EP1957407A1 - Borate de terre rare submicronique, son procede de preparation et son utilisation comme luminophore - Google Patents

Borate de terre rare submicronique, son procede de preparation et son utilisation comme luminophore

Info

Publication number
EP1957407A1
EP1957407A1 EP06820165A EP06820165A EP1957407A1 EP 1957407 A1 EP1957407 A1 EP 1957407A1 EP 06820165 A EP06820165 A EP 06820165A EP 06820165 A EP06820165 A EP 06820165A EP 1957407 A1 EP1957407 A1 EP 1957407A1
Authority
EP
European Patent Office
Prior art keywords
borate
rare earth
suspension
particles
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06820165A
Other languages
German (de)
English (en)
Inventor
Valérie BUISSETTE
Thierry Le-Mercier
Yvan Montardi
Laurent Thiers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Operations SAS
Original Assignee
Rhodia Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations SAS filed Critical Rhodia Operations SAS
Publication of EP1957407A1 publication Critical patent/EP1957407A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/127Borates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/128Borates containing plural metal or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/778Borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a submicron rare earth borate, its method of preparation and the use of this borate as a luminophore.
  • luminophores in the form of particles as possible as individualized and very thin, submicron, especially less than 500 nm. Furthermore and always in the development in the fields of luminescence and electronics, it is sought to obtain materials in the form of films, transparent and luminescent.
  • the main object of the invention is to provide products having such granulometric characteristics.
  • a second object of the invention is to obtain a luminescent material of the above type.
  • the rare earth borate of the invention is characterized in that it is in the form of a suspension in a liquid phase of substantially monocrystalline particles of average size between 100 and 400 nm.
  • a rare earth borocarbonate or hydroxyborocarbonate is calcined at a temperature sufficient to form a borate and to obtain a product having a specific surface area of at least 3 m 2 / g;
  • FIG. 1 is a TEM photo of a suspension according to the invention.
  • rare earth is understood to mean the elements of the group consisting of yttrium and the elements of the Periodic Table with an atomic number inclusive of between 57 and 71.
  • specific surface is meant the specific surface B. AND. determined by nitrogen adsorption according to ASTM D 3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the journal "The Journal of the American Chemical Society, 60, 309 (1938)".
  • the rare earth borate of the invention is preferably of the orthoborate type, of formula LnBO ⁇ , Ln representing at least one rare earth.
  • the invention also applies to the rare earth oxyborate borate of formula Ln 3 BO 6 .
  • the borate of the invention may be phasically pure but it may also be in the form of a mixture of phases, the majority phase being the orthoborate or oxyborate phase, minority phases may also be present.
  • the invention applies to borates of one or more rare earths. Therefore, throughout the description, all that is described about rare earth borate, rare earth carbonate or hydroxycarbonate and their preparation processes must be 'hear as applying also to the case where several rare earths are present.
  • the rare earth constitutive of the borate of the invention that is to say the one that forms with boron the matrix of the product generally belongs to the group of rare earths which have no property of luminescence.
  • this constitutive rare earth borate can be chosen, alone or in combination, in the group comprising yttrium, gadolinium, lanthanum, lutetium and scandium. It may be more particularly yttrium and / or gadolinium.
  • the borate may further comprise one or more dopants.
  • the dopants are used in combination with the matrix to give it luminescence properties.
  • These dopants can be chosen from antimony, bismuth and rare earths.
  • the rare earth or rare earths used as dopant are chosen from the group of rare earths with luminescence properties and they are different from the rare earth constitutive of the borate.
  • doping rare earth mention may be made of cerium, terbium, europium, dysprosium, holmium, ytterbium, neodymium, thulium, erbium and praseodymium. Terbium, thulium, cerium and europium are more particularly used.
  • Content Dopant is usually at most 50 mol% relative to the rare earth borate matrix (ratio [dopant] / [ ⁇ Ln]), ⁇ Ln representing the rare earth and dopant set in the borate.
  • the borate of the invention consists of particles which have the essential characteristic of being submicron and monocrystalline.
  • these particles have an average size (d 5 o) of between 100 and 400 nm, more particularly between 100 and 300 nm and even more particularly between 100 and 200 nm.
  • d 5 o average size of between 100 and 400 nm, more particularly between 100 and 300 nm and even more particularly between 100 and 200 nm.
  • these particles may have a narrow particle size dispersion; more precisely their dispersion index may be at most 1, preferably at most 0.7 and even more preferably at most 0.5.
  • the average size and the dispersion index are the values obtained by implementing the laser diffraction technique using a laser granulometer (mass distribution).
  • d 84 is the particle diameter for which 84% of the particles have a diameter of less than 84 ;
  • - die is the particle diameter for which 16% of the particles have a diameter less than di 6 ;
  • d 50 is the average diameter of the particles.
  • the measurements of average size are made on suspensions which have undergone a passage to the probe-with ultrasounds' according to the well-known methods implemented for this type of measurements.
  • the other characteristic of the constitutive particles of the borate of the invention is their monocrystallinity. Indeed, for the most part, that is to say for at least 90% of them and, preferably for all of them, these particles consist of a single crystal.
  • This monocrystalline aspect of the particles can be demonstrated by the transmission electron microscopy (TEM) analysis technique.
  • TEM transmission electron microscopy
  • the monocrystalline appearance of the particles can also be demonstrated by comparing the average particle size measured by the laser diffraction technique mentioned above with the value of measuring crystal size or coherent domain obtained from X-ray diffraction analysis (XRD). It is specified here that the value measured in XRD corresponds to the size of the coherent domain calculated from the width of the diffraction line [1, 0.2].
  • the two values: average laser diffraction size and XRD have indeed the same order of magnitude, ie they are in a ratio of at most 2, more particularly at most 1, 5.
  • the particles of the borate of the invention are in well separated and individualized form. There are no or few agglomerates of particles. This good individualization of the particles can be demonstrated by comparing the d ⁇ o measured by the laser diffraction technique with that measured from an image obtained by transmission electron microscopy (TEM). Here again, the values obtained by these two techniques have the same order of magnitude, in the proportions given above.
  • the borate of the invention is generally in the form of a suspension in a liquid phase of the particles which have just been described.
  • This suspension can sediment over time and this sedimentation can cause agglomeration of the particles together.
  • a simple agitation using a very low mechanical energy, in particular an ultrasonic treatment, for example with a power of 120 W for 3 minutes makes it possible to disaggregate these particles and therefore to return to a suspension whose particles have all the characteristics that have been given above.
  • the liquid phase of the suspensions according to the invention may be water or a mixture of water / solvent miscible with water or an organic solvent.
  • the organic solvent may be very particularly a solvent miscible with water.
  • alcohols such as methanol or ethanol
  • glycols such as ethylene glycol
  • acetate derivatives of glycols such as ethylene glycol monoacetate
  • glycol ethers such as glycol ethers, polyols or ketones.
  • This liquid phase may also include a dispersant.
  • This dispersant may be chosen from known dispersants, for example from polyphosphates (M n + 2 P n O 3n + I ) or metaphosphates ([MPO 3 ] ⁇ ) which are alkaline (M denotes an alkaline such as sodium), especially as sodium hexametaphosphate.
  • silicates alkali sodium silicate
  • amino-alcohols amino-alcohols
  • phosphonates citric acid and its salts
  • derivatives of phosphosuccinic acid ((HOOC) n -R-PO 3 H 2 where R is an alkyl radical)
  • polyacrylic polymethacrylic
  • polystyrene sulfonic acids and their salts.
  • Citric acid and metaphosphates are particularly preferred.
  • the amount of dispersant may be between 1% and 10%, more particularly between 2.5% and 5%, this amount being expressed as mass of dispersant relative to the mass of solid in the dispersion.
  • the concentration of the suspension can vary over a wide range. By way of example, it may be between about 10 g / l and about 200 g / l, more particularly between 40 g / l and 100 g / l.
  • the invention also relates to a borate which is in solid form, that is to say a powder which has the characteristic of being able to lead to the borate in suspension form described above.
  • a borate which is in solid form that is to say a powder which has the characteristic of being able to lead to the borate in suspension form described above.
  • this powder is redispersed in a liquid phase, after simple stirring, without the need to apply a large mechanical energy, including, again, by simple ultrasonic treatment, for example with a With a power of approximately 450 W, a suspension of the borate having the characteristics given above is obtained.
  • nature of the crystallographic phase (orthoborate), nature and quantity of the rare earth and the dopant applies identically for the borate under solid form.
  • rare earth borocarbonate or hydroxyborocarbonate (LnB (CO 3 ) 3 or LnB (OH) 4 CO 3 respectively, in the case of the preparation of an orthoborate) is used as a rare starting material.
  • This borocarbonate or this hydroxyborocarbonate is calcined at a temperature sufficient to form a borate and to obtain a product having a specific surface area of at least 3 m 2 / g.
  • This surface may be more particularly between 3 m 2 / g and 10 m 2 / g and even more particularly between 5 m 2 / g and 8 m 2 / g.
  • the temperature sufficient to obtain the borate phase is generally at least 450 ° C., more particularly at least 500 ° C. and it may for example be between 450 ° and 700 ° C.
  • the duration of the calcination is a function of temperature and it is usually all the lower as the temperature is high. For example, calcination at 500 ° C. for two hours makes it possible to obtain this phase.
  • the calcination must also make it possible to obtain the specific surface values which have been given above. These values are generally obtained for calcination at a temperature of between about 800 ° C. and about 900 ° C., more particularly between 825 ° C. and 875 ° C. Again, the duration of calcination is even lower than the temperature is high. It can thus be understood, for example, between 10 minutes and 5 hours.
  • the calcination described above can be done either in two steps or two distinct times, or in a single step, that is to say with a gradual rise in temperature such that the product which undergoes the calcination is subjected to a temperature and duration of calcination sufficient to obtain the borate phase. For example, a plateau at 500 ° C. can be observed for a period of two hours and then the calcination temperature can be increased again to reach a higher value, for example between 800 ° C. and 900 ° C.
  • calcination that has been described above can be done under air. It is not necessary to calcine in a reducing atmosphere but it would not go beyond the frame of the present invention by implementing, at least in a second part of this calcination, reducing atmospheres (hydrogen for example) or neutral (argon ) or mixtures thereof.
  • the last step of the process consists in grinding the product resulting from the calcination.
  • wet grinding is carried out in water or in a water / solvent mixture or in an organic solvent of the same type as the solvents which have been described above for the liquid phase constituting the suspension.
  • the borate of the invention is obtained in the form of a suspension.
  • this suspension can be prepared from an aqueous suspension as obtained by the process which has just been described and adding the organic solvent to this aqueous suspension and if necessary distillation to remove water.
  • the borocarbonate or rare earth hydroxyborocarbonate used as starting material can be prepared by various methods.
  • a first method will be described below in which starting from a carbonate or a rare earth carbonate or a mixture of carbonates or hydroxycarbonates of different rare earths or carbonates or hydroxycarbonates mixed rare earths in the case of the preparation of borates of several rare earths.
  • the rare earth carbonates or hydroxycarbonates are known products per se and can be obtained for example by precipitation of one or more rare earth salts with carbonate or ammonium bicarbonate.
  • the first step of the process involves reacting the starting carbonate or hydroxycarbonate with boric acid.
  • the starting reaction medium is in the form of an aqueous solution. This means that the amount of water present in the reaction medium is such that the weight ratio water / boric acid + carbonate is at least 300%, more particularly at least 1000%. This ratio can be even more particularly at least 1500%.
  • the reaction is carried out hot, for example at a temperature of between 40 ° C. and 90 ° C.
  • reaction may be advantageous to carry out the reaction by removing the CO2 formed during the reaction. This elimination can be done for example by sweeping the reaction medium with a neutral gas such as nitrogen.
  • This variant makes it possible to obtain products of finer granulometry.
  • the reaction is carried out by attacking the rare earth carbonate or hydroxycarbonate with the boric acid in the precipitating mother liquors thereof. It is advantageous to carry out this attack on freshly prepared carbonate or hydroxycarbonate.
  • a second method can also be implemented for the preparation of a rare earth borocarbonate or hydroxyborocarbonate. This second method comprises the following steps:
  • the rare earth salt may be an inorganic or organic salt. Water-soluble salts are preferably used. As the rare earth salt, mention may be made more particularly of nitrate.
  • the starting mixture may additionally contain, if desired, a salt of the doping element and what has been said for the rare earth salts also applies here. Boric acid can be used as a solution or, preferably, in solid form.
  • the mixture can be carried out at room temperature or by heating.
  • the mixture thus obtained is acidic, it can be neutralized to a pH value of 4 or about 4, for example by adding an ammonia solution.
  • the second step of the process consists in reacting the mixture obtained in the preceding step with a carbonate or a bicarbonate.
  • ammonium carbonate or bicarbonate may be used more particularly.
  • the reaction is carried out in the presence of a base.
  • a base As a useful base, mention may be made of alkali or alkaline earth hydroxides, ammonia, secondary, tertiary or quaternary amines. 25. Ammonia is preferably used.
  • the salt of the dopant or substituent can also be introduced during the reaction if this has not been done in the previous step. .
  • the reaction is carried out by regulating the pH.
  • the pH of the reaction medium is adjusted to a fixed value and admitting a variation of at most 0.5 pH units around this set target value.
  • This regulation can be done by adjusting the amount of base used for the reaction.
  • This fixed value is preferably between 4 and 6.
  • the reaction can be carried out at ambient temperature or at a warm temperature.
  • a ripening step can then be carried out optionally. This step consists in maintaining the reaction medium at a temperature given, preferably hot, at a constant pH and at the value described above, optionally in a controlled atmosphere. The duration of this ripening is generally at least 15 minutes and not more than 8 hours.
  • a precipitate of borocarbonate or hydroxyborocarbonate is obtained which is separated from the reaction medium by any known means, for example by filtration, and which, optionally, is washed and then dried.
  • the borates of the invention are understood to mean the borates in the form of a suspension or the borates in solid form, can be used as phosphors.
  • These borates exhibit luminescence properties under electromagnetic excitation in the wavelength range used in plasma systems (screens and lamps where the excitation is created by a rare gas or a mixture of noble gases such as xenon and / or and neon) and in mercury vapor lamps in the case of borates doped with cerium and terbium in combination. Therefore, they can be used as phosphors in plasma systems (display screen or lighting system) or in mercury vapor lamps.
  • the invention therefore also relates to luminescent devices comprising the borate described above or as obtained by the method described above or manufactured using this same borate.
  • the invention relates to plasma systems or mercury vapor lamps, in the manufacture of which the borate can enter, or comprising the same borate.
  • the use of phosphors in the manufacture of plasma systems is done according to well-known techniques, for example by screen printing, electrophoresis or sedimentation.
  • the particle size properties of the borates of the invention allow them to be used as markers in semi-transparent inks using the up-conversion mechanisms in the IR-Visible or luminescence in I 1 IR, for example for carrying out a marking by an invisible bar code system.
  • the pair of dopants will preferably be Yb and Er.
  • the borates of the invention can also be used as markers in a material such as paper, cardboard, textile, glass or a macromolecular material. This can be of different types: elastomeric, thermoplastic, thermosetting.
  • the invention also relates to a luminescent material which comprises, or may be manufactured using, at least one borate according to the invention or a borate obtained by the process as described above. According to a preferred embodiment, this luminescent material may be furthermore transparent.
  • the borate entering into its composition or in its manufacture is a borate according to the invention and of average size between 100 nm and 200 nm, preferably between 100 nm and 150 nm.
  • this material may comprise, or be manufactured using, in addition to the borate of the invention, other borates, or more generally, other luminophores, in the form of submicron or nanometric particles.
  • This material can be in two forms, that is to say either in a mass form, the whole of the material having the properties of transparency and luminescence is in a composite form, that is to say in this case in the form of a substrate and a layer on this substrate, the layer then only having these properties of transparency and luminescence.
  • the borate of the invention is contained in said layer.
  • the substrate of the material is a substrate which may be silicon, silicone-based or quartz-based. It can also be a glass or a polymer such as polycarbonate.
  • the substrate, for example the polymer may be in a rigid form and a sheet or plate a few millimeters thick. It can also be in the form of a film of a few tens of microns or even a few microns to a few tenths of a millimeter thick.
  • transparent material is understood to mean a material which has a haze of at most 60% and a total transmission of from minus 60% and, preferably, a haze of at most 40% and a total transmission of at least 80%.
  • the total transmission is the amount of total light that passes through the layer, relative to the amount of incident light.
  • the haze corresponds to the ratio of the diffuse transmission of the layer to its total transmission.
  • the layer of material with a thickness of between 0.2 ⁇ m and 1 ⁇ m is deposited on a standard glass substrate, 0.5 mm thick.
  • the mass fraction of borate particles in the material is at least 20%.
  • the total transmission and diffuse transmission measurements are made through the material and substrate layer, using a standard procedure on a Perkin Elmer Lamda 900 spectrometer, equipped with an integrating sphere, for a wavelength of 550 nm.
  • the material may comprise, besides a borate according to the invention, binders or fillers of the polymer (polycarbonate, methacrylate), silicate, silica ball, phosphate, titanium oxide or other mineral fillers type. to improve in particular the mechanical and optical properties of the material.
  • binders or fillers of the polymer polycarbonate, methacrylate
  • silicate silica ball
  • phosphate titanium oxide
  • titanium oxide titanium oxide
  • the mass fraction of borate particles in the material may be between 20% and 99%.
  • the thickness of the layer may be between 30 nm and 10 ⁇ m, preferably between 100 nm and 3 ⁇ m and even more preferably between 100 nm and 1 ⁇ m.
  • the material, in its composite form, can be obtained by depositing on the substrate, optionally previously washed for example with a sulfo-chromic mixture, a borate suspension of the invention. It is also possible to add at the time of this deposit, binders or charges mentioned above. This deposit can be achieved by a spraying technique, "spin-coating" or "dip-coating". After deposition of the layer, the substrate is dried in air and it can optionally subsequently undergo a heat treatment. The heat treatment is carried out by heating at a temperature which is generally at least 200 ° C. and the higher value of which is fixed in particular taking into account the compatibility of the layer with the substrate so as to avoid interfering reactions in particular. The drying and the heat treatment can be conducted under air, under an inert atmosphere, under vacuum or under hydrogen.
  • the material may comprise binders or fillers. It is possible in this case to use suspensions that comprise themselves at least one of these binders or these fillers or precursors thereof.
  • the material in the mass form can be obtained by incorporating the borate particles in a polymer type matrix for example, such as polycarbonate, polymethacrylate or silicone.
  • a polymer type matrix for example, such as polycarbonate, polymethacrylate or silicone.
  • the invention relates to a luminescent system which comprises a material of the type described above and, in addition, an excitation source which may be a source of UV photons, such as a UV diode or an excitation of the Hg gas type. rare or X-rays.
  • an excitation source which may be a source of UV photons, such as a UV diode or an excitation of the Hg gas type. rare or X-rays.
  • the system can be used as a transparent wall-mounted lighting device.
  • the particle size was determined according to the laser diffraction technique mentioned above. It is furthermore specified that the measurement was carried out with a Coulter-type apparatus on suspensions diluted at a concentration of between 1 g / l and 10 g / l and which have previously undergone a passage to the ultrasound probe (450 W probe). for 2 minutes 30 seconds.
  • EXAMPLE 1 This example relates to the preparation of a suspension of an yttrium, gadolinium and europium borate according to the invention.
  • a solution consists of a mixture of nitrates of yttrium, gadolinium and europium, of following composition (in atomic%):
  • crystallized boric acid is mixed with the solution of rare earth nitrates (Ln) in such proportions that the molar ratio B / Ln is equal to 1.5.
  • the mixture thus formed is then neutralized to pH 4.4 with 6N ammonia and the concentration of the mixture is adjusted to 0.6 mol / liter in Ln elements by addition of water.
  • the temperature of the reaction medium is kept constant and equal to 60 ° C.
  • This mixture is then heated and stirred for 40 minutes.
  • the precipitate is then filtered on B ⁇ chner and then washed with 2 liters of boric acid solution at 2 g / liter (0.03 mol / liter).
  • the solid obtained is dried at 60 ° C. overnight and then calcined at 85 ° C. for 1 hour 15 minutes.
  • the powder obtained after slight deagglomeration corresponds, by X-ray diffraction analysis, to a pure rare earth orthoborate, YBO 3 type, with particles of spherical shape.
  • the resulting powder is wet milled in a Molinex ball mill with 0.4-0.8 mm ZrO 2 -SiO 2 beads.
  • the bead occupancy rate in the grinding chamber is 65%, and the rotational speed of the rotor is 1000 rpm.
  • the concentration of the suspension is 20% by mass of solid, and a dispersant, sodium hexametaphosphate (HMP), is added at a level of 0.05 g HMP / g borate powder (ie 5% by mass).
  • HMP sodium hexametaphosphate
  • This example relates to the preparation of a suspension of yttrium borate, gadolinium and terbium according to the invention.
  • the powder obtained after drying and calcination at 85O 0 C has the same morphological characteristics as in Example 1.
  • the wet grinding of this powder is carried out in ethanol, in a Netzch Labstar ball mill (grinding module coated with polyurethane - maximum permissible temperature of 60 ° C. - sieve of 0.1 mm - volume of the chamber of 920 ml) .
  • the beads used are 0.4-0.8 mm ZrO 2 -SiO 2 balls, with a volume ratio occupied by the beads of 70%.
  • the concentration of the suspension is 20% by mass of solid.
  • the mill is used in recirculation, with a rotation speed of 3000 rpm.
  • the attached figure is a photo obtained by MET of the suspension resulting from grinding. This photo shows the monocrystalline character of the particles.
  • This example also relates to the preparation of a borate according to the invention in powder form.
  • Example 2 The synthesis is identical to Example 2, and the pulp resulting from the wet milling is dried for 24 hours at room temperature.
  • the powdery product thus obtained is resuspended in water to give a suspension.
  • This example concerns the preparation of a transparent, luminescent and emitting material in the red.
  • the suspension of Example 1 (3 ml at 40 g / l) is mixed with a solution of sodium hexametaphosphate at 20 g / l in solution in water, in proportions such that the polyphosphate / borate ratio is 10% by mass.
  • the mixture is deposited on a previously hydrophilized glass substrate (plasma treatment of 30 seconds) by spin-coating (1900 rpm for 65 seconds).
  • the film is then dried for 1 h at 120 ° C. in an oven. Two successive deposits are made.
  • the thickness of the layer after deposition is about 300 nm.
  • a film transparent and luminescent to the eye under UV excitation is obtained.
  • the film has a total transmission of 86% and haze of 18% at 550 nm (values measured under the conditions described above).
  • the film luminesce in the red under UV excitation (230 nm) and VUV (172 nm).
  • the brightness and the transparency of the film are not altered after thermal aftertreatment (at 450 ° C. for 1 hour), as well as under UV irradiation (24h at 230 nm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

Le borate de terre rare de l'invention se présente sous forme d'une suspension dans une phase liquide de particules substantiellement monocristallines de taille moyenne comprise entre 100 et 400 nm. Il est préparé un procédé dans lequel on calcine un borocarbonate ou un hydroxyborocarbonate de terre rare à une température suffisante pour former un borate et pour obtenir un produit présentant une surface spécifique d'au moins 3 m<SUP>2</SUP>/g; on effectue un broyage humide du produit issu de la calcination. Le borate de l'invention peut être utilisé comme luminophore, notamment dans la fabrication d'un matériau transparent luminescent.

Description

BORATE DE TERRE RARE SUBMICRONIQUE, SON PROCEDE DE PREPARATION ET SON UTILISATION COMME LUMINOPHORE
La présente invention concerne un borate de terre rare submicronique, son procédé de préparation et l'utilisation de ce borate comme luminophore.
Les domaines de la luminescence et de l'électronique connaissent actuellement des développements importants. On peut citer comme exemple de ces développements, la mise au point des systèmes à plasma (écrans et lampes) pour les nouvelles techniques de visualisation et d'éclairage. Une application concrète est celle du remplacement des écrans de télévision actuels par des écrans plats. Ces nouvelles applications nécessitent des matériaux luminophores présentant des propriétés encore améliorées. Ainsi, outre leur propriété de luminescence, on demande à ces matériaux des caractéristiques spécifiques de morphologie ou de granulométrie afin de faciliter notamment leur mise en oeuvre dans les applications recherchées.
Plus précisément, il est demandé d'avoir des luminophores se présentant sous la forme de particules le plus possible individualisées et de taille très fine, submicronique, notamment inférieure à 500 nm. Par ailleurs et toujours dans Ie cadre du développement dans les domaines de la luminescence et de l'électronique, on cherche à obtenir des matériaux, sous forme de films, transparents et luminescent.
L'objet principal de l'invention est de procurer des produits ayant de telles caractéristiques granulométriques. Un second objet de l'invention est d'obtenir un matériau luminescent du type ci-dessus.
Dans ce but, le borate de terre rare de l'invention est caractérisé en ce qu'il se présente sous forme d'une suspension dans une phase liquide de particules substantiellement monocristallines de taille moyenne comprise entre 100 et 400 nm.
L'invention concerne aussi un procédé de préparation d'un borate tel que défini ci-dessus qui est caractérisé en ce qu'il comprend les étapes suivantes :
- on calcine un borocarbonate ou un hydroxyborocarbonate de terre rare à une température suffisante pour former un borate et pour obtenir un produit présentant une surface spécifique d'au moins 3 m2/g;
- on effectue un broyage humide du produit issu de la calcination. D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer et du dessin annexé dans lequel :
- la figure 1 est une photo MET d'une suspension selon l'invention. Par terre rare on entend dans la présente description les éléments du groupe constitué par l'yttrium et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71.
On entend par surface spécifique, la surface spécifique B. ET. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER - EMMETT- TELLER décrite dans le périodique "The Journal of the American Chemical Society, 60, 309 (1938)".
Le borate de terre rare de l'invention est de préférence du type orthoborate, de formule LnBOβ, Ln représentant au moins une terre rare.
Toutefois, l'invention s'applique aussi au borate de type oxyborate de terre rare de formule Ln3BO6. Bien entendu, le borate de l'invention peut être phasiquement pur mais il peut aussi se présenter sous la forme d'un mélange de phases, la phase majoritaire étant la phase orthoborate ou oxyborate, des phases minoritaires pouvant être aussi présentes. On souligne ici que l'invention s'applique aux borates d'une ou de plusieurs terres rares. C'est pourquoi, dans l'ensemble de la description, tout ce qui est décrit au sujet d'un borate de terre rare, d'un carbonate ou d'un hydroxycarbonate de terre rare et au sujet de leurs procédés de préparation doit s'entendre comme s'appliquant aussi au cas où plusieurs terres rares sont présentes.
La terre rare constitutive du borate de l'invention, c'est à dire celle qui forme avec le bore la matrice du produit appartient généralement au groupe des terres rares qui n'ont pas de propriété de luminescence. Ainsi, cette terre rare constitutive du borate peut être choisie, seule ou en combinaison, dans le groupe comprenant Pyttrium, le gadolinium, le lanthane, le lutécium et le scandium. Elle peut être plus particulièrement l'yttrium et/ou le gadolinium.
Le borate peut, en outre, comprendre un ou plusieurs dopants. D'une manière connue en soi, les dopants sont utilisés en combinaison avec la matrice pour lui donner des propriétés de luminescence. Ces dopants peuvent être choisis parmi l'antimoine, le bismuth et les terres rares. Dans ce dernier cas, la ou les terres rares utilisées comme dopant sont choisies dans le groupe des terres rares à propriétés de luminescence et elles sont différentes de la terre rare constitutive du borate. Comme terre rare dopante, on peut citer le cérium, le terbium, l'europium, le dysprosium, l'holmium, l'ytterbium, le néodyme, le thulium, l'erbium et le praséodyme. On utilise plus particulièrement le terbium, le thulium, le cérium et l'europium. La teneur en dopant est habituellement d'au plus 50% en mole par rapport à la matrice borate de terre rare (rapport [dopant]/[ΣLn]), ΣLn représentant l'ensemble terres rares et dopants dans le borate.
Le borate de l'invention est constitué de particules qui ont pour caractéristique essentielle d'être submicroniques et monocristallines.
Plus précisément, ces particules présentent une taille moyenne (d5o) comprise entre 100 et 400 nm, plus particulièrement entre 100 et 300 nm et encore plus particulièrement entre 100 et 200 nm. Pour certaines applications du borate de l'invention, par exemple pour la fabrication d'un matériau transparent, comme décrit plus loin, on peut utiliser un borate dont les particules ont une taille encore plus petite, comprise entre 100 nm et 150 nm.
Par ailleurs, ces particules peuvent présenter une dispersion granulométrique resserrée; plus précisément leur indice de dispersion peut être d'au plus 1, de préférence d'au plus 0,7 et encore plus préférentiellement d'au plus 0,5.
Pour l'ensemble de la description, la taille moyenne et l'indice de dispersion sont les valeurs obtenues en mettant en oeuvre la technique de diffraction laser en utilisant un granulomètre laser (répartition en masse).
On entend par indice de dispersion le rapport : σ/m = (d84-d16)/2d50 dans lequel :
- d84 est le diamètre des particules pour lequel 84% des particules ont un diamètre inférieur à d84;
- die est le diamètre des particules pour lequel 16% des particules ont un diamètre inférieur à di6;
- d50 est le diamètre moyen des particules.
Il est précisé ici que les mesures de taille moyenne sont faites sur des suspensions qui ont subi un passage à la sonde -à ultra-sons' selon les méthodes bien connues mise en œuvre pour ce type de mesures. L'autre caractéristique des particules constitutives du borate de l'invention est leur monocristallinité. En effet, pour l'essentiel, c'est-à-dire pour environ au moins 90% d'entre elles et, de préférence pour la totalité d'entre elles, ces particules sont constituées d'un seul cristal.
Cet aspect monocristallin des particules peut être mis en évidence par la technique d'analyse par microscopie électronique par transmission (MET).
Pour les suspensions dont les particules sont dans une gamme de taille d'au plus 250 nm environ) l'aspect monocristallin des particules peut être mis aussi en évidence en comparant la taille moyenne des particules mesurée par la technique de diffraction laser mentionnée plus haut avec la valeur de la mesure de la taille du cristal ou du domaine cohérent obtenue à partir de l'analyse par diffraction des rayons X (DRX). Il est précisé ici que la valeur mesurée en DRX correspond à la taille du domaine cohérent calculé à partir de la largeur de la raie de diffraction [1 ,0,2]. Les deux valeurs : taille moyenne diffraction laser et DRX présentent en effet le même ordre de grandeur, c'est à dire qu'elles sont dans un rapport d'au plus 2, plus particulièrement d'au plus 1 ,5.
Comme conséquence de leur caractère monocristallin, les particules du borate de l'invention se présentent sous forme bien séparées et individualisées. Il n'y a pas ou peu d'agglomérats de particules. Cette bonne individualisation des particules peut être mise en évidence en comparant le dδo mesuré par la technique de diffraction laser et celui mesuré à partir d'une image obtenue par microscopie électronique à transmission (MET). Là aussi, les valeurs obtenues par ces deux techniques présentent le même ordre de grandeur, dans les proportions données plus haut.
Le borate de l'invention se présente généralement sous le forme d'une suspension dans une phase liquide des particules qui viennent d'être décrites. Cette suspension peut sédimenter au cours du temps et cette sédimentation peut entraîner une agglomération des particules entre elles. Toutefois, et cela est une propriété importante de la suspension de l'invention, une simple agitation mettant en œuvre une énergie mécanique très faible, notamment un traitement aux ultrasons, par exemple avec une puissance de 120 W pendant 3 minutes, permet de désagglomérer ces particules et donc de revenir à une suspension dont les particules présentent toutes les caractéristiques qui ont été données plus haut.
La phase liquide des suspensions selon l'invention peut être de l'eau ou un mélange eau/solvant miscible à l'eau ou encore un solvant organique.
Le solvant organique peut être tout particulièrement un solvant miscible à l'eau. On peut citer, par exemple, les alcools comme le méthanol ou l'éthanol, les glycols comme l'éthylène glycol, les dérivés acétates des glycols comme le monoacétate d'éthylène glycol, les éthers de glycols, les polyols ou les cétones.
Cette phase liquide peut aussi comporter un dispersant. Ce dispersant peut être choisi parmi les dispersants connus, par exemple parmi les polyphosphates (Mn+2PnO3n+I ) ou les métaphosphates ([MPO3]π) alcalins (M désignant un alcalin comme le sodium), notamment comme l'héxamétaphosphate de sodium. Il peut être choisi aussi parmi les silicates alcalins (silicate de sodium), les aminc-alcools, les phosphonates, l'acide citrique et ses sels, les dérivés de l'acide phosphosuccinique ( (HOOC)n-R- PO3H2 où R est un reste alkyle), les acides polyacrylique, polyméthacrylique, polystyrène sulfonique et leurs sels. On préfère tout particulièrement l'acide citrique et les métaphosphates.
La quantité de dispersant peut être comprise entre 1% et 10%, plus particulièrement entre 2,5% et 5%, cette quantité étant exprimée en masse de dispersant par rapport à la masse de solide dans la dispersion.
La concentration de la suspension peut varier dans une large gamme. A titre d'exemple, elle peut être comprise entre environ 10 g/l et environ 200 g/l, plus particulièrement entre 40 g/l et 100 g/l.
L'invention concerne aussi un borate qui se présente sous forme solide, c'est-à-dire d'une poudre qui a pour caractéristique de pouvoir conduire au borate sous forme de suspension décrit plus haut. En d'autres termes, lorsque cette poudre est redispersée dans une phase liquide, après une simple agitation, sans qu'il soit nécessaire d'appliquer une énergie mécanique importante, notamment, là encore, par simple traitement aux ultrasons, par exemple avec une puissance de 450W environ, on obtient une suspension du borate présentant les caractéristiques données plus haut. Bien entendu, tout ce qui a été décrit précédemment concernant la nature et la composition du borate : nature de la phase cristallographique (orthoborate), nature et quantité de la terre rare et du dopant, s'applique à l'identique pour le borate sous forme solide.
Le procédé de préparation du borate de l'invention sous forme de suspension va maintenant être décrit.
Dans ce procédé, on utilise comme produit de départ rare un borocarbonate ou un hydroxyborocarbonate de terre rare (LnB(CO3)3 ou LnB(OH)4CO3 respectivement, dans le cas de la préparation d'un orthoborate).
Ce borocarbonate ou cet hydroxyborocarbonate est calciné à une température suffisante pour former un borate et pour obtenir un produit présentant une surface spécifique d'au moins 3 m2/g..
Cette surface peut être plus particulièrement comprise entre 3 m2/g et 10 m2/g et encore plus particulièrement entre 5 m2/g et 8 m2/g.
La température suffisante pour obtenir la phase borate est généralement d'au moins 4500C, plus particulièrement d'au moins 5000C et elle peut être par exemple comprise entre 450° et 7000C. La durée de la calcination est fonction de la température et elle est généralement d'autant plus faible que la température est élevée. A titre d'exemple, une calcination à 5000C, deux heures permet d'obtenir cette phase.
La calcination doit aussi permettre d'obtenir les valeurs de surface spécifiques qui ont été données plus haut. On obtient généralement ces valeurs pour une calcination à une température comprise entre environ 8000C et environ 900°C, plus particulièrement entre 825°C et 875°C. Là encore, la durée de calcination est d'autant plus faible que la température est élevée. Elle peut être ainsi comprise, par exemple, entre 10 minutes et 5 heures.
Ces conditions de température et de surface spécifiques permettent d'obtenir un produit présentant les caractéristiques les mieux adaptées pour obtenir après le broyage humide la suspension de borate de terre rare de l'invention.
On notera que la calcination décrite ci-dessus peut se faire soit en deux étapes ou deux temps distincts, soit encore en une seule étape, c'est-à-dire avec une montée progressive en température telle que le produit qui subit la calcination soit soumis à une température et à une durée de calcination suffisantes pour obtenir la phase borate. Par exemple, on peut observer un palier à 500°C d'une durée de deux heures puis augmenter de nouveau la température de calcination pour atteindre une valeur supérieure, par exemple comprise entre 8000C et 900°C.
La calcination qui a été décrite ci-dessus peut se faire sous air. Il n'est pas nécessaire de calciner sous atmosphère réductrice mais on ne sortirait pas du .cadre de la présente invention en mettant en œuvre, au moins dans une seconde partie de cette calcination, des atmosphères réductrices (hydrogène par exemple) ou neutre (argon) ou des mélanges de celles-ci.
La dernière étape du procédé consiste à broyer le produit issu de la calcination.
On effectue un broyage humide dans l'eau ou encore dans un mélange eau/solvant ou dans un solvant organique du même type que les solvants qui ont été décrits plus haut pour la phase liquide constitutive de la suspension.
De manière connue on peut utiliser pendant le broyage un dispersant du type de ceux décrits plus haut.
A l'issue du broyage humide on obtient le borate de l'invention sous forme d'une suspension. On notera que dans le cas d'une suspension dans un mélange eau/solvant ou dans un solvant organique, cette suspension peut être préparée à partir d'une suspension aqueuse telle qu'obtenue par le procédé qui vient d'être décrit et par addition du solvant organique à cette suspension aqueuse puis si nécessaire distillation pour éliminer l'eau.
Le borocarbonate ou l'hydroxyborocarbonate de terre rare utilisé comme produit de départ peut être préparé selon différents procédés. Un premier procédé va être décrit ci-dessous dans lequel on part d'un carbonate ou d'un hydroxycarbonate d'une terre rare ou encore d'un mélange de carbonates ou d'hydroxycarbonates de terres rares différentes ou de carbonates ou d'hydroxycarbonates mixtes de terres rares dans le cas de la préparation de borates de plusieurs terres rares. Les carbonates ou hydroxycarbonates de terres rares sont des produits connus en soi et que l'on peut obtenir par exemple par précipitation d'un ou de plusieurs sels de terre rare avec du carbonate ou du bicarbonate d'ammonium.
La première étape du procédé consiste à faire réagir le carbonate ou l'hydroxycarbonate de départ avec de l'acide borique. Selon une caractéristique de ce procédé, le milieu réactionnel de départ se présente sous forme d'une solution aqueuse. Cela signifie que la quantité d'eau présente dans le milieu réactionnel est telle que le rapport massique eau/acide borique+carbonate soit d'au moins 300%, plus particulièrement d'au moins 1000%. Ce rapport peut être encore plus particulièrement d'au moins 1500%.
De préférence, on conduit la réaction à chaud, par exemple à une température comprise entre 400C et 9O0C.
On peut travailler avec un excès d'acide borique. Cet excès peut être par exemple compris entre 5% et 100% en mole ([B]/[Ln] = 1,05 à 2, Ln=Terre Rare).
Il peut être avantageux de réaliser la réaction en éliminant le CO2 formé au cours de celle-ci. Cette élimination peut se faire par exemple en balayant le milieu réactionnel avec un gaz neutre comme l'azote. Cette variante permet d'obtenir des produits de granulométrie plus fine. Selon une autre variante, on effectue là réaction en attaquant par l'acide borique le carbonate ou l'hydroxycarbonate de terre rare dans les eaux-mères de précipitation de celui-ci. Il est avantageux de procéder à cette attaque sur un carbonate ou hydroxycarbonate fraîchement préparé.
A la fin de la réaction, on obtient un précipité qui est séparé du milieu réactionnel par tout moyen connu, par exemple par filtration et qui, éventuellement, est lavé puis séché. Après le séchage, on peut aussi effectuer un lavage supplémentaire avec un acide dilué, par exemple de l'acide nitrique pour éliminer les traces possibles de carbonate n'ayant pas totalement réagi. Un deuxième procédé peut aussi être mis en œuvre pour la préparation d'un borocarbonate ou d'un hydroxyborocarbonate de terre rare. Ce deuxième procédé comprend les étapes suivantes :
- on mélange de l'acide borique et un sel de terre rare;
5 - on fait réagir le mélange ainsi obtenu avec un carbonate ou un bicarbonate;
- on récupère le précipité ainsi obtenu.
Le sel de terre rare peut être un sel inorganique ou organique. On utilise de préférence les sels solubles dans l'eau. Comme sel de terre rare on peut citer plus particulièrement le nitrate. Le mélange de départ peut contenir en 10 outre, le cas échéant, un sel de l'élément dopant et ce qui a été dit pour les sels de terre rare s'applique aussi ici. L'acide borique peut être utilisé sous forme d'une solution ou, de préférence, sous forme solide.
Le mélange peut être effectué à température ambiante ou bien en chauffant.
15 Le mélange ainsi obtenu étant acide, il peut être neutralisé jusqu'à une valeur de pH de 4 ou d'environ 4, par exemple par addition d'une solution d'ammoniaque.
La deuxième étape du procédé consiste à faire réagir le mélange obtenu à l'étape précédente avec un carbonate ou un bicarbonate.
20 Comme carbonate ou bicarbonate, on peut utiliser plus particulièrement le carbonate ou bicarbonate d'ammonium.
Selon une variante, on effectue la réaction en présence d'une base. Comme base utilisable on peut citer les hydroxydes d'alcalins ou d'alcalino- terreux, l'ammoniaque, les aminés secondaires, tertiaires ou quaternaires. On 25. utilise de préférence l'ammoniaque.
On notera que, dans le cas de la préparation d'un composé borate comprenant un dopant ou substituant, le sel du dopant ou substituant peut être introduit aussi lors de la réaction si cela n'a pas été fait au cours de l'étape précédente.
30 Selon un mode de réalisation préféré, on réalise la réaction en régulant le pH. On entend par là que l'on règle le pH du milieu réactionnel à une valeur fixée et en admettant une variation d'au plus 0,5 unité de pH autour de cette valeur de consigne fixée. Cette régulation peut se faire en jouant sur la quantité de base utilisée pour la réaction. Cette valeur fixée est de préférence 35 comprise entre 4 et 6.
La réaction peut se faire à température ambiante ou à chaud Une étape de mûrissement peut être réalisée ensuite éventuellement. Cette étape consiste à maintenir le milieu réactionnel à une température donnée, de préférence à chaud, à un pH constant et à la valeur décrite précédemment, éventuellement sous atmosphère contrôlée. La durée de ce mûrissement est généralement d'au moins 15 minutes et d'au plus 8 heures.
A l'issue de la réaction on obtient un précipité de borocarbonate ou d'hydroxyborocarbonate qui est séparé du milieu réactionnel par tout moyen connu, par exemple par filtration et qui, éventuellement, est lavé puis séché.
On notera ici que les procédés décrits ci-dessus permettent d'obtenir soit un orthoborate soit un oxyborate en fonction de la stcechiométrie des réactifs de départ ou du rapport Ln/B dans le milieu réactionnel de départ. La description qui vient d'être faite concerne la préparation du borate sous forme d'une suspension. Pour obtenir le borate de l'invention sous forme d'une poudre, on part de cette suspension et on sépare le produit solide de la phase liquide en utilisant toute technique de séparation connue par exemple par filtration. Le produit solide ainsi obtenu peut être séché éventuellement puis remis en suspension dans une phase liquide du même type que celle décrite plus haut.
De par ses propriétés et la nature du dopant, Eu, Ce, Tb et Tm par exemple, les borates de l'invention, on entend par là les borates sous forme d'une suspension ou les borates sous forme solide, peuvent être utilisés comme luminophores. Ces borates présentent des propriétés de luminescence sous une excitation électromagnétique dans le domaine des longueurs d'onde utilisées dans les systèmes à plasma (écrans et lampes où l'excitation est créée par un gaz rare ou un mélange de gaz rare comme le xénon ou/et le néon) et dans les lampes à vapeur de mercure dans le cas des borates dopés par le cérium et le terbium en combinaison. De ce fait, ils peuvent être utilisés comme luminophores dans les systèmes à plasma (écran de visualisation ou système d'éclairage) ou dans les lampes à vapeur de mercure.
L'invention concerne donc aussi les dispositifs luminescents comprenant le borate décrit plus haut ou tel qu'obtenu par le procédé décrit ci-dessus ou fabriqués en utilisant ce même borate. De même, l'invention concerne les systèmes à plasma ou les lampes à vapeur de mercure, dans la fabrication desquels le borate peut rentrer, ou comprenant ce même borate. La mise en oeuvre des luminophores dans la fabrication des systèmes à plasma se fait selon des techniques bien connues par exemple par sérigraphie, électrophorèse ou sédimentation.
Les propriétés granulométriques des borates de l'invention font qu'ils peuvent être utilisés comme marqueurs dans des encres semi-transparentes en utilisant les mécanismes d'up-conversion dans l'IR-Visible ou de luminescence dans I1IR, par exemple pour la réalisation d'un marquage par un système de code à barres invisible. Dans ce cas le couple de dopant sera préférentiellement Yb et Er.
Les borates de l'invention peuvent aussi être utilisés comme marqueurs dans un matériau du type papier, carton, textile, verre ou encore un matériau macromoléculaire. Celui-ci peut être de différentes natures : élastomérique, thermoplastique, thermodurcissable.
D'autres part, les propriétés particulières de ces borates, quand ils ne sont pas dopés, dans le domaine visible et UV (pas d'absorption), font qu'ils peuvent être utilisés comme barrière réfléchissante dans les lampes d'éclairage à systèmes à vapeur de mercure.
L'invention concerne aussi un matériau luminescent qui comprend, ou qui peut être fabriqué en utilisant au moins un borate selon l'invention ou un borate obtenu par le procédé tel que décrit plus haut. Selon un mode de réalisation préférentiel, ce matériau luminescent peut être en outre transparent. Dans ce cas, le borate rentrant dans sa composition ou dans sa fabrication est un borate selon l'invention et de taille moyenne comprise entre 100 nm et 200 nm, de préférence entre 100 nm et 150 nm.
On notera que ce matériau peut comprendre, ou être fabriqué en utilisant, outre le borate de l'invention, d'autres borates, ou plus généralement, d'autres luminophores, sous forme de particules submicroniques ou nanométriques.
Ce matériau peut se présenter sous deux formes, c'est à dire soit sous une forme massique, l'ensemble du matériau présentant les propriétés de transparence et de luminescence soit sous une forme composite, c'est à dire dans ce cas sous la forme d'un substrat et d'une couche sur ce substrat, la couche présentant seule alors ces propriétés de transparence et de luminescence. Dans ce cas, le borate de l'invention est contenu dans ladite couche. Le substrat du matériau est un substrat qui peut être en silicium, à base d'un silicone ou en quartz. Ce peut être aussi un verre ou encore un polymère comme le polycarbonate. Le substrat, par exemple le polymère, peut se présenter sous une forme rigide et d'une feuille ou d'une plaque de quelques millimètres d'épaisseur. Il peut aussi se présenter sous forme d'un film de quelques dizaines de microns voire quelques microns à quelques dixièmes de millimètre d'épaisseur.
Par matériau transparent on entend au sens de l'invention un matériau qui présente un trouble (haze) d'au plus 60% et une transmission totale d'au moins 60% et, de préférence, un trouble (haze) d'au plus 40% et une transmission totale d'au moins 80%. La transmission totale correspond à quantité de lumière totale qui traverse la couche, par rapport à la quantité de lumière incidente. Le trouble (haze) correspond au rapport de la transmission diffuse de la couche à sa transmission totale.
Ces deux grandeurs sont mesurées dans les conditions suivantes : la couche de matériau d'épaisseur comprise entre 0,2 μm et 1 μm est déposée sur un substrat de verre standard, d'épaisseur 0,5 mm. La fraction massique en particules de borate dans le matériau est d'au moins 20%. Les mesures de la transmission totale et de la transmission diffuse s'effectuent à travers la couche du matériau et du substrat, au moyen d'une procédure classique sur un spectromètre Perkin Elmer Lamda 900, équipé d'une sphère d'intégration, pour une longueur d'onde de 550 nm.
Le matériau, et plus particulièrement la couche précitée, peut comprendre, outre un borate selon l'invention, des liants ou des charges du type polymère (polycarbonate, méthacrylate), silicate, bille de silice, phosphate, oxyde de titane ou autres charges minérales pour améliorer notamment les propriétés mécaniques et optiques du matériau.
La fraction massique en particules de borate dans le matériau peut être comprise entre 20% et 99%.
L'épaisseur de la couche peut être comprise entre 30 nm et 10 μm, de préférence entre 100 nm et 3 μm et encore plus préférentiellement entré 100 nm et 1 μm.
Le matériau, sous sa forme composite, peut être obtenu par dépôt sur le substrat, éventuellement préalablement lavé par exemple par un mélange sulfo-chromique, d'une suspension de borate de l'invention. On peut aussi ajouter au moment de ce dépôt, les liants ou charges mentionnés plus haut. Ce dépôt peut être réalisé par une technique de pulvérisation, de « spin- coating » ou de « dip-coating ». Après dépôt de la couche, le substrat est séché à l'air et il peut éventuellement ensuite subir un traitement thermique. Le traitement thermique est réalisé par un chauffage à une température qui généralement est d'au moins 2000C et dont la valeur supérieure est fixée notamment en tenant compte de la compatibilité de la couche avec le substrat de manière à éviter notamment des réactions parasites. Le séchage et le traitement thermique peuvent être conduits sous air, sous atmosphère inerte, sous vide ou encore sous hydrogène.
On a vu plus haut que le matériau peut comprendre des liants ou des charges. Il est possible dans ce cas d'utiliser des suspensions qui comprennent elles-mêmes au moins un de ces liants ou de ces charges ou encore des précurseurs de ceux-ci.
Le matériau selon la forme massique peut être obtenu par incorporation des particules de borate dans une matrice de type polymère par exemple, comme du polycarbonate, du polyméthacrylate ou un silicone.
L'invention concerne enfin un système luminescent qui comprend un matériau du type décrit ci - dessus et, en outre, une source d'excitation qui peut être une source de photons UV, comme une diode UV ou encore une excitation de type Hg, gaz rares ou rayons X. Le système peut être utilisé comme dispositif d'éclairage mural transparent, du type vitrage éclairant.
Des exemples vont maintenant être donnés. Dans ces exemples la granulométrie a été déterminée selon la technique de diffraction laser précitée. On précise en plus que la mesure a été effectuée avec un appareil de type Coulter sur des suspensions diluées à une concentration comprise entre 1g/l et 10g/l et qui ont préalablement subi un passage à la sonde à ultra-sons (sonde 450W) pendant 2 minutes 30 secondes.
EXEMPLE 1 Cet exemple concerne la préparation d'une suspension d'un borate d'yttrium, de gadolinium et d'europium selon l'invention.
Une solution est constituée par un mélange de nitrates d'yttrium, de gadolinium et d'europium, de composition suivante (en % atomique) :
Y : 72% Gd : 23%
Eu : 5%
Dans un réacteur contenant de l'eau déminéralisée, on mélange de l'acide borique cristallisé, et la solution de nitrates de terre rare (Ln), dans des proportions telles que le rapport molaire B/Ln soit égal à 1 ,5. On neutralise ensuite le mélange ainsi formé à pH 4,4 par de l'ammoniaque 6N, puis la concentration du mélange est ajustée à 0,6 mole/litre en éléments Ln par ajout d'eau.
Sur 2,8 litres de la solution précédente, agitée et chauffée à 600C, on ajoute progressivement une solution précipitante de bicarbonate d'ammonium à une concentration de 1 ,34 mole/litre en NH4HCO3, et d'ammoniaque à 0,7 mole/litre. Durant cet ajout, le pH est maintenu à une valeur d'au moins 4,6 par ajout d'ammoniaque 6N. L'ajout de la solution précipitante est arrêté dès que le pH du mélange atteint la valeur de 5, la concentration en terre rare du mélange obtenu est de 0,39 mole/litre.
Durant toute la réaction, la température du milieu réactionnel est maintenue constante et égale à 600C.
Ce mélange est ensuite maintenu chauffé et agité pendant 40 minutes.
Le précipité est ensuite filtré sur Bϋchner, puis lavé par 2 litres de solution d'acide borique à 2g/litre (0,03 mole/litre).
Le solide obtenu est séché à 600C pendant une nuit, puis calciné à 85O0C pendant 1 heure 15 minutes.
La poudre obtenue après légère désagglomération, correspond, par analyse par diffraction des rayons X, à un orthoborate de terre rare pur, de type YBO3, avec des particules de forme sphérique.
On fait subir à la poudre obtenue un broyage humide dans un broyeur bol à billes Molinex, avec des billes de 0,4-0,8 mm en ZrO2-SiO2. Le taux d'occupation des billes dans la chambre de broyage est de 65 %, et la vitesse de rotation du- mobile est de 1000 tpm. La concentration de la suspension est de 20 % massique en solide, et un dispersant, l'hexamétaphosphate de sodium (HMP), est ajouté à un taux de 0,05 g HMP/g poudre borate (soit 5 % massique). Le broyage dure 90 minutes.
L'analyse par granulométrie laser donne les résultats suivants :
L'analyse de l'échantillon ainsi obtenu par diffraction des rayons X révèle une phase de type YBO3, avec une taille de domaine cohérent selon la direction [1 ,0,2] de 104 nm.
On constate que la valeur du d50 (laser) et celle de la taille du domaine cohérent présentent le même ordre de grandeur, ce qui confirme le caractère monocristallin des particules.
EXEMPLE 2
Cet exemple concerne la préparation d'une suspension d'un borate d'yttrium, de gadolinium et de terbium selon l'invention.
La synthèse est identique à celle de l'exemple 1 , en remplaçant l'europium par du terbium, avec la composition suivante (en % atomique) : Y : 58%
Gd : 33%
Tb : 9%
La poudre obtenue à la suite du séchage et de la calcination à 85O0C présente les mêmes caractéristiques morphologiques que dans l'exemple 1.
Le broyage humide de cette poudre est réalisé dans l'éthanol, dans un broyeur à billes Netzch Labstar (module de broyage revêtu polyuréthane - température maximale admissible de 60 0C - tamis de 0,1 mm - volume de la chambre de 920 ml). Les billes utilisées sont des billes de ZrO2-SiO2 de 0,4- 0,8 mm, avec un taux de volume occupé par les billes de 70%. La concentration de Ia suspension est de 20 % massique en solide. Le broyeur est utilisé en recirculation, avec une vitesse de rotation de 3000 tpm.
Les caractéristiques de granulométrie sont alors les suivantes :
La figure jointe est une photo obtenue par MET de la suspension issue du broyage. Cette photo montre le caractère monocristallin des particules.
EXEMPLE 3
Cet exemple concerne aussi la préparation d'un borate selon l'invention sous forme poudre.
La synthèse est identique à l'exemple 2, puis la pulpe issue du broyage humide est séchée 24 heures à température ambiante.
Le produit sec sous forme de poudre ainsi obtenu est remis en suspension dans l'eau pour donner une suspension.
Les caractéristiques de granulométrie de la suspension sont alors les suivantes :
EXEMPLE 4
Cet exemple concerne la préparation d'un matériau transparent, luminescent et qui émet dans le rouge. La suspension de l'exemple 1 (3 ml_ à 40 g/L) est mélangée à une solution d'hexamétaphosphate de sodium à 20 g/L en solution dans l'eau, dans des proportions telles que le rapport polyphosphate / borate est de 10% massique. Le mélange est déposé sur un substrat en verre préalablement hydrophilisé (traitement plasma de 30 secondes) par spin-coating (1900 tr/min pendant 65 secondes). Le film est ensuite séché 1 h à 1200C dans une étuve. Deux dépôts successifs sont réalisés. L'épaisseur -de la couche après dépôt est d'environ 300 nm.
Un film transparent et luminescent à l'œil sous excitation UV est obtenu.
Le film possède une transmission totale de 86% et un haze de 18% à 550 nm (valeurs mesurées dans les conditions décrites plus haut). Le film luminesce dans le rouge sous excitation UV (230 nm) et VUV (172 nm). La luminosité et la transparence du film ne sont pas altérées après un posttraitement thermique (à 4500C pendant 1 h), ainsi que sous irradiation UV (24h à 230 nm).

Claims

REVENDICATIONS
1- Borate de terre rare, caractérisé en ce qu'il se présente sous forme d'une suspension dans une phase liquide de particules substantiellement monocristallines de taille moyenne comprise entre 100 et 400 nm.
2- Borate selon la revendication 1 , caractérisé en ce que les particules présentent une taille moyenne comprise entre 100 et 300 nm.
3- Borate selon l'une des revendications précédentes, caractérisé en ce que les particules présentent un indice de dispersion d'au plus 0,7.
4- Borate selon l'une des revendications précédentes, caractérisé en ce que la terre rare (terre rare constitutive du borate) appartient au groupe comprenant l'yttrium, le gadolinium, le lanthane, Ie lutécium et le scandium.
5- Borate selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre, à titre de dopant, au moins un élément choisi parmi l'antimoine, le bismuth et les terres rares autres que celle constitutive du borate, la terre rare dopante pouvant être plus particulièrement le cérium, le terbium, l'europium, le thulium, l'erbium et le praséodyme.
6- Borate selon l'une des revendications précédentes, caractérisé en ce qu'il présente une teneur en élément dopant d'au plus 50% en mole.
7- Borate de terre rare, caractérisé en ce qu'il se présente sous forme d'une poudre susceptible de donner après redispersion dans une phase liquide le borate sous forme de suspension selon l'une des revendications précédentes.
8- Procédé de préparation d'un borate selon l'une des revendications 1 à 6, caractérisé en ce qu'il comprend les étapes suivantes :
- on calcine un borocarbonate ou un hydroxyborocarbonate de terre rare à une température suffisante pour former un borate et pour obtenir un produit présentant une surface spécifique d'au moins 3 m2/g; - on effectue un broyage humide du produit issu de la calcination.
9- Procédé selon la. revendication 8, caractérisé en ce qu'on utilise un borocarbonate ou un hydroxyborocarbonate de terre rare qui a été obtenu par réaction d'un carbonate ou d'un hydroxycarbonate de terre rare avec de l'acide borique, le milieu réactionnel de départ se présentant sous forme d'une solution aqueuse.
10- Procédé selon la revendication 8, caractérisé en ce qu'on utilise un borocarbonate ou un hydroxyborocarbonate de terre rare qui a été obtenu par un procédé qui comprend les étapes suivantes :
- on mélange de l'acide borique et un sel de terre rare;
- on fait réagir le mélange ainsi obtenu avec un carbonate ou un bicarbonate; - on récupère le précipité ainsi obtenu.
11- Procédé selon la revendication 10, caractérisé en ce qu'on fait réagir le mélange précité avec un carbonate ou un bicarbonate en présence d'une base, de préférence en réglant le pH du milieu réactionnel à une valeur fixée, notamment comprise entre 4 et 6.
12- Procédé de préparation d'un borate de terre rare sous forme d'une poudre, caractérisé en ce qu'on sépare le produit solide de la phase liquide à partir de la suspension obtenue à l'issue de l'étape de broyage humide du procédé selon l'une des revendications 8 à 11.
13- Dispositif luminescent, caractérisé en ce qu'il comprend, ou en ce qu'il est fabriqué en utilisant un borate selon l'une des revendications 1 à 7 ou un borate obtenu par le procédé selon l'une des revendications 8 à 12.
14- Système à plasma, caractérisé en ce qu'il comprend, ou en ce qu'il est fabriqué en utilisant un borate selon l'une des revendications 1 à 7 ou un borate obtenu par le procédé selon l'une des revendications 8 à 12.
15- Lampe à vapeur de mercure, caractérisée en ce qu'elle comprend, ou en ce qu'elle est fabriquée en utilisant un borate selon l'une des revendications 1 à 7 ou un borate obtenu par le procédé selon l'une des revendications 8 à 12.
16- Matériau luminescent, caractérisé en ce qu'il comprend, ou en ce qu'il est fabriqué en utilisant un borate selon l'une des revendications 1 à 7 ou un borate obtenu par le procédé selon l'une des revendications 8 à 12. 17- Matériau selon la revendication 16 , caractérisé en ce qu'il est transparent et en ce que le borate précité présente une taille moyenne comprise entre 100 nm et 200 nm.
18- Système luminescent, caractérisé en ce qu'il comprend un matériau selon la revendication 16 ou 17 et en outre une source d'excitation.
EP06820165A 2005-10-13 2006-10-09 Borate de terre rare submicronique, son procede de preparation et son utilisation comme luminophore Withdrawn EP1957407A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0510446A FR2892113B1 (fr) 2005-10-13 2005-10-13 Borate de terre rare submicronique, son procede de preparation et son utilisation comme luminophore
PCT/FR2006/002258 WO2007042653A1 (fr) 2005-10-13 2006-10-09 Borate de terre rare submicronique, son procede de preparation et son utilisation comme luminophore

Publications (1)

Publication Number Publication Date
EP1957407A1 true EP1957407A1 (fr) 2008-08-20

Family

ID=36581971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06820165A Withdrawn EP1957407A1 (fr) 2005-10-13 2006-10-09 Borate de terre rare submicronique, son procede de preparation et son utilisation comme luminophore

Country Status (7)

Country Link
US (1) US8980130B2 (fr)
EP (1) EP1957407A1 (fr)
JP (2) JP5791865B2 (fr)
KR (3) KR20080059390A (fr)
CN (1) CN101287680B (fr)
FR (1) FR2892113B1 (fr)
WO (1) WO2007042653A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2892113B1 (fr) * 2005-10-13 2007-12-14 Rhodia Recherches & Tech Borate de terre rare submicronique, son procede de preparation et son utilisation comme luminophore
WO2009077350A1 (fr) * 2007-12-14 2009-06-25 Basf Se Luminophore inorganique pouvant être obtenu par broyage humide
US8993101B2 (en) * 2011-11-15 2015-03-31 Honeywell International Inc. Luminescent borates, materials and articles incorporating such borates, and methods and apparatus for their production and use in article authentication
US9074137B2 (en) * 2011-11-15 2015-07-07 Honeywell International Inc. Luminescent borates, materials and articles incorporating such borates, and methods and apparatus for their production and use in article authentication
US9062220B2 (en) * 2012-11-30 2015-06-23 Honeywell International Inc. Luminescent borates, luminescent materials and articles incorporating such borates
CN104310422B (zh) * 2014-09-28 2017-01-18 盐城工学院 一种稀土正硼酸盐的低温制备方法
RU2761209C1 (ru) * 2021-04-06 2021-12-06 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения боратов лантана, легированных европием и тербием
CN114540935B (zh) * 2022-04-02 2023-01-10 贵州师范学院 一种稀土镨硼酸盐晶体材料及其制备方法
CN114524440B (zh) * 2022-04-25 2022-07-12 天津包钢稀土研究院有限责任公司 一种高熵稀土共掺杂纳米低传热粉体材料及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3412104A (en) * 1963-06-28 1968-11-19 Switzer Brothers Inc Printing ink production
FR2743555B1 (fr) * 1996-01-17 1998-02-27 Rhone Poulenc Chimie Borate de terre rare et son precurseur, leurs procedes de preparation et l'utilisation du borate comme luminophore
FR2752833B1 (fr) * 1996-09-03 1998-12-11 Rhone Poulenc Chimie Procede de preparation d'un borate de terre rare par reaction d'au moins un sel de terre rare, d'acide borique et d'une base
US6692660B2 (en) * 2001-04-26 2004-02-17 Nanogram Corporation High luminescence phosphor particles and related particle compositions
WO2001010781A1 (fr) 1999-08-05 2001-02-15 Korea Institute Of Science And Technology PROCEDE DE FABRICATION DE POUDRES A BASE DE BaTiO¿3?
FR2803281B1 (fr) * 1999-12-29 2002-03-29 Rhodia Terres Rares Procede de preparation de borates de terre rare et utilisation des borates obtenus en luminescence
CN1331187C (zh) * 2002-05-29 2007-08-08 皇家飞利浦电子股份有限公司 具有紫外反射层的荧光灯
JP2004018708A (ja) * 2002-06-18 2004-01-22 Konica Minolta Holdings Inc 蛍光体の製造方法
JP3969204B2 (ja) * 2002-06-18 2007-09-05 コニカミノルタホールディングス株式会社 蛍光体前駆体製造装置及び蛍光体前駆体の製造方法
CA2436391C (fr) * 2002-08-07 2007-02-13 Shoei Chemical Inc. Methode de production de poudres d'oxyde fortement cristallise
DE10259935A1 (de) * 2002-12-20 2004-07-01 Bayer Ag Herstellung und Verwendung von in-situ-modifizierten Nanopartikeln
EP1602703A4 (fr) * 2003-03-11 2008-07-02 Konica Minolta Holdings Inc Phosphore, procede de production de phosphore, pate de phosphore et ecran a plasma
JP3680852B2 (ja) * 2003-03-11 2005-08-10 コニカミノルタホールディングス株式会社 マンガン含有珪酸亜鉛蛍光体の製造方法
FR2892113B1 (fr) * 2005-10-13 2007-12-14 Rhodia Recherches & Tech Borate de terre rare submicronique, son procede de preparation et son utilisation comme luminophore
FR2896791B1 (fr) * 2006-01-30 2008-10-10 Rhodia Recherches & Tech Dispersion colloidale d'un borate de terre rare, son procede de preparation et son utilisation comme luminophore

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2007042653A1 *

Also Published As

Publication number Publication date
US20100065780A1 (en) 2010-03-18
JP6095726B2 (ja) 2017-03-15
JP2015214480A (ja) 2015-12-03
WO2007042653A1 (fr) 2007-04-19
FR2892113B1 (fr) 2007-12-14
KR20080059390A (ko) 2008-06-27
FR2892113A1 (fr) 2007-04-20
KR20100082868A (ko) 2010-07-20
CN101287680A (zh) 2008-10-15
JP5791865B2 (ja) 2015-10-07
KR101214720B1 (ko) 2012-12-21
US8980130B2 (en) 2015-03-17
KR20120044385A (ko) 2012-05-07
JP2009511694A (ja) 2009-03-19
CN101287680B (zh) 2012-11-07
KR101214729B1 (ko) 2012-12-21

Similar Documents

Publication Publication Date Title
EP2303985B1 (fr) Phosphate de lanthane et d&#39;au moins une terre rare choisie parmi le cerium et le terbium sous forme d&#39;une suspension, procede de preparation et utilisation comme luminophore
EP1957407A1 (fr) Borate de terre rare submicronique, son procede de preparation et son utilisation comme luminophore
EP0874879B1 (fr) Borate de terre rare et son precurseur, leurs procedes de preparation et l&#39;utilisation du borate comme luminophore
CA2752381C (fr) Phosphate de lanthane, de cerium et de terbium de type coeur/coquille, luminophore comprenant ce phosphate et procedes de preparation
EP2265690B1 (fr) Aluminate de baryum et de magnesium submicronique, procede de preparation et utilisation comme luminophore
WO2009006634A1 (fr) Compositions ayant des réponses multiples à un rayonnement d&#39;excitation et procédés pour les préparer
EP2414482A1 (fr) Composition a base d&#39;europium, d&#39;oxyde d&#39;yttrium ou de gadolinium, de type coeur/coquille, luminophore comprenant cette composition et procedes de preparation
WO2007085650A1 (fr) Dispersion colloïdale d&#39;un borate de terre rare, son procede de preparation et son utilisation comme luminophore
EP1663470B1 (fr) Dispersion collodale d un phosphate de terre rare et son procede de preparation
EP1027401A1 (fr) Utilisation comme luminophore dans un systeme a plasma ou a rayonnement x, d&#39;un phosphate de lanthane comprenant du thulium
FR2978448A1 (fr) Nouveaux materiaux luminescents
WO2011107422A1 (fr) Luminophore de type coeur/coquille obtenu par traitement thermique d&#39;un precurseur en presence de tetraborate de lithium
WO2013030044A1 (fr) Luminophore a base d&#39;un phosphate de lanthane, de cerium et de terbium a brillance stabilisee, procede de preparation et utilisation dans un dispositif luminescent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: THIERS, LAURENT

Inventor name: LE-MERCIER, THIERRY

Inventor name: BUISSETTE, VALERIE

Inventor name: MONTARDI, YVAN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140523

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171129