WO2009034267A2 - Revêtement à base d´ alkoxysiloxanes pour l'identification et la traçabilité optique - Google Patents

Revêtement à base d´ alkoxysiloxanes pour l'identification et la traçabilité optique Download PDF

Info

Publication number
WO2009034267A2
WO2009034267A2 PCT/FR2008/001018 FR2008001018W WO2009034267A2 WO 2009034267 A2 WO2009034267 A2 WO 2009034267A2 FR 2008001018 W FR2008001018 W FR 2008001018W WO 2009034267 A2 WO2009034267 A2 WO 2009034267A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
nanoparticles
product
solvent
rare earth
Prior art date
Application number
PCT/FR2008/001018
Other languages
English (en)
Other versions
WO2009034267A3 (fr
Inventor
François Breton
Alain Marchand
Cédric LOUIS
Nicolas Charvet
Original Assignee
Chemoptics
Nano-H
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemoptics, Nano-H filed Critical Chemoptics
Publication of WO2009034267A2 publication Critical patent/WO2009034267A2/fr
Publication of WO2009034267A3 publication Critical patent/WO2009034267A3/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets

Definitions

  • the invention relates to the identification and optical traceability of a substrate, such as for example an optical glass, coated with a coating based on alkoxysiloxanes in which luminescent nanoparticles are dispersed.
  • an invisible marker or at least hardly visible under the normal conditions of use which can be rendered visible under special observation conditions.
  • Some of these methods are so sophisticated that the product must be analyzed in a specialized laboratory to verify its authenticity. In many cases, however, one can be content with a less sophisticated marking that can be verified using a specific device but relatively simple and portable, by a user who does not have extensive scientific knowledge.
  • One of the inventive aspects of the method according to the present invention is that it involves rare earth oxide particles of which at least one dimension is less than about 1 ⁇ m.
  • Nanoparticles are known as such, for example patent applications EP 1 473 347, WO 2005/120441, WO 2005/088314, WO 2005/116162 and WO 2005 / 051,846.
  • the problem that the present invention seeks to solve is to present a method for incorporating an optical signature in a solid product, and in particular in a transparent or translucent product such as for example an optical glass, said optical signature to be difficult to imitate or to falsify, but easy to detect, and said method must be difficult to accurately reproduce by a person who does not know the mode precise operation of each of its stages.
  • This method must in particular make it possible to verify the authenticity of optical glasses of a certain manufacturer, which is possible, according to the invention, thanks to the presence of this optical signature in the coating of optical glasses and to its revelation by the technique of measuring photoluminescence.
  • the main families of luminescent ions are partially or completely filled sub-layer d transition metal ions, such as lanthanide ions, s2 doublet ions (for example: Sb 3+ ) and ion-containing oxygen groups. dO of transition (eg WO 4 2 ").
  • lanthanide ions aluminas as well as mixed matrices are used. Indeed, it is possible to dope a matrix mainly oxidized by substitution with luminescent rare earth ions. The luminescence of such ions being very sensitive to the surrounding crystalline field, it proves to be a very good structural probe.
  • a first object of the invention is a method for coating a substrate with a product called P1, typically a varnish comprising at least one photoluminescent compound, said process being characterized in that it comprises the following steps: a) nanoparticles comprising said at least one photoluminescent compound are prepared, said nanoparticles being present in powder form or in solution colloidal in an SO solvent; b) mixing said nanoparticles obtained in step a) in a solvent S1 to obtain an intermediate product; c) mixing said intermediate product with a varnish based on alkoxysiloxanes whose solvent is S2 to obtain a product P1, S2 which may or may not be identical to S1, but S1 and S2 must be miscible with each other; d) immersing a substrate to be coated, such as for example an organic optical glass, and even more preferably polyamide, in said product P1 obtained in step c); e) drying said substrate coated with the product P1.
  • a substrate to be coated such as for example an organic optical glass, and even more
  • a second object of the invention is a substrate coated with a varnish based on alkoxysiloxanes, comprising at least one photoluminescent compound, present at least partially in the form of nanoparticles with a mean diameter of between 20 nm and 800 nm.
  • the at least one photoluminescent compound is capable of emitting one or more emission peaks or bands in the near or far visible or IR spectrum when it is excited by at least one exciting radiation selected from the group consisting of visible light, the ultraviolet radiation, infrared radiation, electronic bombardment.
  • a third object of the present invention is a method for verifying whether a solid substrate called "substrate to be authenticated" is coated with the product P1, said method comprising the following sequential steps: a) exposing said substrate to be authenticated to an excitation radiation selected in the group composed of visible light, ultraviolet radiation, infrared radiation, electron bombardment; b) one acquires: its luminescence spectrum under excitation, then after stopping the excitation radiation, its luminescence spectrum at one or more instants; c) an optical signature is disclosed by comparing: the luminescence spectrum under excitation of the substrate to be authenticated with that obtained from a substrate coated with the product P1, referred to as the reference substrate, and / or the luminescence spectrum acquired at one or several moments after stopping the excitation radiation of the substrate to be authenticated with that of the reference substrate acquired at one or more times after stopping the excitation radiation. Description of the figure
  • FIG. 1 shows the luminescence spectrum of a gadolinium oxide matrix doped with terbium ions that can be used in the context of the present invention.
  • Rare earths include scandium (Sc) and yttrium (Y) as well as the lanthanide series (abbreviated here: Ln).
  • the lanthanides are La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu.
  • the actinides are Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lw; In the context of the present invention, it is preferred to use actinides whose stability, i.e. the service life, is sufficient in relation to the envisaged use, and which do not present any danger.
  • a sesquioxide Ln 2 O 3 is said to be doped with a rare earth Ln 'if Ln' represents between 0 and 50% of the metal cations.
  • the median diameter of a particle sample is defined by the diameter below which 50% of the particle mass is found. It can be determined by the laser scattering technique (photon correlation spectroscopy).
  • a powder is said to be isodisperse or monodisperse in particle diameter if the dispersion in particle sizes within the powder is tightened. More specifically, a colloidal dispersion is said to be iso- disperses, if the size distribution measured by laser scattering is very narrow, that is to say, for example, that more than 90% of the particles have a diameter between the mean diameter of the dispersion plus or minus 20% of the d 50 . The closer the diameter dispersion is, the more isodisperse or monodisperse the system is called.
  • a particle is said to be nanostructured when it is composed of an aggregate of nanoscale crystallites.
  • crystallites we mean elementary structures whose periodicity is sufficient to allow their X-ray detection.
  • the size of the crystallites is that determined, either from the broadening of the lines in X-ray diffraction, or from a sum of observations by transmission electron microscope.
  • optical signature the mixture of at least one photoluminescent compound contained in the product P 1 defined by its composition.
  • the nanoparticles may be prepared according to a method described in the patent application WO 2005/051846 A2. This process is a process for preparing a single phase or multiphase powder, optionally in the form of a colloidal suspension, sesquioxide, oxohydroxide or rare earth hydroxide chosen from the list Y, La, Pr, Nd, Sm, Eu, Gd, Tb.
  • Ln is a rare earth as defined above and has a transition metal cation or B III + , A1 III + , Si IV + , P v + or Bi III + , where the Roman numerals signify the oxidation state of the ion. element in question, which does not necessarily appear in its ionic form.
  • Said method comprises the following steps: (i) dissolving rare earth precursors Ln and optionally of A defined above, at least 50% by mass of these precursors being rare earth nitrates defined above, in a solvent or a mixture of polar organic solvents whose boiling temperature at atmospheric pressure is greater than 200 ° C., at the rate of 10 to 500 g of precursors per liter of solvent, in the presence of the quantity of water at least necessary for the formation of the solvent. sesquioxide, oxohydroxide, hydroxide or desired mixed oxide; (ii) the solution obtained in step (i) is heated to a temperature above 170 ° C.
  • the essentially spherical particles obtained by this process have a mean diameter of between 20 and 800 nm, are nanostructured and composed of an agglomerate of crystallites with an average unit size of between 2 and 10 nm. Less than 0.01% of the particles formed are larger than one micron. In addition, more than 50% or even more than 90 mol% of the rare earth ions introduced into the initial solution are found in the powder.
  • I / step (i) of the process consists of complete dissolution in a solvent or mixture of polar organic solvents
  • This solvent or solvent mixture being designated SO
  • the remainder of the metal precursors may be of the halide (Cl " , Br ' , I " ), NO 3 " , SO 4 2" , acetates or any other suitable organometallic compound type.
  • soluble salts of halide, nitrate or organometallic compounds for example acetates
  • transition metal for example acetates
  • B III + , Al III + , If IV + , P v + or Bi III + the Roman numerals signify the oxidation state of the element in question, which does not necessarily present in its ionic form.
  • suitable transition metal there may be mentioned Cu, V, Fe, Ni, Co, Cr, Ti.
  • the polar organic solvent is advantageously chosen from alcohols, and even more preferably from polyols, alone or as a mixture. It is preferred to choose this polyol or these polyols from ethylene glycol, polyethylene glycol, propan-1,2-diol or diethylene glycol, the latter being very particularly preferred.
  • between 10 and 500 g, preferably between 100 and 200 g of metal precursors per liter of polar organic solvent are dissolved so as to obtain, after precipitation in step (ii) of the process of preparation, between 5 and 200 g, preferably between 20 and 50 g of sesquioxide powder, oxohydroyxde, hydroxide or rare earth mixed oxide desired, per liter of solvent.
  • the dissolution is carried out by heating at a temperature generally between 120 0 C and 150 0 C and preferably around 140 0 C.
  • the solution is clear.
  • This solution must contain at least an amount of water sufficient for f sesquioxide training, oxyhydroxide, or hydroxide desired mixed oxide.
  • This water can come from the solvent or precursors used in the hydrated state or can be obtained by adding water or an aqueous solution.
  • a quantity of water of between 1 and 200 g, preferably between 10 and 100 g of water per liter of solvent is used.
  • water and / or a base of NaOH, KOH, Ca (OH) 2 , NH 3 , amines, glymes, acetates or other organic basic compounds can be added to the reaction mixture.
  • the amounts are variable and can exceed the stoichiometry, the use of 0.01 to 1 mol of base per liter of solvent is nevertheless preferred.
  • the clear solution thus obtained is heated to a temperature above 170 0 C and below the boiling point of the solvent or mixture of polar organic solvents under the conditions of pressure used for heating, preferably at a temperature between 170 and 250 0 C, and preferably between 175 and 185 0 C, for a time sufficient to obtain the precipitation of a sesquioxide powder, oxohydroxide, hydroxide or mixed oxide desired, in the form of nanostructured, submicron nanoparticles whose mean diameter is between 20 and 800 nm.
  • the heating is preferably carried out at atmospheric pressure spherical.
  • the heating is maintained for at least 5 minutes and preferably at least 2 hours.
  • the colloid thus formed has directly after synthesis a solids mass load of between 5 and 200 g of powder per liter of solvent and preferably between 20 and 50 g of powder per liter of solvent.
  • the separation in step (iii) can be carried out by filtration or by centrifugation. Several centrifugation steps may be necessary, with each time a redispersion in a suitable solvent, aqueous or organic (preferably an alcohol, an ether or acetone).
  • a suitable solvent preferably an alcohol, an ether or acetone.
  • the powder thus obtained can then be dried by gentle heating, in air or under vacuum. But this is not necessary: for example, if the solvent S1 in which the nanoparticles were located is compatible (that is to say miscible) with that S2 of the alkoxysiloxane-based varnish used in external stages of the process according to the invention, it is possible to directly use a colloid of nanoparticles.
  • the powder obtained can be in relatively pure form, it is called single-phase powder, or in the form of mixtures, it will then speak of polyphase powder.
  • a sesquioxide, oxohydroxide or hydroxide those skilled in the art will, in particular, play on the temperature and the heating time of step (ii) and on the nature and concentration of the added base.
  • This process for the preparation of luminescent nanoparticles is particularly suitable for the preparation of rare earth sesquioxide as defined above and, in particular, of Gd, Eu, Tb, Nd, Lu, Yb, Er, pure or doped with Eu, Tb, Nd, Yb, Er.
  • this preparation process is used for the preparation of Gd or Y sesquioxide, optionally doped with another rare earth and in particular with 0.01 to 25% of Eu or Tb.
  • the latter can be functionalized by a layer of polysiloxane or silica, of varying thickness and composition. It may then be in particular hybrid nanoparticles comprising: a nanosphere, with a mean diameter in the range of 2 to 9 nm, composed of at least 80% by weight, and preferably at least 90% by weight, of Ln 2 O 3 with Ln representing a rare earth, possibly doped with a rare earth or an actinide, or a mixture of rare earths, or a mixture of rare earth and actinide in which at least 50% of the metal ions are rare earth ions, a coating around the nanosphere, consisting mainly of functionalized polysiloxane or silica, and which has an average thickness in the range of 0.5 to 10 nm and preferably greater than 2 nm and less than or equal to 10 nm, and optionally at least one organic molecule or a polymer grafted by covalent bonding to the coating of polys
  • organic luminescent molecules chosen in particular from the rhodamine or fluorescein derivatives, are grafted onto the surface and / or within the coating, which allows a time-resolved detection.
  • life time of the excited state is a few nanoseconds for luminescent organic molecules and of the order of a microsecond for lanthanide sesquioxide nanoparticles. The decrease in intensity of the luminescence after excitation is therefore specific to these hybrid nanoparticles.
  • the coating of the nanoparticles in a crosslinked layer of polysiloxane is typically carried out by hydrolysis and then condensation of tetraethylorthosilicate (TEOS) and functionalized organoalkoxysilanes (aminopropyltriethoxysilane (APTS)).
  • TEOS tetraethylorthosilicate
  • APTS aminopropyltriethoxysilane
  • Polymers such as polyethylene glycol or dextran, surface dispersants or complexing agents can be added to the colloidal solution to facilitate solvent change in step b) and stabilization in the alkoxysiloxane coating.
  • step c) of the process according to the invention Other methods capable of leading to nanoparticles of similar size and particle size may also be suitable.
  • aluminas may be used, as well as mixed matrices composed of sesquioxide, oxohydroxide or hydroxide and alumina.
  • mixtures can be made: mixture of at least two ions rare earths - A mixture of at least two types of nanoparticles, mixtures of at least two nanoparticle compositions distinguished, for example, by different concentrations and rare earth ions.
  • Step b Mixing the nanoparticles in a solvent
  • step a) of the process according to the invention for coating a substrate with a varnish comprising at least one photoluminescent compound, present in the form of a powder or, preferably, in the form of a colloid or the like, are then mixed in a solvent S1, which can be an organic solvent or an aqueous solvent, for example neutral pH or acid.
  • a solvent S1 which can be an organic solvent or an aqueous solvent, for example neutral pH or acid.
  • An intermediate product is thus obtained.
  • This intermediate product shows good stability, which is an essential condition for its use in a varnish bath.
  • Step c Adding the Solution Obtained in Step b) to a Varnish Based on Alkoxysilanes
  • step b) The solution obtained in step b) is added to a varnish based on alkoxysiloxanes, varnish typical of organic optical glasses, and whose solvent is S2, preferably with stirring.
  • the product thus obtained is called Pl.
  • Alkoxysiloxane lacquers are commonly used in the field of organic optical glasses. They have a higher hardness than the base polymer which consist of known organic optical glasses, especially polyamide glasses. The application of such a varnish thus protects the substrates from scratches.
  • varnishes used for the coating of organic glasses two categories can be distinguished: “tintable” varnishes which are not too reticulated, their network being not very dense, tintable dyes which have a higher hardness and better adhesion for anti-reflective treatment, due to higher crosslinking, but for which dyes can not pass through the polymerization network and settle on the glass.
  • varnishes composed of polysiloxanes are tintable, if they are made from mono-, di- or trifunctional monomers. With regard to the tetrafunctional monomers, it is necessary to add colloidal silica so that they are tintable.
  • a test to determine whether a varnish is tintable or not tintable is to immerse, for about 15 minutes and stirring, the substrate coated with the varnish to be tested in a color bath, thermostated at a temperature between 85 ° C and 100 0 C, and preferably equal to 88 0 C, comprising either BPI Black or BPI Sun Gray at a mass concentration of 10% relative to the weight of the aqueous solution.
  • the varnish is considered “non-tintable” if light transmission has decreased by not more than 5% between before and after immersion of the varnished substrate in the color bath described above. In all other cases, the varnish is then considered as "tintable".
  • Non-tintable varnishes - TS 56 H from Tokuyama Soda,
  • the solvents S1 and S2 are identical or different.
  • the solvents S1 and S2 must be miscible with each other.
  • methoxy-1-propan-2-ol is used as solvents S1 and S2.
  • This solvent has a good compromise between an evaporation rate, neither too fast nor too slow, and a very satisfactory dissolving power. It ensures the residual bath a good stability over time; this open life of the bath is an important factor for the cost of the process according to the invention, knowing that the use of nanoparticles significantly increases the varnish.
  • I / isopropyl alcohol, isobutanol, ⁇ -butanol, ethoxyethanol, methanol, butoxyethanol, diacetone alcohol, ethanol are solvents which may also be suitable as solvent S2.
  • Step d Immersion of a substrate in a bath consisting of the mixture obtained in step c) of the luminescent nanoparticles and of the alkoxysilane-based varnish, namely the product P1.
  • the substrate may be an organic or inorganic substrate.
  • an organic optical glass and preferably a polyamide glass, can be used.
  • this substrate is treated, advantageously by immersion, in a bath containing the mixture of luminescent nanoparticles and varnish based on alkoxysiloxanes, namely the product Pl.
  • the luminescent nanoparticles present in the product Pl thanks to their deposition on the substrate will serve as a means of proof of authenticity of the substrate.
  • the bath is advantageously a bath of varnish in which said luminescent nanoparticles have been incorporated, and even more advantageously, it is a hardening varnish consisting of the liquid mixture obtained in step c).
  • the experimental conditions such as, for example, the immersion and emersion rates as a function of the viscosity (degree of fluidity) of the varnish, the bath temperature and the immersion times are those known from the state of the art. .
  • a concentration of rare earth oxide greater than 1 g / l of alkoxysiloxane-based lacquer comprising at least one photoluminescent compound, advantageously greater than 5 g / l and even more advantageously greater than 10 g / l, will be advantageously aimed at. doping rate greater than 10 atomic%, and preferably greater than 30 atomic%, for each rare earth.
  • the concentration of rare earth oxide necessary to be added to the alkoxysiloxane lacquer is determined according to the detector used in the acquisition of luminescence spectra. Two types of detection are particularly used: photodiode photomultiplier. Thus, for a photomultiplier detector, the detection threshold of photoluminescent ions will be reached at a lower rare earth oxide concentration than with a photodiode type detector.
  • the substrate such as an organic optical glass obtained at the end of this immersion has therefore become photoluminescent.
  • the photoluminescent nanoparticles included in the varnish based on alkoxysiloxanes ensure a homogeneous dispersion of luminescent rare earth ions in said varnish. Moreover, thanks to the presence of these photoluminescent nanoparticles in the varnish of which the substrate is coated, the reflection is more precise, and the acquisition of luminescence spectra easier.
  • substrate to be authenticated in particular a transparent or translucent substrate, such as for example an optical glass, is coated with the product P1 as it appears in the first method of the invention.
  • substrate to be authenticated in particular a transparent or translucent substrate, such as for example an optical glass
  • the "substrate to be authenticated” is exposed to an excitation radiation composed of photons in the visible or near-far IR domains produced by a lamp, a fluorescent tube, a diode, a laser or any other source of photons.
  • an excitation radiation composed of photons in the visible or near-far IR domains produced by a lamp, a fluorescent tube, a diode, a laser or any other source of photons.
  • the substrate to be authenticated comprises at least one photoluminescent compound, a luminescence spectrum is produced.
  • an excitation wavelength of 254 nm, 290 nm, 380 nm, 410 nm, 450 nm, 488 nm or 633 nm can be used.
  • a light source one can use for example a laser or a laser diode, or a Xenon lamp, advantageously coupled to an optical fiber associating a central optical fiber for the emission and photodiodes arranged around the fiber.
  • the excitation radiation is produced by one or more simultaneous sources, such as for example several light emitting diodes emitting at different wavelengths.
  • a diode emitting in the ultraviolet may be associated with a diode emitting in the infrared.
  • the detection system may be a photodiode or a photomultiplier, the latter having, among all the known detection systems, the greatest sensitivity.
  • step b) of the process according to the invention the acguisition is carried out: the luminescence spectrum under excitation of the
  • luminescence spectral data are obtained which represent the measurements of optical emissions occurring during the de-excitation of a material, such as a photoluminescent material, and this as a function of the excitation wavelength.
  • the luminescence spectra acquired after the arrest of the excitation correspond to the decline of the emission bands over time.
  • the peaks or emission bands may have completely disappeared during the acquisition of the luminescence spectrum.
  • An analysis of the decay of the luminous intensity emitted in one or more parts of the emission spectrum as a function of time is also carried out. This analysis may consist of the calculation, for each of the peaks or bands of emission and for each of the durations between Stopping the excitation and acquiring the spectral data, the ratio between the measured emission intensity and the intensity under excitation.
  • the method according to the invention for verifying the authenticity of a solid substrate called “substrate to be authenticated” comprises a step c) which consists in comparing:
  • step b) of the authentication method makes it possible to affirm that the substrate to be authenticated is of the same nature as the reference substrate and is therefore well authenticated.
  • the optical signature namely the composition of the mixture of at least one photoluminescent ion incorporated into the alkoxysiloxane lacquer, will be chosen according to the type of detection chosen and its sensitivity.
  • the invention relates to the use of the optical signature obtained in step c) of the method of optical authentication of a photoluminescent compound according to the invention, for the authentication and / or the detection of the counterfeiting of objects. such as optical glasses.
  • the detector may be portable, the optical signature is "simple", and the authenticity of an object will be verified by the presence, for example, of a characteristic peak at a length of. precise wave on the luminescence spectrum.
  • the use of a portable detector has the advantage of making it possible to verify the authenticity of an object at the place of a seizure for example, but its limited sensitivity requires that the optical signatures be relatively simple.
  • more complex optical signatures can be implemented by making more elaborate mixtures of nanoparticles, and also by playing on the concentrations of photoluminescent ions.
  • the detection equipment must be adapted accordingly, in particular with regard to its sensitivity. This is the case where product authentication analyzes are conducted in laboratories.
  • the method for authenticating a solid substrate coated with a product P1 comprising at least one compound is adapted as a function of its desired implementation: summary authentication analyzes or, on the contrary, in-depth analyzes through the implementation of a more or less complex optical signature, and this by playing on the product composition Pl.
  • This example relates to the preparation of nanoparticles comprising a matrix of gadolinium oxide doped with terbium ions.
  • the catalyst solution consisted of diethylene glycol, water and a base, triethylamine (Et3N) (for 10 mL of basic solution, the proportions were as follows: 7.91 mL of diethylene glycol, 1.799 mL of water, 291 ⁇ l of triethylamine). 51.413 ml of TEOS and 92.2 ml of the basic basic catalysis solution are added in fractions to the reaction mixture. The system was stirred at 40 ° C. for 48 hours.
  • Treatment / Conditioning Ethanol was evaporated under reduced pressure. The volume recovered corresponded to that of diethylene glycol with the nanoparticles. This solution was then raised to 150 ° C. for 2 hours under atmospheric pressure in order to densify the silica layer. Once the temperature was lowered, dialysis (dialysis tube with pores less than 10 kD) against an ethanol / diethylene glycol mixture (90/10) was performed to remove all the by-products or impurities. The dialysis bath has been changed 3 times, the periodicity being 24h.
  • This solution was reconcentrated to a concentration of 60 g / L rare earth oxide, under reduced pressure to remove ethanol, and then diluted with the basic solvent, 1-methoxy-2-propanol. , and thus obtain a final concentration of 20g / L of rare earth.
  • the solution thus obtained was added to a varnish based on alkoxysiloxanes according to the invention and the solvent of which is 1-methoxy-2-propanol; what constitutes the product Pl.
  • FIG. 1 shows the luminescence spectrum of the polyamide optical glass coated with this product P1 obtained at an excitation wavelength of 254 nm. A characteristic peak at 548 nm is noted. This thus constitutes the optical signature of the optical glass coated with this product P1, namely a matrix of gadolinium oxide doped with terbium ions.
  • This example shows that an acidic aqueous solution of nanoparticles that can be used for the implementation of the present invention is sufficiently stable.
  • a solution of nanoparticles comprising a rare earth compound dispersed in water at pH4 and at a concentration of 10 g. L "1 was prepared. After Ih of stirring, the stability of the particles in this medium was verified by laser granulometry. Particle size was observed remains very close to the values observed during the preparation of the solution (to errors in measurements) A second verification after 20 hours of storage was also performed, the values obtained were strictly identical to the previous ones.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

L'objet de l' invention est un procédé pour vérifier si un substrat solide appelé "substrat à authentifier" est revêtu d' un vernis à base d'alkoxysiloxanes comprenant au moins un composé photoluminescent donné, sous la forme de nanoparticules, ledit procédé comprenant les étapes séquentielles : a) on expose ledit substrat à authentifier à un rayonnement excitateur; b) on acquiert son spectre de luminescence, c) on révèle une signature optique par comparaison du spectre de luminescence du substrat à authentifier avec celui obtenu à partir d' un substrat revêtu du vernis à base d' alkoxysiloxanes comprenant le au moins un composé photoluminescent donné, sous la forme de nanoparticules, appelé substrat de référence. L' invention concerne aussi l' utilisation de ce procédé pour l' authentification et/ou la détection de la contrefaçon d' objets tels que des verres optiques.

Description

Revêtement: à base d/ alkoxysiloxanes pour l'identification et la traçabilité optique
Domaine de l'invention L' invention concerne l' identification et de la traçabilité optique d' un substrat, tel que par exemple un verre optique, recouvert d' un revêtement à base d' alkoxysiloxanes dans lequel sont dispersées des nanoparticules luminescentes .
Etat de la technique
De plus en plus d'articles de marque font l'objet de contrefaçons. Souvent, il s'agit d'imitations de mauvaise qualité technique, qui peuvent mettre en danger les utilisateurs. A titre d'exemple, le consommateur standard susceptible d' acheter une paire de lunettes de soleil auprès d' un revendeur ambulant n' a normalement pas les moyens pour déceler un produit de contrefaçon qui imite la haute qualité des verres optiques des produits de marque vendus à un prix très supérieur dans des magasins spécialisés. Si ces verres sont de mauvaise qualité optique, cela peut engendrer des lésions de la rétine par le rayonnement ultraviolet après un usage prolongé . Les imitations de produits étant de plus en plus sophistiquées, le problème de la détection de la contrefaçon peut se poser également pour les revendeurs spécialisés, ainsi que pour les autorités des douanes qui souhaiteraient disposer d' outils portables, fiables et d' usage rapide pour distinguer un produit imité d' un produit authentique. Un problème analogue se pose pour le marquage fiduciaire. On connaît de plus en plus de méthodes consistant à incorporer dans un produit, lors de sa fabrication, lors de sa finition ou lors de son conditionnement, un marqueur invisible ou au moins difficilement visible dans les conditions normales d' emploi, qui peut être rendu visible dans des conditions d' observation particulières. Certaines de ces méthodes sont tellement sophistiquées qu' il faut analyser le produit dans un laboratoire spécialisé pour vérifier son authenticité. Dans de nombreux cas, on peut cependant se contenter d' un marquage moins sophistiqué qui peut être vérifié à l' aide d' un appareil certes spécifique mais relativement simple et portable, par un utilisateur qui ne dispose pas de connaissances scientifiques approfondies . Un des aspects inventifs de la méthode selon la présente invention est qu' elle fait intervenir des particules d' oxyde de terre rare dont au moins une dimension est inférieure à environ 1 μm. De telles particules (appelées « nanoparticules » à cause de leurs dimensions) sont connues en tant que telles, par exemple des demandes de brevet EP 1 473 347, WO 2005/120441, WO 2005/088314, WO 2005/116162 et WO 2005/051846.
Objet de l'invention
Le problème que la présente invention cherche à résoudre est de présenter une méthode pour incorporer une signature optique dans un produit solide, et notamment dans un produit transparent ou translucide tel que par exemple un verre optique, ladite signature optique devant être difficile à imiter ou à falsifier, mais facile à détecter, et ladite méthode devant être difficile à reproduire avec précision par une personne qui ne connaît pas le mode opératoire précis de chacune de ses étapes. Cette méthode doit permettre en particulier de vérifier l' authenticité de verres optiques d' un certain fabricant, ce qui est possible, selon l' invention, grâce à la présence de cette signature optique dans le revêtement des verres optiques et à sa révélation par la technique de la mesure de la photoluminescence .
La mesure de la photoluminescence, connue en tant que telle depuis longtemps, exploite le fait que certains matériaux, une fois excités électroniquement, se désexcitent en plusieurs étapes, dont certaines donnent lieu à des émissions optiques. Il existe diverses méthodes pour induire une excitation électronique dans un matériau, par exemple en l' irradiant avec des électrons, des protons ou des photons .
Les principales familles d' ions luminescents sont des ions de métaux de transition à sous-couche d partiellement ou totalement remplie, tels que les ions lanthanides, les ions à doublet s2 (par exemple : Sb3+) et les groupements oxygénés comportant un ion de transition dO (par exemple : WO4 2") .
Dans le cadre de la présente invention, des ions lanthanides, des alumines ainsi que des matrices mixtes sont utilisés. En effet, il est possible de doper une matrice principalement oxyde par substitution par des ions terres rares luminescents. La luminescence de tels ions étant très sensible au champ cristallin environnant, elle se révèle être une très bonne sonde structurale .
Un premier objet de l' invention est un procédé pour revêtir un substrat d'un produit appelé Pl, typiquement d' un vernis comprenant au moins un composé photoluminescent, ledit procédé étant caractérisé en ce qu' il comporte les étapes suivantes : a) on prépare des nanoparticules comportant ledit au moins un composé photoluminescent, lesdites nanoparticules étant présentes sous forme de poudre ou en solution colloïdale dans un solvant SO; b) on mélange lesdites nanoparticules obtenues à l' étape a) dans un solvant Sl pour obtenir un produit intermédiaire; c) on mélange ledit produit intermédiaire avec un vernis à base d' alkoxysiloxanes dont le solvant est S2 pour obtenir un produit Pl, S2 pouvant être identique ou non à Sl, mais Sl et S2 devant être miscibles entre eux ; d) on immerge un substrat à revêtir, tel que par exemple un verre optique organique, et encore plus préférentiellement en polyamide, dans ledit produit Pl obtenu à l' étape c) ; e) on sèche ledit substrat revêtu du produit Pl.
Un deuxième objet de l'invention est un substrat revêtu d' un vernis à base d' alkoxysiloxanes, comprenant au moins un composé photoluminescent, présent au moins partiellement sous la forme de nanoparticules de diamètre moyen compris entre 20 nm et 800 nm.
Le au moins un composé photoluminescent est capable d' émettre un ou plusieurs pics ou bandes d' émission dans le spectre visible ou IR proche ou lointain lorsqu' il est excité par au moins un rayonnement excitateur sélectionné dans le groupe composé par la lumière visible, le rayonnement ultra-violet, le rayonnement infrarouge, le bombardement électronique.
Un troisième objet de la présente invention est un procédé pour vérifier si un substrat solide appelé « substrat à authentifier » est revêtu du produit Pl, ledit procédé comprenant les étapes séquentielles suivantes : a) on expose ledit substrat à authentifier à un rayonnement excitateur sélectionné dans le groupe composé par la lumière visible, le rayonnement ultraviolet, le rayonnement infrarouge, le bombardement électronique ; b) on acquiert : son spectre de luminescence sous excitation, puis après arrêt du rayonnement d' excitation, son spectre de luminescence à un ou plusieurs instants; c) on révèle une signature optique par comparaison : du spectre de luminescence sous excitation du substrat à authentifier avec celui obtenu à partir d' un substrat revêtu du produit Pl, appelé substrat de référence, et/ou du spectre de luminescence acquis à un ou plusieurs instants après l' arrêt du rayonnement d' excitation du substrat à authentifier avec celui du substrat de référence acquis à un ou aux mêmes instants après arrêt du rayonnement d' excitation. Description de la figure
La figure 1 montre le spectre de luminescence d' une matrice d' oxyde de gadolinium dopée par des ions terbium utilisable dans le cadre de la présente invention.
Description
1. Définitions
Les terres rares comprennent le scandium (Sc) et l' yttrium (Y) ainsi que la série des lanthanides (abrégés ici : Ln) . Les lanthanides sont La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. Les actinides sont Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lw ; on préfère dans le cadre de la présente invention les actinides dont la stabilité, i.e. la durée de vie, est suffisante par rapport à 1' utilisation envisagée, et gui ne présentent pas de danger .
Un sesquioxyde Ln2O3 est dit dopé par une terre rare Ln' si Ln' représente entre 0 et 50% des cations métalliques.
Le diamètre médian d' un échantillon de particules, nommé d50, est défini par le diamètre en dessous duquel on trouve 50% de la masse des particules. Il peut être déterminé par la technique de diffusion laser (spectroscopie de corrélation de photons) .
Une poudre est dite isodisperse ou monodisperse en diamètre de particules si la dispersion en tailles des particules au sein de la poudre est resserrée. Plus précisément, une dispersion colloïdale est dite iso- disperse, si la distribution en taille mesurée par diffusion laser est très resserrée, c' est-à-dire, par exemple, que plus de 90% des particules ont un diamètre compris entre le diamètre moyen de la dispersion plus ou moins 20% du d50. Plus la dispersion en diamètre est resserrée, plus le système est appelé isodisperse ou monodisperse .
Une particule est dite nanostructurée lorsqu' elle est composée d' un agrégat de cristallites de dimension nanométrique .
Par cristallites, on entend des structures élémentaires dont la périodicité est suffisante pour permettre leur détection aux rayons X. La taille des cristallites est celle déterminée, soit à partir de l' élargissement des raies en diffraction des rayons X, soit à partir d' une somme d' observations au microscope électronique à transmission .
Dans le cadre de la présente invention, nous appelons « signature optique » le mélange de au moins un composé photoluminescent contenu dans le produit Pl défini par sa composition.
2. Description détaillée de l' invention
2.1 Procédé de préparation des substrats revêtus selon l' invention
Nous décrivons ci-dessous de manière détaillée un procédé permettant d' obtenir les substrats revêtus selon 1' invention. Etape a) : Préparation des nanoparticules
Les nanoparticules peuvent être préparées selon un procédé décrit dans la demande de brevet WO 2005/051846 A2. Ce procédé est un procédé de préparation d' une poudre monophasée ou polyphasée, éventuellement sous forme de suspension colloïdale, de sesquioxyde, oxohydroxyde ou hydroxyde de terre rare choisie parmi la liste Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, pure, en mélange ou dopée avec une terre rare ci-dessus définie ou avec Ce, ou d' un oxyde mixte de formule LnxA2-xOy ou LnxA2- x0v(0H)z, avec : x compris dans la gamme allant de 0 à 2, - y compris dans la gamme allant de 3 à 4, - v compris dans la gamme allant de 0 à 4, et z compris dans la gamme allant de 0 à 8-2v,
Ln est une terre rare telle que définie ci-dessus et A un cation de métal de transition ou BIII+, A1III+, SiIV+, Pv+ ou BiIII+, où les chiffres romains signifient l' état d' oxy- dation de l' élément en question, qui ne se présente pas nécessairement sous sa forme ionique . Ledit procédé comporte les étapes suivantes : (i) on dissout des précurseurs de terre rare Ln et éventuellement de A ci-dessus défini, au moins 50% en masse de ces précurseurs étant des nitrates de terre rare ci-dessus définie, dans un solvant ou mélange de solvants organiques polaires dont la température d' ébullition à pression atmosphérique est supérieure à 2000C, à raison de 10 à 500g de précurseurs par litre de solvant, en présence de la quantité d' eau au moins nécessaire pour la formation du sesquioxyde, oxohydroxyde, hydroxyde ou oxyde mixte souhaité ; (ii) on chauffe la solution obtenue à l' étape (i) à une température supérieure à 1700C et inférieure à la température d' ébullition du solvant ou mélange de solvants organiques polaires dans les conditions de pression utilisées pour le chauffage, de préférence à une température comprise entre 1700C et 2500C et préférentiellement comprise entre 175°c et 185°C, pendant un temps suffisant pour obtenir la précipitation d' une poudre du sesquioxyde, oxohydroxyde, hydroxyde ou oxyde mixte souhaité, sous la forme de particules nanostructurées, submicroniques dont le diamètre moyen est compris entre 20 et 800 nm ; (iii) on sépare la poudre obtenue du solvant polaire, et on effectue éventuellement un séchage.
Les particules essentiellement sphériques obtenues par ce procédé ont un diamètre moyen compris entre 20 et 800 nm, sont nanostructurées et composées d' un agglomérat de cristallites de dimension unitaire moyenne comprise entre 2 et 10 nm. Moins de 0,01% des particules formées ont une taille supérieure au micron. En outre, plus de 50%, voire même plus de 90% en moles des ions de terres rares introduits dans la solution initiale se retrouvent dans la poudre .
I/ étape (i) du procédé consiste en la dissolution complète dans un solvant ou mélange de solvants organiques polaires
(ce solvant ou mélanges de solvants étant désigné SO) dont la température d' ébullition à pression atmosphérique est supérieure à 2000C, des précurseurs métalliques dont au moins 50% en moles, et de préférence au moins 90%, sont composés de nitrates de terre rare choisie parmi le lanthane, l' yttrium et les lanthanides, pure, dopée ou en mélange avec une autre terre rare ci-dessus définie. Le reste des précurseurs métalliques peut être de type halogénures (Cl", Br', I"), NO3 ", SO4 2", acétates ou tout autre composé organométallique adapté.
Si l' on souhaite préparer des oxydes mixtes, on utilisera, en plus des précurseurs de terres rares, des sels solubles de types halogénures, nitrates ou composés organo- métalliques (par exemple des acétates) de métal de transition ou BIII+, AlIII+, SiIV+, Pv+ ou BiIII+, où les chiffres romains signifient l' état d' oxydation de 1' élément en question, qui ne se présente pas nécessairement sous sa forme ionique. Comme métal de transition convenable, on peut notamment citer Cu, V, Fe, Ni, Co, Cr, Ti.
Le solvant organique polaire est avantageusement choisi parmi les alcools, et encore plus préfèrentiellement parmi les polyols, seuls ou en mélange. On préfère choisir ce polyol ou ces polyols parmi l' éthylène glycol, le polyéthylène glycol, le propan-1, 2-diol ou le diéthylène glycol, ce dernier étant tout particulièrement préféré.
A titre d' exemple, on dissout entre 10 et 500 g, de préfé- rence entre 100 et 200 g de précurseurs métalliques par litre de solvant organique polaire, de façon à obtenir, après précipitation à l' étape (ii) du procédé de préparation, entre 5 et 200 g, de préférence entre 20 et 50 g de poudre de sesquioxyde, d' oxohydroyxde, d' hydroxyde ou d' oxyde mixte de terre rare souhaité, par litre de solvant . Après homogénéisation, la dissolution est réalisée par chauffage à une température généralement comprise entre 1200C et 1500C et de préférence autour de 1400C. A la fin de cette étape, la solution est limpide. Cette solution doit contenir au moins une quantité df eau suffisante pour la formation de sesquioxyde, oxohydroxyde , hydroxyde ou oxyde mixte souhaité. Cette eau peut provenir du solvant ou des précurseurs utilisés à l' état hydraté ou peut être obtenue par ajout d'eau ou d'une solution aqueuse. Avantageusement, on utilise une quantité d'eau comprise entre 1 et 200 g, de préférence entre 10 et 100 g d' eau par litre de solvant. Après homogénéisation de la solution et en fonction de la composition souhaitée, de l'eau et/ou une base de type NaOH, KOH, Ca(OH)2, NH3, aminés, glymes, acétates ou autres composés basiques organiques peuvent donc être ajoutés au mélange réactionnel. Les quantités sont variables et peuvent dépasser la stœchiométrie, l'utilisation de 0,01 à 1 mol de base par litre de solvant est néanmoins préférée.
Selon l' étape (ii) du procédé de préparation, la solution limpide ainsi obtenue est chauffée à une température supérieure à 1700C et inférieure à la température d' ébullition du solvant ou du mélange de solvants orga- niques polaires dans les conditions de pression utilisées pour le chauffage, de préférence à une température comprise entre 170 et 2500C, et préférentiellement comprise entre 175 et 1850C, pendant un temps suffisant pour obtenir la précipitation d' une poudre de sesquioxyde, oxohydroxyde, hydroxyde ou oxyde mixte souhaité, sous la forme de nanoparticules nanostructurées, submicroniques dont le diamètre moyen est compris entre 20 et 800 nm. Le chauffage est de préférence effectué à pression atmo- sphérique. De façon avantageuse, le chauffage est maintenu au moins 5 minutes et de préférence au moins 2 heures . Le colloïde ainsi formé présente directement après synthèse une charge massique en solide comprise entre 5 et 200 g de poudre par litre de solvant et de préférence entre 20 et 50 g de poudre par litre de solvant.
La séparation à l' étape (iii) peut être réalisée par filtration ou par centrifugation. Plusieurs étapes de centrifugation peuvent être nécessaires, avec à chaque fois une redispersion dans un solvant approprié, aqueux ou organique (de préférence un alcool, un éther ou acétone) . La poudre ainsi obtenue peut ensuite être séchée par chauffage doux, à l'air ou sous vide. Mais cela n'est pas nécessaire : par exemple, si le solvant Sl dans lequel se trouvaient les nanoparticules est compatible (c'est-à-dire miscible) avec celui S2 du vernis à base d' alkoxysiloxanes utilisé dans des étapes externes du procédé selon 1' invention, on peut utiliser directement un colloïde de nanoparticules.
La poudre obtenue peut être sous forme relativement pure, on parle alors de poudre monophasée, ou sous forme de mélanges, on parlera alors de poudre polyphasée. Pour obtenir un sesquioxyde, oxohydroxyde ou hydroxyde, l'homme du métier jouera, notamment, sur la température et le temps de chauffage de l' étape (ii) et sur la nature et la concentration de la base ajoutée.
Ce procédé de préparation de nanoparticules luminescentes est particulièrement adapté à la préparation de sesquioxyde de terre rare telle que précédemment définie et, en particulier, de Gd, Eu, Tb, Nd, Lu, Yb, Er, pur ou dopé avec Eu, Tb, Nd, Yb, Er. Avantageusement, ce procédé de préparation est utilisé pour la préparation de sesquioxyde de Gd ou Y, éventuellement dopé avec une autre terre rare et notamment avec 0,01 à 25% d'Eu ou de Tb.
Selon un autre mode de réalisation possible de préparation des nanoparticules luminescentes, ces dernières peuvent être fonctionnalisées par une couche de polysiloxane ou de silice, d'épaisseur et de composition variables. Il peut s' agir alors notamment de nanoparticules hybrides comprenant : une nanosphère, de diamètre moyen compris dans la gamme allant de 2 à 9 nm, composée, à au moins 80% en poids, et de préférence à au moins 90% en poids, de Ln2O3 avec Ln qui représente une terre rare, éventuellement dopée avec une terre rare ou un actinide, ou un mélange de terres rares, ou bien un mélange de terre rare et d' actinide dans lequel au moins 50% des ions métalliques sont des ions terre rare , un enrobage autour de la nanosphère, constitué majoritairement de polysiloxane ou de silice fonctionnalisés, et qui présente une épaisseur moyenne comprise dans la gamme allant de 0,5 à 10 nm et, de préférence, supérieure à 2 nm et inférieure ou égale à 10 nm, et éventuellement au moins une molécule organique ou un polymère greffé par liaison covalente à l' enrobage de polysiloxane ou de silice.
Un procédé de préparation de ces nanoparticules hybrides est décrit dans la demande de brevet internationale WO 2005/088314 Al. La fonction de l' enrobage permet, entre autres : d' assurer la protection (étanchéité) du cœur vis-à- vis du milieu extérieur ;
- de servir de sites de greffage à au moins une molécule organique ou un polymère d' augmenter les performances optiques du cœur minéral par transfert d' énergie de la couronne absorbant dans l' UV vers le cœur ré-émettant dans le visible.
Dans un mode de réalisation, entre 10 et 100 000 molécules organiques luminescentes, notamment choisies parmi les dérivés de la rhodamine ou de la fluorescéine, sont greffées à la surface et/ou sein de l' enrobage, ce qui permet une détection résolue en temps. En effet, le temps de vie de l' état excité est de quelques nanosecondes pour les molécules organiques luminescentes et de l' ordre de la microseconde pour les nanoparticules de sesquioxyde de lanthanide. La décroissance de l'intensité de la luminescence après excitation est donc spécifique de ces nanoparticules hybrides .
L' enrobage des nanoparticules dans une couche réticulée de polysiloxane est typiquement réalisé par hydrolyse puis condensation de tétraéthylorthosilicate (TEOS) et d' organoalcoxysilanes fonctionnalisés (aminopropyltri- ethoxysilane (APTS) ) .
Des polymères tels que le polyéthylène glycol ou le dextrane, des dispersants ou des complexants de surface peuvent être ajoutés à la solution colloïdale afin de faciliter le changement de solvant à l' étape b) et la stabilisation dans le revêtement à base d' alkoxysiloxanes à l' étape c) du procédé selon l' invention. D' autres procédés capables de conduire à des nano- particules de taille et granulométrie similaire peuvent également convenir.
De plus dans le cadre de la présente invention, des alumines peuvent être utilisées, ainsi que des matrices mixtes composées de sesquioxyde, d' oxohydroxyde ou hydroxydes et d' alumines .
Aussi afin de rendre la signature optique définie ci- dessus plus complexe à décrypter, c' est-à-dire acquérir des spectres de luminescence du produit Pl plus riches en données spectrales, les mélanges suivants peuvent être réalisés : mélange de au moins deux ions terres rares, - mélange de au moins deux types de nanoparticules, mélanges de au moins deux compositions de nanoparticules se distinguant, par exemple, par des concentrations et des ions terres rares différents.
Etape b : Mélange des nanoparticules dans un solvant
Les nanoparticules luminescentes obtenues à l' étape a) du procédé selon l' invention pour revêtir un substrat d' un vernis comprenant au moins un composé photoluminescent, présent sous forme de poudre ou, de manière préférée, sous forme de colloïde, ou autre, sont ensuite mélangées dans un solvant Sl, qui peut être un solvant organique ou encore un solvant aqueux, par exemple de pH neutre ou acide. On obtient ainsi un produit intermédiaire. Ce produit intermédiaire montre une bonne stabilité, qui est une condition essentielle pour son utilisation dans un bain de vernis. Etape c : Ajout de la solution obtenue à l' étape b) à un vernis à base d' alkoxysilanes
La solution obtenue à l'étape b) est ajoutée à un vernis à base d' alkoxysiloxanes, vernis typique de verres optiques organiques, et dont le solvant est S2, de préférence sous agitation. Le produit ainsi obtenu est appelé Pl.
Les vernis à base d' alkoxysiloxanes sont couramment utilisés dans le domaine des verres optiques organiques. Ils présentent une dureté plus élevée que le polymère de base dont sont constitués les verres optiques organiques connus, notamment les verres en polyamide. L'application d' un tel vernis protège donc les substrats des rayures.
Selon l' état de la technique, en ce qui concerne les vernis utilisés pour le revêtement de verres organiques, on peut distinguer deux catégories : les vernis « teintables » qui ne sont pas trop réticulés, leur réseau étant peu dense, les vernis « non teintables » qui ont une dureté plus élevée et une meilleure adhérence pour un traitement anti-reflet, du fait d'une réticulation plus élevée, mais pour lesquels les colorants ne peuvent traverser le réseau de polymérisation et se déposer sur le verre .
On considère que moins le réseau est substitué, plus le vernis est facilement teintable. Il est possible de rendre teintable des vernis non teintables, en arrêtant leur polymérisation avant que leur réseau ne soit totalement réticulé. A titre d' exemple, les vernis composés de polysiloxanes sont teintables, s' ils sont réalisés à partir de monomères mono-, di- ou trifonctionnels . En ce qui concerne les monomères tétra- fonctionnels, il est nécessaire de rajouter de la silice colloïdale pour qu' ils soient teintables.
Un test permettant de déterminer si un vernis est teintable ou non teintable, consiste à immerger, pendant environ 15 minutes et sous agitation, le substrat revêtu du vernis à tester dans un bain de coloration, thermostaté à une température comprise entre 85°C et 1000C, et de préférence égale à 880C, comprenant soit du B. P. I. Black soit du B. P. I. Sun Gray à une concentration massique de 10% par rapport au poids de la solution aqueuse.
Le vernis est considéré comme « non teintable » si la transmission de la lumière a diminué d'au plus 5%, entre avant et après l' immersion du substrat recouvert de vernis dans le bain de coloration décrit ci-dessus. Dans tous les autres cas, le vernis est alors considéré comme « teintable » .
A titres d' exemples, on peut citer les noms commerciaux suivants de vernis à base d' alkoxysiloxanes utilisables dans le cadre de la présente invention :
Vernis teintables :
- TS56T de Tokuyama Soda, - Silvue 339 de SDC Coatings,
- HI-GARD 1020 de PPG,
- Chemopcoat 152 T de Chemoptics.
Vernis non teintables : - TS 56 H de Tokuyama Soda,
- Crystal coat 1154 D de SDC coatings,
- Hi-gard 1080 de PPG,
- Chemopcoat 152 H de Chemoptics,
Selon l' invention, les solvants Sl et S2 sont identiques ou non. Les solvants Sl et S2 doivent être miscibles entre eux.
De façon particulièrement avantageuse, on utilisera comme solvants Sl et S2 le méthoxy-l-propan-2-ol . Ce solvant présente un bon compromis entre une vitesse d' évaporation, ni trop rapide, ni trop lente, et un pouvoir dissolvant très satisfaisant. Il assure au bain résiduel une bonne stabilité dans le temps ; cette durée de vie ouverte du bain est un facteur important pour le coût de revient du procédé selon l' invention, sachant que l' utilisation des nanoparticules renchérit de manière significative le vernis . I/ alcool isopropylique, l' isobutanol, le π-butanol, 1' éthoxy-éthanol, le méthanol, le butoxy-éthanol, le diacétone alcool, l' éthanol sont des solvants qui peuvent aussi convenir en tant que solvant S2.
Etape d : Immersion d' un substrat dans un bain constitué du mélange obtenu à l' étape c) des nanoparticules luminescentes et du vernis à base d' alkoxysilanes, à savoir le produit Pl .
Le substrat peut être un substrat organique ou inorganique. On peut utiliser par exemple un verre optique organique, et de préférence un verre en polyamide.
Selon l' invention, ce substrat est traité, avantageusement par immersion, dans un bain contenant le mélange des nanoparticules luminescentes et du vernis à base d' alkoxysiloxanes, à savoir le produit Pl.
Les nanoparticules luminescentes présentes dans le produit Pl, grâce à leur dépôt sur le substrat serviront de moyen de preuve d'authenticité du substrat.
Le bain est avantageusement un bain de vernis dans lequel lesdites nanoparticules luminescentes ont été incorporées, et encore plus avantageusement, il s' agit d' un vernis durcissant constitué par le mélange liquide obtenu à 1' étape c) .
Les conditions expérimentales, telles que par exemples les vitesses d' immersions et d' émersions en fonction de la viscosité (degré de fluidité) du vernis, la température du bain, les temps d' immersion sont celles connues de l' état de la technique .
On visera avantageusement une concentration en oxyde de terre rare supérieure à 1 g/L de vernis à base d' alkoxysiloxanes comprenant au moins un composé photoluminescent, avantageusement supérieure à 5 g/L et encore plus avantageusement supérieure à 10 g/L, avec un taux de dopage supérieur à 10% atomiques, et préférentiellement supérieur à 30% atomiques, pour chacune des terres rares.
La concentration en oxyde de terre rare nécessaire à ajouter dans le vernis à base d' alkoxysiloxanes est déterminée en fonction du détecteur utilisé lors de l'acquisition de spectres de luminescence. Deux types de détection sont particulièrement utilisés : - photodiode photomultiplicateur. Ainsi pour un détecteur photomultiplicateur, le seuil de détection des ions photoluminescents sera atteint à une concentration en oxyde de terre rare moindre qu' avec un détecteur de type photodiode.
Le substrat tel qu' un verre optique organique obtenu à 1' issue de cette immersion est donc devenu photoluminescent .
Dans le cadre de la présente invention, les nanoparticules photoluminescentes incluses dans le vernis à base d' alkoxysiloxanes assurent une dispersion homogène des ions de terres rare luminescents dans ledit vernis . De plus, grâce à la présence de ces nanoparticules photoluminescentes dans le vernis dont est revêtu le substrat, la réflexion est plus précise, et l'acquisition de spectres de luminescence plus aisée .
2.2 Procédé pour vérifier l' authenticité d' un substrat revêtu d' un vernis à base d' alkoxysiloxanes, comprenant au moins un composé photoluminescent selon l' invention
Nous décrivons ci-dessous un procédé pour vérifier si un substrat solide appelé « substrat à authentifier », notamment un substrat transparent ou translucide, tel que par exemple un verre optique, est revêtu du produit Pl tel qu'apparaissant dans le procédé premier objet de 1' invention.
Etape a) : Exposition du « substrat à authentifier » à un rayonnement excitateur Le « substrat à authentifier » est exposé à un rayonnement excitateur composé de photons dans les domaines visible ou IR proche ou lointain produits par une lampe, un tube fluorescent, une diode, un laser ou toute autre source de photons. Sous excitation, si le substrat à authentifier comporte au moins un composé photoluminescent, un spectre de luminescence est produit .
A titre d' exemple, on peut utiliser une longueur d' onde d' excitation de 254 nm, de 290 nm, de 380 nm, de 410 nm, de 450 nm, de 488 nm ou de 633 nm. Comme source de lumière, on peut utiliser par exemples un laser ou une diode laser, ou encore une lampe Xénon, avantageusement couplée à une fibre optique associant une fibre optique centrale pour l' émission et des photodiodes disposées autour de la fibre.
Selon une variante du procédé selon l' invention, le rayonnement d' excitation est produit par une ou plusieurs sources simultanées, comme par exemple plusieurs diodes électroluminescentes émettant à des longueurs d' ondes différentes. Une diode émettant dans l'ultra-violet pourra être associée à une diode émettant dans l' infrarouge.
Le système de détection peut être une photodiode ou un photomultiplicateur, ce dernier ayant, parmi tous les systèmes de détection connus, la plus grande sensibilité.
Etape b) : Acquisition de spectres de luminescence
Dans cette étape b) du procédé selon l' invention, on réalise l' acguisition : - du spectre de luminescence sous excitation du
« substrat à authentifier »,
- du spectre de luminescence acquis à un ou plusieurs instants après l' arrêt du rayonnement d' excitation du « substrat à authentifier ».
Ainsi, on obtient des données spectrales de luminescence, qui représentent les mesures des émissions optiques se produisant au cours de la désexcitation d' un matériau, tel qu' un matériau photoluminescent, et ce en fonction de la longueur d' onde d'excitation.
Les spectres de luminescence acquis après l' arrêt de 1' excitation correspondent au déclin des bandes d' émission au cours du temps.
Dans le cas où le temps de déclin est très court, les pics ou bandes d' émission pourront avoir complètement disparu lors de l'acquisition du spectre de luminescence.
Dans un mode de réalisation avantageux de l' invention, on exploite, avec cette technique de luminescence, les trois types de données suivantes :
(i) la position et la largeur des pics d' émission, (ii) l' intensité absolue et relative des différents pics,
(iii) les constantes de temps de l' atténuation temporelle des différents pics.
On réalise aussi une analyse de la décroissance de 1' intensité lumineuse émise dans une ou plusieurs parties du spectre d'émission en fonction du temps. Cette analyse peut consister en le calcul, pour chacun des pics ou bandes d' émission et pour chacune des durées entre 1' arrêt de l' excitation et l' acquisition des données spectrales, du rapport entre l' intensité d' émission mesurée et l' intensité sous excitation.
Chacun de ces rapports ne dépend que du temps de déclin du composé dans la bande d'émission considérée et de la durée entre l'arrêt de l' excitation et l'acquisition. Ainsi deux bandes d' émission montreront en général des rapports d' intensité différents, et ces rapports sont caractéristiques d'un composé donné.
Etape c) : révélation de la signature optique par comparaison du « substrat à authentifier » avec le « substrat de référence »:
Le procédé selon l' invention pour vérifier l' authenticité d' un substrat solide appelé « substrat à authentifier » comporte une étape c) qui consiste en la comparaison :
- du spectre de luminescence sous excitation du substrat à authentifier avec celui obtenu à partir d' un substrat revêtu du produit Pl, appelé substrat de référence,
- du spectre de luminescence acquis à un ou plusieurs instants après l' arrêt du rayonnement d' excitation du substrat à authentifier avec celui du substrat de référence acquis à un ou aux mêmes instants après arrêt du rayonnement d'excitation.
La correspondance de ces spectres de luminescence ainsi que les calculs de rapports mentionnés à l' étape b) du procédé d' authentification permet d' affirmer que le substrat à authentifier est de même nature que le substrat de référence et est donc bien authentifié. La signature optique, à savoir la composition du mélange de au moins un ion photoluminescent incorporé au vernis à base d' alkoxysiloxanes sera choisie en fonction du type de détection choisi et de sa sensibilité.
I/ invention concerne enfin l' utilisation de la signature optique obtenue à l' étape c) du procédé d' authentification optique d' un composé photoluminescent selon l' invention, pour l' authentification et/ou la détection de la contrefaçon d'objets tels que des verres optiques.
Dans un mode de réalisation de l' invention, le détecteur peut être portable, la signature optique est « simple », et l' authenticité d' un objet sera vérifiée par la présence, par exemple, d' un pic caractéristique à une longueur d' onde précise sur le spectre de luminescence. I/ utilisation d' un détecteur portable a l' avantage de permettre de vérifier l'authenticité d'un objet sur le lieu d' une saisie par exemple, mais sa sensibilité limitée nécessite que les signatures optiques soient relativement simples .
Aussi, des signatures optiques plus complexes peuvent être mises en œuvre en réalisant des mélanges plus élaborés de nanoparticules, et en jouant aussi sur les concentrations des ions photoluminescents. A cet égard, le matériel de détection doit être adapté en conséquence, en particulier au niveau de sa sensibilité. Il s' agit du cas où les analyses d' authentification de produits se déroulent en laboratoires .
Ainsi, le procédé d' authentification d' un substrat solide revêtu d' un produit Pl comprenant au moins un composé photoluminescent décrit dans la présente invention s' adapte en fonction de sa mise en œuvre souhaitée : annalyses sommaires d' authentification ou au contraire analyses approfondies grâce à la mise en œuvre d' une signature optique plus ou moins complexe, et ce en jouant sur la composition du produit Pl .
L' exemple ci-après illustre un mode de réalisation de l' invention sans toutefois en limiter sa portée.
Exemple:
Exemple 1 :
Cet exemple concerne la préparation de nanoparticules comprenant une matrice d' oxyde de gadolinium dopée par des ions terbium.
Synthèse du cœur
Dans un tricol de 2L, 0,105 mole de chlorure de gadolinium et 0,045 mole de chlorure de terbium ont été dispersées dans IL de diéthylène glycol. Le mélange réactionnel a été placé sous agitation vigoureuse à 600C. La température du réacteur a alors été portée à 1200C. Lorsque la température a été stabilisée, 50 mL d' une solution de soude 3M ont été ajoutés. Après agitation sous ces conditions pendant Ih, la température du milieu a été portée à 1800C pendant 4 h. Le diamètre hydrodynamique des particules ainsi formées a été obtenu par granulométrie laser sur le brut réactionnel. La distribution fine était centrée autour de 3,5 nm.
Enrobage :
100 mL de la solution précédente ont été dilués à l' aide de 900 mL d' éthanol . Le système a été placé à 400C. Afin de former une couche protectrice de silice de 5 nm d' épaisseur autour du cœur d' oxyde de terres rares, une réaction d' hydrolyse, suivie d' une condensation, en milieu basique, ont été réalisées. La solution de catalyse était constituée par du diéthylène glycol, de l' eau et une base, la triéthylamine (Et3N) (pour 10 mL de solution basique, les proportions étaient les suivantes : 7,91 mL de diéthylène glycol, 1,799 mL d'eau, 291 μL de triéthylamine). Les 51,413 ml de TEOS et 92,2 ml de la solution de catalyse basique utiles sont ajoutés par fractions au mélange réactionnel. Le système a été laissé sous agitation à 400C pendant 48 heures.
Traitement / conditionnement L' éthanol a été évaporé sous pression réduite. Le volume récupéré correspondait à celui du diéthylène glycol avec les nanoparticules . Cette solution a alors été portée à 1500C pendant 2 heures sous pression atmosphérique dans l'objectif de densifier la couche de silice. Une fois la température redescendue, une dialyse (tube de dialyse avec des pores inférieurs à 10 kD) contre un mélange éthanol / diéthlène glycol (90/10) a été effectuée pour éliminer tous les produits de sous-réaction ou impuretés. Le bain de dialyse a été changé 3 fois, la périodicité étant de 24h.
Cette solution a été reconcentrée à une concentration de 60g/L en oxyde de terre rare, sous pression réduite afin d' éliminer l' éthanol, pour être ensuite diluée suite par le solvant de base, à savoir le l-méthoxy-2-propanol, et ainsi obtenir une concentration finale de 20g/L de terre rare . La solution ainsi obtenue a été ajoutée à un vernis à base d' alkoxysiloxanes selon l' invention et dont le solvant est le l-méthoxy-2-propanol; ce qui constitue le produit Pl.
Un verre optique en polyamide a été immergé dans le produit Pl, puis a été séché. La figure 1 représente le spectre de luminescence du verre optique en polyamide revêtu de ce produit Pl obtenu à une longueur d' onde d' excitation de 254 nm. On note un pic caractéristique à 548 nm. Cela constitue ainsi la signature optique du verre optique recouvert de ce produit Pl, à savoir une matrice d' oxyde de gadolinium dopée par des ions terbium.
Exemple 2 :
Cet exemple montre qu' une solution aqueuse acide de nanoparticules utilisables pour la mise en œuvre de la présente invention est suffisamment stable.
Une solution de nanoparticules comprenant un composé de terre rare dispersées dans l'eau à pH4 et à une concentration de 10 g. L"1 a été préparée. Après Ih d' agitation, la stabilité des particules dans ce milieu a été vérifiée par granulométrie laser. On a observé que la taille des particules reste très proche des valeurs observées lors de la préparation de la solution (aux erreurs de mesures près) . Une seconde vérification après 20 h de stockage a également été réalisée. Les valeurs obtenues étaient rigoureusement identiques aux précédentes .
Aucun dépôt de quelque nature que ce soit n' est visible dans le flacon en fin d'observation.

Claims

REVENDICATIONS
1. Procédé pour revêtir un substrat d'un produit appelé Pl comprenant au moins un composé photoluminescent, ledit procédé étant caractérisé en ce qu' il comporte les étapes suivantes : a) on prépare des nanoparticules comportant ledit au moins un composé photoluminescent, lesdites nanoparticules étant présentes sous la forme de poudre ou en solution colloïdale dans un solvant SO; b) on mélange lesdites nanoparticules obtenues à l' étape a) dans un solvant Sl pour obtenir un produit intermédiaire ; c) on mélange ledit produit intermédiaire avec un vernis à base d' alkoxysiloxanes dont le solvant est S2 pour obtenir un produit Pl, S2 pouvant être identique ou non à Sl, mais Sl et S2 devant être miscibles entre eux,- d) on immerge un substrat à revêtir dans ledit produit Pl obtenu à l' étape c) ; e) on sèche ledit substrat revêtu du produit Pl.
2. Procédé selon la revendication 1, dans lequel ledit substrat est un verre optique, et de préférence un verre en polyamide.
3. Procédé selon l' une quelconque des revendications 1 à
2, caractérisé en ce que lesdites nanoparticules ont un diamètre moyen compris entre 20 nm et 800 nm.
4. Procédé selon l' une quelconque des revendications 1 à
3, caractérisé en ce que lesdites nanoparticules comportent une couche de polysiloxane ou de silice.
5. Procédé selon la revendication 4 , dans lequel ladite couche de polysiloxane ou silice comporte éventuellement au moins une molécule organique ou un polymère greffé par liaison covalente audit enrobage de polysiloxane ou silice.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les nanoparticules sont sous la forme d' une poudre monophasée ou polyphasée, éventuellement sous forme de suspension colloïdale, de sesquioxyde, oxohydroxyde , hydroxyde ou oxyde d' une terre rare.
7. Procédé selon la revendication 6, caractérisé en ce que la concentration en terre rare, exprimé en oxyde, est supérieure à 1 g/L de vernis, et préférentiellement supérieure à 5 g/L.
8. Procédé selon la revendication 6 ou 7 , caractérisé en ce que la terre rare est choisi parmi la liste Y, La, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, pure, en mélange ou dopée avec une terre rare ci-dessus définie ou avec Ce, ou d' un oxyde mixte de formule LnxA2-χ0y ou LnxA2- xOv(OH)z, avec : - x compris dans la gamme allant de 0 à 2,
- y compris dans la gamme allant de 3 à 4,
- v compris dans la gamme allant de 0 à 4 , et z compris dans la gamme allant de 0 à 8-2v,
Ln étant une terre rare telle que définie ci-dessus et A un cation de métal de transition ou BIII+, AlIII+, SiIV+, Pv+ ou BiIII+, où les chiffres romains signifient l' état d' oxydation de l' élément en question, qui ne se présente pas nécessairement sous sa forme ionique .
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le solvant S2 est sélectionné dans le groupe formé par : l' alcool isopropylique, 1' isobutanol, le π-butanol, l' éthoxy-éthanol, le méthanol, le butoxy-éthanol, le diacétone alcool, l' éthanol, le méthoxy-l-propan-2-ol .
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le solvant Sl et/ou le solvant S2 est le méthoxy-l-propan-2-ol .
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la concentration en oxyde de terre rare est supérieur à lg/L, avantageusement supérieur à 5g/L, et encore plus avantageusement supérieur à 10 g/L.
12. Substrat revêtu d'un vernis comprenant au moins un composé photoluminescent, caractérisé en ce que : - ledit vernis est à base d' alkoxysiloxanes, ledit au moins un composé photoluminescent étant présent au moins partiellement sous la forme de nanoparticules de diamètre moyen compris entre 20 nm et 800 nm.
13. Procédé pour vérifier si un substrat solide appelé substrat à authentifier, notamment un substrat transparent ou translucide, tel que par exemple un verre optique, a été revêtu du produit Pl en utilisant le procédé selon 1' une au moins des revendications 1 à 11 ou est un substrat revêtu selon la revendication 12, ledit procédé comprenant les étapes séquentielles : a) on expose ledit substrat à authentifier à un rayonnement excitateur sélectionné dans le groupe composé par la lumière visible, le rayonnement ultraviolet, le rayonnement infrarouge, le bombardement électronique; b) on acquiert : son spectre de luminescence sous excitation, puis après arrêt du rayonnement d' excitation, son spectre de luminescence à un ou plusieurs instants; c) on révèle une signature optique par comparaison : du spectre de luminescence sous excitation du substrat à authentifier avec celui obtenu à partir d'un substrat revêtu du produit Pl, appelé substrat de référence, et/ou du spectre de luminescence acquis à un ou plusieurs instants après l' arrêt du rayonnement d' excitation du substrat à authentifier avec celui du substrat de référence acquis à un ou aux mêmes instants après arrêt du rayonnement d' excitation.
14. Utilisation du procédé selon la revendication 13 pour
1' authentification et/ou la détection de la contrefaçon d'objets tels que des verres optiques.
PCT/FR2008/001018 2007-07-11 2008-07-11 Revêtement à base d´ alkoxysiloxanes pour l'identification et la traçabilité optique WO2009034267A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0705022A FR2918585B1 (fr) 2007-07-11 2007-07-11 Revetement a base d'alcosiloxanes pour l'identification et la tracabilite optique
FR0705022 2007-07-11

Publications (2)

Publication Number Publication Date
WO2009034267A2 true WO2009034267A2 (fr) 2009-03-19
WO2009034267A3 WO2009034267A3 (fr) 2010-04-29

Family

ID=39167464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/001018 WO2009034267A2 (fr) 2007-07-11 2008-07-11 Revêtement à base d´ alkoxysiloxanes pour l'identification et la traçabilité optique

Country Status (2)

Country Link
FR (1) FR2918585B1 (fr)
WO (1) WO2009034267A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111040516A (zh) * 2019-12-30 2020-04-21 天津市中环天佳电子有限公司 稀土防伪印泥
CN111073394A (zh) * 2019-12-31 2020-04-28 天津市中环天佳电子有限公司 稀土防伪印油

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2968667B1 (fr) 2010-12-13 2013-01-11 Areva Composant de centrale nucleaire avec marquage par nanoparticules luminescentes, procede et ensemble de lecture correspondants
FR3071256B1 (fr) 2017-09-15 2022-04-08 Psa Automobiles Sa Procede de phosphatation de pieces avec incorporation d’un traceur optique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1473347A1 (fr) * 2003-04-30 2004-11-03 Nanosolutions GmbH Nanoparticules à structure coeur-coquille convenant pour des essais (f) RET
US20050112360A1 (en) * 2003-11-26 2005-05-26 Gerald Berger Process for tagging of manufactured articles with up-and down-converting metal oxide nanophosphors and articles produced thereby
FR2862631A1 (fr) * 2003-11-24 2005-05-27 Univ Claude Bernard Lyon Procede de preparation d'une poudre submicronique, nanostructuree, de sesquioxyde, oxohydroxyde, hydroxyde ou oxyde mixte de terre rare
WO2005116162A1 (fr) * 2004-05-11 2005-12-08 Centre National De La Recherche Scientifique (C.N.R.S.) Luminophores ultrafins a revetement d'oxydes dopes nanostructures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1473347A1 (fr) * 2003-04-30 2004-11-03 Nanosolutions GmbH Nanoparticules à structure coeur-coquille convenant pour des essais (f) RET
FR2862631A1 (fr) * 2003-11-24 2005-05-27 Univ Claude Bernard Lyon Procede de preparation d'une poudre submicronique, nanostructuree, de sesquioxyde, oxohydroxyde, hydroxyde ou oxyde mixte de terre rare
US20050112360A1 (en) * 2003-11-26 2005-05-26 Gerald Berger Process for tagging of manufactured articles with up-and down-converting metal oxide nanophosphors and articles produced thereby
WO2005116162A1 (fr) * 2004-05-11 2005-12-08 Centre National De La Recherche Scientifique (C.N.R.S.) Luminophores ultrafins a revetement d'oxydes dopes nanostructures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUE WENXIU ET AL: "Yellow-to-violet upconversion in neodymium oxide nanocrystal/titania/ormosil composite sol–gel thin films derived at low temperature" JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 90, no. 9, 1 novembre 2001 (2001-11-01), pages 4865-4867, XP012054452 ISSN: 0021-8979 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111040516A (zh) * 2019-12-30 2020-04-21 天津市中环天佳电子有限公司 稀土防伪印泥
CN111073394A (zh) * 2019-12-31 2020-04-28 天津市中环天佳电子有限公司 稀土防伪印油
WO2021134814A1 (fr) * 2019-12-31 2021-07-08 天津市中环天佳电子有限公司 Encre anti-contrefaçon à base de terre rare

Also Published As

Publication number Publication date
FR2918585A1 (fr) 2009-01-16
WO2009034267A3 (fr) 2010-04-29
FR2918585B1 (fr) 2010-09-03

Similar Documents

Publication Publication Date Title
JP5646855B2 (ja) シリコーン樹脂組成物
CA2723028C (fr) Phosphate de lanthane et d'au moins une terre rare choisie parmi le cerium et le terbium sous forme d'une suspension, procede de preparation et utilisation comme luminophore
EP1182048B1 (fr) Procédé d'authentification de documents sensibles
FR2867180A1 (fr) Nanoparticules hybrides comprenant un coeur de ln203 porteuses de ligands biologiques et leur procede de preparation
EP2265690B1 (fr) Aluminate de baryum et de magnesium submicronique, procede de preparation et utilisation comme luminophore
WO2009034267A2 (fr) Revêtement à base d´ alkoxysiloxanes pour l'identification et la traçabilité optique
EP1957407A1 (fr) Borate de terre rare submicronique, son procede de preparation et son utilisation comme luminophore
Roppolo et al. Luminescence thermochromism of acrylic materials incorporating copper iodide clusters
Wang et al. A platform for preparation of monodispersed fluorescent conjugated polymer microspheres with core‐shell structures
Bhowmick et al. Functionalization of Amorphous SiO2 and 6H‐SiC (0001) Surfaces with Benzo [ghi] perylene‐1, 2‐dicarboxylic Anhydride via an APTES Linker
Barman et al. Transparent hard coatings with SiON-encapsulated N-doped carbon dots for complete UV blocking and white light emission
EP1663470B1 (fr) Dispersion collodale d un phosphate de terre rare et son procede de preparation
CA2681300C (fr) Nanocristaux organiques luminescents pour la realisation de capteurs biologiques
EP1517966A1 (fr) Composition a base d'une peinture aqueuse, notamment d'une lasure ou d'un verniset d'une dispersion colloidale aqueuse de cerium
Vasileiadis et al. Design and evaluation of polymer matrices for the encapsulation of CdSe/ZnS quantum dots in photonic nanocomposite thin films
WO2007085650A1 (fr) Dispersion colloïdale d'un borate de terre rare, son procede de preparation et son utilisation comme luminophore
KR101700469B1 (ko) 복사를 위한 필터 물질을 제조하기 위한 조성물, 필터 물질을 위한 조성물의 제조 방법, 복사를 필터링하기 위한 물질 및 상기 물질을 포함한 광전 소자
Korposh et al. Films based on bacteriorhodopsin in sol-gel matrices
Pardo et al. ET (33) dye as a tool for polarity determinations: Application to porous hybrid silica thin-films
WO2016034801A1 (fr) Encre colorée et luminescente, procédé d'élaboration d'une telle encre et procédé de marquage d'un substrat par une telle encre
WO2024003080A1 (fr) Revêtement composite de contrôle solaire à base de nanocristaux de bronzes de tungstène dispersés dans une matrice sol-gel à base de silice
EP2986687A1 (fr) Particule inorganique coeur/coquille luminescente, procede de preparation et utilisation
FR2981074A1 (fr) Nouveaux complexes de terres rares et materiaux hybrides organiques inorganiques luminescents
WO2016087792A1 (fr) Encre sol-gel luminescente pour marquer un substrat, procédé de réalisation d'une encre sol-gel luminescente et procédé de marquage d'un substrat par une encre sol-gel luminescente

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08830192

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08830192

Country of ref document: EP

Kind code of ref document: A2