WO2009041798A1 - Composiciones farmacéuticas que comprenden la combinación de un agente antiinflamatorio no esteroideo y un agente inhibidor de la xantino oxidasa útiles para el control y tratamiento de la gota, artritis gotosa y enfermedades relacionadas. - Google Patents

Composiciones farmacéuticas que comprenden la combinación de un agente antiinflamatorio no esteroideo y un agente inhibidor de la xantino oxidasa útiles para el control y tratamiento de la gota, artritis gotosa y enfermedades relacionadas. Download PDF

Info

Publication number
WO2009041798A1
WO2009041798A1 PCT/MX2008/000123 MX2008000123W WO2009041798A1 WO 2009041798 A1 WO2009041798 A1 WO 2009041798A1 MX 2008000123 W MX2008000123 W MX 2008000123W WO 2009041798 A1 WO2009041798 A1 WO 2009041798A1
Authority
WO
WIPO (PCT)
Prior art keywords
meloxicam
alopurinol
pharmaceutical composition
composition according
gout
Prior art date
Application number
PCT/MX2008/000123
Other languages
English (en)
French (fr)
Other versions
WO2009041798A8 (es
Inventor
Leopoldo de Jesús ESPINOSA ABDALA
María Elena GARCÍA ARMENTA
Josefina Santos Murillo
Víctor Guillermo ÁLVAREZ OCHOA
Original Assignee
Espinosa Abdala Leopoldo De Jesus
Garcia Armenta Maria Elena
Josefina Santos Murillo
Alvarez Ochoa Victor Guillermo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espinosa Abdala Leopoldo De Jesus, Garcia Armenta Maria Elena, Josefina Santos Murillo, Alvarez Ochoa Victor Guillermo filed Critical Espinosa Abdala Leopoldo De Jesus
Priority to EP08834122A priority Critical patent/EP2210604A4/en
Priority to BRPI0817563 priority patent/BRPI0817563A2/pt
Priority to ARP080104183A priority patent/AR068560A1/es
Publication of WO2009041798A1 publication Critical patent/WO2009041798A1/es
Publication of WO2009041798A8 publication Critical patent/WO2009041798A8/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/5415Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with carbocyclic ring systems, e.g. phenothiazine, chlorpromazine, piroxicam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Definitions

  • the present invention has application in the pharmaceutical industry and describes various pharmaceutical compositions comprising the synergistic combination of a non-steroidal anti-inflammatory agent, such as the active ingredient: Meloxicam or Celecoxib and an xanthine oxidase enzyme inhibitor, such as the active substance: Allopurinol, in addition to pharmaceutically acceptable excipients; which are formulated in a single dosage unit to be administered orally, which are indicated for the control and treatment of gout, gouty arthritis and related diseases.
  • a non-steroidal anti-inflammatory agent such as the active ingredient: Meloxicam or Celecoxib
  • an xanthine oxidase enzyme inhibitor such as the active substance: Allopurinol
  • the combination of the aforementioned active ingredients produces a greater synergistic effect when administered in combination in a single unit of Dosage unlike when these are administered independently, generating benefits such as: administration of lower concentrations of the active ingredients contained in the formula, lower doses administered, faster pharmacological action, maximization of the therapeutic effect and lower risks of presenting side effects .
  • Gout or gouty disease is a metabolic disease caused by an accumulation of uric acid in the body, mainly in the joints and in the kidney, which is why it is considered a rheumatic disease.
  • Gout is a predominant disease in men (> 95%), in women it is usually observed rarely and always occurs during menopause
  • Gouty disease comprises a group of heterogeneous disorders that occur in isolation or in combination, such as: 1) Hyperuricemia; 2)
  • Hyperuricemia which is the fundamental biochemical characteristic and the prerequisite for the existence of gout, is defined as the presence of a urate plasma concentration greater than 420 ⁇ mol / L (7.0 mg./dL.) And is an elevation test of Total body concentration of urates.
  • uric acid is elevated, but there is no arthritis.
  • menopause In patients with enzymatic defects it can begin from birth. It can last a lifetime, and generally the picture of gouty arthritis occurs after 20 years of hyperuricemia, although from 10 to 40% of hyperuremic patients will have urolithiasis up to 10 years before the first acute joint crisis.
  • Hyperuricemia may occur as a result of elevated urate synthesis, reduction in the removal of uric acid or a combination of both mechanisms.
  • Uric acid is the final product of the degradation of purines in humans. It is a weak acid, with a pKa of 5.75 to 10.3.
  • the urates are the ionized form of uric acid and predominate in plasma, extracellular fluid and synovial fluid, so that approximately 98% of them are in the form of monosodium urate, in the presence of a pH of 7.4.
  • Monosodium urate is easily ultrafiltrable and dialysable from plasma.
  • the binding of urates to plasma proteins has little meaning physiological.
  • the plasma is saturated with monosodium urate at a concentration of 415 ⁇ mol / L (6.8 mg./dL.) At 37 ° C. Therefore, at higher concentrations, the plasma is supersaturated with urates and there is the possibility of precipitation of urate crystals
  • Uric acid is more soluble in urine than in water, probably due to the presence of urea, proteins and mucopolysaccharides.
  • the pH of the urine greatly influences the solution.
  • the urine is saturated with uric acid in concentrations between 360 and 900 ⁇ mol / L (6 to 15 mg / dL).
  • saturation is achieved with concentrations between 9480 and 12000 ⁇ mol / L (158 to 200 mg / dL).
  • the ionized forms of uric acid in Urine includes mono and disodium urates, potassium urate, ammonium urate and calcium urate.
  • the amount of body urates is the net result obtained between the amount produced and the amount excreted.
  • the synthesis of urates varies depending on the purine content in the diet and the rates of biosynthesis, degradation and saving of purines. Under normal conditions, between two thirds and three quarters of the synthesized urate is eliminated in the kidneys and much of the remaining urate is removed in the intestine.
  • glomerular filtration For the renal control of uric acid in humans, a triple mechanism is proposed, consisting of: glomerular filtration, tubular secretion and tubular reabsorption. Approximately 8 to 12% of the urate filtered by the glomerulus is excreted in the urine in the form of uric acid. After filtration of 98 to 100%, the urate is reabsorbed. About half of the urate reabsorbed is secreted back into the proximal tubule, where 40 to 44% is reabsorbed again.
  • the plasma concentration of urate varies depending on age and sex. Most children have a concentration between 180 and 240 ⁇ mol / L (3.0 to 4.0 mg / dL).
  • the average plasma urate values in adult men and premenopausal women are 415 and
  • Hyperuricemia can be defined as the plasma urate concentration greater than 420 ⁇ mol / L
  • hyperuricemia is the concentration of urates in the blood that exceeds the limits of solubility of monosodium urate in plasma, that is, 415 ⁇ mol / L (6.8 mg./dL).
  • hyperuricemia is defined by the mean plus two standard deviations of the values determined in a healthy population selected at random. In a large study, 95% of unselected subjects had plasma urate concentrations below 420 ⁇ mol / L (7.0 mg / dL).
  • hyperuricemia can be defined in relation to the risk of developing disease.
  • the risk of gout or urolithiasis increases with urate concentrations greater than 420 ⁇ mol / L (7.0 mg./dL), and grows proportionally as this figure rises.
  • Hyperuricemia presents a prevalence between 2.0 and 13.2% in adults on an outpatient basis and somewhat higher in hospitalized patients.
  • hyperuricemia causes hyperuricemia. It is useful to classify hyperuricemia in relation to the underlying physiology; that is, as due to: an increase in synthesis, a reduction in elimination or a combination of both.
  • the diet represents an exogenous source of purines and, therefore, contributes to the plasma concentration of urates, proportionally to their purine content.
  • the strict restriction of purine intake reduces the average plasma concentration of urates by only 60 ⁇ mol / L (1.0 mg / dL) and the urinary elimination of uric acid by 1.2 mmol / day (200 mg / day), approximately.
  • RNA purines Since approximately 50% of ingested RNA purines and 25% of ingested DNA purines appear in the urine in the form of uric acid, foods with a high nucleic acid content have a significant effect on the urinary concentration of urates Among sayings Foods include liver, gizzards (thymus and pancreas), kidneys and anchovies.
  • Endogenous sources of purine synthesis also influence the plasma concentration of urates.
  • the de novo biosynthesis of purines which consists of the formation of a purine ring from linear structures, is an eleven-step process that ends with the formation of inosinate (IMP).
  • the first step combines phosphoribosyl pyrophosphate (PRPP) and glutamine and is catalyzed by the enzyme amidophosphoribosyltransferase (amidoPRT).
  • PRPP phosphoribosyl pyrophosphate
  • AmidoPRT amidophosphoribosyltransferase
  • the rate of purine biosynthesis and subsequent urate synthesis depends primarily on said enzyme.
  • the amidoPRT is regulated by a substrate, the PRPP, which favors the progress of the reaction and by end products of biosynthesis, the IMP and other ribonucleics, which exert a negative feedback.
  • hypoxanthine phosphoribosyltransferase Another regulatory route is the rescue of purine bases by the enzyme hypoxanthine phosphoribosyltransferase (HPRT). Said enzyme catalyzes the combination of hypoxanthine purine bases and guanine with the PRPP to form the respective IMP and GMP ribonucleotides.
  • the increase in rescue activity thus delays de novo synthesis, as it reduces the concentrations of PRPP and increases those of inhibitory ribonucleotides.
  • the plasma urate concentration is closely related to the de novo biosynthesis rate of purines.
  • An X-linked disorder that causes increased activity of the PRPP synthetase enzyme increases PRPP synthesis and accelerates de novo biosynthesis.
  • Subjects with this congenital metabolic disorder have overproduction of purines, hyperuricemia and hyperaciduria, so they have uric acid and gout stones before 20 years.
  • uric acid excretion Up to 98% of subjects with primary hyperuricemia and gout have a disorder in the renal control of uric acid. This is demonstrated by the presence of a decreased urate removal rate, with respect to glomerular filtration rate (or with respect to insulin removal rate) on a wide range of filtered charges. How Consequently, gout subjects eliminate approximately 40% less uric acid than normal subjects, for any plasma urate concentration.
  • the excretion of uric acid increases in subjects with gout and in those who do not suffer when the plasma concentration of urates increases as a result of ingestion or intravenous administration of purines, but in the former, the plasma concentration of urates should be 60 to 120 ⁇ mol / L (1 to 2 mg./dL) higher than normal to achieve an equivalent uric acid removal rate.
  • the alteration of uric acid excretion may appear, in theory, as a result of reduced tubular secretion or increased tubular reabsorption. Reduction of urate filtration does not appear to cause primary hyperuricemia, but it contributes to hyperuricemia of renal failure.
  • gouty disease Complications of hyperuricemia. Although the symptoms of gouty disease can follow almost any combination in its presentation form, the Typical sequence comprises progression from asymptomatic hyperuricemia, acute gouty arthritis, intercritical gout, and chronic or tofaceous gout. Nephrolithiasis may appear before or after the first attack of gouty arthritis.
  • the prevalence of hyperuricemia is estimated to be between 2.0 and 13.2%, while the prevalence of gout varies between 1.3 and 3.7% in the general population.
  • gout complications correlate with the duration and severity of hyperuricemia.
  • Most of the initial attacks of gouty arthritis occur after 20 to 40 years of sustained hyperuricemia, with a maximum age of establishment between 40 and 60 years for men and after menopause in women.
  • gouty arthritis the characteristic feature of gout is acute attacks of monoarticular arthritis. The first attack begins explosively and is one of the most painful events ever experienced.
  • the initial attack affects only one joint, although there are polyarticular presentations, which may be more frequent in women.
  • Gouty arthritis primarily affects peripheral joints, particularly those of the lower extremities.
  • certain locations, such as fascia may be affected. plantar, the insertion of the Achilles tendon or other tenosynovial.
  • the first metatarsophalangeal joint is affected in more than 50% of the initial attacks and in 90% of the subjects at some time. Rarely, sacroiliac involvement of the sternal or spinal handlebar occurs.
  • Any factor that causes an increase or a sharp decrease in plasma urate concentration can cause an acute attack; the greatest correlation is established with the factors that cause a rapid decline.
  • Acute attacks of gout occur in 20 to 86% of subjects with a history of gout when they are hospitalized for medical or surgical reasons.
  • Attacks may occur after the use of thiazide diuretics that cause hyperuricemia or after the introduction of treatments with Alopurinol or other medications to reduce plasma urate.
  • acute gouty arthritis attacks occur in the absence of hyperuricemia. Probably, most of these attacks can be explained by the presence of factors that reduce the plasma concentration of urate, so that they temporarily modify hyperuricemia, which is usually present (and that perhaps triggered the attack).
  • gout can develop at any time when synovial fluid gets find supersaturated urate. Free water is removed faster from the joint space than the urate, so if the amount of a synovial fluid that contains a normal concentration of urate increases, as a result of trauma or edema, the intra-articular concentration of urate temporarily increases when the Initial problem is solved and water is eliminated more quickly.
  • Acute gout appears as a consequence of the interaction between urate crystals and polymorphonuclear leukocytes, including the activation of humoral and cellular inflammatory mechanisms.
  • Uranus crystals activate complement through both the classical and alternative pathways.
  • Hageman's factor and the coagulation contact system are also activated, which results in synthesis of bradykinin, kallikrein and plasmin.
  • the interaction of urate crystals with neutrophils results in the release of lysosomal enzymes, free radicals derived from oxygen, metabolites of leukotrienes and prostaglandins, collagenase and protease.
  • Phagocytosis of crystals by neutrophils causes release of the crystal-induced chemotactic factor (CCF).
  • CCF crystal-induced chemotactic factor
  • CCF, leukotriene B 4 (LTB 4 ) and the activated component of complement C5a are all chemotactic factors and contribute to the response of polymorphonuclear leukocytes during the initial phase of acute arthritis.
  • Uranus crystals cause the release of prostaglandins (PGE 2 ), lysosomal enzymes, tumor necrosis factor alpha and interleukins 1 and 6 (IL-I and IL-6) by said cells.
  • PGE 2 prostaglandins
  • IL-I and IL-6 tumor necrosis factor alpha
  • IL-I and IL-6 interleukins 1 and 6
  • Synovial lining cells also participate in the inflammatory response by releasing inflammatory mediators.
  • the inflammatory potential of urate crystals is greatly affected by the presence of absorbed proteins. Purified absorbed IgG causes platelet secretion induced by crystals, increased synthesis of superoxide and increased release of lysosomal enzymes from polymorphonuclear leukocytes.
  • Tofos are aggregates of monohydrated monosodium urate crystals, usually surrounded by giant cells due to a mononuclear inflammatory cell reaction of a foreign body. They can form in joint and extra-articular structures and cause deformity and destructuring of soft and hard tissues. In the joints, they can lead to the destruction of cartilage and bone, which triggers secondary degenerative changes.
  • therapeutic agents such as: nonsteroidal anti-inflammatory drugs and xanthine oxidase inhibitors should be used.
  • NSAIDs encompass a broad group of drugs that have an important analgesic, anti-inflammatory and antipyretic activity, as well as other therapeutic effects.
  • Enolic Acids which in turn are subdivided into: Pyrazolones (Metamizol), Pyrazolidinediones ⁇ Phenylbutazone), Oxicams (Piroxicam and Meloxicam).
  • Coxibs to which they belong: Celecoxib, Parecoxib, Lumiracoxib, Etoricoxib, Rofecoxib (withdrawn) and Valdecoxib (withdrawn).
  • Non-steroidal anti-inflammatories manifest their analgesic action by relieving pain associated with inflammation or tissue injury by decreasing the production of prostanoids that sensitize nociceptors to mediators, such as bradykinin. They are effective in pain of mild or moderate intensity. Its antipyretic effect is presented by inhibition of prostaglandin production in the hypothalamus and interference in temperature regulation mechanisms.
  • non-steroidal anti-inflammatories are analgesic and antipyretic, some (indomethacin, piroxicam) are more anti-inflammatory, most are moderately anti-inflammatory ⁇ ibuprofen, nabumetone) and others ⁇ paracetamol) have a minimal anti-inflammatory effect.
  • Some non-steroidal anti-inflammatory agents have platelet antiaggregant activity, which is of special interest in the case of Acetylsalicylic Acid because of its irreversible inhibitory effect on platelet COX.
  • This NSAID is very useful in the prevention of coronary and cerebral thromboembolic accidents.
  • some NSAIDs have uricosuric action as a result of the inhibition of uric acid transport from the lumen of the renal tubule to the interstitial space. It is only seen with some NSAIDs at high doses, such as phenylbutazone, sulfinpyrazone or salicylates.
  • NSAIDs In the mechanism of action of NSAIDs, all their effects are related to the inhibition of cyclooxygenase (COX) and the inhibition of prostaglandin production.
  • COX cyclooxygenase
  • the ASA is the only one that produces an irreversible inhibition of COX-I.
  • the anti-inflammatory effect of NSAIDs is clearly related to COX-2 inhibition and many of the undesirable effects are related to COX-I inhibition.
  • Meloxicam was characterized as a potent anti-inflammatory agent in various conventional models of inflammation. In addition, it proved to have a weak gastric ulcerogenicity in the stomach of rats, despite its potent anti-inflammatory activity.
  • COX-2 From the discovery of a second COX enzyme, COX-2, it has been hypothesized that the anti-inflammatory effects of NSAIDs are achieved through a different mechanism than the frequently observed side effects of these compounds, including the alteration of cytoprotection in the stomach, renal function and inhibition of platelet aggregation.
  • COX-I is the constitutive isoenzyme that is found under physiological conditions in most tissues, an enzyme "maintenance" so to speak, while COX-2 expression is mostly induced, particularly during inflammatory processes.
  • recent evidence indicates that COX-2 expression is also constitutive in some tissues, such as in the CNS and kidney.
  • NSAIDs inhibit both enzymes in a non-selective manner, which causes anti-inflammatory effects (related to COX-I inhibition), typically of a gastrointestinal nature.
  • Meloxicam is an enolcarboxyamide derivative that belongs to the enolic acid group. Play a potent inhibitory activity on cyclooxygenase-2 (COX-2), with a selectivity 75 times higher for COX-2 compared to COX-I, acting as an inhibitor in the synthesis of prostaglandins that have the function of being mediators responsible for inflammatory processes
  • Meloxicam was described since 1994 as a selective COX-2 inhibitor in relation to COX-I.
  • the 5-methyl group present in the Meliaxicam thiazolyl ring can enter the additional space at the active COX-2 site, which explains part of its selectivity.
  • Effective intracellular access is determined by its unique lipophilic and amphiphilic properties.
  • Meloxicam In its acidic form, Meloxicam has a membrane solubility 10 times greater than that of Piroxicam, comparable to that of other NSAIDs.
  • Meloxicam leaves membranes approximately twice as fast as Diclofenac. In general, Meloxicam is rapidly transported through membranes, but within a range that allows it to efficiently interact with its white enzyme.
  • the low water solubility of Meloxicam at an acidic pH and its amphiphilic protonation behavior are the responsible for tissue kinetics that prevents a high concentration of this drug in certain tissues of the digestive tract.
  • Meloxicam does not show the typical "ion trapping" behavior that characterizes NSAIDs of the carbonic acid class, which may contribute to the favorable profile of gastrointestinal tolerability observed clinically.
  • Meloxicam has a good digestive absorption and optimal bioavailability (89%), after having been administered a single dose by mouth. Some of the main pharmacokinetic characteristics are: its prolonged absorption, its sustained serum concentrations and its long elimination half-life (20 hours), which allows a single daily dose to be administered. Once its absorption in the digestive tract, Meloxicam easily diffuses into the blood and inflamed tissues, having a high adherence with plasma proteins (> 99%) and its metabolites are excreted both in the urine and feces .
  • Celecoxib is a selective inhibitor of the enzyme cyclooxygenase-2 (COX-2) with properties anti-inflammatory drugs similar to those of other non-steroidal anti-inflammatory drugs (NSAIDs), such as naproxen or diclofenac. Due to its specificity towards cyclooxygenase-2, the risk of producing adverse effects at the gastrointestinal level is lower than with conventional NSAIDs.
  • COX-2 non-steroidal anti-inflammatory drugs
  • Celecoxib is a non-competitive inhibitor of the enzyme cyclooxygenase-2 (COX-2) unlike conventional NSAIDs that are inhibitors of COX-I and COX-2. These enzymes catalyze the conversion of arachidonic acid to prostaglandin H2 and thromboxanes.
  • COX-2 is important in the synthesis of substances that participate as mediators in inflammation and pain, while COX-I produces prostaglandins that are beneficial for gastric and renal functions.
  • Non-selective NSAIDs such as Ibuprofen or Diclofenac inhibit the two types of cyclooxygenase, with Celecoxib being 100 times more active against COX-2 than COX-I.
  • Celecoxib does not significantly inhibit COX-I. Nor does it have any effect on platelet aggregation.
  • the expression of the COX-2 is induced by several cytokines and growth factors in inflamed tissues. In vitro studies have shown that COX-2 inhibitors, whether selective or not, have a preventive activity on colon cancer.
  • Celecoxib is a drug to administer orally. After the administration of an oral dose, Celecoxib is well absorbed reaching maximum plasma levels in about 3 hours. High-fat foods delay the absorption of Celecoxib from 1 to 2 hours and increase the amount of drug that is absorbed by 10 to 20%; Therefore, this drug can be administered with meals. Celecoxib binds extensively to plasma proteins (especially albumin) and is widely distributed, the distribution volume being approximately 400 L. Celecoxib is metabolized through the CYP 2C9 enzyme system of cytochrome P450, three metabolites having been identified inactive in human plasma. Only a small part of the unchanged Celecoxib is recovered in the urine and feces.
  • the metabolites are eliminated by the kidneys and bile: 57% of the dose is recovered in the feces and 27% in the urine.
  • the plasma clearance is about 500 mL./min.
  • the elimination half-life is about 11 hours.
  • Advanced age, liver failure or renal dysfunction affect the pharmacokinetics of Celecoxib significantly, also influencing ethnic and racial factors.
  • Xanthine oxidase enzyme inhibitors decrease uric acid production by blocking the final step in urate synthesis, while raising oxipurins (xanthine and hypoxanthine).
  • Uric acid is the main product of the catabolism of endogenous or exogenous purines (diet) in man.
  • intraarticular urate crystals can be asymptomatic, or it can trigger an inflammatory process by activating the complement, of the kinin system, and release of cytokines (Interleukin-1, Interleukin-6, Interleukin-8, TNF-alpha) by macrophages and synoviocytes.
  • cytokines Interleukin-1, Interleukin-6, Interleukin-8, TNF-alpha
  • Alopurinol is a pyrazolopyrimidine, a hypoxanthine analogue, that functions as a potent competitive inhibitor of the enzyme xanthine oxidase. It is the most used antihyperuricemic agent, also being a substrate for said enzyme. Oxipurinol, the main metabolite of Alopurinol, is also an effective inhibitor of the enzyme xanthine oxidase.
  • Alopurinol is absorbed in the digestive system and has a bioavailability of 80 to 90%.
  • the half-life of Alopurinol is 1 to 2 hours and Oxipurinol It is 21 hours.
  • the excretion of Oxipurinol increases with uricosuric agents and is reduced in renal failure.
  • Alopurinol is effective in the treatment of all types of hyperuricemia, but is specifically indicated in the following cases: 1) patients with gout, 2) signs of urate overproduction (24-hour uric acid in urine greater than 4.8 mmol (800 mg.) With a normal diet, or greater than 3.6 mmol (600 mg.) With a purine restriction diet) and 3) patients with kidney stones composed of 2, 8-dihydroxyadenine.
  • Alopurinol reduces the plasma concentration of urates and urinary excretion of uric acid during the first 24 hours, with a maximum reduction at two weeks.
  • Alopurinol Approximately 20% of ingested Alopurinol is excreted in feces. While Alopurinol is removed by glomerular filtration, Oxipurinol is reabsorbed by the renal tubules in a similar way as uric acid does. The clearance of Oxipurinol is increased by uricosuric drugs and, consequently, the association of a uricosuric drug with Alopurinol reduces its effects. on xanthine oxidase and increases the excretion of uric acid in the urine.
  • Alopurinol is a substrate of the enzyme xanthine oxidase which it competitively inhibits, it gives rise to Oxipurinol, also an inhibitor of xanthine oxidase, and inhibits de novo purine synthesis.
  • Alopurinol acts on the catabolism of purines without modifying their biosynthesis. Reduces the production of uric acid by inhibiting the biochemical reactions that lead to its formation.
  • Alopurinol is a structural analog of the natural hypoxanthine base and acts as an inhibitor of xanthine oxidase, the enzyme responsible for the conversion of hypoxanthine to xanthine and xanthine to uric acid, the final product of purine catabolism in man .
  • the reduction of the concentration of uric acid favors the dissolution of the precipitates (tofos), prevents the appearance of acute attacks and prevents the occurrence of severe complications. Virtually the possibility of uric acid stones and, thus, the appearance of nephropathies disappears.
  • the effective dose of Alopurinol is 300 mg / day.
  • the dose necessary to control the plasma concentration of urates in an appropriate manner depends on the severity of the tantalum disease and renal function.
  • Alopurinol can be administered once a day, thanks to the prolonged half-life of Oxipurinol.
  • compositions that are the subject of the present invention are composed of the synergistic combination of a non-steroidal anti-inflammatory agent, such as the active ingredient: Meloxicam or Celecoxib and an xanthine oxidase enzyme inhibitor, such as the active substance: Alopurinol, in addition to pharmaceutically acceptable excipients, which are formulated in a single dosage unit to be administered orally, which are indicated for control and treatment of Gouty or Gouty Disease, Gouty Arthritis and other related pathologies.
  • a non-steroidal anti-inflammatory agent such as the active ingredient: Meloxicam or Celecoxib
  • an xanthine oxidase enzyme inhibitor such as the active substance: Alopurinol
  • Said pharmaceutical compositions have been developed taking into account that the aforementioned active ingredients have great efficacy and capacity for the control and treatment of Gouty or Gouty Disease, Gouty Arthritis and other related pathologies, and because these drugs act as synergistically, they manage to reduce the symptoms that characterize these pathologies, such as inflammation and pain, reduce plasma urate concentrations, in addition to increasing the speed of their pharmacological action by administering lower concentrations of the active ingredients, maximizing their therapeutic effect with lower doses administered, reduce the risk of presenting severe complications and decrease the risk of manifesting side effects.
  • One of the non-steroidal anti-inflammatory agents used in the pharmaceutical compositions object of the present invention such as the active ingredient: Meloxicam, is present in the formulation in a concentration range from 7.5 mg. up to 45.0 mg per dose unit.
  • Another of the non-steroidal anti-inflammatory agents used in the pharmaceutical compositions object of the present invention such as the active ingredient: Celecoxib, is present in the formulation in a concentration range from 100.0 mg. up to 600.0 mg per dose unit.
  • the xanthine oxidase enzyme inhibitor used in the pharmaceutical composition object of the present invention as is the active ingredient:
  • Alopurinol is present in the formulation in a concentration range from 100.0 mg. up to 800.0 mg per dose unit.
  • a clinical study was conducted that evaluated the effectiveness of the combination Alopurinol / Meloxicam vs. the administration of Alopurinol and Meloxicam administered independently in patients with Gouty Arthritis.
  • the main evaluation criterion was a concentration of uric acid of 6 mg./dL, in the last 3 monthly determinations.
  • Group 1 received: Alopurinol 300 mg. up to date.
  • Group 3 received: the combination of Alopurinol 300 mg. / Meloxicam 15 mg.
  • the main evaluation criterion was reached in the majority of patients who received the Alopurinol / Meloxicam combination, reducing an average of 10 mg / dL. baseline at 6 mg./dL. At the end of study; the patients who received Alopurinol alone, improved from a baseline average of 9 mg / dL. at 7 mg./dL. at the end of the study and the patients who received Meloxicam alone, 10 mg./dL. baseline at 9 mg / dL at the end (Table 2).
  • Alopurinol which acts as an enzyme inhibitor Xanthine oxidase, administered both separately and in combination.
  • a model of arthritic pain in rats was determined.
  • the data were interpreted using the Synergic Surface Interaction (ISS) analysis and an isobolographic analysis to determine the nature of the interaction.
  • the ISS was calculated from the total antinociceptive effect produced by the combination after subtraction of the antinociceptive effect produced by the drug separately.
  • Female rats received Meloxicam only orally, Alopurinol only orally, or 24 different combinations of Meloxicam plus Alopurinol. Material and methods .
  • Uric acid was suspended in mineral oil; Meloxicam and Alopurinol were dissolved in carboxymethyl cellulose and administered orally.
  • each dose of Meloxicam (0.18, 0.32, 0.56, 1.0, 1.78, 3.16 or 5.62 mg./kg.) Or Alopurinol (3.16, 5.62, 10.0, 17.78, 31.62, 56.23 or 100.0 mg./kg.) supplied six animals to obtain the corresponding dose-response curves.
  • the doses of Meloxicam (0.10, 0.18, 0.32, 0.56, 1.0 or 1.78 mg./kg.
  • Alopurinol (3.16, 5.62, 10.0 or 17.78 mg./kg.)
  • Were then combined to analyze possible synergistic interactions 24 combinations in total). At the end of the study the rats were sacrificed.
  • the antinociceptive activity was determined using the PIFIR model described in detail.
  • Nociception was induced by an intra-articular injection (ia) of 0.05 mL. of uric acid suspended in mineral oil in the knee joint of the right hind leg.
  • the suspension was prepared by grinding 3.0 g. of uric acid with 10 mL of mineral oil in a glass mortar with pistil (Pyrex).
  • Intra-articular injection was carried out through the patellar ligament using a 1 mL glass syringe.
  • the contact time of the damaged member reached a value of zero after 2.5 hours after the application of uric acid injection; During this time, Meloxicam and Alopurinol were administered independently or in combination. This time was considered as zero time for measures of antinociceptive effects; These effects were measured every 30 minutes for the next 4 hours. This allowed to determine the time course of the antinociceptive effects in the same animal. Antinociception was considered as the recovery of contact time.
  • the data are expressed as the Functionality Percentage Index (IF%, that is, the contact time of the injected leg divided by the contact time of the left leg, control, multiplied by 100).
  • IF% Functionality Percentage Index
  • % of gastric lesion (IUM / IUI) x 100 where IUM is the Ulcerative index of the drug being tested (mm 2 ) and IUI is the Ulcerative index of the Indomethacin tested (mm 2 ).
  • the study data, tables and figures are expressed as IF%.
  • the curves for the IF% vs. the time was made for each treatment and the corresponding time course was obtained.
  • the antinociception was estimated as the recovery of the IF%.
  • the accumulated antinociceptive effect during the entire period of the Observation (4 hours) was determined as the area under the curve (ABC) of the course of time to obtain the dose-response curve and to analyze the total antinociceptive effect obtained by the analgesic agent either alone or in combination.
  • the synergism between Meloxicam and Alopurinol was calculated with the analysis of the Surface of the Synergistic Interaction (SIS) and with the isobolographic method (Tallarida et al., 1989).
  • the ABC was calculated for each combination of the medications and for each of the components.
  • an ABC equivalent to the sum was expected. If the sum of the corresponding individual ABCs was higher than the theoretical sum, the result was considered potentiation; if it was similar to the theoretical sum, it was considered to show additive antinociceptive effects.
  • the ABC was obtained by the trapezoidal rule (Rowland and Trozer, 1989). All values for each treatment are average ⁇ SEM, for six animals.
  • the ABC values for the drug combinations were compared with the expected values using the drug test. Student The ABC values obtained from the antinociceptive effects produced by Meloxicam or Alopurinol
  • Gastrointestinal side effects caused by Meloxicam or Alopurinol were obtained with the gastrointestinal effects obtained from Indomethacin by Dunnett's test. P ⁇ 0.05 was considered statistically significant.
  • the DE 50 value of the total dose of the combination was calculated from the dose-response curve of the combined drugs.
  • the statistical significance between the theoretical additive point and the experimental value DE 50 was assessed using the Student test.
  • the experimental figure DE 50 significantly lower than the theoretical addition DE 50 (P ⁇ 0.05) was considered to indicate synergistic interaction between Meloxicam and Alopurinol.
  • Antinociceptive effects of drug combinations The antinociceptive effect of the 24 combinations on the three-dimensional graphs. These were constructed using the average of six animals for each dose either alone or in combination.
  • the maximum Antinociceptive effect that can be obtained from the various combinations of Meloxicam + Alopurinol (1.78 + 17.78 mg./kg., respectively) was 372.7 ⁇ 15.6 au.
  • Statistical analysis of the data indicate an interaction between Meloxicam and Alopurinol (P ⁇ 0.05) while there were no antagonistic effects of the combination tested.
  • Allopurinol only represents a combination that produced the maximum potentiation of the antinociceptive effect (169.4% plus ABC or complete antinociceptive effect that is the sum of the individual ABCs); likewise, both the course of time and the
  • Alopurinol reduced erosion generation (P ⁇ 0.05) and ulcerations were similar to those of Meloxicam administered alone.
  • the Meloxicam + Alopurinol combination showed an effective synergistic effect, compared to the Administration of these drugs independently, on the other hand, showed lower gastrointestinal side effects such as ulcerations.
  • the combination can be administered in diseases such as gout, gouty arthritis or other related pathologies.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La presente invención se refiere a diversas composiciones farmacéuticas compuestas por la combinación sinérgica de un agente antiinflamatorio no esteroideo, conocido como: Meloxicam o Celecoxib, y un agente inhibidor de la enzima xantino oxidasa, conocido como: Alopurinol, además de excipientes farmacéuticamente aceptables, mismos que se encuentran formulados en unidades de dosificación únicas para ser administradas por vía oral, las cuales están indicadas para el control y tratamiento de la Enfermedad gotosa o Gota, Artritis gotosa y otras patologías relacionadas. Dichas composiciones farmacéuticas proporcionan un mayor efecto terapéutico y una mayor rapidez de acción farmacológica en menor tiempo, logrando reducir el dolor, la inflamación y los niveles de uratos plasmáticos, además de conseguir la reducción de las dosis administradas, la reducción del riesgo de presentar complicaciones severas y la disminución del riesgo de manifestar efectos secundarios.

Description

COMPOSICIONES FARMACÉUTICAS QUE COMPRENDEN LA COMBINACIÓN DE UN AGENTE ANTIINFLAMATORIO NO ESTEROIDEO Y UN AGENTE INHIBIDOR DE LA XANTINO OXIDASA ÚTILES PARA EL CONTROL Y TRATAMIENTO DE LA GOTA, ARTRITIS GOTOSA Y ENFERMEDADES RELACIONADAS.
CAMPO DE LA INVENCIÓN
La presente invención tiene aplicación en la industria farmacéutica y describe diversas composiciones farmacéuticas que comprenden la combinación sinérgica de un agente antiinflamatorio no esteroideo, como lo es el principio activo: Meloxicam o Celecoxib y un agente inhibidor de la enzima xantino oxidasa, como lo es el principio activo: Alopurinol, además de excipientes farmacéuticamente aceptables; los cuales se encuentran formulados en una sola unidad de dosificación para ser administradas por vía oral, mismas que están indicadas para el control y tratamiento de la Gota, Artritis Gotosa y enfermedades relacionadas.
La combinación de los principios activos antes mencionados produce un mayor efecto sinérgico cuando son administrados en combinación en una sola unidad de dosificación a diferencia de cuando éstos se administran de forma independiente, generando beneficios como lo son: administración de menores concentraciones de los principios activos contenidos en la fórmula, menores dosis administradas, mayor rapidez de acción farmacológica, maximización del efecto terapéutico y menores riesgos de presentar efectos secundarios .
ANTECEDENTES DE LA INVENCIÓN
La Gota o enfermedad gotosa es una enfermedad metabólica producida por una acumulación de ácido úrico en el cuerpo, principalmente en las articulaciones y en el riñon, motivo por el cual es considerada como una enfermedad reumática.
La Gota es una enfermedad predominante en el hombre (>95%), en la mujer suele observarse de forma rara y siempre se presenta durante la menopausia
La enfermedad gotosa comprende un grupo de trastornos heterogéneos que se presentan aislados o de forma combinada, tales como: 1) Hiperuricemia; 2)
Ataques de artritis inflamatoria monoarticular aguda, los cuales suelen presentarse en las articulaciones metatarsofalángicas , en las rodillas, en el tobillo y en otras articulaciones, produciendo inflamación y dolor intenso; 3) Depósitos en forma de tofos gotáceos, que se presentan como un acumulo de cristales de urato rodeados de una intensa reacción inflamatoria formada por macrófagos, células gigantes de cuerpo extraño y linfocitos en las articulaciones y alrededor de ellas; 4) Depósitos intersticiales de cristales de urato en el parénquima renal y 5) Urolitiasis. La hiperuricemia, que es la característica bioquímica fundamental y el requisito previo para que exista gota, se define como la presencia de una concentración plasmática de uratos superior a 420 μmol/L (7.0 mg./dL.) y es una prueba de elevación de la concentración corporal total de uratos.
En esta etapa (que ocurre sólo en el 2 al 18% de los gotosos) , el ácido úrico se encuentra elevado, pero no hay artritis. En hombres se inicia en la pubertad, mientras que en mujeres suele ser hasta la menopausia; en pacientes con defectos enzimáticos puede comenzar desde el nacimiento. Puede durar toda la vida, y generalmente el cuadro de artritis gotosa se presenta después de 20 años de hiperuricemia, aunque del 10 al 40% de los pacientes hiperuricémicos presentarán urolitiasis hasta 10 años antes de la primera crisis articular aguda.
La hiperuricemia puede aparecer como consecuencia de la síntesis elevada de uratos, reducción en la eliminación de ácido úrico o una combinación de ambos mecanismos .
Cuando se presenta hiperuricemia, el plasma y los líquidos extracelulares se encuentran sobresaturados de uratos, lo cual favorece la formación de cristales y su depósito en los tejidos. Estos factores dan lugar a los síntomas incluidos dentro del concepto gota.
El ácido úrico es el producto final de la degradación de las purinas en el ser humano. Se trata de un ácido débil, con un pKa de 5.75 a 10.3. Los uratos son la forma ionizada del ácido úrico y predominan en el plasma, líquido extracelular y líquido sinovial, de manera que aproximadamente el 98% de los mismos se encuentra en forma de urato monosódico, en presencia de un pH de 7.4.
El urato monosódico es fácilmente ultrafiltrable y dializable a partir del plasma. La unión de los uratos a las proteínas plasmáticas tiene escaso significado fisiológico. El plasma se encuentra saturado con urato monosódico en una concentración de 415 μmol/L (6.8 mg./dL.) a 37° C. Por tanto, ante concentraciones superiores, el plasma se encuentra sobresaturado de uratos y existe la posibilidad de precipitación de cristales de urato.
Sin embargo, la precipitación no se produce ni siquiera ante concentraciones plasmáticas de urato tan altas como 4800 μmol/L (80 mg./dL.). Se desconoce porque el urato forma soluciones sobresaturadas estables en plasma, y al mismo tiempo puede tener relación con la presencia de sustancias solubilizadoras .
El ácido úrico es más soluble en orina que en agua, probablemente debido a la presencia de urea, proteínas y mucopolisacáridos . El pH de la orina influye notablemente en la solución. En presencia de un pH de 5.0, la orina se satura con ácido úrico en concentraciones situadas entre 360 y 900 μmol/L (6 a 15 mg./dL) . Ante un pH de 7.0, la saturación se alcanza con concentraciones entre 9480 y 12000 μmol/L (158 a 200 mg./dL). Las formas ionizadas del ácido úrico en orina comprenden uratos mono y disódicos, urato potásico, urato amónico y urato calcico.
Aunque la síntesis de los nucleótidos de purina y su desintegración tienen lugar en todos los tejidos, el urato solo se sintetiza en los tejidos que contienen xantina oxidasa, sobre todo hígado e intestino delgado.
La cantidad de uratos corporales es el resultado neto obtenido entre la cantidad producida y la cantidad excretada. La síntesis de uratos varía en función del contenido de purina en la dieta y de las velocidades de biosíntesis, degradación y ahorro de purinas . En condiciones normales, entre dos terceras y tres cuartas partes del urato sintetizado se elimina en los ríñones y gran parte del urato restante lo hace en el intestino.
Para el control renal del ácido úrico en el ser humano se propone un mecanismo triple que consiste en: filtración glomerular, secreción tubular y reabsorción tubular . Aproximadamente del 8 al 12% del urato filtrado por el glomérulo se excreta en la orina en forma de ácido úrico. Tras la filtración del 98 al 100%, el urato se reabsorbe. Aproximadamente la mitad del urato reabsorbido se secreta de nuevo hacia el túbulo proximal, donde el 40 al 44% se reabsorbe de nuevo.
La concentración plasmática de urato varía en función de la edad y el sexo. La mayoría de los niños presenta una concentración entre 180 y 240 μmol/L (3.0 a 4.0 mg. /dL) .
La concentración aumenta durante la pubertad en los varones, pero permanece baja en las mujeres hasta la menopausia. Aunque no se comprende por completo la causa de esta variación en función del sexo, ésta puede deberse en parte a la mayor excreción funcional de urato en las mujeres, como consecuencia de influencias hormonales .
Los valores plasmáticos medios de uratos en varones adultos y mujeres premenopáusicas son de 415 y
360 μmol/L (6.8 y 6.0 mg./dL), respectivamente. Después de la menopausia, los valores en mujeres se elevan hasta alcanzar aproximadamente los de los varones.
En los adultos, las concentraciones se elevan de forma estable con el tiempo y varían en función de la altura, el peso corporal, la tensión arterial, la función renal y el consumo de alcohol. La hiperuricemia se puede definir como la concentración plasmática de uratos mayor de 420 μmol/L
(7.0 mg./dL) . Esta definición se basa en criterios fisicoquímicos, epidemiológicos y relacionados con la enfermedad.
Desde el punto de vista fisicoquímico, la hiperuricemia es la concentración de uratos en la sangre que supera los límites de solubilidad del urato monosódico en plasma, es decir, 415 μmol/L (6.8 mg./dL) .
En los estudios epidemiológicos se define la hiperuricemia por la media más dos desviaciones estándar, de los valores determinados en una población sana seleccionada al azar. En un estudio amplio, el 95% de los sujetos no seleccionados presentaron concentraciones plasmáticas de uratos por debajo de 420 μmol/L (7.0 mg . /dL) .
Por último, la hiperuricemia se puede definir en relación con el riesgo de desarrollar enfermedad. El riesgo de gota o urolitiasis aumenta ante concentraciones de uratos mayores de 420 μmol/L (7.0 mg./dL), y crece de forma proporcional a medida que dicha cifra se eleva. La hiperuricemia presenta una prevalencia entre el 2.0 y el 13.2% en adultos en régimen ambulatorio y algo mayor en pacientes hospitalizados .
Causas de la hiperuricemia. Resulta útil clasificar la hiperuricemia en relación con la fisiología subyacente; es decir, según se deba a: un aumento de la síntesis, una reducción de la eliminación o una combinación de ambas.
Síntesis de uratos aumentada. La dieta representa una fuente exógena de purinas y, por tanto, contribuye a la concentración plasmática de uratos, de forma proporcional a su contenido en purinas. La restricción estricta de la ingesta de purinas reduce la concentración plasmática media de uratos en solo 60 μmol/L (1.0 mg./dL) y la eliminación urinaria de ácido úrico en 1.2 mmol/día (200 mg./día), aproximadamente.
Dado que aproximadamente el 50% de las purinas del ARN ingeridas y el 25 % de las purinas del ADN ingeridas aparecen en la orina en forma de ácido úrico, los alimentos con un elevado contenido de ácidos nucleicos poseen un efecto significativo sobre la concentración urinaria de uratos. Entre dichos alimentos se encuentran el hígado, las mollejas (timo y páncreas), los riñones y las anchoas.
Las fuentes endógenas de síntesis de purinas también influyen en la concentración plasmática de uratos .
La biosíntesis de novo de las purinas, que consiste en la formación de un anillo de purina a partir de estructuras lineales, es un proceso de once pasos que termina con la formación de inosinato (IMP) . El primer paso combina fosforribosilpirofosfato (PRPP) y glutamina y es catalizado por la enzima amidofosforribosiltransferasa (amidoPRT) . La velocidad de biosíntesis de la purina y la subsiguiente síntesis de uratos depende fundamentalmente de dicha enzima. La amidoPRT se regula por un sustrato, el PRPP, que favorece el avance de la reacción y por productos finales de la biosíntesis, el IMP y otros ribonucleicos, que ejercen una retroalimentación negativa. Otra vía reguladora es la del rescate de bases purínicas por parte de la enzima hipoxantina fosforribosiltransferasa (HPRT) . Dicha enzima cataliza la combinación de las bases purínicas hipoxantina y guanina con el PRPP para formar los respectivos ribonucleótidos IMP y GMP.
El aumento en la actividad de rescate retrasa asi la síntesis de novo, pues reduce las concentraciones de PRPP y aumenta las de ribonucleótidos inhibidores.
La concentración plasmática de uratos se relaciona de forma estrecha con la velocidad de biosíntesis de novo de las purinas . Un trastorno ligado a X que ocasiona un aumento de actividad de la enzima PRPP sintetasa incrementa la síntesis de PRPP y acelera la biosíntesis de novo. Los sujetos que presentan este trastorno metabólico congénito tienen sobreproducción de purinas, hiperuricemia e hiperaciduria, por lo que presentan cálculos de ácido úrico y gota antes de los 20 años.
Excreción disminuida de ácido úrico. Hasta el 98% de los sujetos con hiperuricemia primaria y gota presentan un trastorno en el control renal del ácido úrico. Esto se demuestra por la presencia de una velocidad de eliminación de uratos disminuida, con respecto a la velocidad de filtración glomerular (o con respecto a la velocidad de eliminación de insulina) sobre una serie amplia de cargas filtradas. Como consecuencia los sujetos con gota eliminan aproximadamente un 40% menos de ácido úrico que los sujetos normales, para cualquier concentración plasmática de uratos . La excreción de ácido úrico aumenta en los sujetos con gota y en aquellos que no la padecen cuando la concentración plasmática de uratos aumenta como consecuencia de la ingestión o la administración intravenosa de purinas , pero en los primeros, la concentración plasmática de uratos debe ser de 60 a 120 μmol/L (1 a 2 mg./dL) mayor de lo normal para alcanzar una velocidad de eliminación de ácido úrico equivalente .
La alteración de la excreción de ácido úrico puede aparecer, en teoría, como consecuencia de una secreción tubular reducida o de una reabsorción tubular aumentada. La reducción de la filtración de uratos no parece ocasionar hiperuricemia primaria, pero contribuye a la hiperuricemia de la insuficiencia renal .
Complicaciones de la hiperuricemia. Aunque los síntomas de la enfermedad gotosa pueden seguir casi cualquier combinación en su forma de presentación, la secuencia típica comprende la progresión desde la hiperuricemia asintomática, la artritis gotosa aguda, la gota intercrítica y la gota crónica o tofácea. La nefrolitiasis puede aparecer antes o después del primer ataque de artritis gotosa.
Se calcula que la prevalencia de la hiperuricemia se encuentre entre el 2.0 y el 13.2%, mientras la prevalencia de la gota varía entre el 1.3 y el 3.7% en la población general. Cuanto mayor es la concentración plasmática de uratos, mayores son las probabilidades de que un individuo padezca gota.
En un estudio amplio, la incidencia de la gota fue del 4.9% para los sujetos con concentraciones de uratos de 540 μmol/L (9.0 mg./dL) o más, en comparación con el 0.5% para aquellos con concentraciones entre 415 y 535 μmol/L (7.0 y 8.9 mg./dL). De manera semejante, las complicaciones de la gota se correlacionan con la duración y la gravedad de la hiperuricemia. La mayor parte de los ataques iniciales de artritis gotosa se presentan después de 20 a 40 años de hiperuricemia mantenida, con una edad máxima de instauración entre los 40 y los 60 años para los varones y tras la menopausia en las mujeres. En la Artritis gotosa, el rasgo característico de la gota son los ataques agudos de artritis monoarticular . El primer ataque comienza de forma explosiva y es uno de los acontecimientos más dolorosos experimentados nunca. En ocasiones, los sujetos informan de pródromos o episodios previos de dolor leve que dura horas . El dolor atroz de la gota aguda se acompaña de signos de inflamación intensa: hinchazón, eritema, calor e hipersensibilidad. La inflamación puede acompañarse de febrícula. Si no se recibe tratamiento, el ataque suele alcanzar el máximo de las 24 a las 48 horas tras los primeros síntomas y cede en 7 a 10 días. La piel sobre la zona afectada puede descamarse a medida que se resuelve el episodio.
De forma típica, el ataque inicial afecta solo a una articulación, aunque existen presentaciones poliarticulares , que pueden ser más frecuentes en las muj eres . La artritis gotosa afecta de forma primaria a las articulaciones periféricas, en particular a las de las extremidades inferiores. Además, pueden resultar afectadas localizaciones determinadas, como la fascia plantar, la inserción del tendón de Aquiles u otras tenosinoviales .
La primera articulación metatarsofalángica resulta afectada en más del 50% de los ataques iniciales y en el 90% de los sujetos en algún momento. Rara vez se produce afectación sacroiliaca, del manubrio esternal o espinal .
Cualquier factor que ocasione un aumento o bien un descenso brusco en la concentración plasmática de uratos puede provocar un ataque agudo; la mayor correlación se establece con los factores que causan un descenso rápido.
En teoría, las elevaciones bruscas de la concentración de uratos pueden ocasionar la formación de cristales, mientras que el descenso de la concentración plasmática y extracelular de uratos puede conducir a la disolución parcial y la destrucción de los cristales formados previamente.
Otros factores provocadores son: estrés, traumatismos, infecciones, hospitalización, cirugía, ayuno, disminución de peso, hiperalimentación, comidas copiosas, alcohol y medicamentos. La hospitalización y los medicamentos son probablemente los factores más significativos de los citados.
Los ataques agudos de gota se presentan en el 20 al 86% de los sujetos con antecedentes de gota cuando se encuentran hospitalizados por motivos médicos o quirúrgicos .
El estrés que representa una enfermedad grave, el cambio de medicación, los movimientos de líquidos y electrólitos y la anestesia general contribuyen probablemente a dichas exacerbaciones.
Los ataques pueden aparecer tras el uso de diuréticos tiacídicos causantes de hiperuricemia o tras la instauración de tratamientos con Alopurinol u otros medicamentos para reducir el urato plasmático. En ocasiones se presentan ataques de artritis gotosa aguda en ausencia de hiperuricemia. Probablemente, la mayor parte de dichos ataques se pueden explicar por la presencia de factores que reducen la concentración plasmática de urato, de manera que modifican temporalmente la hiperuricemia, presente de forma habitual (y que quizá desencadenó el ataque) .
En teoría, la gota puede desarrollarse en cualquier momento en que el líquido sinovial se encuentre sobresaturado de urato. El agua libre se elimina más deprisa del espacio articular que el urato, de manera que si aumenta la cantidad de un liquido sinovial que contenga una concentración normal de urato, como consecuencia de un traumatismo o edema, la concentración intraarticular de urato aumenta temporalmente cuando el problema inicial se resuelve y el agua se elimina con mayor rapidez.
Las concentraciones sobresaturadas de urato pueden causar la formación de cristales y precipitar un ataque .
La gota aguda aparece como consecuencia de la interacción entre los cristales de urato y los leucocitos polimorfonucleares, comprendiendo la activación de mecanismos inflamatorios humorales y celulares. Los cristales de urato activan el complemento a través tanto de la vía clásica como de la alternativa. El factor de Hageman y el sistema de contacto de la coagulación también se activan, lo cual da lugar a síntesis de bradicinina, calicreína y plasmina. La interacción de los cristales de urato con los neutrófilos da lugar a la liberación de enzimas lisosómicas, radicales libres derivados del oxígeno, metabolitos de leucotrienos y prostaglandinas, colagenasa y proteasa.
La fagocitosis de cristales por parte de los neutrófilos causa liberación del factor quimiotáctico inducido por cristales (CCF) .
El CCF, el leucotrieno B4 (LTB4) y el componente activado del complemento C5a son todos los factores quimiotácticos y contribuyen a la respuesta de los leucocitos polimorfonucleares durante la fase inicial de la artritis aguda.
Con el tiempo las células fagocitarias mononucleares sustituyen a los polimorfonucleares . Los cristales de urato provocan la liberación de prostaglandinas (PGE2), enzimas lisosómicas, factor de necrosis tumoral alfa e interleucinas 1 y 6 (IL-I e IL- 6) por parte de dichas células.
Las células de revestimiento sinovial también participan en la respuesta inflamatoria mediante la liberación de mediadores inflamatorios. El potencial inflamatorio de los cristales de urato resulta afectado en gran medida por la presencia de proteínas absorbidas. La IgG absorbida purificada ocasiona la secreción de plaquetas inducida por los cristales, aumento de la síntesis de superóxido y aumento de la liberación de enzimas lisosómicas a partir de los leucocitos polimorfonucleares .
Los tofos son agregados de cristales de urato monosódico monohidratados, rodeados generalmente por células gigantes debido a una reacción inflamatoria celular mononuclear de cuerpo extraño. Se pueden formar en las estructuras articulares y extraarticulares y causan deformidad y desestructuración de los tejidos blandos y duros. En las articulaciones, pueden conducir a la destrucción del cartílago y el hueso, lo cual desencadena cambios degenerativos secundarios.
Una vez asegurado el diagnóstico de artritis gotosa deben manejarse agentes terapéuticos como: antiinflamatorios no esteroideos e inhibidores de la xantino oxidasa.
Actualmente, la mayoría de los medicamentos encontrados en el mercado para el tratamiento de la Enfermedad Gotosa o Gota, están compuestos por principios activos que se encuentran formulados de forma independiente, los cuales cumplen con una actividad terapéutica específica; sin embargo, estos medicamentos generalmente se administran a dosis muy elevadas, provocando efectos secundarios graves
SUMARIO DE LA INVENCIÓN Con el objeto de ofrecer diferentes alternativas farmacéuticas que logren reducir la sintomatología en los pacientes que padecen de enfermedad gotosa o gota, como son: el dolor e inflamación, y que además reduzcan los niveles de uratos y disminuyan el riesgo de presentar efectos secundarios por la administración de dosis elevadas de los fármacos, es que se llevó a cabo el desarrollo de la presente invención, mediante la cual se describen diversas composiciones farmacéuticas compuestas por la combinación de un agente antiinflamatorio no esteroideo y un agente inhibidor de la enzima xantino oxidasa, mismos que actúan de forma sinérgica y se encuentran formulados en una sola unidad de dosificación para ser administradas por vía oral, las cuales brindan beneficios como lo son: menores concentraciones de los principios activos contenidos en la fórmula, menores dosis administradas, maximización del efecto terapéutico, rapidez de la acción farmacológica, reducción del riesgo de que se manifiesten complicaciones severas y la disminución del riesgo de que se presenten efectos secundarios .
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Los agentes antiinflamatorios no esteroideos
(AINE' s) engloban a un amplio grupo de fármacos que poseen una importante actividad analgésica, antiinflamatoria y antipirética, además de otros efectos terapéuticos. Dentro de la clasificación de los AINE' s se encuentran los Ácidos Enólicos, mismos que a su vez están subdivididos en: Pirazolonas (Metamizol) , Pirazolidindionas {Fenilbutazona) , Oxicams (Piroxicam y Meloxicam) . Asimismo, en dicha clasificación podemos encontrar a otro grupo de fármacos denominados Coxibs, al cual pertenecen: el Celecoxib, Parecoxib, Lumiracoxib, Etoricoxib, Rofecoxib (retirado) y Valdecoxib (retirado) .
Los antiinflamatorios no esteroideos manifiestan su acción analgésica aliviando el dolor asociado con la inflamación o con la lesión de un tejido al disminuir la producción de prostanoides que sensibilizan los nociceptores a mediadores, como la bradicinina. Son eficaces en dolores de intensidad leve o moderada. Su efecto antipirético se presenta por inhibición de la producción de prostaglandinas en el hipotálamo e interferencia en los mecanismos de regulación de la temperatura.
Su actividad antiinflamatoria se produce al reducir los componentes de la respuesta inflamatoria en los que los productos de la COX desempeñan un papel importante como es : la vasodilatación, el edema y el dolor.
Todos los antiinflamatorios no esteroideos son analgésicos y antipiréticos, algunos (indometacina, piroxicam) son mas antiinflamatorios, la mayoría son moderadamente antiinflamatorios {ibuprofeno, nabumetona) y otros {paracetamol) tienen un efecto antiinflamatorio mínimo.
Algunos antiinflamatorios no esteroideos cuentan con actividad antiagregante plaquetaria, la cual tiene especial interés en el caso del Ácido Acetilsalicilico por su efecto inhibidor irreversible de la COX de las plaquetas. Este AINE es de gran utilidad en la prevención de accidentes tromboembólicos coronarios y cerebrales . Asimismo, algunos AINE 's cuentan con acción uricosúrica como consecuencia de la inhibición del transporte de ácido úrico desde la luz del túbulo renal al espacio intersticial. Solo se aprecia con algunos AINE' s a dosis altas, como la fenilbutazona, sulfinpirazona o los salicilatos.
En el mecanismo de acción de los AINE' s, todos sus efectos se relacionan con la inhibición de la ciclooxigenasa (COX) y con la inhibición de la producción de prostaglandinas . El AAS es el único que produce una inhibición irreversible de la COX-I. El efecto antiinflamatorio de los AINE' s está claramente relacionado con la inhibición de la COX-2 y muchos de los efectos indeseables se relacionan con la inhibición de la COX-I.
El Meloxicam fue caracterizado como un potente agente antiinflamatorio en diversos modelos convencionales de la inflamación. Además, demostró tener una débil ulcerogenicidad gástrica en el estómago de ratas, a pesar de su potente actividad antiinflamatoria .
Cuando se obtuvieron esos resultados inicialmente , no existia explicación del mejor perfil farmacológico de Meloxicam en comparación con los AINE' s convencionales. En ese momento, solo se conocía una COX (ciclooxigenasa) , la enzima responsable de la síntesis de prostaglandinas , y se pensaba que la inhibición de la actividad de ésta enzima era la responsable tanto de los efectos terapéuticos como de los efectos colaterales de los AINE' s.
La inhibición de la COX, y por ende la prevención de la formación de prostaglandinas, proporcionó una explicación unificadora de la acción de los AINE' s con respecto a sus acciones terapéuticas así como su gastrotoxicidad, nefrotoxicidad y sus efectos antitrombóticos .
A partir del descubrimiento de una segunda enzima COX, la COX- 2, se ha propuesto la hipótesis de que los efectos antiinflamatorios de los AINE' s se logran a través de un mecanismo diferente al de los frecuentemente observados efectos colaterales de estos compuestos, incluida la alteración de la citoprotección en el estómago, la función renal y la inhibición de la agregación plaquetaria. COX-I es la isoenzima constitutiva que se encuentra bajo condiciones fisiológicas en la mayoría de los tejidos, una enzima "de mantenimiento" por así llamarla, mientras que la expresión de COX-2 es en su mayor parte inducida, particularmente durante los procesos inflamatorios. No obstante, evidencia reciente indica que la expresión de COX- 2 también es constitutiva en algunos tejidos, como en el SNC y el riñon.
La mayoría de los AINE 's disponibles inhiben ambas enzimas en forma no selectiva, lo que ocasiona efectos antiinflamatorios (relacionados con la inhibición de COX-I), típicamente de naturaleza gastrointestinal.
A partir de entonces se ha demostrado que Meloxicam inhibe más potentemente a la enzima COX- 2 que a la enzima COX-I a las dosis antiinflamatorias recomendadas, lo que explica los resultados experimentales iniciales: Meloxicam mostró en el rango de los modelos farmacológicos relevantes una inhibición selectiva de la COX-2 con relación a la COX-I en forma dependiente de la dosis; mientras que la inhibición de COX-I fue incompleta, a las dosis recomendadas de Meloxicam no pudo demostrarse la inhibición de la agregación plaquetaria.
El Meloxicam es un derivado enolcarboxamídico que pertenece al grupo del ácido enólico. Desempeña una potente actividad inhibitoria sobre la ciclooxigenasa-2 (COX-2) , con una selectividad 75 veces superior para la COX- 2 comparada con la COX-I, interviniendo como inhibidor en la síntesis de prostaglandinas que tienen la función de ser mediadores responsables de los procesos inflamatorios.
El Meloxicam fue descrito a partir de 1994 como un inhibidor selectivo de COX- 2 con relación a COX-I. El grupo 5-metil presente en el anillo tiazolil del Meloxicam puede entrar al espacio adicional en el sitio activo de COX-2, lo que explica parte de su selectividad. El acceso intracelular efectivo está determinado por sus singulares propiedades lipofílicas y anfifílicas. En su forma acida, el Meloxicam tiene una solubilidad de membrana 10 veces mayor a la del Piroxicam, comparable con la de otros AINE' s.
El Meloxicam sale de las membranas aproximadamente dos veces más rápido que el Diclofenaco. En general, el Meloxicam se transporta rápidamente a través de las membranas, pero dentro de un rango que le permite interactuar eficientemente con su enzima blanco. La baja hidrosolubilidad del Meloxicam a un pH ácido y su comportamiento de protonación anfifílica son los responsables de la cinética tisular que evita una elevada concentración de este fármaco en ciertos tejidos del tubo digestivo.
Por ende, el Meloxicam no muestra el típico comportamiento de "atrapamiento iónico" que caracteriza a los AINE' s de la clase del ácido carbónico, lo que puede contribuir al favorable perfil de tolerabilidad gastrointestinal que se observa clínicamente.
El Meloxicam tiene una buena absorción digestiva y una óptima biodisponibilidad (89%), luego de haber sido administrada una dosis única por vía oral. Algunas de las principales características farmacocinéticas son: su absorción prolongada, sus concentraciones séricas sostenidas y su larga vida media de eliminación (20 horas) , lo que permite que sea administrada una única dosis diaria. Una vez realizada su absorción en el tracto digestivo, el Meloxicam se difunde fácilmente hacia la sangre y los tejidos inflamados, teniendo una alta adherencia con las proteínas plasmáticas (>99%) y sus metabolitos son excretados tanto por la orina como por las heces fecales .
El Celecoxib es un inhibidor selectivo de la enzima ciclooxigenasa-2 (COX- 2) con propiedades antiinflamatorias similares a las de otros fármacos antiinflamatorios no esteroideos (AINE' s), como el naproxeno o el diclofenaco. Debido a su especificidad hacia la ciclooxigenasa-2 , el riesgo de producir efectos adversos a nivel gastrointestinal es menor que con los AINE 's convencionales.
El Celecoxib es un inhibidor no competitivo de la enzima ciclooxigenasa-2 (COX-2) a diferencia de los AINE 's convencionales que son inhibidores de la COX-I y COX-2. Estas enzimas catalizan la conversión del ácido araquidónico a prostaglandina H2 y a tromboxanos . La COX- 2 es importante en la síntesis de sustancias que participan como mediadoras en la inflamación y el dolor, mientras que la COX-I produce prostaglandinas que son beneficiosas para las funciones gástrica y renal. Los AINE 's no selectivos como el Ibuprofeno o el Diclofenaco inhiben los dos tipos de ciclooxigenasa, siendo el Celecoxib unas 100 veces más activo frente a la COX-2 que frente a la COX-I. A las concentraciones que se alcanzan en el plasma y en los órganos diana, el Celecoxib no inhibe la COX-I de forma significativa. Tampoco tiene ningún efecto sobre la agregación plaquetaria. La expresión de la COX-2 es inducida por varias citokinas y factores de crecimiento en los tejidos inflamados. Estudios in vitro han puesto de manifiesto que los inhibidores de la COX-2, sean selectivos o no, tienen una actividad preventiva sobre el cáncer de colon.
El Celecoxib es un fármaco para administrar por vía oral. Después de la administración de una dosis oral, el Celecoxib es bien absorbido alcanzando los niveles plasmáticos máximos en unas 3 horas. Los alimentos con alto contenido de grasa retrasan la absorción del Celecoxib de 1 a 2 horas y aumentan la cantidad de fármaco que se absorbe en un 10 a un 20%; por lo tanto, este fármaco se puede administrar con las comidas . El Celecoxib se une extensamente a las proteínas plasmáticas (sobre todo a la albúmina) y se distribuye ampliamente, siendo el volumen de distribución aproximadamente de 400 L. El Celecoxib se metaboliza a través del sistema enzimático CYP 2C9 del citocromo P450, habiéndose identificado tres metabolitos inactivos en el plasma humano. Sólo una pequeña parte del Celecoxib sin alterar es recuperada en la orina y las heces. Los metabolitos se eliminan por vía renal y biliar: el 57% de la dosis se recupera en las heces y el 27% en la orina. El aclaramiento plasmático es de unos 500 mL./min., y la vida media de eliminación es de aproximadamente 11 horas. La edad avanzada, la insuficiencia hepática o la disfunción renal afectan la farmacocinética del Celecoxib de forma significativa, influyendo también en ésta los factores étnicos y raciales . Los agentes inhibidores de la enzima xantino oxidasa disminuyen la producción de ácido úrico bloqueando el paso final en la síntesis de uratos , mientras que se elevan las oxipurinas (xantina e hipoxantina) . El ácido úrico es el principal producto del catabolismo de las purinas endógenas o exógenas (dieta) en el hombre. Es un ácido débil, que se encuentra en forma de urato monosódico al pH y temperatura de los líquidos corporales. La mayor parte de la producción de ácido úrico tiene lugar en el hígado y en la mucosa intestinal que disponen de la enzima xantino oxidasa (XO) . De aquí pasa a la sangre donde alcanza una concentración de 2.5 a 6.8 mg./dL., dependiendo de la edad (aumenta hasta los 20 años) y del sexo (V>M) , presumiblemente por la acción uricosúrica de los estrógenos. El 50% del ácido úrico total del organismo es eliminado diariamente y reemplazado, Η del ácido úrico se eliminan por el riñon y el H restante por la bilis y otras secreciones digestivas con las que pasa al intestino y sufre la acción de la enzima uricasa (úrico-oxidasa) de las bacterias intestinales. Del 98 al 100 % del urato filtrado por el glomérulo, es reabsorbido. Un 50% del mismo es secretado en tramos distales y la mayor parte de éste es posteriormente reabsorbido (reabsorción postsecretora) de forma que aparece en orina sólo el 10% del ácido úrico inicialmente filtrado. Cuando la concentración de uratos extracelulares sobrepasa un nivel crítico, se produce la saturación de los fluidos corporales por uratos, pudiendo precipitar en diversos tejidos del organismo (principalmente a nivel de las articulaciones) en forma de cristales de urato monosódico.
La presencia de cristales de uratos intraarticulares puede ser asintomática, o bien, puede desencadenar un proceso inflamatorio por activación del complemento, del sistema de las kininas, y liberación de citokinas (Interleucina-1 , Interleucina-6 , Interleucina-8, TNF-alfa) por los macrófagos y sinoviocitos . La activación del endotelio y la absorción de IgG y ClQ por los cristales, son mecanismos claves en este proceso.
El reiterado depósito de cristales de urato monosódico da lugar a la aparición de tofos (agregados de cristales de urato) , que provocan una reacción inflamatoria granulomatosa celular mononuclear de cuerpo extraño, dando lugar a cambios degenerativos secundarios y artritis crónica.
El Alopurinol es una pirazolopirimidina, análogo de la hipoxantina, que funciona como un potente inhibidor competitivo de la enzima xantino oxidasa. Es el agente antihiperuricemiante más utilizado, siendo también un sustrato para dicha enzima. El Oxipurinol, el principal metabolito del Alopurinol, también es un inhibidor eficaz de la enzima xantino oxidasa.
El Alopurinol se absorbe en el aparato digestivo y tiene una biodisponibilidad del 80 al 90%. La vida media del Alopurinol es de 1 a 2 horas y del Oxipurinol es de 21 horas. La excreción de Oxipurinol aumenta con los agentes uricosúricos y se reduce en la insuficiencia renal. El Alopurinol resulta eficaz en el tratamiento de todos los tipos de hiperuricemia, pero está indicado de forma específica en los siguientes casos: 1) pacientes con gota, 2) signos de sobreproducción de uratos (ácido úrico en orina de 24 horas mayor de 4.8 mmol (800 mg . ) con una dieta normal, o mayor de 3.6 mmol (600 mg . ) con una dieta de restricción de purinas) y 3) pacientes con cálculos renales compuestos por 2 , 8-dihidroxiadenina.
La administración de Alopurinol reduce la concentración plasmática de uratos y la excreción urinaria de ácido úrico durante las primeras 24 horas, con una reducción máxima a las dos semanas.
Aproximadamente el 20% del Alopurinol ingerido se excreta en las heces . Mientras que el Alopurinol es eliminado por filtración glomerular, el Oxipurinol se reabsorbe por los túbulos renales de una forma similar a como lo hace el ácido úrico. El aclaramiento del Oxipurinol es aumentado por los fármacos uricosúricos y, en consecuencia, la asociación de un fármaco uricosúrico al Alopurinol reduce los efectos de éste sobre la xantino oxidasa y aumenta la excreción de ácido úrico en la orina.
Su mecanismo de acción se debe a que, dado que el Alopurinol es un sustrato de la enzima xantina oxidasa a la que inhibe competitivamente, da lugar a Oxipurinol, también inhibidor de la xantino oxidasa, e inhibe la síntesis de novo de purinas . El Alopurinol actúa sobre el catabolismo de las purinas sin modificar su biosíntesis. Reduce la producción de ácido úrico al inhibir las reacciones bioquímicas que conducen a su formación. El Alopurinol es un análogo estructural de la base púrica natural hipoxantina y actúa como un inhibidor de la xantino oxidasa, la enzima responsable de la conversión de hipoxantina a xantina y de xantina a ácido úrico, el producto final del catabolismo de las purinas en el hombre.
La reducción de la concentración de ácido úrico favorece la disolución de los precipitados (tofos), evita la aparición de ataques agudos e impide la aparición de complicaciones severas. Prácticamente desaparece la posibilidad de que se formen cálculos de ácido úrico y, con ello, la aparición de nefropatías. La dosis eficaz de Alopurinol es de 300 mg./día.
Sin embargo, la dosis necesaria para controlar la concentración plasmática de uratos de forma adecuada depende de la gravedad de la enfermedad tofácea y de la función renal.
Se puede administrar Alopurinol una vez al día, gracias a la vida media prolongada del Oxipurinol .
Hoy en día, existen en el mercado diferentes productos farmacéuticos que están destinados para el tratamiento de la Enfermedad gotosa o Gota, en los cuales encontramos diversos principios activos que están formulados de forma independiente; no obstante, en este tipo de patologías es de vital importancia evitar las complicaciones severas, así como reducir rápidamente la sintomatología de los pacientes que sufren de dicha enfermedad; por lo tanto, la actividad de un grupo de fármacos que actúen por diferentes vías es indispensable para conseguir la recuperación de los pacientes que cursan con dicho padecimiento. Las composiciones farmacéuticas que son motivo de la presente invención están compuestas por la combinación sinérgica de un agente antiinflamatorio no esteroideo, como lo es el principio activo: Meloxicam o Celecoxib y un agente inhibidor de la enzima xantino oxidasa, como lo es el principio activo: Alopurinol, además de excipientes farmacéuticamente aceptables, mismas que están formuladas en una sola unidad de dosificación para ser administradas por vía oral, las cuales están indicadas para el control y tratamiento de la Enfermedad Gotosa o Gota, la Artritis Gotosa y otras patologías relacionadas.
Dichas composiciones farmacéuticas han sido desarrolladas tomando en cuenta que los principios activos antes mencionados cuentan con una gran eficacia y capacidad para el control y tratamiento de la Enfermedad Gotosa o Gota, la Artritis gotosa y otras patologías relacionadas, y debido a que éstos fármacos actúan de forma sinérgica, consiguen reducir la sintomatología que caracteriza a dichas patologías, como es la inflamación y el dolor, reducir las concentraciones de uratos plasmáticos, además de aumentar la rapidez de su acción farmacológica al administrar menores concentraciones de los principios activos, maximizar su efecto terapéutico con menores dosis administradas, reducir el riesgo de presentar complicaciones severas y disminuir el riesgo de manifestar efectos secundarios.
Uno de los agentes antiinflamatorios no esteroideos utilizado en las composiciones farmacéuticas objeto de la presente invención, como lo es el principio activo: Meloxicam, se encuentra presente en la formulación en un rango de concentración desde 7.5 mg . hasta 45.0 mg. por unidad de dosis.
Otro de los agentes antiinflamatorios no esteroideos utilizado en las composiciones farmacéuticas objeto de la presente invención, como lo es el principio activo: Celecoxib, se encuentra presente en la formulación en un rango de concentración desde 100.0 mg. hasta 600.0 mg. por unidad de dosis. El agente inhibidor de la enzima xantino oxidasa utilizado en la composición farmacéutica objeto de la presente invención, como lo es el principio activo:
Alopurinol, se encuentra presente en la formulación en un rango de concentración desde 100.0 mg. hasta 800.0 mg . por unidad de dosis.
Para evaluar la efectividad de la composición farmacéutica motivo de la presente invención, así como el efecto sinérgico que resulta al combinar los principios activos : Alopurinol y Meloxicam en una sola unidad de dosificación, se realizó un estudio clínico comparativo en el cual se administraron los principios activos antes mencionados por separado, así como la combinación de los mismos.
ESTUDIO CLÍNICO PARA EVALUAR LA EFECTIVIDAD Y EL EFECTO SINÉRGICO DE LA COMBINACIÓN ALOPURINOL / MELOXICAM.
FASE I. Materiales y Métodos.
Se realizó un estudio clínico que evaluó la efectividad de la combinación Alopurinol/Meloxicam vs . la administración de Alopurinol y Meloxicam administrados de forma independiente en pacientes con Artritis Gotosa.
Para este estudio se eligieron aleatoriamente a 150 pacientes con gota y con niveles de ácido úrico de al menos 8 mg./dL.
El criterio principal de valoración era una concentración de ácido úrico de 6 mg./dL, en las últimas 3 determinaciones mensuales. Los criterios de valoración secundarios incluían la reducción de la incidencia de los episodios de reagudización de la gota .
Los pacientes fueron divididos en tres grupos de tratamiento con un seguimiento de 52 semanas. El Grupo 1 recibió: Alopurinol 300 mg. al día.
El Grupo 2 recibió: Meloxicam 15 mg . al día.
El Grupo 3 recibió: la combinación de Alopurinol 300 mg. / Meloxicam 15 mg.
Resultados . No hubo diferencias significativas en relación a las características básales de los pacientes (Tabla 1) .
Tabla 1 Características básales
Grupo 1 Grupo 2 Grupo 3
(n=50) (n=50) (n=50)
Edad 45 ± 7 47 ± 4 42 + 8
Sexo F/M 5/45 8/42 10/40
Ácido Úrico > 7 100% 100% 100%
Dolor 100% 100% 100%
El criterio principal de valoración fue alcanzado en la mayoría de los pacientes que recibieron la combinación Alopurinol / Meloxicam, reduciendo en promedio de 10 mg./dL. basal a 6 mg./dL. al final del estudio; los pacientes que recibieron Alopurinol solo, mejoraron de un promedio basal de 9 mg./dL. a 7 mg./dL. al final del estudio y los pacientes que recibieron Meloxicam solo, de 10 mg./dL. basal a 9 mg./dL al final (Tabla 2) .
Tabla 2. Datos básales y finales de concentraciones de ácido úrico
Grupo 1 Grupo 2 Grupo 3
(n=50) (n=50) (n=50)
Ácido Úrico 9 / 7 mg /dL 10 / 9 mg /dL 10 / 6 mg /dL Promedio
Aunque la incidencia de episodios agudos disminuyó con el tratamiento continuado, la incidencia global durante las semanas 9 a 52 fue mejor en el grupo que recibió la combinación y similar en los grupos 1 y 2. Se reportaron 6 eventos adversos en el Grupo 1 de tratamiento con molestias gastrointestinales como sensación de plenitud; 12 pacientes del Grupo 2 reportaron dolor gastrointestinal epigástrico y sensación de plenitud y en el Grupo 3 se reportaron 5 eventos adversos con molestias gastrointestinales como nausea y dolor gastrointestinal. En ninguno de los grupos fue necesario suspender el tratamiento, las molestias cedieron durante el transcurso de las semanas, fue recomendado, administrar el medicamento durante la comida principal.
Conclusiones .
El estudio demostró que la combinación de Alopurinol / Meloxicam es efectiva para el tratamiento de los ataques agudos de gota, reduciendo de forma importante tanto la sintomatología como los niveles de uratos en sangre; si bien en muchos casos es suficiente el uso de un AINE acompañado de una dieta, en estos pacientes el uso de fármacos que logren reducir los uratos es primordial, especialmente cuando los niveles de ácido úrico están elevados.
Es importante mencionar que el tratamiento en estos casos debe ser a largo plazo, para evitar recaídas y lograr un buen mantenimiento de los niveles de ácido úrico.
FASE II.
Con el propósito de definir la posibilidad de una interacción sinérgica antinociceptiva, se determinaron los efectos antinociceptivos de Meloxicam, que actúa como un antiinflamatorio no esteroideo (AINE) y de
Alopurinol, que actúa como un inhibidor de la enzima xantino oxidasa, administrados tanto en forma separada como en combinación.
Se determinó para tal propósito, un modelo de dolor artrítico en rata. Los datos se interpretaron empleando el análisis de Interacción Sinérgica de Superficie (ISS) y un análisis isobolográfico para determinar la naturaleza de la interacción. La ISS se calculó a partir del efecto antinociceptivo total producido por la combinación después de la sustracción del efecto antinociceptivo producido por el fármaco en forma separada. Las ratas femeninas recibieron el Meloxicam solo en forma oral, el Alopurinol solo en forma oral, ó 24 diferentes combinaciones de Meloxicam más Alopurinol . Material y métodos .
Para este estudio se emplearon ratas femeninas del género Wistar [CrI (WI) BR] que pesaban entre 180 a 200 gr. Se mantuvo la alimentación durante 12 horas antes de los experimentos con libre acceso al agua. Todos los procedimientos del experimento siguieron las recomendaciones del Committee for Research and Ethical Issues of the International Association for the Study of Pain (Covino et al., 1980) y las Guidelines on Ethical Standars for Investigations of Experimental Pain in Animáis (Zimmermann, 1983), y se llevaron a cabo conforme a un protocolo aprobado por el Animal Ethics Committee local. El número de animales en el experimento se mantuvo al mínimo, y los animales se mantuvieron en un cuarto con clima y control de luz con ciclo luz / oscuridad de 12 horas.
Medicamentos .
El ácido úrico se suspendió en aceite mineral; el Meloxicam y el Alopurinol se disolvieron en carboximetilcelulosa y se administraron por vía oral.
Diseño del estudio.
Se estudiaron los efectos antinociceptivos producidos por Meloxicam y Alopurinol administrados ya sea en forma individual o en combinación. Primero, cada dosis de Meloxicam (0.18, 0.32, 0.56, 1.0, 1.78, 3.16 ó 5.62 mg./kg.) o de Alopurinol (3.16, 5.62, 10.0, 17.78, 31.62, 56.23 ó 100.0 mg./kg.) se suministró a seis animales para obtener las correspondientes curvas dosis - respuesta. Las dosis de Meloxicam (0.10, 0.18, 0.32, 0.56, 1.0 ó 1.78 mg./kg.) y de Alopurinol (3.16, 5.62, 10.0 ó 17.78 mg./kg.) se combinaron entonces para analizar las posibles interacciones sinérgicas (24 combinaciones en total) . Al final del estudio las ratas fueron sacrificadas.
Medición de la actividad antinociceptiva .
La actividad antinociceptiva se determinó empleando el modelo PIFIR que se ha descrito en detalle
(López-Muñoz et al., 1993b) . Los animales se anestesiaron con éter en cámara (secadora de vidrio
Pirex saturada con vapor de éter) . La nocicepción se indujo mediante una inyección intraarticular (ia) de 0.05 mL. de ácido úrico suspendido en aceite mineral en la articulación de la rodilla de la pata trasera derecha. La suspensión se preparó moliendo 3.0 g. de ácido úrico con 10 mL de aceite mineral en un mortero de vidrio con pistilo (Pirex) . La inyección intraarticular se llevó a cabo a través del ligamento patelar empleando una jeringa de vidrio de 1 mL.
(Beckton Dickinson LTA, Brasil) con aguja de 24 de 5 mm . Inmediatamente después, se implantó un electrodo a la superficie plantar de cada garra posterior entre los cojines plantares. Se les permitió a las ratas recuperarse de la anestesia y luego se les colocó en un cilindro de acero inoxidable el cual se rotó a razón de 4 rpm, forzando a las ratas a caminar por periodos de 2 minutos cada 30 minutos durante 6.5 horas. No fue necesario un periodo de entrenamiento porque las ratas lo aprendieron en el primer minuto. El tiempo de contacto entre cada electrodo del miembro de la rata y el cilindro fue registrado. Después de la inyección del ácido úrico, las ratas desarrollaron progresivamente disfunción del miembro dañado. El tiempo de contacto del miembro dañado alcanzó un valor de cero luego de 2.5 horas después de la aplicación de la inyección de ácido úrico; en este tiempo se les administró Meloxicam y Alopurinol en forma independiente o en combinación. Este tiempo se consideró como tiempo cero para las medidas de los efectos antinociceptivos ; estos efectos se midieron cada 30 minutos durante las siguientes 4 horas. Esto permitió determinar el curso del tiempo de los efectos antinociceptivos en el mismo animal. Se consideró la antinocicepción como la recuperación del tiempo de contacto. Los datos se expresan como índice Porcentual de Funcionalidad (IF%, es decir, el tiempo de contacto de la pata inyectada dividido entre el tiempo de contacto de la pata izquierda, control, multiplicado por 100) . Para el propósito de este estudio, el inducir nocicepción en los animales de experimentación fue inevitable. Sin embargo, se tuvo cuidado en evitar sufrimiento innecesario. Todos los experimentos se realizaron entre las 7:00 am y las 2:00 pm.
Mediciones de los efectos gastrointestinales . Ratas femeninas del género Wistar (entre 150 y 180 gr. de peso corporal) se sometieron a ayuno 24 horas antes del experimento. Se les suministró Indometacina (20 mg./kg.) para provocarles úlcera gástrica al 100%
(Lee et al., 1971; Déciga-Campos et al., 2003).
Posteriormente, se les suministró por vía oral
Meloxicam (1.0 mg./kg.), Alopurinol (17.8 mg./kg.), vehículo (carboximetilcelulosa al 0.5%) y la combinación de Meloxicam más Alopurinol (1.0 y 17.8 mg./kg., respectivamente) al mismo tiempo y a los cinco grupos (de seis ratas cada uno) . Hacia las 2.5 horas posteriores, todos los grupos recibieron una segunda administración de las mismas dosis. Se examinaron los estómagos a las 5 horas posteriores al primer tratamiento de la siguiente manera: se sacrificó a los animales y se les separó el estómago el cual se abrió a lo largo de la curvatura menor, se enjuagó suavemente con formol (2%) y se examinó. La severidad de las lesiones gástricas inducidas con medicamento se calculó como la razón del número de lesiones (úlcera estomacal o erosión) causadas por el tratamiento suministrado y el número de lesiones provocadas por la indometacina
(100%) . Esto se consideró que reflejaba los efectos adversos inducidos por el medicamento. La suma del área de todas las úlceras en el cuerpo de cada animal se calculó y sirvió como índice ulcerativo. El porcentaje de lesiones gástricas se calculó de la siguiente manera:
% de lesión gástrica = (IUM/IUI) x 100 en donde IUM es el índice Ulcerativo del Medicamento a prueba (mm2) y IUI es el índice Ulcerativo de la Indometacina ensayada (mm2) .
Presentación de los datos y evaluación estadística.
Los datos del estudio, las tablas y las figuras se expresan como IF%. Las curvas para las IF% vs . el tiempo se hicieron para cada tratamiento y se obtuvo el curso de tiempo correspondiente. La antinocicepción se estimó como la recuperación de las IF%. El efecto antinociceptivo acumulado durante todo el periodo de la observación (4 horas) se determinó como el área bajo la curva (ABC) del curso del tiempo para obtener la curva dosis - respuesta y para analizar el efecto antinociceptivo total obtenido por el agente analgésico ya sea solo o en combinación.
El sinergismo entre Meloxicam y Alopurinol se calculó con el análisis de la Superficie de la Interacción Sinérgica (SIS) y con el método isobolográfico (Tallarida et al., 1989). El ABC se calculó para cada combinación de los medicamentos y para cada uno de los componentes . Sobre la base de la adición de los efectos farmacológicos individuales (Seegers et al., 1981) se esperaba una ABC equivalente a la suma. Si la suma de las correspondientes ABCs individuales era más elevada que la suma teórica, el resultado se consideraba potenciación; si era similar a la suma teórica se consideró que mostraba efectos antinociceptivos aditivos. El ABC se obtuvo mediante la regla trapezoidal (Rowland y Trozer, 1989) . Todos los valores para cada tratamiento son promedio ± S. E. M., para seis animales. Los valores ABC para las combinaciones de medicamentos se compararon con los valores que se esperaban empleando la prueba de Student . Los valores ABC obtenidos de los efectos antinociceptivos producidos por Meloxicam o Alopurinol
(ensayados aparte) se compararon con los valores ABC obtenidos de la correspondiente combinación mediante el análisis de varianza (ANOVA) y la prueba de Dunnett .
Los efectos colaterales gastrointestinales provocados por Meloxicam o Alopurinol (ensayados ya sea en forma separada o en combinación) se obtuvieron con los efectos gastrointestinales obtenidos de la Indometacina mediante la prueba de Dunnett. Se consideró P< 0.05 como estadísticamente significativo.
Las dosis que provocaban 50% del efecto máximo posible (DE50) de cada fármaco se calcularon realizando un análisis de regresión linear de la porción linear de las curvas dosis - respuesta. El isobolograma se construyó empleando la DE50 cuando se daban los fármacos solos o en combinación. Para ejecutar los análisis isobolográficos , se suministraron Meloxicam y Alopurinol en combinación como tasas fijas de la dosis equieficaz DE50 para cada fármaco (Meloxicam= 1:1) . Los valores DE50 (± S. E. M.) para Meloxicam y Alopurinol fueron delineados sobre los ejes "x-" y "y~"» respectivamente, y el punto aditivo teórico se calculó de acuerdo a Tallarida et al., (1989). Se calculó el valor DE50 de la dosis total de la combinación a partir de la curva dosis-respuesta de los fármacos combinados. Se valoró la significancia estadística entre el punto teórico aditivo y el valor experimental DE50 empleando la prueba de Student. La cifra experimental DE50 significativamente menor que la adición teórica DE50 (P<0.05) se consideró que indicaba interacción sinérgica entre Meloxicam y Alopurinol . Resultados .
Efecto del ácido úrico y de los vehículos. El ácido úrico indujo una disfunción completa de la pata derecha trasera correspondiente a un valor IF% de cero en 2.5 horas. Esta disfunción se mantuvo a lo largo de todo el periodo experimental que duró 4 horas. Las ratas que recibieron vehículo (carboximetilcelulosa al 0.5%) no mostraron ninguna recuperación significativa del IF% durante el periodo de observación. Las dosis empleadas de Meloxicam (0.18 - 5.62 tng./kg.) y Alopurinol (3.16 - 56.23 mg./kg.) no afectaron la capacidad para caminar de las ratas tratadas con dichos fármacos (no se muestran los datos) . Alopurinol a 100 mg./kg., no produjo efectos colaterales en los animales, ni efectos en la capacidad de caminar de las ratas .
Efectos antinociceptivos de los fármacos ensayados individualmente . Las curvas dosis - respuesta para Meloxicam y
Alopurinol . Ambos fármacos aumentaron el ABC de forma dosis - dependiente pero mostraron eficacia diferente
(Meloxicam produjo la máxima eficacia) . Por lo tanto,
Meloxicam (2.16 mg./kg.) mostró una gran eficacia antinociceptiva de 295.8 ± 14.9 au y Alopurinol (56.23 mg./kg.) mostró una eficacia antinociceptiva de 207.7 ± 24.7 au. Los valores DE50 para los fármacos indican que hubo diferencias significativas en sus potencias antinociceptivas : Meloxicam (DE50= 0.86 ± 0.10 mg./kg.) fue más potente que Alopurinol (DE50= 44.29 ± 0.06 mg./kg.) . No hubo efectos adversos con las dosis empleadas .
Efectos antinociceptivos de las combinaciones de los fármacos. El efecto antinociceptivo de las 24 combinaciones sobre las gráficas tridimensionales. Estas se construyeron empleando el promedio de seis animales para cada dosis ya sea solo o en combinación. El máximo efecto antinociceptivo que se puede obtener de las varias combinaciones de Meloxicam + Alopurinol (1.78 + 17.78 mg./kg., respectivamente) fue 372.7 ± 15.6 au. El análisis estadístico de los datos indican una interacción entre Meloxicam y Alopurinol (P<0.05) mientras que no hubo efectos antagónicos de la combinación ensayada.
Los resultados con el objeto de discernir entre efectos aditivos y efectos de potenciación. En estos se calculó a partir del efecto antinociceptivo total producido por las combinaciones después de la sustracción del efecto antinociceptivo producido por cada componente solo. Los resultados mayores al nivel "0" se consideró que indicaban potenciación, en tanto aquellos de nivel "0" se consideraron adición. Aunque este tipo de mapeo permite la observación de efectos antinociceptivos antagonistas, estos no se obtuvieron en el presente estudio. Del mismo modo, 14 combinaciones de Meloxicam + Alopurinol produjeron efectos antinociceptivos y 10 produjeron potenciación con límites de confiabilidad del 95% (P<0.05), estas combinaciones fueron: 17.78 mg./kg. de Alopurinol con ya sea, 0.18, 0.32 ó 0.56 mg./kg. de Meloxicam; 10.0 mg./kg. de Alopurinol con ya sea 0.18, 0.32, 0.56 ó 1.78 tng./kg. de Meloxicam; 5.62 mg./kg. de Alopurinol con ya sea 0.32 ó 0.56 mg./kg. de Meloxicam y 3.16 mg./kg. de Alopurinol con 0.32 mg./kg. de Meloxicam. Con el propósito de obtener la superficie de las interacciones sinérgicas para las combinaciones de Meloxicam + Alopurinol, todos los puntos de interacción se unificaron en un plano. El resultado es la superficie de interacción sinérgica de estos medicamentos analgésicos mostrados. Es fácil visualizar las interacciones medicamentosas de Meloxicam + Alopurinol (i.e., adición o potenciación) . Por ejemplo 10 combinaciones de Meloxicam + Alopurinol mostraron diferentes grados de potenciación de los efectos antinociceptivos, pero 2 combinaciones de Meloxicam + Alopurinol mostraron efectos de alta potenciación (0.32 ± 10 y 0.56 + 10 mg./kg., respectivamente) . Alopurinol a la dosis de 10.0 mg./kg. proporcionó una ABC de 22.5 ± 9.3 au y Meloxicam, a la dosis de 0.32 mg./kg. rindió una ABC de 65.0 ± 9.6 au; sin embargo, la combinación de Meloxicam + Alopurinol (10 + 0.32 mg./kg.) permitió una AUC de 233.5 ± 25.8 au, lo cual es mayor que la ABC esperada resultando de la suma de los valores individuales (i.e.; 87.5 au) (P<0.001) . El análisis de la Emáx de las curvas de curso de tiempo correspondiente mostraron un incremento en los valores obtenidos de las combinaciones (86.6 ± 6.3%) lo cual fue más elevado que los valores correspondientes (Meloxicam 33.7 ± 8.7% y Alopurinol
17.1 ± 9.1%) obtenido de la suma aritmética (50.8%). Los efectos antinociceptivos obtenidos por las combinaciones que produjeron el máximo efecto antinociceptivo son: 1.78 mg./kg. de Meloxicam + 17.78 mg./kg. de Alopurinol, y la combinación que produjo potenciación más alta es: 0.56 mg./kg. de Meloxicam +
10.0 mg./kg. de Alopurinol. La antinocicepción producida por Meloxicam + Alopurinol (1.78 + 17.78 mg./kg.) representó el efecto antinociceptivo máximo
(el cual representa una recuperación total) obtenido con 372.7 ± 15.6 au, mientras que Meloxicam administrado de forma independiente (1.78 mg./kg.) mostró una ABC de 279.0 ± 15.5 au, y Alopurinol administrado independientemente (17.78 mg./kg.) produjo
58.2 ± 23.7 au solamente. Este resultado fue importante si se considera que la dosis máxima de Meloxicam empleada (3.16 mg./kg.) produjo menos efecto antinociceptivo: 295.8 ± 14.9 au. La combinación descrita (0.56 mg./kg. de Meloxicam + 10.0 mg./kg. de
Alopurinol) únicamente representa una combinación que produjo la máxima potenciación del efecto antinociceptivo (169.4% más ABC o efecto antinociceptivo completo que es la suma de las ABCs individuales) ; asimismo, tanto el curso del tiempo y la
ABC obtenida con esta combinación fueron más elevadas
(P<0.001) que los valores respectivos obtenidos con la suma de los agentes individuales (121.2 au) . La antinocicepción producida por la combinación de Meloxicam / Alopurinol (0.56 + 10.0 mg./kg.) fue de 290.6 ± 27.7 au, mientras que el Meloxicam administrado solo (0.56 mg./kg.) mostró una ABC de 98.7 ± 15.5 au y el Alopurinol administrado solo (10.0 mg./kg.) produjo una ABC de 22.5 ± 9.3 au solamente. Se obtuvo un efecto antinociceptivo significativo con la combinación durante todo el periodo de observación (4 horas) . Otro enfoque para investigar la interacción sinérgica entre los dos fármacos analgésicos seleccionados es el método isobolográfico, Tallarida et al., 1989. El isobolograma mostró la interacción antinociceptiva de Meloxicam y Alopurinol en el modelo de discapacidad funcional inducida por dolor en ratas. El punto experimental se ubica lejos debajo de la línea aditiva, indicando un sinergismo aditivo (P<0.05).
Medición de efectos colaterales gastrointestinales .
La administración de Alopurinol no produjo úlceras o erosiones. Sus efectos adversos fueron similares a los del vehículo. Sin embargo, el Meloxicam generó un área más baja de úlceras (13.7 ± 2.7 mm2) y menor número de erosiones (15.0 ± 4.9) que la Indometacina
(P<0.05), lo cual se consideró como el componente más nocivo en términos de número y severidad de lesiones causadas en el estómago (i,e., úlceras y erosiones)
(100%) . La combinación de Meloxicam + Alopurinol generó menos úlceras (16.9 ± 6.9 mm2) y menor número de erosiones (5.0 ± 1.4) que la Indometacina (P<0.05).
Resulta interesante que la combinación de Meloxicam +
Alopurinol redujo la generación de erosiones (P< 0.05) y las ulceraciones fueron similares a las de Meloxicam administrado solo.
Conclusiones .
La combinación Meloxicam + Alopurinol mostró un eficaz efecto sinérgico, comparado con la administración de dichos fármacos de forma independiente, por otra parte, mostró menores efectos colaterales gastrointestinales como las ulceraciones.
La combinación puede ser administrada en enfermedades como la gota, la artritis gotosa u otras patologías relacionadas.

Claims

NOVEDAD DE LA INVENCIÓNHabiendo descrito la presente invención, se considera como novedad y, por lo tanto, se reclama como propiedad lo contenido en las siguientes REIVINDICACIONES
1. Composiciones farmacéuticas caracterizadas porque están compuestas por la combinación sinérgica de un agente antiinflamatorio no esteroideo, tal como lo es el principio activo: Meloxicam o Celecoxib, y un agente inhibidor de la enzima xantino oxidasa, tal como lo es el principio activo: Alopurinol, además de excipientes farmacéuticamente aceptables; en donde dichos principios activos se encuentran presentes en las formulaciones en un rango de concentración que comprende desde 7.5 mg. hasta 45.0 mg . para el Meloxicam, desde 100.0 mg. hasta 600.0 mg . para el Celecoxib y desde 100.0 mg . hasta 800.0 mg . para el Alopurinol; las cuales están formuladas en unidades de dosificación únicas para ser administradas por vía oral, mismas que están indicadas para el control y tratamiento de la Gota, Artritis gotosa y otras enfermedades relacionadas.
2. Composición farmacéutica de conformidad con la reivindicación 1, caracterizada porque esta compuesta por la combinación sinérgica de un agente antiinflamatorio no esteroideo, como lo es el principio activo: Meloxicam, y un agente inhibidor de la enzima xantino oxidasa, como lo es el principio activo: Alopurinol, además de excipientes farmacéuticamente aceptables, mismos que se encuentran formulados en una sola unidad de dosificación.
3. Composición farmacéutica de conformidad con la reivindicación 2, caracterizada porque el agente antiinflamatorio no esteroideo, como lo es el principio activo: Meloxicam, se encuentra presente en la formulación en un rango de concentración que comprende desde 7.5 mg . hasta 45.0 mg., siendo preferentemente utilizada en la fórmula una concentración de 7.5 mg . a 15.0 mg. por unidad de dosis.
4. Composición farmacéutica de conformidad con las reivindicaciones 2 y 3, caracterizada porque el agente inhibidor de la enzima xantino oxidasa, como lo es el principio activo: Alopurinol, se encuentra presente en la formulación en un rango de concentración que comprende desde 100.0 mg. hasta 800.0 mg . , siendo preferentemente utilizada en la fórmula una concentración de 100.0 mg. a 300.0 mg . por unidad de dosis .
5. Composición farmacéutica de conformidad con las reivindicaciones 2 a 4, caracterizada porque esta formulada en una sola unidad de dosificación para ser administrada por vía oral en forma de cápsulas o tabletas .
6. Composición farmacéutica de conformidad con las reivindicaciones 2 a 5, caracterizada porque esta indicada para el control y/o tratamiento de la Enfermedad gotosa o Gota, la Artritis gotosa y otras patologías relacionadas.
7. Composición farmacéutica de conformidad con la reivindicación 1, caracterizada porque esta compuesta por la combinación sinérgica de un agente antiinflamatorio no esteroideo, como lo es el principio activo: Celecoxib, y un agente inhibidor de la enzima xantino oxidasa, como lo es el principio activo: Alopurinol, además de excipientes farmacéuticamente aceptables, mismos que se encuentran formulados en una sola unidad de dosificación.
8. Composición farmacéutica de conformidad con la reivindicación 7, caracterizada porque el agente antiinflamatorio no esteroideo, como lo es el principio activo: Celecoxib, se encuentra presente en la formulación en un rango de concentración que comprende desde 100.0 mg . hasta 600.0 mg., siendo preferentemente utilizada en la fórmula una concentración de 100.0 mg . por unidad de dosis.
9. Composición farmacéutica de conformidad con las reivindicaciones 7 y 8, caracterizada porque el agente inhibidor de la enzima xantino oxidasa, como lo es el principio activo: Alopurinol, se encuentra presente en la formulación en un rango de concentración que comprende desde 100.0 mg . hasta 800.0 mg., siendo preferentemente utilizada en la fórmula una concentración de 300.0 mg. por unidad de dosis.
10. Composición farmacéutica de conformidad con las reivindicaciones 7 a 9, caracterizada porque esta formulada en una sola unidad de dosificación para ser administrada por vía oral en forma de cápsulas o tabletas .
11. Composición farmacéutica de conformidad con las reivindicaciones 7 a 10, caracterizada porque es utilizada para el control y/o tratamiento de la Enfermedad gotosa o Gota, la Artritis gotosa y otras patologías relacionadas.
12. Composiciones farmacéuticas de conformidad con las reivindicaciones 1 a 11, caracterizadas porque manifiestan una importante eficacia para el control y tratamiento de la inflamación y el dolor, además de garantizar la reducción de los niveles de uratos plasmáticos presentes en los pacientes que padecen de enfermedad gotosa o gota, artritis gotosa u otras enfermedades relacionadas, logrando también una mayor rapidez de su acción farmacológica en menor tiempo con menores dosis administradas, así como la maximización de su efecto terapéutico, la reducción de los riesgos de presentar complicaciones severas y la disminución del riesgo de mostrar efectos secundarios.
PCT/MX2008/000123 2007-09-26 2008-09-08 Composiciones farmacéuticas que comprenden la combinación de un agente antiinflamatorio no esteroideo y un agente inhibidor de la xantino oxidasa útiles para el control y tratamiento de la gota, artritis gotosa y enfermedades relacionadas. WO2009041798A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08834122A EP2210604A4 (en) 2007-09-26 2008-09-08 PHARMACEUTICAL COMPOSITIONS COMPRISING THE COMBINATION OF A NON-STEROID ANTI-INFLAMMATORY AGENT AND A XANTHINE OXIDASE INHIBITING AGENT FOR USE IN THE CONTROL AND TREATMENT OF DROUGHT, DROPLED ARTHRITIS AND RELATED DISEASES
BRPI0817563 BRPI0817563A2 (pt) 2007-09-26 2008-09-08 Composições farmacêuticas que compreendem a combinação de um agente antiinflamatório não esteróide e um agente inibidor da xantino oxidase úteis para o controle e tratamento da gota, artrite gotosas e enfermidades relacionadas
ARP080104183A AR068560A1 (es) 2007-09-26 2008-09-25 Composiciones farmaceuticas que comprenden la combinacion de un agente antiinflamatorio no esteroide y un agente inhibidor de la xantino oxidasa utiles para el control y tratamiento de la gota artritis gotosa y enfermedades relacionadas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2007011927A MX2007011927A (es) 2007-09-26 2007-09-26 Composiciones farmaceuticas que comprenden la combinacion de un agente antiinflamatorio no esteroideo y un agente inhibidor de la xantino oxidasa utiles para el control y tratamiento de la gota, artritis gotosa y enfermedades relacionadas.
MXMX/A/2007/011927 2007-09-26

Publications (2)

Publication Number Publication Date
WO2009041798A1 true WO2009041798A1 (es) 2009-04-02
WO2009041798A8 WO2009041798A8 (es) 2010-05-14

Family

ID=40511631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2008/000123 WO2009041798A1 (es) 2007-09-26 2008-09-08 Composiciones farmacéuticas que comprenden la combinación de un agente antiinflamatorio no esteroideo y un agente inhibidor de la xantino oxidasa útiles para el control y tratamiento de la gota, artritis gotosa y enfermedades relacionadas.

Country Status (10)

Country Link
EP (1) EP2210604A4 (es)
AR (1) AR068560A1 (es)
BR (1) BRPI0817563A2 (es)
CL (1) CL2008002884A1 (es)
CO (1) CO6270220A2 (es)
EC (1) ECSP10010054A (es)
MX (1) MX2007011927A (es)
PE (1) PE20091030A1 (es)
UY (1) UY31363A1 (es)
WO (1) WO2009041798A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2120956A1 (en) * 2007-01-19 2009-11-25 Takeda Pharmaceuticals North America Methods for preventing or reducing the number of gout flares using xanthine oxidoreductase inhibitors and anti-inflammatory agents
CN102973530A (zh) * 2012-12-14 2013-03-20 贵州信邦制药股份有限公司 一种非布索坦双层肠溶片剂及其制备方法
US8841333B2 (en) 2005-05-09 2014-09-23 Takeda Pharmaceuticals U.S.A., Inc. Methods for treating nephrolithiasis
US9107912B2 (en) 2010-09-10 2015-08-18 Takeda Pharmaceuticals U.S.A., Inc. Methods for concomitant treatment of theophylline and febuxostat

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2675443A1 (en) * 2007-01-19 2008-07-24 Takeda Pharmaceuticals North America, Inc. Methods for preventing or reducing the number of gout flares using xanthine oxidoreductase inhibitors and anti-inflammatory agents

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHENG, T. ET AL.: "A single-blind, randomized, controlled trial to assess the efficacy and tolerability of rofecoxib, diclofenac sodium, and meloxicam in patients with acute gouty arthritis", CLINICAL THERAPEUTICS, vol. 26, no. 3, 2004, pages 399 - 406, XP008123442 *
COVINO ET AL., COMMITTEE FOR RESEARCH AND ETHICAL ISSUES OF THE INTERNATIONAL ASSOCIATION FOR THE STUDY OF PAIN, 1980
CROFT, J.D.: "Discussion following cases 4 and 5", THE AMERICAN JOURNAL OF MEDICINE, vol. 119, no. 11A, 2006, pages S16 - S19, XP025045613 *
LIOTE, F. ET AL.: "Traitement of the goutte", REVUE DU RHUMATISME, vol. 74, 2007, pages 160 - 167, XP005912429 *
PLEUVRY, B.: "Drugs used to treat muscle and joint disease", ANAESTHESIA AND INTENSIVE CARE MEDICINE, vol. 7, no. 3, 2006, pages 104 - 106, XP025160418 *
See also references of EP2210604A4 *
VAN DOORNUM, S. ET AL.: "Clinical manifestations of gout and their management", MEDICAL JOURNAL OF AUSTRALIA, vol. 172, no. 10, 2000, pages 493 - 497, XP008123589 *
WEAVER, A.L.: "CASE 3: Acute gout-risk factors and inappropiate therapy", THE AMERICAN JOURNAL OF MEDICINE, vol. 119, no. 11A, 2006, pages S9 - S12, XP025045610 *
ZIMMERMANN, GUIDELINES ON ETHICAL STANDARDS FOR INVESTIGATIONS OF EXPERIMENTAL PAIN IN ANIMALS, 1983

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8841333B2 (en) 2005-05-09 2014-09-23 Takeda Pharmaceuticals U.S.A., Inc. Methods for treating nephrolithiasis
EP2120956A1 (en) * 2007-01-19 2009-11-25 Takeda Pharmaceuticals North America Methods for preventing or reducing the number of gout flares using xanthine oxidoreductase inhibitors and anti-inflammatory agents
EP2120956A4 (en) * 2007-01-19 2010-01-20 Takeda Pharmaceuticals North A METHODS FOR PREVENTING OR REDUCING THE NUMBER OF DROUGHT ERYTHEMES USING XANTHINE OXYDOREDUCTASE INHIBITORS AND INFLAMMATORY AGENTS
US9107912B2 (en) 2010-09-10 2015-08-18 Takeda Pharmaceuticals U.S.A., Inc. Methods for concomitant treatment of theophylline and febuxostat
CN102973530A (zh) * 2012-12-14 2013-03-20 贵州信邦制药股份有限公司 一种非布索坦双层肠溶片剂及其制备方法

Also Published As

Publication number Publication date
CL2008002884A1 (es) 2009-03-20
CO6270220A2 (es) 2011-04-20
BRPI0817563A2 (pt) 2015-03-31
EP2210604A1 (en) 2010-07-28
EP2210604A4 (en) 2010-12-29
AR068560A1 (es) 2009-11-18
MX2007011927A (es) 2009-03-26
ECSP10010054A (es) 2010-04-30
UY31363A1 (es) 2009-03-31
PE20091030A1 (es) 2009-08-06
WO2009041798A8 (es) 2010-05-14

Similar Documents

Publication Publication Date Title
JP5442178B2 (ja) ロキソプロフェン含有経口用組成物
JP2016155853A (ja) ロキソプロフェン含有医薬組成物
JP5897804B2 (ja) ロキソプロフェン含有の医薬組成物
TW201249432A (en) Methods and compositions for treating hyperuricemia and metabolic disorders associated with hyperuricemia
ES2647526T3 (es) Combinación de canagliflozina y probenecid para el tratamiento de la hiperuricemia
JP6192751B2 (ja) ロキソプロフェン含有経口用組成物5
JP2018135372A (ja) ロキソプロフェン又はその塩含有の医薬組成物<3>
JP5403935B2 (ja) 経口用の慢性疼痛予防または治療剤
JP5712249B2 (ja) ロキソプロフェン含有経口用組成物
WO2009041798A1 (es) Composiciones farmacéuticas que comprenden la combinación de un agente antiinflamatorio no esteroideo y un agente inhibidor de la xantino oxidasa útiles para el control y tratamiento de la gota, artritis gotosa y enfermedades relacionadas.
WO2009123206A1 (ja) 経口医薬組成物
CN110290788A (zh) 氨基甲酸酯化合物用于预防、缓解或治疗双相障碍的用途
JP5952944B2 (ja) ロキソプロフェン又はその塩含有の医薬組成物そのii
US20210252025A1 (en) Synergic pharmaceutical combination of a selective inhibitor of cyclooxygenase-2 and an anthraquinone derivative
JP2011246433A (ja) ロキソプロフェン含有医薬組成物
ES2360461T3 (es) Agente preventivo o terapéutico para enfermedad inflamatoria del intestino.
WO2007083985A1 (es) Composición farmacéutica sinergística de diclofenaco y clonixinato de lisina
BRPI0902144A2 (pt) processo para preparar uma composição farmacêutica sólida, de administração por via oral que contém os prìncipios ativos glicosamina e meloxicam e uso da associação entre glicosamina e meloxicam
Pepper NONSTEROIDAL ANTIINFLAMMATORY DRUGS: New Perspectives on a Familiar Drug Class
ES2586607B1 (es) Composición farmacéutica sinergística de dos analgésicos con distinto perfil farmacocinético
Keogh Non-steroidal Anti-inflammatory Drugs and Paracetamol
CN114845722A (zh) 化合物在预防和/或治疗强直性脊柱炎中的应用和相应的组合物
WO2009031877A1 (es) Composición farmacéutica que comprende la combinación de acemetacina, metocarbamol y diacereina, útil en el tratamiento de la artritis reumatoide y enfermedades relacionadas
UA121012U (uk) Лікарський засіб &#34;цитродол&#34;, що має аналгетичну, протизапальну та жарознижувальну дію

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08834122

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10036286

Country of ref document: CO

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008834122

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0817563

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100326