WO2009038392A2 - Appareil et procédé destinés au remappage et au regroupement de ressources dans un système de communication sans fil - Google Patents

Appareil et procédé destinés au remappage et au regroupement de ressources dans un système de communication sans fil Download PDF

Info

Publication number
WO2009038392A2
WO2009038392A2 PCT/KR2008/005569 KR2008005569W WO2009038392A2 WO 2009038392 A2 WO2009038392 A2 WO 2009038392A2 KR 2008005569 W KR2008005569 W KR 2008005569W WO 2009038392 A2 WO2009038392 A2 WO 2009038392A2
Authority
WO
WIPO (PCT)
Prior art keywords
denotes
time slot
index
resource
cyclic
Prior art date
Application number
PCT/KR2008/005569
Other languages
English (en)
Other versions
WO2009038392A3 (fr
Inventor
Zhouyue Pi
Joon-Young Cho
Farooq Khan
Ju-Ho Lee
Aris Papasakellariou
Jianzhong Zhang
Original Assignee
Samsung Electronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co., Ltd. filed Critical Samsung Electronics Co., Ltd.
Priority to JP2010525764A priority Critical patent/JP5144761B2/ja
Priority to CN2008801076636A priority patent/CN101803243B/zh
Priority to IN3348CHN2014 priority patent/IN2014CN03348A/en
Publication of WO2009038392A2 publication Critical patent/WO2009038392A2/fr
Publication of WO2009038392A3 publication Critical patent/WO2009038392A3/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation

Definitions

  • the present invention relates to methods and apparatus for remapping and regrouping transmission resources in a wireless communication system.
  • Telecommunication enables transmission of data over a distance for the purpose of communication between a transmitter and a receiver.
  • the data is usually carried by radio waves and is transmitted using a limited transmission resource. That is, radio waves are transmitted over a period of time using a limited frequency range.
  • 3GPP Third (3 rd ) Generation Partnership Project Long Term Evolution
  • one type of the transmission resource used in the uplink control channel (PUCCH) is known as a Cyclic shift (CS) for each OFDM symbol.
  • the PUCCH occupies twelve subcarriers in one resource block (RB) and therefore twelve CS resources in one RB.
  • ACK UL acknowledgement
  • RS reference signal
  • ACK/NAK acknowledgement and negative acknowledgement
  • UL uplink
  • CS cyclic shift
  • OC orthogonal cover
  • base sequence Zadoff-Chu sequence.
  • a global resource mapping scheme is established between N resource combinations in a first time slot and N resource combinations in a second time slot in dependence upon a certain parameter n .
  • the parameter n may be the same for all cells in the communication network.
  • the parameter n may be assigned to each cell in the communication network in dependence upon an identification of the cell.
  • Each of the resource combinations includes an orthogonal cover selected from a plurality of orthogonal covers and a cyclic shift of a base sequence selected from a plurality of cyclic shifts.
  • a cell-specific symbol level cyclic shift hopping pattern may be established to shift the index of the cyclic shift within at least one resource combination on a modulation symbol in a subframe in a cell by an amount specified by h _sym(c _id,s _id,l id) .
  • a cell-specific slot-level cyclic shift hopping pattern may be established to shift the index of the cyclic shift within at least one resource combination in a time slot in a cell by an amount specified by h _slot(c _id,sl id) .
  • PBRO Pruned Bit Reversal Ordering
  • N resource combinations within each of a plurality of time slots are divided into K subsets, with a & -th subset including N k resource combinations, where k - 1, 2, ..., K .
  • An intra-subset resource mapping scheme is established between the resource combinations in the subsets in a first time slot and the resource combinations in the subsets in a second time slot in dependent upon a certain parameter vector
  • H [n u n 2 ,-- -,n ⁇ ], where n k corresponds to a A: -th subset.
  • An inter-subset interleaving scheme is established in at least one time slot in accordance with an interleaving parameter PG[S 1 , s 2 ,- --,s ⁇ ] .
  • a symbol-level cyclic shift mapping scheme is established between M cyclic shifts in a first modulation symbol in a transmission channel and M cyclic shifts in a second modulation symbol in the transmission channel in dependence upon a certain parameter n .
  • the first modulation symbol has an identification number of 1
  • the second modulation symbol has an identification number of more than 1.
  • a slot-level cyclic shift mapping scheme is established between M cyclic shifts in a first time slot in a transmission channel and M cyclic shifts in a second time slot in the transmission channel in dependence upon a certain parameter n .
  • a subframe-level base sequence mapping scheme is established between Z base sequences in a first subframe in a transmission channel and Z base sequences in a second subframe in the transmission channel in dependence upon a certain parameter n .
  • the first subframe has an identification number of 1
  • the second subframe has an identification number of more than 1.
  • a slot-level base sequence mapping scheme is established between Z base sequences in a first time slot and Z base sequences in a second time slot 1 in dependence upon a certain parameter n .
  • the first time slot has an identification number of 1
  • the second time slot has an identification number of more than 1.
  • FIG. 1 is an illustration of an Orthogonal Frequency Division Multiplexing (OFDM) transceiver chain suitable for the practice of the principles of the present invention
  • FIG. 2 schematically illustrates an example of multiplexing six units of user equipments (UEs) within one resource block (RB);
  • FIG. 3 schematically illustrates the current working assumption on the uplink acknowledgement and reference signal channels.
  • FIG. 1 illustrates an Orthogonal Frequency Division Multiplexing (OFDM) transceiver chain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • control signals or data 111 is modulated by modulator 112 into a series of modulation symbols, that are subsequently serial-to-parallel converted by Serial/Parallel (S/P) converter 113.
  • IFFT Inverse Fast Fourier Transform
  • CP Cyclic prefix
  • ZP zero prefix
  • the signal is transmitted by transmitter (Tx) front end processing unit 117, such as an antenna (not shown), or alternatively, by fixed wire or cable.
  • transmitter (Tx) front end processing unit 117 such as an antenna (not shown), or alternatively, by fixed wire or cable.
  • Tx transmitter
  • Rx receiver
  • FFT Fast Fourier Transform
  • the total bandwidth in an OFDM system is divided into narrowband frequency units called subcarriers.
  • the number of subcarriers is equal to the FFT/IFFT size N used in the system.
  • the number of subcarriers used for data is less than N because some subcarriers at the edge of the frequency spectrum are reserved as guard subcarriers. In general, no information is transmitted on guard subcarriers.
  • the PUCCH On the uplink (UL) of the Third Generation Partnership Project (3GPP) long term evolution (LTE) standard, one type of the resource used in the uplink control channel (PUCCH) is known as a Cyclic shift (CS) for each OFDM symbol.
  • the PUCCH occupies twelve subcarriers in one resource block (RB) and therefore we have twelve CS resources in one RB.
  • RB resource block
  • FIG.2 One example of multiplexing six units of user equipment (UEs) in one RB is shown in FIG.2. Note that only six out twelve CSs are used in this example.
  • FIG. 3 illustrates the current working assumption on the transmission block of UL acknowledgement (ACK) channel and reference signal (RS).
  • ACK/NAK signals and the UL RS for ACK/NACK demodulation are multiplexed on the code channels constructed by both a cyclic shift (CS) of a base sequence and an orthogonal cover (OC).
  • CS cyclic shift
  • OC orthogonal cover
  • base sequence Zadoff-Chu sequence.
  • One important aspect of system design is resource remapping on a symbol, slot or subframe-level.
  • PBRO Pruned Bit Reversal Ordering
  • CCE Control Channel Element
  • RE resource element
  • x 12 .
  • a resource permutation function that is based on Galois field operations.
  • N the total number of resources being permuted
  • Galois field N + 1 exists and we denote it by GF( N + 1 ).
  • all N non-zero elements in the GF(N+ 1) can be expressed as an exponent of a , or in another word, the sequence a°,a l ,- - -,a N ⁇ ] includes all N non-zero elements in GF(N+1).
  • Galois field N+l i.e., GF(N+ 1)
  • Form Galois field GF(M+1) find the primitive element ⁇ of GF(M+1).
  • cyclic shift is typically applied on a base sequence
  • base sequences include ZC (Zadoff-Zhu) code and computer generated CAZAC (Constant Amplitude Zero Auto-Correlation) codes.
  • ZC Zero Auto-Correlation
  • CAZAC Constant Amplitude Zero Auto-Correlation
  • P G ⁇ i,n,N is defined in the previous section.
  • PBRO(a,b) is defined previously, and n is chosen from the set ⁇ 1, 2, ..., N).
  • the parameter n in the above two sub- embodiments is the same for all cells.
  • the parameter n can be communicated to the UE by means of higher-layer signaling.
  • n mod(c _id- ⁇ ,N) + ⁇ .
  • OC 1 [I], OC 1 [2] , OC 1 [3] are the three OC codes used in slot 1
  • OC 2 [I] , OC 2 [2] , OC 2 [3] are the three OC codes used in slot 2.
  • OC codes in each slot can be an arbitrary subset of the four length-4 Walsh codes
  • N 12, or 12 OC/CS resource combos in each slot, as shown in Table 4 below.
  • UEs within a give cell we propose to associate the indices of subsets, / and/, with the CELL ID, denoted by c id.
  • c id mod(c _ id - 1, 4) + 1
  • j mod(z + « - 1, 4) + 1 (11) where n is a positive integer.
  • A I subsets in slot#l and slot #2 have the same indices. The formation of these subsets is shown in Table 6 below.
  • i k c (k - N k + c .
  • i k d (k - l) ⁇ N k + d .
  • the resource remapping/permutation within each subset uses the Galois Field based permutation function proposed earlier in Section 1.
  • each subset k we associate/remap the two resources CB ⁇ i k c ⁇ ⁇ and
  • n k is a parameter for subset k such that 1 ⁇ n k ⁇ N k .
  • n [«,, - - -,/ ⁇ ] , the total number of possible parameter vectors is the product N 1 ⁇ N 2 x ...x N ⁇ .
  • PBRO(a,b) is defined in the introduction, and n k is chosen from the set ⁇ 1, 2, ..., N ⁇ .
  • the parameter vector n [ «,,-• -,n ⁇ ] can be communicated to the UE by means of higher-layer signaling.
  • n [n ⁇ ,---,n ⁇ ] .
  • n k mod(cJd-l,N k ) + ⁇ . (17)
  • Table 7 One example of dividing the resources in Table 2 into 3 groups, each with 6 resources.
  • the slot-level resource remapping can be tabulated in the below.
  • the permutation equation d P G (c,n k ,N k ) to derive index i kd from each input index i kc .
  • GF(7) is a ground Galois field.
  • Table 9 Overall resource remapping table, where re-mappings take place within each subsets.
  • A I slot#l and slot #2 have the same indices.
  • the formation of these subsets are shown in Table 6, similar to the previous embodiment.
  • a resource in the first slot is denoted by CB x [I]
  • the resource is denoted by CB 2 [w(i, PG[s x ,s 2 ,- --,s x ])] (or concisely, CB 2 [w(i,PG[ ])] ) in the second slot.
  • CB 2 [w(i, PG[s x ,s 2 ,- --,s x ])]
  • the inter-subset switching pattern PG[S 1 , s 2 ,- •-, s x ] is the same for all cells.
  • the parameter PG[S 1 , s 2 ,- --,s x ] can be communicated to the UE by means of higher-layer signaling.
  • each subset corresponds to all the resource combos on one OC code.
  • G1 [3] ⁇ C5,[13],- -,C5 1 [18] ⁇ .
  • the subsets in slot #2 are similarly defined as G2[l], G2[2] and G2[3].
  • PG[2,3,1] as a subset-wise resource- mapping that maps the resources in subset Gl [2] to subset G2[l], subset Gl [3] to G2[2] and subset Gl [I] to subset G2[3], etc.
  • PG[1,3,2] we can define PG[1,3,2],
  • CB 2 [g(w(i,PG[s ⁇ s 2 ,- --,s K ]),n)] (or concisely, CB 2 [g(w(i, PG[-]),n)] ) in the second slot.
  • PG[S 1 , s 2 ,- --, s ⁇ ] is the inter-subset switching pattern
  • n [n ⁇ , --,n ⁇ ] is the intra-subset remapping parameter vector.
  • the intra-subset permutation g(-,n) function is GF based, or PBRO based, as defined in Section 2.3.
  • the inter-subset switching pattern PG[s ] ,s 2 ,---,s K ] and/or parameter vector n [ «, ,- • -,W x . ] are the same for all cells.
  • the parameter -- ,s ⁇ ] and n [n ⁇ ,- - -,n ⁇ ] can be communicated to the UE by means of higher-layer signaling.
  • Table 11 Example of resource remapping with both intra-subset permutation and inter-subset switchin .
  • a seventh embodiment we propose to combine the slot-level OC/CS combo resource- permutation methods described in the above Sections 2.1-2.4 with a cell-specific symbol-level CS resource hopping pattern, denoted by h _sym ⁇ c _id,s _id,l _id) , where the CELL ID is denoted by c id, the subframe ID is denoted by s id, and the OFDM symbol (Long block) ID within a subframe is denoted by l id.
  • the additional cell-specific hopping step is carried out by cyclically shift the CS resource on a particular OFDM by the amount specified by h _ sym ⁇ c _ id, s _ id, I _ id) .
  • h _ sym ⁇ c _ id, s _ id, I _ id we propose to combine the symbol-level CS resource-permutation methods described in the above embodiments in Sections 2.1-2.4 with a cell- specific slot-level CS resource hopping pattern, denoted by h _slot(c id, si _id) , where the CELL ID is denoted by c id, the slot ID is denoted by si id.
  • the additional cell-specific hopping step is carried out by cyclically shift the CS resource on a particular OFDM by the amount specified by h _ slot ⁇ c _ id, si _ id) .
  • the CS index i in the first slot of a subframe will hop to cyclic _shifi(y l ,h_sym(c _id,s id, I _id),K) for an OFDM symbol having an index of l id; and the CS index j in the second slot of a subframe will hop to cyclic _ shift(V j , h _ sym ⁇ c _ id, s _ id, I __ id), K) .
  • the CS index i in the first slot of a subframe will hop to cyclic _shi ⁇ (v ⁇ ,h_slot(c id, si _id),K) for an OFDM symbol having an index of l id; and the CS index j in the second slot of the subframe will hop to cyclic _ shift(V j , h _ slot(c _ id, si _ id), K) .
  • the CS resource assignment/remapping is applicable to the following cases: An uplink control RB that contains only Channel Quality Indicator (CQI) channels;
  • CQI Channel Quality Indicator
  • uplink control RB that contains both CQI and ACK/NACK channels; and An uplink control RB that contains only ACK/NACK channels.
  • uplink service grant request channel may reuse the structure of uplink ACK/NACK channel.
  • a ninth embodiment according to the principles of the present invention, we propose to associate the CS resources in such a way that if some channel of a UE (for example, CQI, ACK/NACK) is allocated the CS resource GS 1 Im] in the first OFDM symbol (/ _id — ⁇ ), then it must be assigned CS 1 ld [t(m,l _id,n)] in the first OFDM symbol (/ _id — ⁇ ), then it must be assigned CS 1 ld [t(m,l _id,n)] in the
  • Slot-level OC remapping is very similar to the slot-level OC/CS combo resource remapping that was discussed throughout the draft, except that the resource being remapping from one slot to the next is only the OC resource, not OC/CS combo resource.
  • OC hopping has the same meaning as CS hopping in this context.
  • the Galois field based remapping/permutation function P G (m,r,M) is defined in the previous section.
  • PBRO(a,b) is defined in the introduction.
  • the parameter n in the above two sub- embodiments is the same for all cells.
  • the parameter n can be communicated to the UE by means of higher-layer signaling.
  • n mod(c _id - ⁇ ,N) + l .
  • the slot-level CS remapping can be combined with slot-level OC-remapping or OC hopping.
  • PBRO(a,b) The function PBRO(a,b) is defined in the introduction.
  • the parameter n in the above two sub- embodiments is the same for all cells.
  • the parameter n can be communicated to the UE by means of higher-layer signaling.
  • n mod(c _ id - 1, M) + 1 .
  • slot-level CS remapping to a dedicated CQI or dedicated A/N uplink RB is straightforward, and therefore we do not provide additional explanation.
  • slot-level CS remapping to a mixed CQI and A/N uplink RB is less obvious, and we provide an example below to show how it works.
  • M 8 CSs
  • remapping only takes place within this set of "used" CSs.
  • Table 16 CS remapping in mixed CQI and ACK/NACK channel uplink
  • both the symbol-level CS remapping proposed in Section 3.1 and slot-level CS remapping proposed in Section 3.2 can be applied.
  • the CS resources allocated to the uplink A/N channels (or serving request) we can apply any of the following (a) the joint slot-level joint OC/CS remapping described in Section 2.1-2.4; (b) the symbol-level CS remapping described in Section 3.1; (c) the slot-level CS remapping described in Section 3.2.
  • Table 17 Illustration of alternative method of resource remapping in the uplink RB with mixed CQI and ACK/NACK channel.
  • CQI channel For the CQI channels, on the other hand, if a CQI channel is assigned the CS resource CS 1 [m] in the first slot, then CQI channel must be assigned
  • CS 2 [g(m,n)] in the second slot [g(m,n)] in the second slot.
  • n 2.
  • the mapping table is omitted here for brevity.
  • the additional cell-specific hopping step is carried out by cyclically shift the CS resource on a particular OFDM by the amount specified by h _ sym(c _ id, s _ id, I _ id) .
  • a thirteenth embodiment according to the principles of the present invention, we propose to combine the symbol-level CS resource-permutation methods described in the above embodiment with a cell-specific slot-level CS resource hopping pattern, denoted by h_slot ⁇ c _id,sl _id), where the CELL ID denoted by c id, the slot ID denoted by sl id.
  • the additional cell-specific hopping step is carried out by cyclically shifting the CS resource on a particular OFDM by the amount specified by h _ slot(c _ id, si _ id) .
  • OFDM symbol l id OFDM symbol l id, according to the symbol-level remapping algorithms discussed earlier. Then if symbol-level cell-specific hopping is used, the CS index will hop to cyclic _shifi(t(m,l _id, ⁇ ),h _sym ⁇ c _id,s id, I _id),K) for OFDM symbol l id.
  • the CS index in the first slot will hop to cyclic _shift(t ⁇ m,l _id,n),h _slot(c _id, si _id), K) for OFDM symbol index by l_id, in the slot indexed by sl id.
  • the description of combination of slot-level CS resource remapping and slot or symbol-level cell-specific hopping is similar, and is omitted for brevity.
  • a fourteenth embodiment according to the principles of the present invention, we propose a slot-level base sequence cell-specific pattern with a period of K consecutive slots.
  • the PBRO function is previously defined.
  • the maximum number of the hop value be denoted by K .
  • the L be the number of OFDM symbols of interest within a subframe.
  • a symbol-level base sequence cell-specific pattern that repeats every subframe, i.e., it is not a function of subframe ID.
  • s id as subframe ID
  • / _id !,- • •, L denotes the OFDM symbol (long block) ID, n is a parameter that is an integer, s id denotes the subframe ID, and c id denotes the CELL ID.
  • the Galois field based remapping/permutation function P G (x,r,K) is defined in Section 1.
  • the PBRO function is defined in the introduction. For example, if there are 12 subcarriers in the LTE uplink control channel
  • BS 1 [Z] z be the base sequence index in the first subframe within one period of Z consecutive subframes
  • BS S ld the base sequence index used in subsequent subframes in the same cell
  • z l, -,Z
  • s_id l,- -,Z
  • n is a parameter that is an integer.
  • s _ id denotes the subframe ID within a period of Z subframes.
  • the Galois field based remapping/permutation function P G (z, r, Z) is defined in the previous section.
  • the Galois field based remapping/permutation function P G (z,r,Z) is defined in the previous section.
  • the physical uplink control channel supports multiple formats as shown in Table 18. Formats 2a and 2b are supported for normal cyclic prefix only. Table 18: Supported PUCCH formats.
  • the resource indices within the two resource blocks in the two slots of a subframe to which the PUCCH is mapped are given by
  • n s denotes a slot number
  • resource index denotes the number of cyclic shift used for PUCCH formats
  • 1/la/lb in a resource block used for a mix of formats 1/1 a/1 b and 2/2a/2b and N ⁇ e ⁇ ,l,...,8 ⁇ , ⁇ p s ", ft CH is a quantity set by higher layers and is represented by:

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)

Abstract

La présente invention concerne des procédés et un appareil permettant de remapper et de regrouper des ressources de transmission dans un système de communication sans fil. D'une part, un ensemble de nouveaux algorithmes de permutation basés sur l'opération de champ de Galois sont proposés. Par la suite, les algorithmes proposés et l'algorithme de commande d'inversion binaire (PBRO) connu sont appliqués à plusieurs des divers schémas de mappage de ressources, y compris un mappage de décalage cyclique (CS)/d'intervalle ou de couverture orthogonale (OC) de niveau de symbole ou d'intervalle, des modèles de sauts CS de niveau de symbole et de niveau d'intervalle spécifique de cellule, et des modèles de sauts de séquence de base de niveau d'intervalle et de sous-trame.
PCT/KR2008/005569 2007-09-19 2008-09-19 Appareil et procédé destinés au remappage et au regroupement de ressources dans un système de communication sans fil WO2009038392A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010525764A JP5144761B2 (ja) 2007-09-19 2008-09-19 無線通信システムにおけるリソース再マッピング及び再グルーピングのための方法及び装置
CN2008801076636A CN101803243B (zh) 2007-09-19 2008-09-19 在无线通信系统中进行重新映射和重新分组的设备和方法
IN3348CHN2014 IN2014CN03348A (fr) 2007-09-19 2008-09-19

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US96019107P 2007-09-19 2007-09-19
US60/960,191 2007-09-19
US96049707P 2007-10-01 2007-10-01
US60/960,497 2007-10-01
US12/200,462 US8077693B2 (en) 2007-09-19 2008-08-28 Resource remapping and regrouping in a wireless communication system
US12/200,462 2008-08-28

Publications (2)

Publication Number Publication Date
WO2009038392A2 true WO2009038392A2 (fr) 2009-03-26
WO2009038392A3 WO2009038392A3 (fr) 2009-05-07

Family

ID=40210767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2008/005569 WO2009038392A2 (fr) 2007-09-19 2008-09-19 Appareil et procédé destinés au remappage et au regroupement de ressources dans un système de communication sans fil

Country Status (8)

Country Link
US (4) US8077693B2 (fr)
EP (3) EP2040409B1 (fr)
JP (4) JP5144761B2 (fr)
KR (3) KR101487556B1 (fr)
CN (2) CN101803243B (fr)
IN (1) IN2014CN03348A (fr)
MY (2) MY177550A (fr)
WO (1) WO2009038392A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835263A (zh) * 2010-04-01 2010-09-15 中国科学院上海微系统与信息技术研究所 上行参考信号的信令资源分配方法
WO2011135795A1 (fr) * 2010-04-30 2011-11-03 パナソニック株式会社 Appareil de communication sans fil et procédé de communication sans fil
JP2011250043A (ja) * 2010-05-25 2011-12-08 Kyocera Corp 無線基地局及びその制御方法
JP2011250042A (ja) * 2010-05-25 2011-12-08 Kyocera Corp 無線基地局及びその制御方法
JP2013179597A (ja) * 2010-01-11 2013-09-09 Electronics & Telecommunications Research Inst 無線通信システムでキャリア集成
US9197388B2 (en) 2010-05-25 2015-11-24 Kyocera Corporation Radio base station and control method for the same
JP2016028485A (ja) * 2009-06-22 2016-02-25 クゥアルコム・インコーポレイテッドQualcomm Incorporated 複雑さの低い、統一された制御チャネル処理

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986718B2 (en) * 2006-09-15 2011-07-26 Itron, Inc. Discovery phase in a frequency hopping network
US9065714B2 (en) * 2007-01-10 2015-06-23 Qualcomm Incorporated Transmission of information using cyclically shifted sequences
CN103560808B (zh) * 2007-10-01 2015-07-29 松下电器(美国)知识产权公司 无线通信装置和响应信号的解扩方法
US8848913B2 (en) * 2007-10-04 2014-09-30 Qualcomm Incorporated Scrambling sequence generation in a communication system
CA2703864C (fr) 2007-10-29 2021-03-16 Panasonic Corporation Dispositif de communication radio et procede de commande de constellation
US8917598B2 (en) * 2007-12-21 2014-12-23 Qualcomm Incorporated Downlink flow control
US8503285B2 (en) 2008-01-04 2013-08-06 Panasonic Corporation Radio communication terminal device and radio transmission method
US8787181B2 (en) * 2008-01-14 2014-07-22 Qualcomm Incorporated Resource allocation randomization
US8774156B2 (en) * 2008-01-29 2014-07-08 Texas Instruments Incorporated ACKNAK and CQI channel mapping schemes in wireless networks
US8699487B2 (en) * 2008-02-04 2014-04-15 Qualcomm Incorporated Uplink delay budget feedback
US9065646B2 (en) * 2008-02-04 2015-06-23 Nokia Solutions And Networks Oy ACK/NACK channelization for resource blocks containing both ACK/NACK and CQI
US8656239B2 (en) * 2008-02-12 2014-02-18 Qualcomm Incorporated Control of data transmission based on HARQ in a wireless communication system
US8923249B2 (en) * 2008-03-26 2014-12-30 Qualcomm Incorporated Method and apparatus for scrambling sequence generation in a communication system
KR101571566B1 (ko) * 2008-08-11 2015-11-25 엘지전자 주식회사 무선 통신 시스템에서 제어신호 전송 방법
KR101603338B1 (ko) 2008-08-11 2016-03-15 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
KR101597573B1 (ko) * 2008-08-11 2016-02-25 엘지전자 주식회사 제어정보의 상향링크 전송 방법
KR101646249B1 (ko) * 2008-08-11 2016-08-16 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
KR20100019947A (ko) 2008-08-11 2010-02-19 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법
BRPI0905089B1 (pt) * 2008-08-19 2020-10-20 Electronics And Telecommunications Research Institute métodos de recebimento e de transmissão de informações de recolhimento (ack)/ack negativo (nack) sobre dados transmitidos para estação de base em terminal de sistema de comunicação sem fio e meios de gravação legível em computador
US8254247B2 (en) * 2008-10-20 2012-08-28 Lg Electronics Inc. Method and apparatus for transmitting signal in a wireless communication system
WO2010056078A2 (fr) 2008-11-14 2010-05-20 엘지전자주식회사 Procédé et appareil permettant la transmission d'informations dans un système de communication sans fil
KR101243508B1 (ko) 2008-11-14 2013-03-20 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치
CN102246447A (zh) 2008-12-10 2011-11-16 松下电器产业株式会社 无线通信终端装置、无线通信基站装置及信号扩频方法
EP2211515B1 (fr) * 2009-01-22 2016-05-25 Samsung Electronics Co., Ltd. Procédé et appareil pour la transmission et la réception d'un signal sonore en liaison montante dans un système de communication sans fil en bande passante
KR20100091876A (ko) 2009-02-11 2010-08-19 엘지전자 주식회사 다중안테나 전송을 위한 단말 동작
KR101759933B1 (ko) * 2009-05-07 2017-07-20 엘지전자 주식회사 Ack/nack을 전송하는 방법 및 장치
US20120120926A1 (en) 2009-05-27 2012-05-17 Peng Chen Multiple Uplink Control Channel Transmission with Reduced Cubic Metric
US8340211B2 (en) * 2009-06-23 2012-12-25 Samsung Electronics Co., Ltd. Methods and apparatus to encode bandwidth request message
WO2011014019A2 (fr) * 2009-07-29 2011-02-03 엘지전자 주식회사 Procédé et appareil de transmission du signal de commande d'une station relais dans un système de communication sans fil
WO2011025131A2 (fr) * 2009-08-28 2011-03-03 Lg Electronics Inc. Procédé et appareil de transmission de pilote dans un système de communication sans fil
EP2477345B1 (fr) * 2009-09-07 2018-11-21 LG Electronics Inc. Procédé et appareil de transmission/réception de signal de référence dans un système de communications sans fil
US8681679B2 (en) 2009-12-21 2014-03-25 Lg Electronics Inc. Transmitting system and method for transmitting digital broadcast signal
CN102158449B (zh) * 2010-02-12 2014-03-12 华为技术有限公司 一种生成参考信号的方法、基站及终端
US9065649B2 (en) 2010-05-04 2015-06-23 Lg Electronics Inc. Method and apparatus for transmitting a reference signal in a wireless communication system
GB2481051B (en) 2010-06-10 2016-06-01 Samsung Electronics Co Ltd Method for mapping and de-mapping of non-binary symbols in data communication systems
CN107404376A (zh) * 2010-06-16 2017-11-28 爱立信(中国)通信有限公司 用于传送和解码参考信号的方法和装置
CN102972074A (zh) * 2010-06-16 2013-03-13 爱立信(中国)通信有限公司 用于传送和解码参考信号的方法和装置
US8848649B2 (en) * 2010-07-12 2014-09-30 Lg Electronics Inc. Method for transmitting an uplink signal, and apparatus for same
JP5781694B2 (ja) 2011-08-16 2015-09-24 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるアップリンク参照信号送信方法及び装置
WO2013048108A2 (fr) * 2011-09-28 2013-04-04 엘지전자 주식회사 Procédé et dispositif d'acquisition d'informations de contrôle dans un système de communication sans fil
US9419888B2 (en) 2011-12-22 2016-08-16 Itron, Inc. Cell router failure detection in a mesh network
JP5210441B1 (ja) * 2012-01-10 2013-06-12 株式会社エヌ・ティ・ティ・ドコモ 無線リソースの管理方法および管理装置
US8964561B2 (en) * 2012-05-04 2015-02-24 Nokia Corporation Method and apparatus for signaling sequence root
TWI615050B (zh) 2013-01-18 2018-02-11 諾基亞對策與網路公司 在實體下行鏈路控制通道資源分配中用於分時雙工的增強型實體下行鏈路控制通道之確認/負確認資源偏移値
KR102622879B1 (ko) 2016-02-03 2024-01-09 엘지전자 주식회사 협대역 동기신호 송수신 방법 및 이를 위한 장치
DE102016205052A1 (de) * 2016-03-24 2017-09-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Telegrammaufteilungsübertragungsverfahren für bidirektionale netze
CN107425947B (zh) * 2016-05-24 2021-02-12 北京三星通信技术研究有限公司 参考信号与多址接入资源的映射方法和设备
WO2018231030A1 (fr) * 2017-06-16 2018-12-20 엘지전자 주식회사 Procédés d'émission et de réception de canal physique de commande de liaison montante entre un terminal et une station de base dans un système de communication sans fil, et appareils pour sa prise en charge
CN109150468B (zh) * 2017-06-16 2020-10-23 华为技术有限公司 一种传输信息的方法和装置
US11184883B2 (en) * 2017-06-29 2021-11-23 Qualcomm Incorporated Physical uplink control channel (PUCCH) sequence configuration
WO2019027995A1 (fr) * 2017-08-02 2019-02-07 Intel IP Corporation Conception de séquence et attribution de ressources pour pucch nr
KR102424684B1 (ko) * 2017-09-06 2022-07-22 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 리소스 지시 방법 및 네트워크 기기
CN109818895B (zh) 2017-11-17 2022-04-29 中兴通讯股份有限公司 确定序列组的方法及装置,确定循环移位的方法及装置
WO2021019521A1 (fr) * 2019-08-01 2021-02-04 Lenovo (Singapore) Pte. Ltd. Procédé et appareil pour la génération d'un rapport d'information d'état de canal adapté pour prendre en charge une omission partielle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020084517A (ko) * 2001-05-02 2002-11-09 주식회사 하이닉스반도체 비동기 전송 모드 적응 계층 2 프로토콜을 이용한 목적지그룹핑에 의한 자원할당 방법
US7075945B2 (en) * 1996-09-05 2006-07-11 The Directv Group, Inc. Dynamic mapping of broadcast resources
US20060209754A1 (en) * 2005-03-16 2006-09-21 Ji Tingfang Channel structures for a quasi-orthogonal multiple-access communication system
KR20070053756A (ko) * 2004-08-16 2007-05-25 콸콤 플라리온 테크놀로지스, 인코포레이티드 그룹 통신 신호들을 전송하는 방법 및 장치

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3563147B2 (ja) 1995-03-07 2004-09-08 タイコエレクトロニクスアンプ株式会社 コネクタ組立体
JP3457107B2 (ja) 1995-09-29 2003-10-14 株式会社キーエンス 電子機器ユニット,電子機器および結線構造
FI104142B1 (fi) * 1996-10-25 1999-11-15 Nokia Mobile Phones Ltd Radioresurssien käytön ohjausmenetelmä
US6185244B1 (en) 1997-08-29 2001-02-06 Telefonaktiebolaget Lm Ericsson Cell searching in a CDMA communications system
US6334197B1 (en) 1998-08-17 2001-12-25 Hughes Electronics Corporation Turbo code interleaver with near optimal performance
US6157611A (en) * 1998-08-18 2000-12-05 Qualcomm Inc. Method and apparatus for transmission and construction of quasi orthogonal vectors
US6925068B1 (en) * 1999-05-21 2005-08-02 Wi-Lan, Inc. Method and apparatus for allocating bandwidth in a wireless communication system
US6473467B1 (en) 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
GB2370452B (en) * 2000-12-19 2004-10-20 Inmarsat Ltd Communication method and apparatus
US7031292B2 (en) * 2001-03-09 2006-04-18 Flarion Technologies, Inc. Method of scheduling regular signal transmission in a cellular wireless system
US6912240B2 (en) * 2001-11-26 2005-06-28 Time Domain Corporation Method and apparatus for generating a large number of codes having desirable correlation properties
US7317680B2 (en) * 2002-10-01 2008-01-08 Nortel Networks Limited Channel mapping for OFDM
KR20050015119A (ko) * 2003-08-04 2005-02-21 삼성전자주식회사 광대역 무선 접속 통신 시스템에서 레인징 신호 변조 장치및 방법
US7245877B2 (en) 2003-08-12 2007-07-17 Intel Corporation Wireless local area network detection
US8477809B2 (en) * 2003-09-02 2013-07-02 Qualcomm Incorporated Systems and methods for generalized slot-to-interlace mapping
US7123580B2 (en) * 2004-01-16 2006-10-17 Nokia Corporation Multiple user adaptive modulation scheme for MC-CDMA
US7423989B2 (en) 2004-02-13 2008-09-09 Broadcom Corporation Preamble formats for MIMO wireless communications
JP4575059B2 (ja) 2004-07-21 2010-11-04 株式会社日立製作所 ストレージ装置
US7715845B2 (en) * 2004-10-14 2010-05-11 Qualcomm Incorporated Tone hopping methods and apparatus
WO2006069826A1 (fr) 2004-12-23 2006-07-06 France Telecom Procede d'emission de signaux multiporteuses dans un reseau multicellulaire a macro-diversite planifiee, reseau, signal, procede et dispositif de reception correspondants.
US20070183386A1 (en) * 2005-08-03 2007-08-09 Texas Instruments Incorporated Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation
KR101276797B1 (ko) * 2005-08-24 2013-06-20 한국전자통신연구원 이동 통신 시스템에서의 송신 다이버시티 방법 및 기지국송신기
US7746916B2 (en) * 2005-11-28 2010-06-29 Lg Electronics Inc. Method and apparatus for generating and transmitting code sequence in a wireless communication system
EP1985023A4 (fr) 2006-01-25 2014-08-13 Texas Instruments Inc Procédé et dispositif permettant d'augmenter le nombre de signaux orthogonaux utilisant l'étalement de blocs
US8094638B2 (en) * 2006-08-22 2012-01-10 Texas Instruments Incorporated Adaptive selection of transmission parameters for reference signals
EP2166685B1 (fr) * 2007-04-30 2019-11-06 Nokia Solutions and Networks Oy Commutation cyclique et saut de séquence coordonnés pour zadoff-chu, zadoff-chu modifié, et séquences de dispersion de bloc
KR101494002B1 (ko) * 2007-06-11 2015-02-16 삼성전자주식회사 이동통신 시스템에서 자원 할당 및 그에 따른 수신 장치 및방법
US20080310383A1 (en) * 2007-06-15 2008-12-18 Sharp Laboratories Of America, Inc. Systems and methods for designing a sequence for code modulation of data and channel estimation
US8331947B2 (en) * 2007-06-15 2012-12-11 Samsung Electronics Co., Ltd. Method and apparatus for allocating and acquiring ACK/NACK resources in a mobile communication system
KR20090006708A (ko) 2007-07-12 2009-01-15 엘지전자 주식회사 스케줄링 요청 신호 전송 방법
KR101548324B1 (ko) 2007-08-08 2015-09-07 한국전자통신연구원 무선통신시스템에서 신호형성방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075945B2 (en) * 1996-09-05 2006-07-11 The Directv Group, Inc. Dynamic mapping of broadcast resources
KR20020084517A (ko) * 2001-05-02 2002-11-09 주식회사 하이닉스반도체 비동기 전송 모드 적응 계층 2 프로토콜을 이용한 목적지그룹핑에 의한 자원할당 방법
KR20070053756A (ko) * 2004-08-16 2007-05-25 콸콤 플라리온 테크놀로지스, 인코포레이티드 그룹 통신 신호들을 전송하는 방법 및 장치
US20060209754A1 (en) * 2005-03-16 2006-09-21 Ji Tingfang Channel structures for a quasi-orthogonal multiple-access communication system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028485A (ja) * 2009-06-22 2016-02-25 クゥアルコム・インコーポレイテッドQualcomm Incorporated 複雑さの低い、統一された制御チャネル処理
JP2013179597A (ja) * 2010-01-11 2013-09-09 Electronics & Telecommunications Research Inst 無線通信システムでキャリア集成
CN101835263A (zh) * 2010-04-01 2010-09-15 中国科学院上海微系统与信息技术研究所 上行参考信号的信令资源分配方法
WO2011135795A1 (fr) * 2010-04-30 2011-11-03 パナソニック株式会社 Appareil de communication sans fil et procédé de communication sans fil
JP5599456B2 (ja) * 2010-04-30 2014-10-01 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 無線通信装置及び無線通信方法
US8923206B2 (en) 2010-04-30 2014-12-30 Panasonic Intellectual Property Corporation Of America Wireless communication apparatus and wireless communication method
JP2011250043A (ja) * 2010-05-25 2011-12-08 Kyocera Corp 無線基地局及びその制御方法
JP2011250042A (ja) * 2010-05-25 2011-12-08 Kyocera Corp 無線基地局及びその制御方法
US9197388B2 (en) 2010-05-25 2015-11-24 Kyocera Corporation Radio base station and control method for the same

Also Published As

Publication number Publication date
KR20140064742A (ko) 2014-05-28
US20110305226A1 (en) 2011-12-15
EP2040409A2 (fr) 2009-03-25
EP3211818A1 (fr) 2017-08-30
CN101803243A (zh) 2010-08-11
KR101548074B1 (ko) 2015-08-27
MY159544A (en) 2017-01-13
EP2040409B1 (fr) 2019-11-06
EP2753017B1 (fr) 2019-05-15
EP2753017A1 (fr) 2014-07-09
US20090092148A1 (en) 2009-04-09
JP5513592B2 (ja) 2014-06-04
CN103001755A (zh) 2013-03-27
KR101485249B1 (ko) 2015-01-21
USRE47486E1 (en) 2019-07-02
JP2014131355A (ja) 2014-07-10
WO2009038392A3 (fr) 2009-05-07
KR20090030242A (ko) 2009-03-24
CN101803243B (zh) 2013-08-21
EP2040409A3 (fr) 2014-08-06
KR20130093573A (ko) 2013-08-22
KR101487556B1 (ko) 2015-02-04
CN103001755B (zh) 2016-11-02
US8681766B2 (en) 2014-03-25
JP5144761B2 (ja) 2013-02-13
EP3211818B1 (fr) 2020-09-02
US8077693B2 (en) 2011-12-13
USRE47374E1 (en) 2019-04-30
JP2010539846A (ja) 2010-12-16
IN2014CN03348A (fr) 2015-07-03
JP2013070417A (ja) 2013-04-18
JP2014222876A (ja) 2014-11-27
MY177550A (en) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2009038392A2 (fr) Appareil et procédé destinés au remappage et au regroupement de ressources dans un système de communication sans fil
RU2765092C1 (ru) Выделение ресурсов
CN110650542B (zh) 用于上行数据传输的方法和装置
US8385360B2 (en) Control channel formulation in OFDM systems
US8681717B2 (en) Frequency hopping scheme for OFDMA system
CN109005006B (zh) 通信装置及通信方法
EP3566383A1 (fr) Dispositif et noeud dans un système de communication sans fil pour la transmission d'informations de commande de liaison montante
WO2008084980A1 (fr) Appareil et procédé d'attribution de ressources dans un système d'accès multiple par répartition en fréquence à porteuse unique
KR20080086317A (ko) 무선통신시스템의 물리하향제어채널의 자원 매핑 방법 및매핑된 물리하향제어채널의 송/수신 장치
BRPI0816346B1 (pt) método para randomizar a interferência experimentada por um canal de controle compartilhado e estação rádio base
KR101617934B1 (ko) 이동통신 시스템에서 ack/nack 정보를 송수신하는 방법 및 장치
WO2013114798A1 (fr) Dispositif de terminal, dispositif de station de base et procédé de communication
RU2454804C2 (ru) Устройство и способ перераспределения ресурсов и перегруппировки в системе беспроводной связи
Papasakellariou et al. Zhang et a].(45) Date of Patent: Mar. 25, 2014

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880107663.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08832188

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1403/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010110129

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2010525764

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: PI 2010000796

Country of ref document: MY

122 Ep: pct application non-entry in european phase

Ref document number: 08832188

Country of ref document: EP

Kind code of ref document: A2