partie de l'épaisseur de ladite couche formée par anodisation, cette partie d'épaisseur s'étendant à partir de la surface extérieure de ladite couche formée par anodisation, en conservant une épaisseur non nulle de structure poreuse ordonnée et de façon que cette structure poreuse ordonnée forme la surface extérieure libre de la couche résiduelle.
La structure poreuse obtenue par une simple anodisation d'un substrat d'aluminium lisse présente, du côté de sa face extérieure, une épaisseur de structure poreuse imparfaitement ordonnée, -c'est-à-dire qui ne présente pas des pores en forme de canaux rectilignes, de même section droite transversale (forme et dimensions), parallèles et adjacents dans un plan radial, et uniformément distribués dans le plan radial-. Mais, si la durée d'anodisation est suffisamment longue, la structure poreuse présente aussi, sous-jacente à cette structure poreuse imparfaitement ordonnée, une structure poreuse, parfaitement ordonnée, c'est-à-dire présentant des pores en forme de canaux rectilignes, de même section droite transversale (forme et dimensions), parallèles et adjacents dans un plan radial, et uniformément distribués dans le plan radial.
Ainsi, le seul fait de réaliser directement une anodisation sur un substrat d'aluminium lisse, c'est-à-dire, présentant une rugosité arithmétique inférieure à 5 nm et ne présentant pas, par conséquence, une pluralité de concavités issue soit d'une anodisation préalable, -procédé par double anodisation-, soit d'une étape de nanoindentation mécanique, permet, en réalité, si la durée d'anodisation est suffisamment longue, d'obtenir une épaisseur de structure poreuse ordonnée, en dessous d'une couche poreuse imparfaitement ordonnée s'étendant en surface. Selon l'invention, on enlève, par usinage mécanique, l'épaisseur correspondant à cette couche imparfaitement ordonnée, de façon à faire déboucher, en surface, les pores de la structure poreuse ordonnée.
Particulièrement, dans un procédé selon l'invention, on réalise un traitement d'anodisation à partir d'un substrat formé d'alliage d'aluminium de la série IXXX, par exemple l'alliage d'aluminium 1050A, ou encore d'aluminium raffiné, notamment choisi dans le groupe formé de l'aluminium 4N et de l'aluminium 5N.
Dans un procédé selon l'invention, la couche de surface extérieure, comprenant au moins une épaisseur de structure poreuse, est obtenue après une durée d'anodisation qui dépend de la vitesse de croissance de ladite couche de surface extérieure. Or, la vitesse de croissance de la couche de surface extérieure dépend des conditions opératoires choisies pour la réalisation des propriétés physiques de la structure poreuse.
Ainsi, le procédé selon l'invention permet de réaliser rapidement et simplement en une seule anodisation et sans nécessiter, ni un traitement chimique subséquent de dissolution sélective, ni une séparation électrochimique, une structure poreuse présentant une épaisseur non nulle d'une structure poreuse ordonnée. Cette structure poreuse ordonnée présente une porosité ouverte, au moins sur l'une de ses faces, dite face extérieure, et une épaisseur de structure poreuse ordonnée contrôlée à l'échelle du micromètre. Cela étant, selon une variante possible du procédé de fabrication conforme à l'invention, rien n'empêche de réaliser la couche de surface extérieure de telle sorte qu'elle comprenne une pluralité d'épaisseurs de structures poreuses ordonnées superposées. Ces différentes épaisseurs sont notamment obtenues par un traitement d'anodisation comprenant une pluralité d'étapes d'anodisation successives, aucune desdites étapes du traitement d'anodisation n'étant suivie d'un traitement par dissolution chimique sélective, ni de séparation électrochimique d'une partie de l'épaisseur de la couche formée par anodisation. Dans cette variante, les différentes étapes du traitement d'anodisation sont réalisées dans des conditions d'anodisation dans lesquelles on modifie, entre deux étapes d'anodisation successives, au moins l'un des paramètres d'anodisation, choisi(s) dans le groupe formé de la tension d'anodisation, de la température de la solution d'anodisation, de la composition chimique de la solution d'anodisation, de la densité du courant d'anodisation.
Dans un procédé conforme à l'invention, on peut utiliser tout procédé connu d'enlèvement de matière par usinage mécanique pour réaliser l'enlèvement d'une partie de l'épaisseur de ladite couche formée par anodisation, cette partie d'épaisseur s 'étendant à partir de la surface extérieure de ladite couche, en conservant au moins une épaisseur non nulle de structure poreuse ordonnée et de façon que cette structure poreuse ordonnée forme la surface extérieure libre de la couche résiduelle.
Dans un procédé conforme à l'invention, on entend par usinage mécanique tout procédé approprié d'enlèvement superficiel de particules de matière. Dans un procédé conforme à l'invention, ces particules de matière enlevées par usinage mécanique sont des particules à l'état solide. Cependant, dans un procédé conforme à l'invention, les particules de matière enlevées par usinage mécanique peuvent être à l'état gazeux.
Dans un procédé conforme à l'invention, on peut utiliser tout procédé connu d'enlèvement de matière par usinage mécanique à l'exclusion des traitements par attaque chimique, notamment des traitements chimiques de la couche formée par anodisation avec une solution, susceptible de pénétrer par capillarité dans les pores de ladite couche poreuse et modifier la forme et la taille des pores de la structure poreuse.
On peut réaliser un tel usinage mécanique en une seule étape, ou au contraire par une pluralité d'étapes successives. On peut aussi réaliser un tel usinage mécanique avec une seule technique d'usinage mécanique mise en œuvre lors des différentes étapes d'usinage, ou au contraire par mise en œuvre d'une pluralité de techniques d'usinage mécanique lors d'étapes d'usinage mécanique successives.
Un tel usinage mécanique conforme à l'invention peut être notamment réalisé par polissage ionique mettant en œuvre un flux d'ions, notamment un Système de Polissage de Précision par des Ions (PIPS pour « Précision Ion Polishing System »), ou encore en utilisant le faisceau primaire large et énergétique d'un Spectrométre de Masse à Ions Secondaires (SIMS pour « Secondary Ions Mass Spectrometry »). En particulier, dans un procédé d'usinage mécanique par enlèvement de matière par PIPS, on soumet, pendant plusieurs heures, notamment entre 1 h et 20 h, en particulier entre 3 et 6 h, la couche de surface extérieure anodisée à au moins un faisceau d'ions argons accélérés sous une tension comprise entre 1 keV et 6 keV, notamment de l'ordre de 5 keV sous vide secondaire de l'ordre de 1,33 10"3 Pa.
Avantageusement et selon l'invention, on enlève ladite partie d'épaisseur par abrasion mécanique, c'est-à-dire par frottement dynamique solide/solide, au moyen d'un outil solide abrasif mobile, que l'on applique sur la surface extérieure de la couche poreuse formée par anodisation, et en exerçant une pression sur ledit outil solide abrasif mobile. Avantageusement et selon l'invention, on réalise cette abrasion mécanique de façon à obtenir une structure poreuse ordonnée dont la surface extérieure est plane.
Plus particulièrement, on enlève ladite partie d'épaisseur par un traitement d'usinage mécanique, notamment par abrasion mécanique, qui n'affecte que la surface extérieure de la couche poreuse formée par anodisation, et qui n'affecte, dans l'épaisseur de la structure poreuse, ni le diamètre des pores de la structure poreuse ordonnée ni la forme desdits pores révélés au cours du traitement abrasif. Ce traitement par abrasion mécanique se distingue d'un traitement par dissolution chimique qui affecte nécessairement non seulement l'épaisseur de la couche poreuse formée par anodisation, mais également la forme et le diamètre des pores de ladite couche.
Avantageusement et selon l'invention, on réalise l'abrasion mécanique au moyen d'une pièce de tissu, -notamment d'une pièce de feutrine-, imprégnée d'une suspension, dite suspension abrasive, d'une poudre dans une phase aqueuse, ladite poudre comprenant au moins un minéral choisi dans le groupe des minéraux abrasifs, composé du diamant et des céramiques, -notamment, le corindon-.
L'utilisation d'une pièce de tissu imprégnée d'une suspension abrasive selon l'invention permet d'obtenir une abrasion régulière et d'une grande finesse. De plus, elle permet aussi l'humidification permanente de la surface de la couche poreuse obtenue par anodisation et le maintien de la température de celle-ci, même au cours de l'abrasion mécanique. Elle évite ainsi la détérioration de la structure anodique poreuse au cours de ladite abrasion. Le choix du minéral abrasif permet en outre de sélectionner la dureté dudit minéral, de façon à maîtriser la vitesse d'abrasion de la structure poreuse. En tout état de cause, la dureté du minéral abrasif contenu dans la suspension abrasive est supérieure à la dureté de la couche poreuse dont la composition est à base d'alumine, notamment de dérivés oxydés, hydroxylés et/ou oxy-hydroxylés de l'aluminium. Avantageusement et selon l'invention, on réalise l'abrasion mécanique en une étape unique, ou au contraire, par une pluralité d'étapes successives d'abrasion, chacune des dites étapes successives d'abrasion étant réalisée au moyen d'une suspension abrasive, les suspensions abrasives de chacune des étapes successives d'abrasion étant choisies de façon à présenter une granulométrie décroissante d'une étape à l'autre.
Avantageusement et selon l'invention, on réalise l'abrasion mécanique par une succession d'étapes d'abrasion allant d'une abrasion moins fine et plus rapide vers une abrasion plus fine et plus lente. Le choix de la taille des particules de la poudre minérale permet de maîtriser aussi bien la vitesse d'abrasion de la structure poreuse que la qualité de la finition de la surface de la structure poreuse.
La succession des étapes d'abrasion réalisées au moyen de suspensions abrasives de granulométrie décroissante permet, en outre, de diminuer le temps d'abrasion tout en conférant à la surface de la structure poreuse une rugosité faible et une excellente finition.
Avantageusement et selon l'invention, on réalise chaque étape d'abrasion de la pluralité d'étapes successives d'abrasion au moyen d'une pièce de tissu imprégnée d'une suspension abrasive, ladite pièce de tissu étant appliquée sur la surface d'un support rigide choisi dans le groupe formé d'un support vibrant et d'un support rotatif.
Particulièrement, on réalise chaque étape d'abrasion de la pluralité d'étapes successives d'abrasion au moyen d'une pièce de tissu imprégnée d'une suspension abrasive, ladite pièce de tissu étant appliquée sur la surface d'un support rigide choisi dans le groupe formé d'un support vibrant et d'un support rotatif, la plus petite dimension de la pièce de tissu et du support rigide étant supérieure à la plus grande dimension de la couche de surface extérieure.
Avantageusement et selon l'invention, on réalise chaque étape d'abrasion de la pluralité d'étapes successives d'abrasion, au moyen d'un support rotatif présentant une vitesse de rotation inférieure à 30 rad/s, notamment comprise entre 2 rad/s et 20 rad/s. La pression appliquée sur la surface de la couche poreuse au cours de l'abrasion mécanique est notamment comprise entre 1 kPa et 50 kPa.
Avantageusement et selon l'invention, on réalise l'abrasion mécanique par une première étape d'abrasion au moyen d'une pièce de feutrine imprégné d'une suspension de diamant dont la granulométrie moyenne est comprise entre 0,8 μm et 1,5 μm, notamment de l'ordre de 1 μm, et par une deuxième étape d'abrasion au moyen d'une pièce de feutrine imprégné d'une suspension de diamant dont la granulométrie moyenne est comprise entre 0,2 μm et 0,4 μm, notamment de l'ordre de 0,25 μm. Avantageusement et selon l'invention, la durée totale de l'abrasion mécanique est inférieure à 30 min, notamment comprise entre 10 min et 20 min. Cette durée permet en pratique d'éliminer la totalité de l'épaisseur de la couche poreuse non ordonnée formée en surface extérieure lors de l'anodisation.
Dans une variante d'un procédé selon l'invention, il est possible de réaliser une seule étape d'abrasion mécanique d'une durée de l'ordre de 20 min, au moyen d'une pièce de feutrine imprégnée d'une suspension de diamant dont la granulométrie moyenne est proche de 0,25 μm.
Selon une autre variante d'un procédé selon l'invention, il est possible de réaliser trois étapes successives d'abrasion mécanique. On réalise successivement trois étapes d'abrasion mécanique chacune de ces trois étapes étant d'une durée de l'ordre de 10 min. On réalise la première étape d'abrasion au moyen d'une pièce de feutrine imprégnée d'une suspension de diamant dont la granulométrie moyenne est proche de 1 μm, puis la deuxième étape au moyen d'une pièce de feutrine imprégnée d'une suspension de diamant dont la granulométrie moyenne est proche de 0,25 μm, et enfin la troisième étape au moyen d'une pièce de feutrine imprégnée d'une suspension de diamant dont la granulométrie moyenne est proche de 0,10 μm.
Rien n'empêche de réaliser l'abrasion mécanique par plus de trois étapes successives. Rien n'empêche non plus de réaliser des étapes d'usinage mécanique avec des techniques d'usinage distinctes, par exemple choisies parmi les techniques de PIPS, SIMS et d'abrasion susmentionnées.
Avantageusement et selon l'invention, on enlève une épaisseur de la couche de surface extérieure comprise entre 15 μm et 25 μm, -notamment de l'ordre de 17 μm à 20 μm-. Cette épaisseur représente au moins l'épaisseur de la structure poreuse imparfaitement ordonnée s 'étendant à partir de la surface extérieure de la couche formée par anodisation.
Avantageusement et selon l'invention, on réalise un traitement d' anodisation sur un substrat d'aluminium lisse, avec une durée adaptée pour obtenir une couche de surface extérieure formée par anodisation ayant une épaisseur totale comprise entre 25 μm et 300 μm, notamment entre 100 μm et 200 μm.
Avantageusement et selon l'invention, on réalise un traitement d' anodisation unique sur un substrat d'aluminium lisse, ledit traitement ayant une durée comprise entre 1 h et 12 h, notamment de l'ordre de 4 h.
Ainsi, un procédé selon l'invention consiste à réaliser un traitement unique d' anodisation, comprenant au moins une étape d' anodisation, puis une étape d'enlèvement de la partie d'épaisseur de la couche de surface extérieure dont la structure poreuse est imparfaitement ordonnée. Selon un procédé conforme à l'invention, l'étape d'anodisation marquant la fin du traitement d' anodisation, est immédiatement suivie d'un traitement par usinage mécanique, notamment par abrasion mécanique.
Avantageusement et selon l'invention, on réalise un traitement d'anodisation unique sur un substrat d'aluminium lisse, pendant une durée adaptée pour que l'épaisseur de la structure poreuse ordonnée formée par anodisation soit comprise entre 1 μm et 150 μm, notamment comprise entre 50 μm et 150 μm. Avantageusement et selon l'invention, on réalise l'anodisation dans une solution aqueuse d'électrolyte choisie dans le groupe formé des solutions aqueuses d'acides, -notamment l'acide sulfurique, un mélange d'acide sulfurique et d'acide borique, l'acide oxalique, l'acide phosphorique, l'acide malonique, l'acide tartrique et l'acide citrique-. Par ailleurs, avantageusement et selon l'invention, on réalise l'anodisation dans une solution aqueuse d'électrolyte dont la composition est adaptée pour fournir une structure poreuse ordonnée dont les pores présentent un diamètre compris entre 10 nm et 500 nm, notamment entre 100 nm et 200 nm.
En outre, avantageusement et selon l'invention, on réalise l'anodisation à une température comprise entre -20C et +20C, -notamment de l'ordre de -1,50C-.
Avantageusement et selon l'invention, on réalise l'anodisation sous une tension comprise entre 19 V et 240 V, -notamment entre 125 V et 195 V avec une solution aqueuse comprenant l'acide phosphorique comme électrolyte-. Particulièrement, dans un procédé selon l'invention, on effectue au moins une anodisation en une seule étape, ou en un ensemble d'étapes d'anodisations immédiatement successives, puis un traitement d'abrasion mécanique. On obtient une structure poreuse comprenant au moins une épaisseur de structure poreuse ordonnée. Ainsi, dans un procédé selon l'invention, il n'est pas nécessaire d'effectuer d'autre traitement d' anodisation après avoir procédé à l'enlèvement, notamment par abrasion mécanique, de la partie de l'épaisseur de structure non ordonnée de la couche formée par la première anodisation. En conséquence, dans un procédé selon l'invention, on procède à un unique traitement par anodisation du substrat d'aluminium. Après l'étape d'enlèvement par usinage mécanique de la structure non ordonnée, notamment par abrasion mécanique, on peut procéder éventuellement à d'autres traitements ultérieurs, mais il n'est pas nécessaire d'effectuer, ni dissolution chimique ou électrochimique, ni nouveau traitement par anodisation.
Avantageusement et selon l'invention, immédiatement après avoir enlevé ladite partie d'épaisseur, on élimine le substrat d'aluminium non oxydé et une partie d'épaisseur non poreuse de ladite couche pour ne conserver que la structure poreuse ordonnée.
Avantageusement et selon l'invention, on réalise ensuite un traitement chimique de la structure poreuse ordonnée adapté pour augmenter le diamètre des pores de ladite structure poreuse. Un tel traitement chimique est particulièrement adapté pour dissoudre partiellement la cloison des pores, à partir de la face de ladite cloison qui est en regard avec le pore et en direction de la partie interne de la cloison. L'inventeur a observé que la composition chimique de la couche de matière constituant ladite cloison varie selon l'axe radial des pores. La composition chimique de la face de la couche de matière constituant la cloison, qui est en regard avec le pore, est un mélange à base d'aluminium oxydé, hydroxylé et/ou oxy- hydroxylé, et comprenant jusqu'à 20% de composés issus de la solution électrolytique utilisée pour l'anodisation. En revanche, la partie interne de la dite cloison, est composée essentiellement d'oxydes, d'hydroxydes et/ou d'oxy- hy droxy de s d ' aluminium.
Le choix de la durée de ce traitement d'ouverture des pores, ainsi que la nature de l'agent chimique choisi pour ce traitement, permet de maîtriser l'épaisseur de la couche de matière dissoute à l'intérieur des pores et, par conséquence, de déterminer le diamètre final des pores de la structure poreuse ordonnée.
L'invention concerne également un procédé de fabrication d'une structure poreuse caractérisé en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après. D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante qui se réfère aux figures annexées, représentant des modes de réalisation préférentiels de l'invention, donnés uniquement à titre d'exemples non limitatifs. Dans ces figures :
- les figures la à le sont des schémas illustratifs en coupe sur lesquels les échelles d'épaisseur et de largeur ne sont pas réalistes, illustrant des étapes successives d'un procédé selon l'invention.
- la figure 2 est un organigramme schématique d'un procédé selon l'invention.
- La figure 3 présente un cliché de microscopie électronique à balayage à effet de champ (MEB-FEG), d'une coupe selon l'axe de croissance d'une structure poreuse ordonnée selon l'invention.
- La figure 4 présente un cliché de microscopie électronique à balayage à effet de champ (MEB-FEG), d'une structure poreuse ordonnée selon l'invention, sans substrat d'aluminium, mais avec la couche barrière, vue du côté de la couche barrière.
- La figure 5 présente un cliché de microscopie électronique à balayage à effet de champ (MEB-FEG), de la face extérieure d'une couche de surface extérieure selon l'invention, après anodisation et avant abrasion mécanique. - La figure 6 présente un cliché de microscopie électronique à balayage à effet de champ (MEB-FEG), de la face extérieure d'une structure poreuse ordonnée selon l'invention, après abrasion mécanique, ladite structure poreuse étant inclinée par rapport à la direction d' anodisation.
- La figure 7 présente un cliché de microscopie électronique à balayage à effet de champ (MEB-FEG), de la face extérieure d'une structure poreuse ordonnée selon l'invention, ladite structure poreuse étant inclinée par rapport à la direction d'anodisation et ne comprenant pas de substrat d'aluminium ni de couche barrière, ladite structure poreuse étant caractéristique d'une nano structuration de type "nid d'abeille". - La figure 8 présente un cliché de microscopie électronique à balayage à effet de champ (MEB-FEG), de la face extérieure d'une structure poreuse ordonnée selon l'invention, sans substrat d'aluminium et sans couche barrière, caractéristique d'une nano structuration de type "nid de guêpe".
La figure la représente une pièce 1 d'aluminium ou d'alliage d'aluminium servant de substrat pour le traitement 24 par anodisation et permettant d'obtenir une structure 7 poreuse ordonnée selon l'invention. Cette pièce 1 d'aluminium présente au moins une face, dite face 2 extérieure, soumise à un ensemble de traitements physiques ou chimiques de la pièce 1 comme indiqué ci- après. Le substrat d'aluminium utilisé peut être par exemple formé d'alliage d'aluminium de la série IXXX, par exemple l'alliage 1050A, ou d'aluminium raffiné de type 4N (pur à 99.99%) ou encore de type 5N (pur à 99.999%).
Prétraitement 18 du substrat
On réalise un prétraitement 18 de la pièce 1 pour la préparer en vue de son anodisation 24. Ce prétraitement 18 a pour objectif de favoriser l'obtention d'une épaisseur de structure 7 poreuse ordonnée. Il permet d'une part d'augmenter la mouillabilité de la pièce 1 en solution aqueuse, et d'autre part de diminuer ou éliminer les défauts préexistants en surface de la pièce 1. Le prétraitement 18 contribue à l'établissement d'un contact régulier entre la pièce 1 et la solution d'anodisation 24. En éliminant les défauts dans la structure de la pièce 1, on obtient un substrat dont la face 2 extérieure est lisse, et dont la rugosité arithmétique est notamment inférieure à 5 nm. Ce prétraitement 18 de la pièce 1 comprend une succession de quatre traitements 19, 20, 21, 22.
Le premier traitement 19 est un dégraissage de la pièce 1 au moyen de solvants chimiques organiques ou aqueux. Ce premier traitement peut être effectué par trempage de la pièce 1 dans une solution hydroalcoolique permettant de dissoudre puis d'éliminer par rinçage, les souillures, graisses, huiles ou lubrifiants provenant des procédés antérieurs de mise en forme de ladite pièce 1 , par exemple du laminage. La pièce 1 est ensuite rincée à l'eau distillée.
Le deuxième traitement 20 est un polissage mécanique permettant de diminuer la rugosité de la surface de la pièce 1 et donc d'obtenir un substrat lisse. Contrairement à l'état de la technique dans lequel il est généralement considéré que la prétexturation de la surface du substrat est favorable à l'obtention d'une structure poreuse ordonnée, l'inventeur a démontré qu'il est, au contraire, préférable de réaliser l'anodisation à partir d'une surface extérieure aussi lisse et régulière que possible. En effet, les défauts de structure du substrat, qui sont connus pour être distribués de façon irrégulière sur la face 2 extérieure du substrat, sont à l'origine de la formation de pores irréguliers, et de la croissance de structures poreuses imparfaitement ordonnées. Pour ajuster la rugosité arithmétique de l'aluminium à une valeur inférieure à 5 nm, on utilise séquentiellement des disques abrasifs de plus en plus fins, rotatifs ou vibrants, puis des pièces de tissu, notamment de feutrine, imprégnées de suspensions abrasives. Typiquement, un drap imprégné d'une suspension de poudre de diamant, dont la dimension moyenne des grains de diamant est de l'ordre de 1 μm, permet d'obtenir une finition adaptée à la réalisation du procédé selon l'invention. A la fin du polissage 20 mécanique, on rince la pièce 1 à l'eau distillée.
Le troisième traitement 21 consiste en un traitement thermique de la pièce 1 visant à libérer les contraintes internes et à faire croître la taille des grains d'aluminium. Afin d'éviter l'oxydation de la pièce 1 au cours du traitement 21 thermique et compte tenu de la rapidité de la cinétique d'oxydation de l'aluminium à haute température, on réalise préférentiellement ce traitement 21 thermique sous atmosphère non oxydante, typiquement sous atmosphère neutre voire réductrice, à savoir sous atmosphère de gaz inerte, typiquement sous atmosphère d'azote ou encore sous vide partiel. La pièce 1 est chauffée, dans un four, à une température comprise entre 35O0C et 6000C, préférentiellement à 45O0C. Le traitement thermique dure entre 0,1 h et 8 h, notamment entre 0,5 h et 5 h, préférentiellement pendant 1 h à une température effective de 450 0C sous atmosphère d'azote.
Le quatrième traitement est un électropolissage 22 de la pièce 1. Il a pour but d'améliorer l'état de surface de la face 2 extérieure de la pièce 1 qui, comme indiqué ci-dessus, doit être aussi lisse que possible. Pour ce faire, la pièce 1 est soumise, pendant une durée comprise entre 1 min et 1 h, à une électrolyse sous une tension comprise entre 25 V et 26 V dans une cellule contenant un bain régulé à une température comprise entre 2O0C et 3O0C. Ledit bain peut être un bain alcalin ou un bain acide. Il s'agit, par exemple, d'un bain Jacquet. Notamment, le bain Jacquet est constitué du mélange à 33% volumique d'acide perchlorique et à 66% volumique d'acide acétique glacial, la pièce 1 constituant l'anode de l' électrolyse. Typiquement, un électropolissage 22 conforme à l'invention est obtenu en traitant, pendant 2 min, la pièce 1, par électrolyse sous 25 V, dans un bain Jacquet thermorégulé à 2O0C. La pièce 1 est ensuite rincée à l'eau distillée et soumise, immédiatement après rinçage, au traitement 24 par anodisation. À l'issue du prétraitement 18 du substrat, on obtient une pièce 1 dont la face 2 extérieure présente une rugosité arithmétique faible et régulière, notamment de rugosité arithmétique inférieure à 5 nm.
Cette pièce 1 est utilisée pour préparer une structure 7 poreuse ordonnée par un traitement 23 comprenant une anodisation 24 suivie d'une abrasion 25.
Anodisation 24
La pièce 1 est soumise à une anodisation 24 unique, dans laquelle la pièce 1 constitue l'anode. Par anodisation 24 unique, on entend un traitement comprenant soit une étape d' anodisation unique, soit des étapes d' anodisation successives, sans étape de traitement chimique ou électrochimique intermédiaire de la structure poreuse. Les conditions d'anodisation sont de préférence du type "anodisation dure" comme décrit, par exemple, dans la publication Lee W., Ji, R., Gôsele, U. et Nielsch K., (2006), Nature Mat., 5; 9, 741- 747 « Fast fabrication of long-range ordered porous alumina membranes by hard anodization ».
Dans ces conditions opératoires, la vitesse d'oxydation de l'aluminium est avantageusement supérieure à la vitesse de dissolution, par l'électrolyte, de l'alumine formée. L'anodisation 24 conduit à la formation d'une structure 35 anodique comprenant une couche 3 de surface extérieure, supportée par une couche 4 d'aluminium résiduel.
L'anodisation 24 peut être effectuée dans un électrolyte choisi parmi l'acide sulfurique, le mélange d'acide sulfurique et d'acide borique, de l'acide oxalique, de l'acide phosphorique, de l'acide malonique, de l'acide tartrique ou encore de l'acide citrique.
Typiquement, l'utilisation comme électrolyte d'un mélange d'acide sulfurique et d'acide borique permet d'obtenir une épaisseur de structure 35 atteignant jusqu'à 300 μm. Une telle épaisseur de structure 35 anodique ne présente cependant pas une structure 7 poreuse ordonnée sur la totalité de son épaisseur. Pour favoriser la formation d'une grande épaisseur de structure 7 poreuse ordonnée, on emploie, par exemple, une solution aqueuse d'acide phosphorique à une concentration massique comprise entre 1% et 8%, préférentiellement 8%, dans une cellule dont la température est régulée entre -20C et +20C, préférentiellement à -1,50C. Afin de favoriser une croissance homogène et régulière de la structure poreuse, la solution est homogénéisée, en continu, par agitation. La tension appliquée à la pièce 1 d'aluminium est typiquement comprise entre 125 V et 195 V.
Le traitement 24 d'anodisation est effectué pendant une durée suffisante pour que la couche 3 de surface extérieure présente une épaisseur suffisante et, que la couche 3 de surface extérieure présente sur une partie de son épaisseur, une épaisseur de structure 7 poreuse ordonnée. Dans les conditions opératoires préférentielles mentionnées ci-dessus, on obtient, par exemple, une couche 3 de surface extérieure de 130 μm d'épaisseur pour une durée d'anodisation de 4 h. La structure 35 anodique est schématisée sur la figure Ib. La figure Ib est uniquement schématique et illustrative, et les échelles ne sont pas respectées. Elle comprend une couche 4 d'aluminium résiduel, non oxydé, supportant une couche 3 de surface extérieure. La couche 3 de surface extérieure est constituée d'une couche 5 barrière, non poreuse, aussi appelée couche compacte, définissant, sur sa face 6 intérieure, l'interface entre la couche 4 d'aluminium résiduel et la couche 3 de surface extérieure et sur sa face 10 extérieure, l'extrémité non débouchante des pores 8. En outre, la couche 3 de surface extérieure comprend sur sa face extérieure une couche 11 poreuse non ordonnée, s 'étendant de la face extérieure de la couche 3 de surface extérieure, jusqu'à l'interface 14 ordonnée/non ordonnée avec la structure 7 poreuse ordonnée. La structure 7 poreuse ordonnée présente une juxtaposition régulière de pores 8 vides de matière, en forme de canaux tubulaires linéaires, de diamètre constant, s'étendant axialement selon une direction principale, correspondant à la direction d'anodisation, orthogonale à la face 2 extérieure de la structure 35 anodique, et de cloisons 9, séparant les pores 8. Les cloisons 9 présentent, en outre, une épaisseur constante sur toute l'épaisseur de la structure 7 poreuse. Selon les conditions d'anodisation 24, la distance moyenne joignant les centres de deux pores adjacents varie de 50 nm à 600 nm et le diamètre moyen desdits pores varie de 10 nm à 500 nm. La couche 11 poreuse non ordonnée, est formée d'une juxtaposition irrégulière de pores vides de matière, de formes, d'orientations, et de dimensions variables, séparés par des cloisons, également de formes, orientations et dimensions d'épaisseur variables sur l'ensemble de la couche 11 poreuse non ordonnée.
En pratique, on constate que la couche 1 1 poreuse non ordonnée, superposée à la structure 7 poreuse ordonnée masque et obstrue partiellement la surface externe de ladite structure 7 poreuse ordonnée.
Abrasion 25
Selon l'invention, la couche 11 poreuse non ordonnée est ensuite éliminée de la structure 35 anodique, de façon à révéler au moins une épaisseur de structure 7 poreuse ordonnée. Selon un mode préférentiel de mise en œuvre de l'invention, la couche 11 poreuse non ordonnée est éliminée par enlèvement de matière, notamment par au moins un traitement 25 d'abrasion mécanique. Pour ce faire, on applique, sur la face extérieure de la couche 3 de surface extérieure, un outil 12, solide, tel qu'un dispositif rotatif, discoïdal, rigide, plan, et à la surface duquel est fixée une pièce 13 de tissu, notamment de feutrine, préalablement imprégnée d'une suspension abrasive.
La suspension abrasive est constituée d'une dispersion aqueuse de particules, insolubles dans l'eau, caractérisées par leur dureté ainsi que par leur taille. Les particules solides des suspensions abrasives sont choisies dans le groupe constitué des matériaux solides et abrasifs, par exemple du diamant et des céramiques, -notamment du corindon-.
On élimine une première partie de la couche 11 poreuse non ordonnée, par abrasion à partir de la face extérieure de la couche 3 de surface extérieure, pendant quelques minutes, par exemple 10 min, avec une suspension abrasive formée d'une suspension de particules de diamant, le diamètre moyen des dites particules étant proche de 1 μm. A la suite de cette première étape d'abrasion, la surface de la couche poreuse est rincée à l'eau distillée. Dans une seconde étape subséquente, une deuxième partie de la couche 11 poreuse non ordonnée est éliminée par abrasion fine, à partir de la face extérieure de la structure 35 anodique, pendant quelques minutes, par exemple 10 min, avec une suspension abrasive formée d'une suspension aqueuse de particules de diamant, le diamètre moyen des dites particules étant proche de 0,25 μm.
On élimine ainsi, par abrasion 25 mécanique, une épaisseur de la couche 3 de surface extérieure, ladite épaisseur étant comprise entre 15 μm et 25 μm, notamment de l'ordre de 17 μm à 20 μm, correspondant à l'épaisseur de la couche 11 poreuse non ordonnée, en révélant à la surface 16 extérieure, plane et non rugueuse, de la pièce 15, une épaisseur de structure 7 poreuse ordonnée.
En augmentant la durée de l'abrasion 25 avec des particules de diamant d'une taille moyenne de 1 μm, il est possible d'étendre l'abrasion 25 de la face extérieure de la couche 3 de surface extérieure de façon à préserver au moins une épaisseur non nulle de la structure 7 poreuse ordonnée.
La pièce 15, résultant de l'abrasion 25 de la face extérieure de la couche 3 de surface extérieure, par élimination de la couche 11 poreuse non ordonnée, est représentée schématiquement sur la figure Ic. Cette pièce 15 comprend une couche 36 anodisée, supportée sur une couche 4 d'aluminium résiduel, ladite couche 36 présentant une porosité traversante, mais non débouchante en raison de la présence d'une couche 5 barrière et de la couche 4 d'aluminium.
L'élimination de la couche 11 poreuse non ordonnée par abrasion 25 mécanique de surface permet de conserver intacte la distribution radiale des pores 8 à la surface 16 extérieure de la structure 7 poreuse ordonnée. En particulier, l'élimination de la couche 11 poreuse non ordonnée par abrasion 25 mécanique de surface permet de conserver inchangée la valeur du diamètre des pores 8, à une valeur égale à celle qu'elle avait à l'issue de l'anodisation 24. Ajustement 26, 30 des propriétés structurales La pièce 15 schématisée sur la figure Ic présente à sa surface
16 extérieure une distribution uniforme de pores 8 tabulaires de section droite transversale circulaire, organisés selon un réseau hexagonal, c'est-à-dire selon une configuration en "nid d'abeille". Les pores 8 ont une section droite transversale circulaire et présentent, par exemple, un diamètre de l'ordre de 250 nm.
Dans certaines applications, cette pièce 15 peut être utilisée sans autre modification, avec la couche 5 barrière et la couche 4 d'aluminium résiduel. Dans d'autres applications, on soumet cette pièce 15 à l'un au moins des traitements 26, 30 ultérieur permettant d'ajuster les propriétés fonctionnelles de la pièce 15.
Dans une première variante de traitement 30 ultérieur, on élimine la couche 4 d'aluminium résiduel par séparation 31 électrochimique de la couche 36 anodisée et de la couche 4 d'aluminium résiduel. Cette séparation 31 est effectuée dans une solution agitée d'acide phosphorique à une concentration massique comprise entre 5% et 20%, typiquement 16%, et à une température comprise entre 250C et 350C, typiquement 3O0C sous une tension alternative de 30 volts pendant 30 min. De plus, ce traitement 30 conduit simultanément à l'élimination de la couche 5 barrière ainsi qu'à l'ouverture des pores 8, notamment sur la face intérieure de la structure 33 poreuse. La pièce 34 obtenue, présente une porosité traversante et débouchante sur les deux faces, -surface 16 extérieure et surface 17 intérieure- de la structure 7 poreuse ordonnée, et est schématisée sur la figure le.
Dans une première variante de traitement 30 ultérieur, on peut aussi ensuite réaliser un traitement 32, par dissolution chimique, conduisant à l'élargissement des pores 8 de la structure 7 poreuse ordonnée. Pour ce faire, on immerge la pièce 34 dans une solution d'acide phosphorique à une concentration massique comprise entre 5% et 16%, typiquement 16%. La durée du traitement 32, et la concentration massique d'acide phosphorique, sont choisies pour augmenter le diamètre des pores 8, jusqu'à atteindre une valeur de diamètre qui soit, par exemple, du même ordre de grandeur que la distance séparant le centre de deux pores adjacents dans la structure 7 poreuse ordonnée.
Dans une seconde variante de traitement 26 ultérieur, on réalise, à partir de la pièce 15 obtenue à l'issue de l'abrasion 25 mécanique, une succession de trois traitements 27, 28, 29 par dissolution sélective des constituants de la pièce 15 : un premier traitement 27 d'ouverture contrôlée des pores 8, un deuxième traitement 28 de dissolution chimique/redox de la couche 4 d'aluminium résiduel, puis un troisième traitement 29 de dissolution chimique de la couche 5 barrière.
Le premier traitement 27 consiste en une dissolution chimique partielle des cloisons 9 et permet d'augmenter le diamètre des pores 8 jusqu'à une valeur qui dépend de la durée de réaction et de la concentration massique de l'acide utilisé. Ce premier traitement 27 permet de contrôler parfaitement non seulement le diamètre mais aussi la géométrie de la section droite transversale des pores 8, depuis une section circulaire jusqu'à une section hexagonale. Ce premier traitement 27 permet, en outre, de modifier le diamètre des pores 8, sans toutefois affecter la couche 5 barrière, ni la couche 4 d'aluminium résiduel.
On effectue ce premier traitement 27 en immergeant la pièce 15 dans une solution d'acide phosphorique à une concentration massique comprise entre 5 et 16%, à une température régulée, notamment comprise entre 25 et 350C. Typiquement, la concentration de la solution d'acide phosphorique est de 16% et la température de 3O0C. La durée du traitement varie suivant la géométrie souhaitée en surface 16 de la couche 36 anodisée. Une durée de traitement de 65 min conduit à une structure 7 poreuse ordonnée dans laquelle les pores 8 sont ordonnés hexagonalement et présentent une section transversale hexagonale, un diamètre de l'ordre de 400 nm, selon une configuration « en nid de guêpe ». Des durées de traitement intermédiaires conduisent à des configurations intermédiaires entre la configuration en « nid d'abeille » et la configuration en « nid de guêpes », dans lesquelles le diamètre des pores varie entre 250 nm et 400 nm.
Le deuxième traitement 28 par dissolution chimique ou redox de la couche 4 d'aluminium permet d'éliminer spécifiquement la couche 4 d'aluminium résiduel. On immerge la pièce 15 dans une solution oxydante, à température ambiante. Cette solution oxydante peut être un mélange de CuCl ou encore de CUCI2 à une concentration de 0,1 mol/L et d'acide chlorhydrique à une concentration massique de 18%. Cette immersion entraîne simultanément l'oxydation de l'aluminium métallique et la réduction des cations cuivre. D'autres couples rédox, présentant une grande différence de potentiel rédox avec le couple A13+/A1, peuvent avantageusement être utilisés, notamment le couple Hg2+/Hg.
Dans une variante du deuxième traitement 28, on réalise un amalgame d'un métal liquide à température ambiante, notamment du gallium ou du mercure, avec l'aluminium de la couche 4 d'aluminium résiduel. L'extraction de l'amalgame permet ainsi d'éliminer l'aluminium du support.
Ce deuxième traitement 28 conduit à une pièce 33 présentant une porosité traversante, sans substrat d'aluminium, mais non débouchante en raison de la présence de la couche 5 barrière. Le troisième traitement 29 consiste en la dissolution chimique de la couche 5 barrière par immersion de la pièce 33 dans une solution d'acide phosphorique à une concentration massique comprise entre 5% et 20%, par exemple de l'ordre de 16%, la température de ladite solution étant régulée entre 250C et 350C, notamment à 3O0C. On obtient ainsi une pièce 34 formée d'une structure 7 poreuse ordonnée à la porosité traversante et débouchante sur les deux faces de la pièce 34.
La pièce 34, dont la dureté est faible, notamment de l'ordre de 150 Hv, est ensuite traitée thermiquement afin d'augmenter sa dureté, notamment jusqu'à une valeur de 2000 Hv.
Exemple 1
Une pièce 1 d'aluminium raffiné de qualité 4N, de forme discoïdale, de 10"2 m de diamètre, et de 10"3 m d'épaisseur, est soumise à un polissage 20 mécanique, au moyen d'une polisseuse, et de disques abrasifs et d'un tissu imprégné d'une suspension de particules de diamant dont la taille moyenne diminue jusqu'à 1 μm. La durée totale de l'abrasion est approximativement de 20 min à 30 min. La pièce 1 d'aluminium est ensuite rincée à l'eau distillée et placée dans un four, sous atmosphère d'azote, à 45O0C, pendant 2 h. Après refroidissement, la pièce 1 d'aluminium, est soumise à un traitement 22 par électropolissage dans un bain Jacquet, dont la composition volumique est de 33% d'acide perchlorique et de 66% d'acide acétique glacial, régulé à 2O0C, pendant 2 min, sous une tension de 25 V.
Immédiatement après la fin du traitement 22 par électropolissage, la pièce 1 d'aluminium est placée dans une cuve à anodisation contenant un bain aqueux d'acide phosphorique à 8% (massique), homogénéisé par agitation rotative à une vitesse de 37 rad/s, et régulé à une température de -1,50C.
La tension est fixée à 180 V et la durée de l'anodisation est de 4 h.
L'analyse, en microscopie électronique à effet de champ, de la face 2 extérieure de la couche 3 de surface extérieure obtenue après anodisation 24 et avant polissage 25 est représentée sur la figure 5. Ce cliché montre une pluralité de pores, irrégulièrement distribués sur toute la surface, et de section transversale droite hétérogène en taille et en forme. On note, de plus, qu'une minorité de ces pores présente une porosité débouchante.
Exemple 2 Une pièce 1 d'aluminium est préparée comme décrit dans l'exemple 1, et soumise à une anodisation sous une tension de 185 V pendant 4 h.
Après l'anodisation, on élimine, par abrasion 25, la surface extérieure de la structure 35 anodique, au moyen d'une pièce de feutrine imprégnée d'une suspension de particules de diamants dont le diamètre moyen est de l μm, pendant 10 min, puis au moyen d'une pièce de feutrine imprégnée d'une suspension de particules de diamants dont le diamètre moyen est de 0,25 μm, pendant à nouveau 10 min.
On traite ensuite la pièce 1 d'aluminium supportant la structure poreuse avec une solution d'acide phosphorique à une concentration massique de 16%, régulée à une température de 3O0C, homogénéisée par agitation rotative à une vitesse de 37 rad/s, pendant 1 h.
Après rinçage, on traite la pièce 1 d'aluminium supportant la structure poreuse par une solution de CuCl et d'HCl, à une température de 2O0C, jusqu'à dissolution totale de l'épaisseur d'aluminium résiduel. L'analyse, en microscopie électronique à effet de champ, de la coupe longitudinale de la structure 7 poreuse ordonnée obtenue est représentée sur la figure 3. On observe une juxtaposition de sections de tubes linéaires, allongés selon la direction de croissance de la structure poreuse, dont la largeur moyenne est de 360 nm. Exemple 3
Une pièce 1 d'aluminium est préparée comme décrit dans l'exemple 1, puis est anodisée sous une tension de 185 V pendant 4 h et enfin soumise à une abrasion mécanique comme décrit dans l'exemple 2.
Après rinçage, on immerge la structure poreuse ordonnée dans une solution de CuCl et d'HCl, régulée à une température de 2O0C, jusqu'à dissolution totale de l'épaisseur d'aluminium résiduel. On obtient une pièce 33, sans couche 4 d'aluminium métallique résiduel, à porosité traversante et non débouchante avec une couche 5 barrière.
L'analyse, en microscopie électronique à effet de champ, de la surface de la couche 5 barrière de la pièce 33 est représentée sur la figure 4. On observe une juxtaposition d'hexagones non débouchants, de section droite hexagonale, régulièrement ordonnés selon un arrangement hexagonal centré, et dont le diamètre moyen du cercle décrivant cet hexagone est de 460 nm.
D'autre part, l'analyse, en microscopie électronique à effet de champ, de la face 2 extérieure polie de la pièce 33 est représentée sur la figure 6. On observe un arrangement hexagonal de pores 8, de section circulaire, régulièrement ordonnés, et dont le diamètre moyen est de 300 nm.
Exemple 4
Une pièce 1 d'aluminium est préparée comme décrit dans l'exemple 1, puis est anodisée sous une tension de 180 V pendant 4 h et enfin soumise à une abrasion mécanique comme décrit dans l'exemple 2.
Après rinçage, on traite la structure 15 poreuse, par électrochimie, sous une tension de 30 V / 50 Hz, dans une solution d'acide phosphorique à une concentration massique de 16%, régulée à une température de 3O0C, homogénéisée par agitation rotative à une vitesse de 37 rad/s, pendant 45 min. On obtient une pièce 33, sans couche 4 d'aluminium résiduel, à porosité traversante, débouchante, sans couche 5 barrière, et dont le diamètre des pores 8 a été élargi.
L'analyse, en microscopie électronique à effet de champ, de la surface extérieure de la structure 7 poreuse ordonnée ainsi obtenue est représentée sur la figure 7. On observe une juxtaposition de pores de section circulaire, régulièrement ordonnés, et dont le diamètre moyen est de 240 nm de type « nid d'abeille ».
Exemple 5 Une pièce 1 d'aluminium est préparée comme décrit dans l'exemple 1, puis est anodisée sous une tension de 210 V pendant 15 h et enfin soumise à une abrasion mécanique comme décrit dans l'exemple 2.
Après rinçage, on traite la structure 15 par électrochimie, comme décrit dans l'exemple 4, sous une tension de 35 V / 50 Hz, pendant 65 min. On obtient une pièce 33, sans couche 4 d'aluminium métallique, à porosité traversante, sans couche 5 barrière, et débouchante sur les deux faces de la structure
7 poreuse ordonnée.
L'analyse, en microscopie électronique à effet de champ, de la surface extérieure de la structure 7 poreuse ordonnée ainsi obtenue est représentée sur la figure 8. On observe une juxtaposition de pores 8 de section hexagonale, régulièrement ordonnés selon un arrangement hexagonal centré, de type « nid de guêpe », et dont le diamètre moyen des pores est de 240 nm.

Claims

REVENDICATIONS
1/ Procédé de fabrication d'une structure poreuse (15, 33, 34) dans lequel on produit, par anodisation (24) d'un substrat (1) d'aluminium, une couche (3) de surface extérieure comprenant une structure (7) poreuse, caractérisé en ce que :
- on réalise un traitement (24) d'anodisation sur un substrat (1) d'aluminium lisse avec une durée suffisante pour permettre l'obtention d'au moins une épaisseur de structure (7) poreuse ordonnée,
- on enlève ensuite par usinage mécanique une partie de l'épaisseur de ladite couche (3) formée par anodisation (24), cette partie d'épaisseur s'étendant à partir de la surface extérieure de ladite couche (3) formée par anodisation (24), en conservant au moins une épaisseur non nulle de structure (7) poreuse ordonnée et de façon que cette structure (7) poreuse ordonnée forme la surface (16) extérieure libre de la couche résiduelle.
2/ Procédé selon la revendication 1, caractérisé en ce qu'on enlève ladite partie d'épaisseur par abrasion (25) mécanique.
3/ Procédé selon la revendication 2, caractérisé en ce qu'on réalise l'abrasion (25) mécanique au moyen d'une pièce (13) de tissu imprégnée d'une suspension, dite suspension abrasive, d'une poudre dans une phase aqueuse, ladite poudre comprenant au moins un minéral choisi dans le groupe des minéraux abrasifs.
4/ Procédé selon l'une des revendications 2 à 3, caractérisé en ce qu'on réalise l'abrasion (25) mécanique par une pluralité d'étapes successives d'abrasion, chacune des dites étapes successives d'abrasion étant réalisée au moyen d'une suspension abrasive, les suspensions abrasives de chacune des étapes successives d'abrasion étant choisies de façon à présenter une granulométrie décroissante d'une étape à l'autre.
5/ Procédé selon la revendication 4, caractérisé en ce qu'on réalise chaque étape d'abrasion de la pluralité d'étapes successives d'abrasion, au moyen d'une pièce de tissu imprégnée d'une suspension abrasive, ladite pièce de tissu étant appliquée sur la surface d'un support rigide, choisi dans le groupe formé d'un support vibrant et d'un support rotatif.
6/ Procédé selon l'une des revendications 2 à 5, caractérisé en ce qu'on réalise l'abrasion (25) mécanique par une première étape d'abrasion au moyen d'une pièce de feutrine imprégné d'une suspension de diamant dont la granulométrie moyenne est comprise entre 0,8 μm et 1,5 μm, notamment de l'ordre de 1 μm, puis par une deuxième étape d'abrasion au moyen d'une pièce de feutrine imprégné d'une suspension de diamant dont la granulométrie moyenne est comprise entre 0,2 μm et 0,4 μm, notamment de l'ordre de 0,25 μm. 11 Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'on enlève une partie de l'épaisseur de la couche (3) de surface extérieure, l'épaisseur de ladite partie de l'épaisseur de la couche (3) de surface extérieure étant comprise entre 15 μm et 25 μm, -notamment de l'ordre de 17 μm à 20 μm-.
8/ Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'on réalise un traitement (24) d'anodisation sur un substrat (1) d'aluminium lisse, avec une durée adaptée pour obtenir une couche (3) de surface extérieure ayant une épaisseur comprise entre 25 μm et 300 μm, notamment entre 100 μm et
200 μm.
9/ Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'on réalise un traitement (24) d'anodisation unique sur un substrat (1) d'aluminium lisse, ledit traitement ayant une durée comprise entre 1 h et 12 h, notamment de l'ordre de 4 h.
10/ Procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'on réalise un traitement (24) d'anodisation unique sur un substrat (1) d'aluminium lisse, pendant une durée adaptée pour que l'épaisseur de la structure
(7) poreuse ordonnée formée par anodisation (24) soit comprise entre 1 μm et 150 μm.
11/ Procédé selon l'une des revendications 1 à 10, caractérisé en ce qu'on réalise l'anodisation (24) dans une solution aqueuse d'électrolyte choisie dans le groupe formé des solutions aqueuses d'acides oxydants, -notamment l'acide sulfurique, le mélange d'acide sulfurique et d'acide borique, l'acide oxalique, l'acide phosphorique, l'acide malonique, l'acide tartrique et l'acide citrique-.
12/ Procédé selon l'une des revendications 1 à 11, caractérisé en ce qu'on réalise l'anodisation (24) dans une solution aqueuse d'électrolyte dont la composition est adaptée pour fournir une structure poreuse ordonnée dont les pores présentent un diamètre compris entre 10 nm et 500 nm, notamment entre 100 nm et
200 nm.
13/ Procédé selon l'une des revendications 1 à 12, caractérisé en ce qu'on réalise l'anodisation (24) à une température comprise entre -20C et +20C, -notamment de l'ordre de -1,50C-.
14/ Procédé selon l'une des revendications 1 à 13, caractérisé en ce qu'on réalise l'anodisation (24) sous une tension comprise entre 19 V et 240 V, -notamment entre 125 V et 195 V avec une solution aqueuse comprenant l'acide phosphorique comme électrolyte-. 15/ Procédé selon l'une des revendications 1 à 14, caractérisé en ce que, immédiatement après avoir enlevé ladite partie d'épaisseur, on élimine le substrat (4) d'aluminium non oxydé et une partie d'épaisseur (5) non poreuse de ladite couche pour ne conserver que la structure (7) poreuse ordonnée.
16/ Procédé selon l'une des revendications 1 à 15, caractérisé en ce qu'on réalise ensuite un traitement chimique de la structure (7) poreuse ordonnée adapté pour augmenter le diamètre des pores de ladite structure (7) poreuse.
PCT/FR2008/051921 2007-10-26 2008-10-23 Procédé de fabrication d'une structure poreuse ordonnée à partir d'un substrat d'aluminium WO2009056744A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/739,785 US20100258445A1 (en) 2007-10-26 2008-10-23 Method for the production of an ordered porous structure from an aluminium substrate
AT08844577T ATE522640T1 (de) 2007-10-26 2008-10-23 Verfahren zur herstellung einer geordneten porösen struktur aus einem aluminiumsubstrat
EP08844577A EP2207915B1 (fr) 2007-10-26 2008-10-23 Procédé de fabrication d'une structure poreuse ordonnée à partir d'un substrat d'aluminium
JP2010530531A JP5199376B2 (ja) 2007-10-26 2008-10-23 アルミニウム基板から規則性多孔質構造を製造する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0707540A FR2922899B1 (fr) 2007-10-26 2007-10-26 Procede de fabrication d'une structure poreuse ordonnee a partir d'un substrat d'aluminium
FR07.07540 2007-10-26

Publications (2)

Publication Number Publication Date
WO2009056744A2 true WO2009056744A2 (fr) 2009-05-07
WO2009056744A3 WO2009056744A3 (fr) 2009-07-30

Family

ID=39474061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051921 WO2009056744A2 (fr) 2007-10-26 2008-10-23 Procédé de fabrication d'une structure poreuse ordonnée à partir d'un substrat d'aluminium

Country Status (7)

Country Link
US (1) US20100258445A1 (fr)
EP (1) EP2207915B1 (fr)
JP (1) JP5199376B2 (fr)
AT (1) ATE522640T1 (fr)
ES (1) ES2372790T3 (fr)
FR (1) FR2922899B1 (fr)
WO (1) WO2009056744A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120160694A1 (en) * 2009-07-20 2012-06-28 Hans Hendrik Wolters Method for Producing a Membrane and Such Membrane
EP2433659A3 (fr) * 2010-08-13 2014-09-03 Biotronik AG Implant et son procédé de fabrication

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI442014B (zh) * 2010-11-24 2014-06-21 Ind Tech Res Inst 散熱元件及散熱元件的處理方法
KR101701314B1 (ko) * 2015-07-02 2017-02-02 고려대학교 산학협력단 양극산화된 금속산화물 나노다공성 템플레이트 제작방법
KR102443973B1 (ko) * 2017-12-11 2022-09-16 (주)코미코 내부식성 및 절연특성이 우수한 양극산화된 알루미늄 또는 알루미늄 합금 부재의 제조방법 및 표면처리된 반도체 장치
JP6584604B1 (ja) * 2018-07-31 2019-10-02 株式会社Uacj アルミニウム部材及びその製造方法
US11230786B2 (en) * 2019-06-17 2022-01-25 Nanopec, Inc. Nano-porous anodic aluminum oxide membrane for healthcare and biotechnology
US20220355265A1 (en) * 2021-05-04 2022-11-10 Nanopec, Inc. Controlled pore ceramics chips for high throughput solid state oligonucleotide synthesis
CN114369402B (zh) * 2021-12-18 2022-10-11 佛山市顺德区固得丽涂料有限公司 一种铝合金涂层材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040201042A1 (en) * 2001-05-11 2004-10-14 Canon Kabushiki Kaisha Structure having pores and its manufacturing method
US20060219568A1 (en) * 2005-03-31 2006-10-05 Fuji Photo Film Co., Ltd. Microstructure
EP1715085A2 (fr) * 2005-04-18 2006-10-25 Fuji Photo Film Co., Ltd. Procédé pour la fabrication d'une structure anodisée

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225399A (en) * 1979-04-25 1980-09-30 Setsuo Tomita High speed aluminum anodizing
JPS5671821A (en) * 1979-11-14 1981-06-15 Hitachi Ltd Substrate for magnetic disc and its manufacture
US4548682A (en) * 1983-06-10 1985-10-22 Nippon Light Metal Company Limited Process of producing magnetic recording media
JPS60177198A (ja) * 1984-02-22 1985-09-11 Nippon Sheet Glass Co Ltd 薄膜状Al↓2O↓3多孔質体の製造方法
JPS60231921A (ja) * 1984-05-01 1985-11-18 Kobe Steel Ltd 磁気デイスク用基盤の表面処理方法
JPS61101946A (ja) * 1984-10-23 1986-05-20 Kao Corp メツシユの製造方法
JPS62149029A (ja) * 1985-09-04 1987-07-03 Furukawa Alum Co Ltd アルマイト磁気デイスク基板とその製造方法
JPS63166993A (ja) * 1986-12-27 1988-07-11 Nippon Light Metal Co Ltd 磁気デイスク用基板の製造方法
JP2645022B2 (ja) * 1987-08-21 1997-08-25 株式会社東芝 加入者回路
US5240590A (en) * 1989-07-19 1993-08-31 Seagate Technology, Inc. Process for forming a bearing surface for aluminum alloy
US5691256A (en) * 1995-12-28 1997-11-25 Yamamura Glass Co., Ltd. Glass composition for magnetic disk substrates and magnetic disk substrate
JP3559920B2 (ja) * 1996-07-29 2004-09-02 東京エレクトロン株式会社 プラズマ処理装置
US6359288B1 (en) * 1997-04-24 2002-03-19 Massachusetts Institute Of Technology Nanowire arrays
US6709929B2 (en) * 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
US20050159087A1 (en) * 2002-10-31 2005-07-21 Hans-Joachim Bartz Method for the creation of highly lustrous surfaceson aluminum workpieces
US20040221959A1 (en) * 2003-05-09 2004-11-11 Applied Materials, Inc. Anodized substrate support
JP4813925B2 (ja) * 2006-02-28 2011-11-09 富士フイルム株式会社 微細構造体の製造方法および微細構造体
JP4768478B2 (ja) * 2006-03-17 2011-09-07 富士フイルム株式会社 微細構造体の製造方法および微細構造体
US7811180B2 (en) * 2006-09-25 2010-10-12 Cobra Golf, Inc. Multi-metal golf clubs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040201042A1 (en) * 2001-05-11 2004-10-14 Canon Kabushiki Kaisha Structure having pores and its manufacturing method
US20060219568A1 (en) * 2005-03-31 2006-10-05 Fuji Photo Film Co., Ltd. Microstructure
EP1715085A2 (fr) * 2005-04-18 2006-10-25 Fuji Photo Film Co., Ltd. Procédé pour la fabrication d'une structure anodisée

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120160694A1 (en) * 2009-07-20 2012-06-28 Hans Hendrik Wolters Method for Producing a Membrane and Such Membrane
US10076726B2 (en) * 2009-07-20 2018-09-18 Metalmembranes.Com B.V. Method for producing a membrane and such membrane
EP2456545B1 (fr) * 2009-07-20 2019-05-15 Metal Membranes.com B.V. Procédé de production d'une membrane et membrane ainsi produite
EP2433659A3 (fr) * 2010-08-13 2014-09-03 Biotronik AG Implant et son procédé de fabrication

Also Published As

Publication number Publication date
FR2922899A1 (fr) 2009-05-01
FR2922899B1 (fr) 2010-11-26
JP5199376B2 (ja) 2013-05-15
ES2372790T3 (es) 2012-01-26
WO2009056744A3 (fr) 2009-07-30
JP2011500969A (ja) 2011-01-06
EP2207915B1 (fr) 2011-08-31
ATE522640T1 (de) 2011-09-15
US20100258445A1 (en) 2010-10-14
EP2207915A2 (fr) 2010-07-21

Similar Documents

Publication Publication Date Title
EP2207915B1 (fr) Procédé de fabrication d'une structure poreuse ordonnée à partir d'un substrat d'aluminium
EP2097208B1 (fr) Piece de frottement en milieu lubrifie travaillant a des pressions de contact superieures a 200 mpa
US9518335B2 (en) Method of fabricating improved porous metallic material and resulting structure thereof
FR2934705A1 (fr) Materiau solide composite electriquement conducteur et procede d'obtention d'un tel materiau
WO2014184457A1 (fr) Fil abrasif de sciage, procédé de fabrication et utilisation
EP1357206A2 (fr) Procédé d'anodisation d'une pièce en alliage d'aluminium
EP2454395B1 (fr) Procédé pour la texturation de revêtements type dlc, et revêtements type dlc ainsi texturés
Yue et al. Electrochemical synthesis and hydrophilicity of micro-pored aluminum foil
EP3776634A1 (fr) Matériaux semi-conducteurs poreux et nanoporeux et leur fabrication
Ikegami et al. Size-controlled fabrication of gold nanodome arrays and its application to enzyme electrodes
EP1106293A1 (fr) Electrode pour l'usinage d'une pièce par électroérosion et son procédé de fabrication
EP1060818B1 (fr) Structures tridimensionnelles à haute porosité en alliages contenant du chrome
EP1980607A1 (fr) Solution utilisée dans la fabrication d'un matériau semi-conducteur poreux et procédé de fabrication dudit matériau
EP2556180B1 (fr) Procede de fabrication d'un materiau poreux en diamant de synthese
Piao et al. Paired cell for the preparation of AgI nanowires using nanoporous alumina membrane templates
EP3141522B1 (fr) Pièce micromécanique horlogère comprenant une surface lubrifiée et procédé de réalisation d'une telle pièce micromécanique horlogère
EP0349410B1 (fr) Procédé de dépôt d'un revêtement auto-lubrifiant à base de PTFE sur un élément de roulement et roulements ainsi obtenus
FR2657624A1 (fr) Procede pour la fabrication de plaques en metal ductile et ses applications.
Gujela et al. Anodic aluminum oxide (AAO) nano membrane fabrication under different conditions
Lee et al. Effect of current density on porous film formation in two-step anodizing for al alloy
WO2011034008A1 (fr) Microstructure et son procédé de production
EP2878712A1 (fr) Composant en alliage aluminium-lithium comprenant un revêtement céramique et procédé pour former le revêtement
WO2021074509A1 (fr) Tribofinition de pièces assistée par oxydo-réduction
WO2000008237A1 (fr) Films contenant des vesicules lamellaires, materiaux recouverts de ces films et leur procede d'obtention par voie electrochimique
FR2763259A1 (fr) Catalyseur en materiau composite, convertisseur muni d'un tel catalyseur et procede pour sa fabrication

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008844577

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010530531

Country of ref document: JP

Ref document number: 12739785

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE