WO2009036854A1 - Flammenionisationsdetektor - Google Patents

Flammenionisationsdetektor Download PDF

Info

Publication number
WO2009036854A1
WO2009036854A1 PCT/EP2008/006781 EP2008006781W WO2009036854A1 WO 2009036854 A1 WO2009036854 A1 WO 2009036854A1 EP 2008006781 W EP2008006781 W EP 2008006781W WO 2009036854 A1 WO2009036854 A1 WO 2009036854A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionization detector
flame ionization
substrates
detector according
combustion chamber
Prior art date
Application number
PCT/EP2008/006781
Other languages
English (en)
French (fr)
Inventor
Jörg Müller
Winfred Kuipers
Original Assignee
Bayer Technology Services Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Technology Services Gmbh filed Critical Bayer Technology Services Gmbh
Priority to US12/675,470 priority Critical patent/US8305086B2/en
Priority to EP08785606A priority patent/EP2191263B1/de
Priority to CN200880108178.0A priority patent/CN101836111B/zh
Priority to CA2699230A priority patent/CA2699230C/en
Priority to JP2010524370A priority patent/JP5427178B2/ja
Publication of WO2009036854A1 publication Critical patent/WO2009036854A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/64Electrical detectors
    • G01N30/68Flame ionisation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize

Definitions

  • the invention relates to a flame ionization detector (FID) comprising a fuel gas supply and igniter, a sample gas supply, a combustion chamber in which the sample gas is ionized by the flame, and electrodes to generate and measure the ionic current a voltage is applied.
  • FID flame ionization detector
  • Flame ionization detectors serve to detect and measure volatile organic compounds in gaseous samples. The measurement is based on the chemical ionization of organic substances which are pyrolyzed in a oxyhydrogen flame. An ionization reaction of the carbon atoms contained in the substance takes place:
  • a voltage is applied to an electrode pair arranged at the edge of the flame, an ion current flows which can be measured and used to detect the organic compounds. If the gas first passes through a gas chromatograph, for example a capillary gas chromatograph, then the various chemical compounds of the sample gas, sorted by molecular weight, enter the flame ionization detector one after the other, so that the concentration tion of the various components can be determined.
  • a gas chromatograph for example a capillary gas chromatograph
  • a problem with flat ionization detectors is that oxyhydrogen gas must be supplied to a high explosive mixture of oxygen and hydrogen. It is therefore desirable to make the flame ionization detectors as small as possible so that only small amounts of oxyhydrogen are needed and the risk of explosion is thereby reduced. In addition, such small flame ionization detectors are of course beneficial because they are easier to transport and require less space. Further, because of the lower consumption of oxyhydrogen gas, it is not possible to use it in stored form but to produce it locally by electrolysis, further reducing the risk of explosion.
  • Such a flame ionization detector making use of this advantage consists of components which are manufactured according to the methods of microsystem technology (Zimmermann, S. et al., "Micro flame ionization detector and microflame spectrometer", Sensors and Actuators B63 (2000). Zimmermann et al., Miniaturized Flame Ionization Detector for Gas Chromatography, Sensors and Actuators B83 (2002), pp. 285-289).
  • the oxyhydrogen flame burns in the open space and is surrounded only by a metallized glass tube, which forms an electrode pair together with the silicon substrate. As the flame burns in open space, the result can be affected by turbulence and impurities.
  • the object of the invention is to provide a flat ionization detector which has a small size and can be manufactured completely by the methods of microsystem technology.
  • the flame ionization detector is characterized in that it is constructed as an integrated planar system of at least three parallel interconnected platelet-shaped substrates, which are processed by microsystem technology, a middle substrate having nozzles for the gases and the ignition device and a recess, which forms a part of the combustion chamber, which is completed by recesses in the adjacent substrates and is closed by these substrates substantially together with the nozzle region, and the adjacent substrates have feed channels for the gases.
  • the flame ionization detector according to the invention thus essentially consists of three platelet-shaped substrates, although further substrates could be provided. These substrates are produced exclusively by the means of microsystem technology by photoetching and the like.
  • the middle substrate has nozzles for the gas se and the ignition device and a recess which forms a part of the combustion chamber.
  • the combustion chamber is completed by recesses in the adjacent substrates. While the central substrate may be completely broken in the region of the combustion chamber, the adjacent substrates have depressions which close the combustion chamber after assembly, so that the combustion chamber is substantially closed.
  • Essentially closed means that the combustion chamber must have only a small opening through which the gases can escape to the outside, and one could even consider completely closing the combustion chamber if a cooling device is provided on which the combustion chamber condensate, which would then only have to be taken to ensure that the water is removed.
  • the two adjacent or outer substrates not only surround the combustion chamber, but also the nozzle area. While the nozzles for the fuel gas and the sample gas are provided in the middle substrate, the supply of these gases is effected by feed channels in the adjacent o- and outer substrates.
  • the middle substrate is conductive and the adjacent substrates are substantially non-conductive.
  • Essentially non-conductive means that the conductivity is low, even at elevated temperatures, but so high that anodic bonding of the substrates is possible, which presupposes a certain conductivity of the components, but this conductivity should not be too high be, because not only ionic currents that are to be measured, but also leakage currents take place through the substrate, which can falsify the measurement result.
  • one ⁇ -reflector is arranged in each case in the region of the combustion chamber in the adjacent substrates. So there are electrodes on both sides of the combustion chamber.
  • the disadvantage is that when a voltage is applied to the two electrodes, not only the ion current is measured, but also the current flowing from one electrode to another due to the non-zero conductivity of the outer substrates and water flows, which has settled.
  • a protective electrode according to the invention through which these currents are absorbed.
  • an electrode is formed by the middle substrate and, on the other hand, the protective electrode is located next to the second electrode on one of the two adjacent substrates, between the two electrodes. Currents flowing from one adjacent substrate to the other adjacent substrate are in this case picked up by the guard electrode and not measured.
  • the flame ionization detector Due to the high temperature of the flame (up to 2700 0 C), the flame ionization detector is strongly heated. To voltage To avoid cracks, expediently all parts have rounded contours.
  • the nozzles for the gases are formed as a buried structure and covered by at least one further substrate. In this way one can achieve symmetrical arrangement of the nozzles.
  • the middle substrate has an electrode tip immediately behind the nozzles. About this electrode tip and an electrode on one of the two adjacent substrates, a high voltage pulse for igniting the flame can be applied. Such a high voltage pulse could be generated for example by a piezo crystal.
  • the flame ionization detector can also be used to generate electrical energy by providing it with two high induction magnets, thereby forming a magnetohydrodynamic generator.
  • Fig. 1 shows an exploded view of an embodiment of the flame ionization detector according to the invention
  • Fig. 2 is a sectional view taken along the angled line A-A'-A '' of Fig. 1;
  • FIG. 3 is a sectional view corresponding to FIG. 2 of a measuring arrangement
  • FIG. 4 shows a section, in a corresponding representation as in FIG. 2, of a second particularly advantageous embodiment of the measuring arrangement
  • Fig. 5 shows the dependence of the ion current on the applied voltage in an advantageous embodiment
  • Fig. 6 shows the dependence of the ion current of the
  • FIG. 1 shows an exploded view of an embodiment of the flame ionization detector according to the invention. It comprises three substrates, a middle substrate 1 made of silicon and a lower substrate 2 and an upper substrate 3 made of pyrex glass. A part of the combustion chamber 4, the sample gas nozzle 5 and the fuel gas nozzle 6 are worked out into the middle silicon substrate 1 by known methods of microsystem technology. Tip-shaped projections 7, which protrude into the combustion chamber 4 in the vicinity of the nozzles 5, 6, can be acted upon by a high-voltage pulse for ignition.
  • the lower substrate 2 and the upper substrate 3 are provided in the region of the combustion chamber 4 with trough-shaped recesses, which are provided with a reflective metallization 8.
  • the metallization 8 is in this case with bonding islands 9 connected, can take place via the electrical connection.
  • the lower substrate 2 in the figures also has a fuel gas inlet 10, while the upper substrate 3 has a sample gas inlet 11. These inlets, after the three substrates are connected by anodic bonding, are in communication with the nozzles 5, 6.
  • Fig. 2 is a sectional view taken along the angled line A-A '-A' 'of Fig. 1 is shown.
  • the fuel gas and the sample gas enter through suitable channels in the combustion chamber 4, which is provided with the metallizations 8.
  • These metallizations can be used as the electrodes to which a voltage is applied and the current is measured, as shown schematically in FIG.
  • a disadvantage is that not only an ion current between the two electrodes 8 is generated by the voltage source U, which is measured at I, but on the one hand, a current due to the limited conductivity of the substrates 1, 2 and 3 and a current passing through low moisture is effected.
  • a protective electrode 12 Only one of the metallizations 8, namely the lower one in FIG. 12, is electrically connected. The other metallization has the sole purpose of reflecting heat back into the combustion chamber 4, so that less fuel gas is needed.
  • the substrate 1 serves as a second electrode for the measurement.
  • the protective electrode 12 is connected to the substrate 1 via the voltage source U. Currents that flow outside the combustion chamber (before the gases reach the combustion chamber), namely because of the conductivity of the substrates and deposited water, although due to the voltage source U, but by the Ammeter I not measured. Rather, only the currents between substrate 1 and lower electrode 8 are measured, that is to say only the currents which actually result from the flame ionization.
  • the flame ionization detector according to the invention can be made very small. Typically, it occupies a footprint of 10 x 10 mm.
  • the substrates need only have a thickness of a few 100 microns.
  • the nozzle openings for the fuel gas and the measurement gas can be reduced to a few 10 to 100 microns 2 , so as to minimize the fuel gas consumption or to optimize the gas mixture.
  • the combustion chamber 4 is shown open to the right in the figures, it is normally closed except for a small opening to avoid turbulence due to external air currents and contaminants.
  • the back diffusion from the environment can be prevented, for example, by the combustion chamber 4 communicating with the environment only through a narrow gap, for instance between the middle and one or both adjacent cover substrates or through a small gap in the middle substrate.
  • the combustion chamber could be completely closed with water in which the combustion product, namely water, condenses on an additional cooling device.
  • the production of the flame ionization detector can, as mentioned, be carried out with the customary techniques of microsystem technology and photolithography.
  • a typical flame ionization detector according to the invention operates at relatively low voltages, as shown in FIG. Already at a voltage of plus or minus 50 V, saturation occurs. The measurement result is then constant at higher voltage levels. The corresponding curve was recorded with a sample gas flow of 7 ml / min. The dependence of the ion current on the flow rate of the sample gas at a voltage of 100 V is shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Der Flammenionisationsdetektor, der eine Zuführung und eine Zündeinrichtung (7) für das Brenngas, eine Zuführung für das Probengas, eine Brennkammer (4), in der das Probengas durch die Flamme ionisiert wird, und Elektroden (8, 1) aufweist, an die zur Erzeugung und Messung des Ionenstroms eine Spannung angelegt wird, zeichnet sich dadurch aus, dass er als integriertes planares System aus mindestens drei parallelen miteinander verbundenen plättchenförmigen Substraten (1, 2, 3) aufgebaut ist, die mit Verfahren der Mikrosystemtechnik bearbeitet sind, wobei ein mittleres Substrat (1) Düsen (5, 6) für die Gase und die Zündeinrichtung (7) und eine Ausnehmung aufweist, die einen Teil der Brennkammer (4) bildet, die durch Ausnehmungen in den benachbarten Substraten (2, 3) vervollständigt wird und durch diese Substrate (2, 3) im Wesentlichen zusammen mit dem Düsenbereich verschlossen ist, und die benachbarten Substrate (2, 3) Zuführkanäle (10, 11) für die Gase aufweisen.

Description

1. Technische Universität Hamburg-Harburg
2. TuTech Innovation GmbH TUTEO02PWO
N/Ch 13.08.2008
Flaππnenionisationsdetektor
Die Erfindung betrifft einen Flammenionisationsdetektor (FID) , der eine Zuführung und eine Zündeinrichtung für das Brenngas, eine Zuführung für das Probengas, eine Brennkammer, in der das Probengas durch die Flamme ionisiert wird, und Elektroden aufweist, an die zur Erzeugung und Messung des Ionenstroms eine Spannung angelegt wird.
Flammenionisationsdetektoren dienen dazu, flüchtige organische Verbindungen in gasförmigen Proben festzustellen und zu messen. Die Messung beruht auf der chemischen Ionisation von organischen Substanzen, die in einer Knallgasflamme py- rolysiert werden. Es findet dabei eine Ionisationsreaktion der in der Substanz enthaltenen Kohlenstoffatome statt:
CH + O → CHO+ + e"
Legt man an ein am Rand der Flamme angeordnetes Elektroden- paar eine Spannung an, so fließt ein Ionenstrom, der gemessen werden kann und zum Nachweis der organischen Verbindungen dienen kann. Durchläuft das Gas zunächst einen Gaschromatographen, zum Beispiel einen Kapillargaschromatographen, so treten die verschiedenen chemischen Verbindungen des Probengases, sortiert nach Molekulargewicht, nacheinander in den Flammenionisationsdetektor ein, so dass die Konzen- tration der verschiedenen Komponenten festgestellt werden kann.
Ein Problem bei Flaπunenionisationsdetektoren besteht darin, dass Knallgas, eine hochexplosive Mischung von Sauerstoff und Wasserstoff zugeführt werden muss. Man ist daher bestrebt, die Flammenionisationsdetektoren möglichst klein zu machen, damit man nur geringe Mengen von Knallgas benötigt und die Explosionsgefahr dadurch vermindert wird. Außerdem sind solche kleinen Flammenionisationsdetektoren natürlich von Vorteil, da sie leichter transportierbar sind und weniger Platz benötigen. Weiter ist es wegen des geringeren Verbrauchs an Knallgas möglich, dieses nicht in gespeicherter Form zu verwenden, sondern vor Ort durch Elektrolyse herzustellen, was die Explosionsgefahr weiter verringert.
Ein solcher Flammenionisationsdetektor, der von diesem Vorteil Gebrauch macht, besteht aus Komponenten, die nach den Verfahren der Mikrosystemtechnik hergestellt sind (S. Zimmermann et al., „Micro flame ionization detector and mic- roflame spectrometer" , Sensors and Actuators B63 (2000), S. 159-166; S. Zimmermann et al . , „Miniaturized flame ionization detector for gas Chromatography" , Sensors and Actuators B83 (2002), S. 285-289). Die Knallgasflamme brennt dabei im offenen Raum und wird nur von einem metallisierten Glasrohr, das zusammen mit dem Silizium Substrat ein Elektrodenpaar bildet, umgeben. Da die Flamme im offenen Raum brennt, kann das Ergebnis durch Turbulenzen und Verunreinigungen beeinflusst werden. Zudem wird Wärme abgestrahlt, so dass eine verhältnismäßig große Menge von Brenngas erfor- derlich ist. Ein zusätzlicher Nachteil besteht darin, dass das Glasrohr aufgeklebt werden muss, der Detektor also e- benfalls nicht vollständig mit den Verfahren der Mikrosystemtechnik hergestellt werden kann, so dass seine Konstruk- tion aufwendig und teuer ist und wenig für Massenherstellung geeignet ist.
Auch weitere vorbekannte Flaπunenionisationsdetektoren klei- ner Bauart weisen den Nachteil auf, dass sie nicht oder nicht vollständig mit den Verfahren der Mikrosystemtechnik hergestellt werden können (US 5 576 626; WO 2006/000099 Al).
Die Aufgabe der Erfindung besteht in der Schaffung eines Flaπunenionisationsdetektors, der geringe Größe hat und vollständig mit den Verfahren der Mikrosystemtechnik hergestellt werden kann.
Erfindungsgemäß ist der Flammenionisationsdetektor dadurch gekennzeichnet, dass er als integriertes planares System aus mindestens drei parallelen miteinander verbundenen plättchenförmigen Substraten aufgebaut ist, die mit Verfahren der Mikrosystemtechnik bearbeitet sind, wobei ein mitt- leres Substrat Düsen für die Gase und die Zündeinrichtung und eine Ausnehmung aufweist, die einen Teil der Brennkammer bildet, die durch Ausnehmungen in den benachbarten Substraten vervollständigt wird und durch diese Substrate im Wesentlichen zusammen mit dem Düsenbereich verschlossen ist, und die benachbarten Substrate Zuführkanäle für die Gase aufweisen.
Der erfindungsgemäße Flammenionisationsdetektor besteht also im Wesentlichen aus drei plättchenförmigen Substraten, wobei allerdings weitere Substrate vorgesehen sein könnten. Diese Substrate sind ausschließlich mit den Mitteln der Mikrosystemtechnik durch Fotoätzen und dergleichen hergestellt. Das mittlere Substrat weist dabei Düsen für die Ga- se und die Zündeinrichtung und eine Ausnehmung auf, die einen Teil der Brennkammer bildet. Die Brennkammer wird durch Ausnehmungen in den benachbarten Substraten vervollständigt. Während das mittlere Substrat im Bereich der Brenn- kammer vollständig durchbrochen sein kann, weisen die benachbarten Substrate Mulden auf, die nach dem Zusammenbau die Brennkammer abschließen, so dass die Brennkammer im Wesentlichen geschlossen ist. „Im Wesentlichen geschlossen" bedeutet dabei, dass die Brennkammer nur eine kleine Off- nung aufweisen muss, durch die die Gase nach außen entweichen können. Man könnte sogar daran denken, die Brennkammer vollständig zu schließen, wenn man eine Kühleinrichtung vorsieht, an der das ausschließliche Verbrenmmgsprodukt, nämlich Wasser, kondensiert. Man müsste dann nur für geeig- nete Maßnahmen sorgen, dass das Wasser abgeführt wird.
Die beiden benachbarten oder äußeren Substrate umschließen aber nicht nur die Brennkammer, sondern auch den Düsenbereich. Während die Düsen für das Brenngas und das Probengas im mittleren Substrat vorgesehen sind, erfolgt die Zuleitung dieser Gase durch Zuführkanäle in den benachbarten o- der äußeren Substraten.
Bei einer vorteilhaften Ausführungsform ist das mittlere Substrat leitfähig und die benachbarten Substrate im Wesentlichen nicht leitend. „Im Wesentlichen nicht leitend" bedeutet dabei, dass die Leitfähigkeit auch bei erhöhter Temperatur gering ist, aber doch so groß, dass anodisches Bonden der Substrate möglich ist, was ja eine gewisse Leit- fähigkeit der Komponenten voraussetzt. Diese Leitfähigkeit sollte aber nicht zu hoch sein, da dadurch nicht nur Ionenströme, die gemessen werden sollen, sondern auch Leckströme durch das Substrat stattfinden, die das Messergebnis verfälschen können.
Vorteilhafterweise bestehen das mittlere Substrat aus SiIi- zium und die benachbarten Substrate aus Glas, wobei als Glas insbesondere Borosilikatglas sich als besonders vorteilhaft erwiesen hat.
Bei einer vorteilhaften Ausführungsform ist je eine Ξlekt- rode im Bereich der Brennkammer in den benachbarten Substraten angeordnet. Es befinden sich also Elektroden auf beiden Seiten der Brennkammer. Der Nachteil besteht dabei, dass dann, wenn eine Spannung an die beiden Elektroden angelegt wird, nicht nur der Ionenstrom gemessen wird, son- dern auch der Strom, der von einer Elektrode zur anderen aufgrund der von Null verschiedenen Leitfähigkeit der äußeren Substrate und von Wasser fließt, das sich abgesetzt hat.
Dieser Nachteil kann durch eine erfindungsgemäße Schutzelektrode vermieden werden, durch die diese Ströme aufgenommen werden. Bei einer vorteilhaften Ausführungsform wird dabei zum einen eine Elektrode durch das mittlere Substrat gebildet und zum anderen befindet die Schutzelektrode sich neben der zweiten Elektrode auf einem der beiden benachbarten Substrate, zwischen den beiden Elektroden. Ströme, die vom einen benachbarten Substrat zum anderen benachbarten Substrat fließen, werden in diesem Fall von der Schutzelektrode aufgenommen und nicht mitgemessen.
Aufgrund der hohen Temperatur der Flamme (bis 27000C) wird der Flammenionisationsdetektor stark erwärmt. Um Spannungs- risse zu vermeiden, haben zweckmäßigerweise alle Teile abgerundete Konturen.
Wenn die Elektroden an den benachbarten Substraten verspie- gelt sind, wird Wärme von der Flamme in die Brennkammer zurückreflektiert. Es wird einerseits weniger Brenngas benötigt. Andererseits wird der Detektor weniger erwärmt.
Bei einer vorteilhaften Ausführungsform sind die Düsen für die Gase als vergrabene Struktur ausgebildet und durch mindestens ein weiteres Substrat abgedeckt. Auf diese Weise kann man symmetrische Anordnung der Düsen erreichen.
Vorteilhafterweise weist das mittlere Substrat eine Elekt- rodenspitze unmittelbar hinter den Düsen auf. Über diese Elektrodenspitze und eine Elektrode auf einer der beiden benachbarten Substrate ist ein Hochspannungspuls zum Zünden der Flamme anlegbar. Ein solcher Hochspannungsimpuls könnte zum Beispiel durch einen Piezo-Kristall erzeugt werden. Der Flammenionisationsdetektor kann auch zur Erzeugung elektrischer Energie verwendet werden, indem er mit zwei Magneten hoher Induktion versehen ist und dadurch einen magnetohydrodynamischen Generator bildet.
Die Erfindung wird im Folgenden anhand von vorteilhaften Ausführungsformen unter Bezugnahme auf die beigefügten Zeichnungen beschrieben. Es zeigen:
Fig. 1 in Explosionsansieht eine Ausführungsform des erfindungsgemäßen Flammenionisationsdetektors ; Fig. 2 eine Schnittansicht entlang der gewinkelten Linie A-A'-A'' von Fig. 1;
Fig. 3 im Schnitt in entsprechender Darstellung wie Fig. 2 eine Messanordnung;
Fig. 4 im Schnitt in entsprechender Darstellung wie Fig. 2 eine zweite besonders vorteilhafte Ausführungsform der Messanordnung;
Fig. 5 die Abhängigkeit des Ionenstroms von der angelegten Spannung bei einer vorteilhaften Ausführungsform; und
Fig. 6 die Abhängigkeit des Ionenstroms von der
Strömungsgeschwindigkeit des Probengases.
In Fig. 1 ist eine Explosionsansicht einer erfindungsgemäßen Ausführungsform des Flammenionisationsdetektors ge- zeigt. Er weist drei Substrate auf, ein mittleres Substrat 1 aus Silizium und ein unteres Substrat 2 und ein oberes Substrat 3 aus Pyrexglas . In das mittlere Siliziumsubstrat 1 sind mit bekannten Methoden der Mikrosystemtechnik ein Teil der Brennkammer 4, die Probengasdüse 5 und die Brenn- gasdüse 6 herausgearbeitet. Spitzenförmige Vorsprünge 7, die in der Nähe der Düsen 5, 6 in die Brennkammer 4 hineinragen, können mit einem Hochspannungspuls zum Zünden beaufschlagt werden.
Das untere Substrat 2 und das obere Substrat 3 sind im Bereich der Brennkammer 4 mit muldenförmigen Ausnehmungen versehen, die mit einer spiegelnden Metallisierung 8 versehen sind. Die Metallisierung 8 ist dabei mit Bondinseln 9 verbunden, über die elektrischer Anschluss stattfinden kann. Das in den Figuren untere Substrat 2 weist noch einen Brenngaseinlass 10 auf, während das obere Substrat 3 einen Probengaseinlass 11 aufweist. Diese Einlasse sind, nachdem die drei Substrate durch anodisches Bonden verbunden sind, in Verbindung mit den Düsen 5, 6.
In Fig. 2 ist eine Schnittansicht entlang der gewinkelten Linie A-A' -A'' von Fig. 1 gezeigt. Das Brenngas und das Probengas treten durch entsprechende Kanäle in die Brennkammer 4 ein, die mit den Metallisierungen 8 versehen ist. Diese Metallisierungen können als die Elektroden verwendet werden, an die eine Spannung angelegt wird und der Strom gemessen wird, wie dies in Fig. 3 schematisch dargestellt ist. Ein Nachteil ist dabei, dass durch die Spannungsquelle U nicht nur ein Ionenstrom zwischen den beiden Elektroden 8 erzeugt wird, der bei I gemessen wird, sondern einerseits ein Strom aufgrund der begrenzten Leitfähigkeit der Substrate 1, 2 und 3 als auch ein Strom, der durch niederge- schlagene Feuchtigkeit bewirkt wird.
Dieser Nachteil wird bei der Ausführungsform der Fig. 4 durch eine Schutzelektrode 12 vermieden. Nur eine der Metallisierungen 8, nämlich in Fig. 12 die untere, ist elekt- risch verbunden. Die andere Metallisierung hat lediglich den Zweck, Wärme in den Brennraum 4 zurückzureflektieren, so dass weniger Brenngas benötigt wird. Als zweite Elektrode für die Messung dient das Substrat 1. Die Schutzelektrode 12 ist über die Spannungsquelle U mit dem Substrat 1 verbunden. Ströme, die außerhalb der Brennkammer (bevor die Gase die Brennkammer erreichen) fließen, nämlich wegen der Leitfähigkeit der Substrate und niedergeschlagenen Wassers, zwar aufgrund der Spannungsquelle U, werden aber durch den Strommesser I nicht mitgemessen. Gemessen werden vielmehr nur die Ströme zwischen Substrat 1 und unterer Elektrode 8, das heißt nur die Ströme, die tatsächlich von der Flammenionisation herrühren.
Der erfindungsgemäße Flammenionisationsdetektor kann sehr klein gemacht werden. Typischerweise nimmt er eine Grundfläche von 10 x 10 mm ein. Die Substrate brauchen nur eine Dicke von wenigen 100 μm aufzuweisen. Die Düsenöffnungen für das Brenngas und das Messgas können auf wenige 10 bis 100 μm2 verringert werden, um damit den Brenngasverbrauch zu minimieren beziehungsweise die Gasvermischung zu optimieren. Obwohl in den Figuren die Brennkammer 4 nach rechts hin offen gezeigt ist, wird sie normalerweise bis auf eine kleine Öffnung verschlossen, um Turbulenzen aufgrund äußerer Luftströmungen und Verunreinigungen zu vermeiden. Die Rückdiffusion aus der Umgebung kann zum Beispiel dadurch verhindert werden, dass der Brennraum 4 nur durch einen schmalen Spalt mit der Umgebung in Verbindung steht, etwa zwischen dem mittleren und einem oder beiden benachbarten Decksubstrate oder durch einen kleinen Spalt im mittleren Substrat. Die Brennkammer könnte vollständig mit Wasser verschlossen werden in dem das Verbrennungsprodukt, nämlich Wasser, an einer zusätzlichen Kühleinrichtung kondensiert.
Die Herstellung des Flammenionisationsdetektors kann wie erwähnt mit den üblichen Techniken der Mikrosystemtechnik und Fotolithographie erfolgen.
Ein typischer erfindungsgemäßer Flammenionisationsdetektor arbeitet mit verhältnismäßig niedrigen Spannungen, wie dies in Fig. 6 gezeigt ist. Bereits bei einer Spannung von plus oder minus 50 V tritt Sättigung ein. Das Messergebnis ist dann bei höheren Spannungswerten konstant. Die entsprechende Kurve wurde bei einem Fluss des Probengases von 7 ml/min aufgezeichnet. Die Abhängigkeit des Ionenstroms von der Strömungsgeschwindigkeit des Probengases bei einer Spannung von 100 V ist in Fig. 7 gezeigt.

Claims

Patentansprüche
1. Flammenionisationsdetektor, der eine Zuführung und eine Zündeinrichtung (7) für das Brenngas, eine Zufüh- rung für das Probengas, eine Brennkammer (4) , in der das Probengas durch die Flamme ionisiert wird, und E- lektroden (8, 1) aufweist, an die zur Erzeugung und Messung des Ionenstroms eine Spannung angelegt wird, dadurch gekennzeichnet, dass er als integriertes pia- nares System aus mindestens drei parallelen miteinander verbundenen plättchenförmigen Substraten (1, 2, 3) aufgebaut ist, die mit Verfahren der Mikrosystem- technik bearbeitet sind, wobei ein mittleres Substrat (1) Düsen (5, 6) für die Gase und die Zündeinrichtung (7) und eine Ausnehmung aufweist, die einen Teil der Brennkammer (4) bildet, die durch Ausnehmungen in den benachbarten Substraten (2, 3) vervollständigt wird und durch diese Substrate (2, 3) im Wesentlichen zusammen mit dem Düsenbereich verschlossen ist, und die benachbarten Substrate (2,3) Zuführkanäle (10, 11) für die Gase aufweisen.
2. Flammenionisationsdetektor nach Anspruch 1, dadurch gekennzeichnet, dass das mittlere Substrat (1) elek- trisch leitfähig ist und die benachbarten Substrate (2, 3) im Wesentlichen nichtleitend sind.
3. Flammenionisationsdetektor nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass das mittlere Substrat (1) aus Silizium und die benachbarten Substrate (2, 3) aus Glas, insbesondere Borosilikatglas bestehen.
4. Flammenionisationsdetektor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass je eine Elektrode (8) im Bereich der Brennkammer (4) in den benachbarten Substraten (2, 3) angeordnet ist.
5. Flammenionisationsdetektor nach einem der Ansprüche 2 und 3, dadurch gekennzeichnet, dass eine Elektrode durch das mittlere Substrat (1) gebildet ist.
6. Flammenionisationsdetektor nach Anspruch 5, dadurch gekennzeichnet, dass es eine Schutzelektrode (12) aufweist.
7. Flammenionisationsdetektor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass alle Substrate (1,
2, 3) Teile abgerundete Konturen aufweisen.
8. Flammenionisationsdetektor nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Substrate (1, 2, 3) durch anodisches Bonden verbunden sind.
9. Flammenionisationsdetektor nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass die Elektroden (8) an den benachbarten Substraten (1, 2) verspiegelt sind.
10. Flammenionisationsdetektor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Düsen (5, 6) für die Gase als vergrabene Struktur ausgebildet und durch mindestens ein weiteres Substrat abgedeckt sind.
11. Flammenionisationsdetektor nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das mittlere Sub- strat (1) mindestens eine Elektrodenspitze (7) unmittelbar hinter den Düsen (5, 6) aufweist, an die ein Hochspannungsimpuls zum Zünden anlegbar ist.
12. Flammenionisationsdetektor nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass er mit zwei Magneten hoher Induktion zum Bilden eines magnetohydrodynamischen Generators versehen ist.
PCT/EP2008/006781 2007-09-13 2008-08-18 Flammenionisationsdetektor WO2009036854A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/675,470 US8305086B2 (en) 2007-09-13 2008-08-18 Flame ionization detector
EP08785606A EP2191263B1 (de) 2007-09-13 2008-08-18 Flammenionisationsdetektor
CN200880108178.0A CN101836111B (zh) 2007-09-13 2008-08-18 火焰电离检测器
CA2699230A CA2699230C (en) 2007-09-13 2008-08-18 Flame ionization detector
JP2010524370A JP5427178B2 (ja) 2007-09-13 2008-08-18 水素炎イオン化検出器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07018014A EP2037264A1 (de) 2007-09-13 2007-09-13 Flammenionisationsdetektor
EP07018014.6 2007-09-13

Publications (1)

Publication Number Publication Date
WO2009036854A1 true WO2009036854A1 (de) 2009-03-26

Family

ID=39090683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/006781 WO2009036854A1 (de) 2007-09-13 2008-08-18 Flammenionisationsdetektor

Country Status (6)

Country Link
US (1) US8305086B2 (de)
EP (2) EP2037264A1 (de)
JP (1) JP5427178B2 (de)
CN (1) CN101836111B (de)
CA (1) CA2699230C (de)
WO (1) WO2009036854A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035762A1 (de) 2009-08-03 2011-02-10 Bayer Technology Services Gmbh Gegenstrombrenner
EP2447716A1 (de) 2010-10-27 2012-05-02 Bayer Technology Services GmbH Gegenstrombrenner für einen Flammenionisationsdetektor
EP2693211A1 (de) 2012-08-03 2014-02-05 Krohne Messtechnik GmbH Verfahren zur Herstellung eines Flammenionisationsdetektors und entsprechender Flammenionisationsdetektor
DE102013012731A1 (de) 2013-08-01 2015-02-05 Krohne Messtechnik Gmbh Verfahren zur Herstellung eines Gaskonverters und entsprechender Gaskonverter
US9719971B2 (en) 2013-09-13 2017-08-01 Waters Technologies Corporation Microfluidic flame ionization detector

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8773137B2 (en) * 2008-03-07 2014-07-08 Bertelli & Partners, S.R.L. Method and device to detect the flame in a burner operating on a solid, liquid or gaseous combustible
US9389207B2 (en) * 2012-04-20 2016-07-12 The Board Of Trustees Of The University Of Illinois Portable gas analyzer
DE102016117998A1 (de) * 2016-09-23 2018-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung für den Nachweis von organischen Verbindungen
DE102019126513B4 (de) 2019-10-01 2021-08-26 Horiba Europe Gmbh Flammenionisationsdetektor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193501B1 (en) * 1999-07-06 2001-02-27 The Board Of Trustees Of The University Of Illinois Microcombustor having submillimeter critical dimensions

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576626A (en) * 1995-01-17 1996-11-19 Microsensor Technology, Inc. Compact and low fuel consumption flame ionization detector with flame tip on diffuser
DE19755555A1 (de) * 1997-12-13 1999-06-17 Pierburg Ag Flammenionisationsdetektor
US6701774B2 (en) * 2000-08-02 2004-03-09 Symyx Technologies, Inc. Parallel gas chromatograph with microdetector array
JP3525384B2 (ja) * 2001-06-29 2004-05-10 アンデス電気株式会社 イオン測定器
US7077643B2 (en) * 2001-11-07 2006-07-18 Battelle Memorial Institute Microcombustors, microreformers, and methods for combusting and for reforming fluids
US7046012B2 (en) * 2001-11-20 2006-05-16 Ion Science Limited Ionization devices
US6786716B1 (en) * 2002-02-19 2004-09-07 Sandia Corporation Microcombustor
DE10310953B4 (de) * 2003-03-13 2006-03-09 Robert Bosch Gmbh Unbeheiztes, planares Sensorelement zur Bestimmung der Konzentration einer Gaskomponente in einem Gasgemisch
WO2006000099A1 (en) 2004-06-25 2006-01-05 Uti Limited Partnership Flame detector and method for gas chromatography
US20060060769A1 (en) * 2004-09-21 2006-03-23 Predicant Biosciences, Inc. Electrospray apparatus with an integrated electrode
US7273517B1 (en) * 2005-02-25 2007-09-25 Sandia Corporation Non-planar microfabricated gas chromatography column
CN1945314A (zh) * 2006-10-20 2007-04-11 上海精密科学仪器有限公司 火焰离子化检测器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193501B1 (en) * 1999-07-06 2001-02-27 The Board Of Trustees Of The University Of Illinois Microcombustor having submillimeter critical dimensions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. MANGINELL ET AL.: "Micro Flame-Based Detector Suite for Universal Gas Sensing", SANDIA REPORT, no. SAND2005-6236, 2005, SANDIA NATIONAL LABORATORIES,ALBUQUERQUE,NEW MEXICO, US, pages 1 - 36, XP002471362 *
ZIMMERMANN S ET AL: "Micro flame ionization detector and micro flame spectrometer", SENSORS AND ACTUATORS B, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 63, no. 3, May 2000 (2000-05-01), pages 159 - 166, XP004198335, ISSN: 0925-4005 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9470420B2 (en) 2009-08-03 2016-10-18 Bayer Intellectual Property Gmbh Counter-flow combustor
WO2011015285A2 (de) 2009-08-03 2011-02-10 Bayer Technology Services Gmbh Gegenstrombrenner
US20120141946A1 (en) * 2009-08-03 2012-06-07 Bayer Technology Services Gmbh Counter-flow combustor
JP2013506104A (ja) * 2009-08-03 2013-02-21 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 向流燃焼器
DE102009035762A1 (de) 2009-08-03 2011-02-10 Bayer Technology Services Gmbh Gegenstrombrenner
EP2447716A1 (de) 2010-10-27 2012-05-02 Bayer Technology Services GmbH Gegenstrombrenner für einen Flammenionisationsdetektor
WO2012055835A1 (en) 2010-10-27 2012-05-03 Bayer Technology Services Gmbh Counterflow burner for a flame ionization detector
EP2693211A1 (de) 2012-08-03 2014-02-05 Krohne Messtechnik GmbH Verfahren zur Herstellung eines Flammenionisationsdetektors und entsprechender Flammenionisationsdetektor
DE102012015204B4 (de) * 2012-08-03 2014-08-07 Krohne Messtechnik Gmbh Verfahren zur Herstellung eines Flammenionisationsdetektors
DE102012015204A1 (de) 2012-08-03 2014-02-20 Krohne Messtechnik Gmbh Verfahren zur Herstellung eines Flammenionisationsdetektors und entsprechender Flammenionisationsdetektor
US9891195B2 (en) 2012-08-03 2018-02-13 Krohne Messtechnik Gmbh Method for the production of a flame ionization detector and corresponding flame ionization detector
DE102013012731A1 (de) 2013-08-01 2015-02-05 Krohne Messtechnik Gmbh Verfahren zur Herstellung eines Gaskonverters und entsprechender Gaskonverter
US9719971B2 (en) 2013-09-13 2017-08-01 Waters Technologies Corporation Microfluidic flame ionization detector

Also Published As

Publication number Publication date
US8305086B2 (en) 2012-11-06
EP2191263A1 (de) 2010-06-02
CN101836111A (zh) 2010-09-15
JP5427178B2 (ja) 2014-02-26
EP2191263B1 (de) 2012-06-06
CA2699230A1 (en) 2009-03-26
CN101836111B (zh) 2013-03-20
US20100301870A1 (en) 2010-12-02
EP2037264A1 (de) 2009-03-18
JP2010539457A (ja) 2010-12-16
CA2699230C (en) 2016-05-24

Similar Documents

Publication Publication Date Title
EP2191263B1 (de) Flammenionisationsdetektor
DE2913866C2 (de) Meßfühler für die Bestimmung von Bestandteilen in strömenden Gasen
DE19513459A1 (de) Ionenmobilitätsspektrometer mit flexiblen gedruckten Leiterplatten und Verfahren zu dessen Herstellung
DE102005007746B4 (de) Ionenmobilitätsspektrometer mit parallel verlaufender Driftgas- und Ionenträgergasströmung
DE19924906C2 (de) Halbleiter-Gassensor, Gassensorsystem und Verfahren zur Gasanalyse
EP3299807B1 (de) Vorrichtung für den nachweis von organischen verbindungen
DE102009052957A1 (de) Gassensor mit Prüfgasgenerator
EP2447716A1 (de) Gegenstrombrenner für einen Flammenionisationsdetektor
DE102012015204B4 (de) Verfahren zur Herstellung eines Flammenionisationsdetektors
DE3120159A1 (de) Elektrochemischer messfuehler fuer die bestimmung des sauerstoffgehaltes in gasen
DE2950105C2 (de) Atomabsorptionsspektrometer mit verschiedenen, wahlweise einsetzbaren Atomisierungsvorrichtungen
DE102021116050A1 (de) Messvorrichtung und Verfahren zur Detektion mit Sauerstoff oxidierbarer Stoffe in einem Prüfgas
DE102016108545B4 (de) NDIR-Gassensor und Verfahren zu dessen Kalibrierung
DE3005928C2 (de)
EP1146336A2 (de) Gassensoranordnung
EP2462381A2 (de) Gegenstrombrenner
DE2719138A1 (de) Sensorvorrichtung zum messen der sauerstoffkonzentration in den auspuffgasen von verbrennungsmotoren
DE112013000365T5 (de) Differenzielles Ionenmobilitätsspektrometer
DE2460113A1 (de) Messzelle zur bestimmung von sauerstoffkonzentrationen in einem gasgemisch
DE2933224A1 (de) Verfahren und vorrichtung zur ermittlung des verhaeltnisses zwischen einem gas oder einer gasmischung und dem dampf einer fluechtigen anaesthetischen fluessigkeit sowie vorrichtung zur durchfuehrung dieses verfahrens und zur vorzugsweise automatischen dosierung der anaesthetischen fluessigkeit
DE69424417T2 (de) Verfahren zur versprühung von elektrolyten und deren chemischen analyse
DE4038640A1 (de) Vorrichtung zur ueberwachung von verbrennungsprozessen
DE4334410A1 (de) Dünnschicht-Gassensor
DE102004042483B4 (de) Vorrichtung und Verfahren zur Bestimmung des Sauerstoffpartialdrucks in Brennstofftanks, insbesondere von Luft- und Raumfahrzeugen, sowie Verwendung der Vorrichtung
DE102009040151A1 (de) Anordnung zur Detektion von Chemolumineszenz an Fluiden

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880108178.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08785606

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008785606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12675470

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2699230

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2010524370

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE