EP1027401A1 - Utilisation comme luminophore dans un systeme a plasma ou a rayonnement x, d'un phosphate de lanthane comprenant du thulium - Google Patents

Utilisation comme luminophore dans un systeme a plasma ou a rayonnement x, d'un phosphate de lanthane comprenant du thulium

Info

Publication number
EP1027401A1
EP1027401A1 EP98951544A EP98951544A EP1027401A1 EP 1027401 A1 EP1027401 A1 EP 1027401A1 EP 98951544 A EP98951544 A EP 98951544A EP 98951544 A EP98951544 A EP 98951544A EP 1027401 A1 EP1027401 A1 EP 1027401A1
Authority
EP
European Patent Office
Prior art keywords
phosphate
thulium
lanthanum
phosphor
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98951544A
Other languages
German (de)
English (en)
Inventor
Jean-Jacques Braconnier
Denis Huguenin
Claude Ceintrey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhodia Chimie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie SAS filed Critical Rhodia Chimie SAS
Publication of EP1027401A1 publication Critical patent/EP1027401A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7777Phosphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to the use as a phosphor in a plasma or X-ray system, of a lanthanum phosphate-based compound comprising thulium.
  • Plasma systems (screens and lamps) are among the new visualization and lighting techniques that are being developed. A concrete example is that of replacing current television screens with flat screens, lighter and larger, a replacement which is about to be resolved by the use of plasma panels.
  • a gas introduced into an enclosure is ionized under the effect of an electric discharge. During this process, high energy electromagnetic radiation is emitted. The photons are directed towards a luminescent material.
  • this material must be a phosphor absorbing in the emission range of plasma or X-rays, and emitting in the appropriate spectral range with the highest possible efficiency.
  • the object of the invention is to provide such a phosphor material.
  • a phosphor in a plasma or X-ray system a compound based on a lanthanum phosphate comprising thulium is used.
  • the invention also relates to a plasma or X-ray system, characterized in that it comprises the above-mentioned compound as a phosphor.
  • the invention also covers a lanthanum phosphate which is characterized in that it comprises thulium and in that it consists of particles of average size between 1 and 20 ⁇ m with a dispersion index of less than 0.6.
  • the invention relates to a phosphor having the same characteristics as those given above for phosphate. Other characteristics, details and advantages of the invention will appear even more completely on reading the description which follows, as well as various concrete but nonlimiting examples intended to illustrate it.
  • the invention is based on the discovery of the luminescence properties of certain phosphates with respect to plasma or X radiation.
  • the invention therefore relates first of all to the use of the compound described above as a phosphor under conditions which are those plasma systems.
  • a gas emitting after ionization a radiation corresponding at least to wavelengths situated between 10 and 200 nm, more particularly between 140 and 200 nm, ie the distant ultraviolet domain.
  • Examples of such systems include plasma screens and lamps.
  • the phosphor of the invention can also be used in systems implementing X-ray radiation.
  • X-rays here and for the present description, mean photons whose energy is between 10 and 10OKev.
  • imaging systems in particular medical imaging.
  • the phosphor of the invention is a compound comprising a matrix of the LaPO ⁇ type.
  • This phosphate further comprises, as dopant, thulium. Thulium is present in phosphate in a trivalent form.
  • This phosphate excited by plasma or X type radiation, emits in blue.
  • This phosphate can also comprise, as co-dopant, gadolinium.
  • the thulium content is between 0.1 and 10, more particularly between 0.5 and 5.
  • the gadolinium content expressed in atomic% relative to lanthanum, can vary between 10 and 40%.
  • a lanthanum phosphate which consists of particles of average size between 1 and 20 ⁇ m with a dispersion index of less than 0.6.
  • the particle size can more particularly be between 2 and 6 ⁇ m.
  • the dispersion index can more particularly be at most 0.5.
  • the size and particle size characteristics are measured by a sedimentation technique using a particle size analyzer of the Sedigraph type.
  • the measurement is carried out in a conventional manner on an aqueous dispersion of the product with ultrasonic deagglomeration treatment (5 minutes, 120Watt).
  • dispersion index is meant the ratio: in which :
  • 6 is the particle diameter for which 16% of the particles have a diameter less than d ⁇ 6 ;
  • the invention also relates to plasma or X-ray systems or devices which comprise a phosphor compound as described above. All the characteristics which have been given above with regard to the phosphor compound and phosphate also apply here to the description of the systems or devices. These characteristics will therefore not be repeated here.
  • the invention also relates to the use of the phosphor compound in the manufacture of these same systems or devices.
  • This implementation is done according to well known techniques, for example by deposition by screen printing, electrophoresis or sedimentation.
  • the invention also relates, as a new product particularly suitable for use as a phosphor described above, a specific lanthanum phosphate and its preparation process.
  • the preparation process will first be described. This process consists in carrying out direct precipitation and at controlled pH by reacting a first solution containing soluble salts of rare earths (lanthanum, thulium and, where appropriate, gadolinium salts), these elements then being present in stoichiometric proportions. required to obtain the product of the desired formula, with a second solution containing phosphate ions.
  • the solution of soluble rare earth salts is introduced into the solution containing the phosphate ions. This is generally done by gradually and continuously introducing the salt solution into the phosphate ion solution.
  • the initial pH of the solution containing the phosphate ions is less than 3, and preferably between 1 and 3.
  • the pH of the precipitation medium is then controlled at a pH value less than 2, and preferably between 1 and 2 If the initial pH of the solution containing the phosphate ions is greater than 3, the introduction of the solution of rare earth salts leads to a lowering of the pH value of the reaction medium formed by mixing this solution with the initial solution phosphate ions. In this case, the pH value is allowed to fall to a value less than 2 and it is once the desired pH value is reached that this value is checked.
  • controlled pH is meant maintaining the pH of the precipitation medium at a certain value, constant or substantially constant, by addition of compounds or buffer solutions, in the solution containing the phosphate ions, and this simultaneously with the introduction into the latter of the solution containing the soluble salts of rare earths.
  • the pH of the medium will thus vary by at most 0.5 pH unit around the set target value, and more preferably by at most 0.1 pH unit around this value.
  • This pH control is advantageously carried out by adding a basic compound as will be explained below.
  • the precipitation is preferably carried out in an aqueous medium at a temperature which is not critical and which is advantageously between room temperature (15 ° C - 25 ° C) and 100 ° C. This precipitation takes place with stirring of the reaction medium.
  • the concentrations of the rare earth salts in the first solution can vary within wide limits.
  • the total concentration of rare earths can be between 0.01 mol / liter and 3 mol / liter.
  • the suitable rare earth salts are in particular the salts soluble in an aqueous medium, such as, for example, nitrates, chlorides, acetates, carboxylates, or a mixture of these.
  • the preferred salts according to the invention are nitrates.
  • the phosphate ions intended to react with the solution of the rare earth salts can be provided by pure compounds or in solution, such as for example phosphoric acid, alkaline phosphates or other metallic elements giving with the anions associated with rare earths a soluble compound.
  • the phosphate ions are added in the form of ammonium phosphates because the ammonium cation will decompose during subsequent calcination, thus making it possible to obtain a lanthanum phosphate of high purity.
  • ammonium phosphates diammonium or monoammonic phosphate are the preferred compounds for the implementation of the invention.
  • the phosphate ions are present in an amount such that there is, between the two solutions, a PO4 / rare earth molar ratio greater than 1, and advantageously between 1.05 and 3.
  • the solution containing the phosphate ions must initially present (that is to say before the start of the introduction of the solution of rare earth salts) a pH lower than 3, and preferably ranging between 1 and 3.
  • suitable basic compound there may be mentioned, by way of example, metal hydroxides (NaOH, KOH, Ca (OH) 2) or ammonium hydroxide, or any other basic compound whose constituent species will not form any precipitated during their addition to the reaction medium, by combination with one of the species also contained in this medium, and allowing control of the pH of the precipitation medium.
  • metal hydroxides NaOH, KOH, Ca (OH) 2
  • ammonium hydroxide or any other basic compound whose constituent species will not form any precipitated during their addition to the reaction medium, by combination with one of the species also contained in this medium, and allowing control of the pH of the precipitation medium.
  • a phosphate precipitate is directly obtained which can be recovered by any means known per se, in particular by simple filtration.
  • the recovered product can then be washed, for example with water, in order to rid it of any impurities, in particular nitrates and / or ammonium groups adsorbed.
  • It can finally be heat treated, and this under various conditions chosen essentially according to the degree of transformation desired for the final product (nature of the crystalline phase, degree of hydration, purity, level of luminescence and the like), as will be explained in more detail below. With or without the use of subsequent heat treatments, it will be noted that the method according to the invention always leads to products having a fine and extremely tight particle size.
  • This LaPO phosphate which comprises thulium as a dopant consists of particles of average size between 1 and 20 ⁇ m with a dispersion index of less than 0.6.
  • the particle size can more particularly be between 2 and 6 ⁇ m.
  • the dispersion index can more particularly be at most 0.5.
  • This phosphate can also comprise, as co-dopant, gadolinium.
  • the contents of thulium and, optionally, gadolinium are those given above.
  • This lanthanum orthophosphate doped with thulium can be in a crystalline form of either hexagonal or monoclinic type, and this essentially as a function of the temperature undergone by the product during its preparation.
  • the hexagonal form corresponds to the phosphate either having not undergone any subsequent heat treatment or having undergone a heat treatment but at a temperature generally not exceeding 600 ° C.
  • the monoclinic form corresponds to the phosphate which is obtained after a thorough heat treatment carried out at a temperature at least above 600 ° C, advantageously between 700 and 1000 ° C, with the aim of carrying out the transformation of the hexagonal crystalline phase into a pure monoclinic phase.
  • a non-heat treated product is generally hydrated; however, simple drying, operated for example between 60 and 100 ° C, is sufficient to remove most of this residual water, the minor amounts of remaining water being removed by calcinations conducted at higher and higher temperatures. at around 400 ° C.
  • the thulium-doped lanthanum phosphate of the invention has specific surfaces which vary according to the calcination temperatures to which it has been brought, these decreasing regularly with the latter.
  • the thulium-doped lanthanum phosphate of the invention has specific surfaces which vary according to the calcination temperatures to which it has been brought, these decreasing regularly with the latter.
  • the thulium-doped lanthanum phosphate of the invention has specific surfaces which vary according to the calcination temperatures to which it has been brought, these decreasing regularly with the latter.
  • the thulium-doped lanthanum phosphate of the invention has specific surfaces which vary according to the calcination temperatures to which it has been brought, these decreasing regularly with the latter.
  • after heat treatment at a temperature below 600 ° C. it has a specific surface greater than or equal to 30 m2 / g; after calcination at 800 ° C, this surface is of the order of about ten m2 / g approximately
  • the specific surface is measured by the B.E.T. which is determined by nitrogen adsorption in accordance with standard ASTM D3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the periodical "The Journal of the American Society", 60.309 (1938).
  • the thulium-doped lanthanum phosphate of the invention also has the particularly remarkable and advantageous property of not clumping during calcination, that is to say that the particles constituting them are not, or do not tend to be, agglomerated and therefore end up in a final form of large granules of size from 0.1 to several mm for example; it is thus not necessary to carry out a prior grinding of the powders before carrying out the conventional treatments thereon intended to obtain the final phosphor.
  • the lanthanum phosphate according to the invention has luminescence properties, after having undergone heat treatment at a temperature generally above 600 ° C., and advantageously between 700 and 1000 ° C., it may prove necessary to '' further improve these luminescence properties by carrying out post-treatments on the product, in order to obtain a real phosphor directly usable as such in the desired application.
  • the border between a simple lanthanum phosphate and a real phosphor remains, after all, quite arbitrary, and depends on the only luminescence threshold from which it is considered that a product can be directly implemented in an acceptable manner by a user.
  • the thulium-doped lanthanum phosphate of the invention can be subjected to a heat treatment in the presence of a flux. It will be noted that such a treatment is in itself already well known in itself and is conventionally used in the processes for developing the main phosphors, in particular to adapt them to the desired application (surface finish, gloss, for example).
  • the flux is mixed with the phosphate to be treated, then the mixture is brought to a temperature of at least 1000 ° C, generally between 1000 ° C and 1200 ° C, and this under a necessarily reducing atmosphere. After treatment, the product is washed and then rinsed, so as to obtain the purest luminophore possible and in a deagglomerated state.
  • This phosphor has a monoclinic type crystal structure.
  • the contents of thulium and, optionally gadolinium, are those given above for phosphate.
  • This example relates to the preparation of phosphates and phosphors according to the invention at different levels of thulium.
  • a phosphate of formula is prepared P0 4- On a stirred tank bottom, consisting of 1.341 of a 1.1 M / 1 phosphoric acid solution, preneutralized to a pH of 1.6 with an ammonia solution and heated to 60 ° C, 0.551 rare earth nitrates at 2.2M / I are added over 1 hour, while maintaining the temperature of the mixture as well as its pH by adding ammonia.
  • the precipitate is filtered and then washed with cold demineralized water.
  • the cake obtained is then calcined at 900 ° C for 2 hours.
  • the powder obtained has a monoclinic crystallographic structure and an average diameter of 5 ⁇ m with a dispersion index of 0.4.
  • LiF 1% by mass
  • the precursor is transformed into a phosphor by a heat treatment at 1000 ° C.
  • Phosphates and phosphors with the thulium content indicated in Table 1 below are prepared in the same way by adding the amounts stoichiometric of nitrates.
  • the products obtained have the same particle size and crystallographic characteristics as the preceding phosphate.
  • the intensity of the emission peak of Tm3 + located at 450 nm in the blue under X excitation of the phosphors prepared in Example 1 is measured as a function of the thulium content. The results are given below.
  • the 0.5 atomic% thulium product was evaluated on a plasma screen test cell containing a xenon-neon gas. A blue light emission characteristic of trivalent thulium was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

La présente invention concerne l'utilisation comme luminophore dans un système à plasma ou à rayonnement X, d'un composé à base d'un phosphate de lanthane comprenant du thulium. Ce phosphate peut contenir en outre du gadolinium. La teneur en thulium du composé, exprimée en % atomique par rapport au lanthane, est comprise entre 0,1 et 10, plus particulièrement entre 0,5 et 5. L'invention couvre aussi un phosphate de lanthane qui est caractérisé en ce qu'il comprend du thulium et en ce qu'il est constitué de particules de taille moyenne comprise entre 1 et 20 νm avec un indice de dispersion inférieur à 0,6.

Description

UTILISATION COMME LUMINOPHORE DANS UN SYSTEME A PLASMA OU A RAYONNEMENT X. D'UN PHOSPHATE DE LANTHANE COMPRENANT DU THULIUM
RHONE-POULENC CHIMIE
La présente invention concerne l'utilisation comme luminophore dans un système à plasma ou à rayonnement X, d'un composé à base d'un phosphate de lanthane comprenant du thulium. Les systèmes à plasma (écrans et lampes) font partie des nouvelles techniques de visualisation et d'éclairage qui sont en train de se développer. Un exemple concret est celui du remplacement des écrans de télévision actuels par des écrans plats, moins lourds et de plus grandes dimensions, remplacement qui est sur le point d'être résolu par l'utilisation de panneaux à plasma. Dans les systèmes à plasma, un gaz introduit dans une enceinte est ionisé sous l'effet d'une décharge électrique. Lors de ce processus, des rayonnements électromagnétiques de haute énergie sont émis. Les photons sont dirigés vers un matériau luminescent.
De même, dans les systèmes metttant en oeuvre les rayons X, les photons vont exciter un matériau luminescent.
Pour être efficace, ce matériau doit être un luminophore absorbant dans le domaine d'émission du plasma ou des rayons X, et émettant dans le domaine spectral approprié avec le rendement le plus élevé possible.
Or, il existe un besoin pour un luminophore utilisable dans les systèmes à plasma et à rayons X et émettant dans le bleu.
L'objet de l'invention est de fournir un tel matériau luminophore. Dans ce but, selon l'invention, on utilise comme luminophore dans un système à plasma ou à rayonnement X, un composé à base d'un phosphate de lanthane comprenant du thulium. L'invention concerne aussi un système à plasma ou à rayonnement X, caractérisé en ce qu'il comprend comme luminophore le composé précité.
L'invention couvre aussi un phosphate de lanthane qui est caractérisé en ce qu'il comprend du thulium et en ce qu'il est constitué de particules de taille moyenne comprise entre 1 et 20μm avec un indice de dispersion inférieur à 0,6. Enfin, l'invention concerne un luminophore présentant les mêmes caractéristiques que celles données ci-dessus pour le phosphate. D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer.
L'invention est basée sur la découverte des propriétés de luminescence de certains phosphates vis à vis des rayonnements plasma ou X. L'invention concerne donc tout d'abord l'utilisation du composé décrit ci-dessus comme luminophore dans des conditions qui sont celles des systèmes à plasma. On entend par là et pour la présente description, tous les systèmes mettant en oeuvre un gaz émettant après ionisation un rayonnement correspondant au moins à des longueurs d'onde situées entre 10 et 200 nm, plus particulièrement entre 140 et 200nm, c'est-à-dire le domaine de l'ultraviolet lointain.
Comme systèmes de ce type, on peut citer les écrans et les lampes à plasma.
Le luminophore de l'invention peut aussi être utilisé dans les systèmes mettant en oeuvre un rayonnement X. On entend par rayons X, ici et pour la présente description, les photons dont l'énergie est comprise entre 10 et 10OKev.
Comme systèmes à rayonnement X on peut mentionner les systèmes d'imagerie, notamment d'imagerie médicale.
Le luminophore de l'invention est un composé comprenant une matrice du type LaPOφ Ce phosphate comprend en outre, comme dopant, du thulium. Le thulium est présent dans le phosphate sous une forme trivalente.
Ce phosphate, excité par les rayonnements de type plasma ou X émet dans le bleu.
Ce phosphate peut comprendre en outre, comme co-dopant, du gadolinium.
Généralement, la teneur en thulium, exprimée en % atomique par rapport au lanthane, est comprise entre 0,1 et 10, plus particulièrement entre 0,5 et 5.
La teneur en gadolinium, exprimée en % atomique par rapport au lanthane, peut varier entre 10 et 40%.
Selon une variante préférée de l'invention, on utilise un phosphate de lanthane qui est constitué de particules de taille moyenne comprise entre 1 et 20μm avec un indice de dispersion inférieur à 0,6.
La taille de particules peut être plus particulièrement comprise entre 2 et 6μm. L'indice de dispersion peut être plus particulièrement d'au plus 0,5.
Pour l'ensemble de la description les caractéristiques de taille et de granulométrie sont mesurées par une technique de sédimentation en utilisant un granulomètre du type Sédigraph. La mesure est effectuée de manière classique sur une dispersion aqueuse du produit avec traitement de désagglomération par ultrasons (5 minutes, 120Watt).
On entend par indice de dispersion le rapport : dans lequel :
- d<34 est le diamètre des particules pour lequel 84% des particules ont un diamètre inférieur à d^;
- d-|6 est le diamètre des particules pour lequel 16% des particules ont un diamètre inférieur à dι6;
- dso est le diamètre moyen des particules.
L'invention concerne aussi les systèmes ou dispositifs à plasma ou à rayonnements X qui comprennent un composé luminophore tel que décrit précédemment. L'ensemble des caractéristiques qui ont été données plus haut au sujet du composé luminophore et du phosphate s'applique aussi ici à la description des systèmes ou dispositifs. Ces caractéristiques ne seront donc pas reprises ici.
L'invention concerne aussi la mise en oeuvre du composé luminophore dans la fabrication de ces mêmes systèmes ou dispositifs. Cette mise en oeuvre se fait selon des techniques bien connues, par exemple par dépôt par sérigraphie, électrophorèse ou sédimentation.
L'invention concerne par ailleurs, à titre de produit nouveau particulièrement adapté à l'utilisation comme luminophore décrite précédemment, un phosphate de lanthane spécifique ainsi que son procédé de préparation. Le procédé de préparation va tout d'abord être décrit. Ce procédé consiste à réaliser une précipitation directe et à pH contrôlé en faisant réagir une première solution contenant des sels solubles des terres rares (sels de lanthane, de thulium et, le cas échéant de gadolinium), ces éléments étant alors présents dans les proportions stoechiométriques requises pour l'obtention du produit de formule désirée, avec une deuxième solution contenant des ions phosphates. La solution de sels solubles des terres rares est introduite dans la solution contenant les ions phosphates. On procède généralement en introduisant progressivement et en continu la solution de sels dans la solution d'ions phosphates.
Le pH initial de la solution contenant les ions phosphates est inférieur à 3, et de préférence compris entre 1 et 3. Le pH du milieu de précipitation est ensuite contrôlé à une valeur de pH inférieure à 2, et de préférence comprise entre 1 et 2. Si le pH initial de la solution contenant les ions phosphates est supérieur à 3, l'introduction de la solution de sels de terres rares entraine un abaissement de la valeur du pH du milieu réactionnel formé par le mélange de cette solution avec la solution initiale d'ions phosphate. On laisse dans ce cas la valeur du pH descendre jusqu'à une valeur inférieure à 2 et, c'est une fois atteinte la valeur de pH souhaitée que l'on contrôle cette valeur.
Par "pH contrôlé", on entend un maintien du pH du milieu de précipitation à une certaine valeur, constante ou sensiblement constante, par addition de composés basiques ou de solutions tampons, dans la solution contenant les ions phosphates, et ceci simultanément à l'introduction dans cette dernière de la solution contenant les sels solubles de terres rares. Le pH du milieu variera ainsi d'au plus 0,5 unité de pH autour de la valeur de consigne fixée, et de préférence encore d'au plus 0,1 unité de pH autour de cette valeur.
Ce contrôle du pH est avantageusement réalisé par addition d'un composé basique comme cela sera expliqué ci-dessous.
La précipitation est réalisée de préférence en milieu aqueux à une température qui n'est pas critique et qui est comprise, avantageusement, entre la température ambiante (15°C - 25°C) et 100°C. Cette précipitation a lieu sous agitation du milieu de réaction.
Les concentrations des sels de terres rares dans la première solution peuvent varier dans de larges limites. Ainsi, la concentration totale en terres rares peut être comprise entre 0,01 mol/litre et 3 mol/litre.
Les sels de terres rares convenables sont notamment les sels solubles en milieu aqueux, comme par exemple les nitrates, chlorures, acétates, carboxylates, ou un mélange de ceux-ci. Les sels préférés selon l'invention sont les nitrates.
Les ions phosphates destinés à réagir avec la solution des sels de terres rares peuvent être apportés par des composés purs ou en solution, comme par exemple l'acide phosphorique, les phosphates d'alcalins ou d'autres éléments métalliques donnant avec les anions associés aux terres rares un composé soluble.
Selon une variante préférée, les ions phosphates sont ajoutés sous forme de phosphates d'ammonium car le cation ammonium se décomposera lors de la calcination ultérieure permettant ainsi d'obtenir un phosphate de lanthane de grande pureté. Parmi les phosphates d'ammonium, le phosphate diammonique ou monoammonique sont les composés préférés pour la mise en oeuvre de l'invention.
Les ions phosphates sont présents en quantité telle que l'on ait, entre les deux solutions, un rapport molaire PO4/terres rares supérieur à 1 , et avantageusement compris entre 1 ,05 et 3.
Comme indiqué précédemment, la solution contenant les ions phosphates doit présenter initialement (c'est à dire avant le début de l'introduction de la solution de sels de terres rares) un pH inférieur à 3, et de préférence compris entre 1 et 3.
Par la suite, le contrôle du pH du milieu réactionnel tel que décrit plus haut, se fait par ajout simultané dans ce milieu d'une base.
Comme composé basique convenable, on peut citer, à titre d'exemples, les hydroxydes métalliques (NaOH, KOH, Ca(OH)2 ) ou l'hydroxyde d'ammonium, ou tout autre composé basique dont les espèces le constituant ne formeront aucun précipité lors de leur addition dans le milieu réactionnel, par combinaison avec une des espèces par ailleurs contenues dans ce milieu, et permettant un contrôle du pH du milieu de précipitation.
A l'issue de l'étape de précipitation, on obtient directement un précipité de phosphate qui peut être récupéré par tout moyen connu en soi, en particulier par simple filtration. Le produit récupéré peut ensuite être lavé, par exemple avec de l'eau, dans le but de le débarrasser des éventuelles impuretés, notamment des groupements nitrates et/ou ammoniums adsorbés. Il peut enfin être traité thermiquement, et ceci sous diverses conditions choisies essentiellement en fonction du degré de transformation désiré pour le produit final (nature de la phase cristalline, degré d'hydratation, pureté, niveau de luminescence et autre), comme cela sera expliqué plus en détails dans ce qui suit. Avec ou sans mise en oeuvre de traitements thermiques ultérieurs, on notera que le procédé selon l'invention conduit toujours à des produits présentant une granulométrie fine et extrêmement resserrée.
Ce phosphate LaPO qui comprend, comme dopant, du thulium est constitué de particules de taille moyenne comprise entre 1 et 20μm avec un indice de dispersion inférieur à 0,6. La taille de particules peut être plus particulièrement comprise entre 2 et 6μm. L'indice de dispersion peut être plus particulièrement d'au plus 0,5.
Ce phosphate peut comprendre en outre, comme co-dopant, du gadolinium. Les teneurs en thulium et, éventuellement en gadolinium sont celles données plus haut. Cet orthophosphate de lanthane dopé au thulium peut se présenter sous une forme cristalline de type soit hexagonale soit monoclinique, et ceci essentiellement en fonction de la température subi par le produit au cours de sa préparation. Ainsi, plus précisément, la forme hexagonale correspond au phosphate soit n'ayant subi aucun traitement thermique ultérieur soit ayant subi un traitement thermique mais à une température n'excédant généralement pas 600°C, et la forme monoclinique correspond au phosphate qui est obtenu après un traitement thermique poussé et opéré à une température au moins supérieure à 600°C, avantageusement comprise entre 700 et 1000°C, dans le but de procéder à la transformation de la phase cristalline hexagonale en une phase pure monoclinique. Un produit non traité thermiquement est généralement hydraté; toutefois, de simples séchages, opérés par exemple entre 60 et 100°C, suffisent à éliminer la majeure partie de cette eau résiduelle, les quantités mineures d'eau restante étant quant à elles éliminées par des calcinations conduites à des températures plus élevées et supérieures à 400°C environ. De même, le phosphate de lanthane dopé au thulium de l'invention présente des surfaces spécifiques variables selon les températures de calcination auxquelles il a été porté, celles-ci décroissant régulièrement avec ces dernières. Ainsi, à titre d'exemple, après traitement thermique à une température inférieure à 600°C, il présente une surface spécifique supérieure ou égale à 30 m2/g; après calcination à 800°C, cette surface est de l'ordre d'une dizaine de m2/g environ, et après calcination à 900-1000°C, elle chute à des valeurs généralement inférieures à environ 5 m2/g.
Dans ce qui précède, la surface spécifique est mesurée par la méthode B.E.T. qui est déterminée par adsorption d'azote conformément à la norme ASTM D3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique "The Journal of the American Society", 60,309 (1938).
Le phosphate de lanthane dopé au thulium de l'invention présente en outre la propriété particulièrement remarquable et intéressante de ne pas motter lors de la calcination, c'est à dire que les particules les constituant ne sont pas, ou n'ont pas tendance à être, agglomérées et donc à se retrouver sous une forme finale de gros granules de taille de 0,1 à plusieurs mm par exemple; il n'est ainsi pas nécessaire de procéder à un broyage préalable des poudres avant de conduire sur celles-ci les traitements classiques destinés à l'obtention du luminophore final. Bien que le phosphate de lanthane selon l'invention présente, après avoir subi un traitement thermique à une température généralement supérieure à 600°C, et avantageusement comprise entre 700 et 1000°C, des propriétés de luminescence, il peut s'avérer nécessaire d'améliorer encore ces propriétés de luminescence en procédant sur le produit à des post-traitements, et ceci afin d'obtenir un véritable luminophore directement utilisable en tant que tel dans l'application souhaitée. Bien entendu, la frontière entre un simple phosphate de lanthane et un réel luminophore reste, somme toute, assez arbitraire, et dépend du seul seuil de luminescence à partir duquel on considère qu'un produit peut être directement mis en oeuvre de manière acceptable par un utilisateur. Dans le cas présent, et de manière assez générale, on peut considérer et identifier comme précurseur de luminophores un phosphate de lanthane dopé au thulium selon l'invention qui n'a pas été soumis à des traitements thermiques supérieurs à environ 1000°C, car un tel produit présente généralement des propriétés de luminescence que l'on peut juger comme ne satisfaisant pas au critère minimum de brillance des luminophores commerciaux susceptibles d'être utilisés directement et tels quels, sans aucune transformation ultérieure. A l'inverse, on peut qualifier de luminophore, un phosphate de lanthane qui, éventuellement après avoir été soumis à des traitements appropriés, développe des brillances convenables, et suffisantes pour être utilisés directement par un applicateur dans les systèmes à plasma ou à rayons X. Ainsi, pour développer encore ses propriétés de luminescence, on peut soumettre le phosphate de lanthane dopé au thulium de l'invention à un traitement thermique en présence d'un flux. On notera qu'un tel traitement est en lui-même déjà bien connu en soi et est classiquement utilisé dans les procédés d'élaboration des principaux luminophores, notamment pour adapter ces derniers à l'application souhaitée (état de surface, brillance, par exemple).
A titre de flux convenables, on peut notamment citer le fluorure de lithium, le chlorure de lithium, le chlorure de potassium, le chlorure d'ammonium, l'oxyde de bore et les phosphates d'ammonium, cette liste n'étant bien entendu nullement limitative. Le flux est mélangé au phosphate à traiter, puis le mélange est porté à une température d'au moins 1000°C, généralement comprise entre 1000°C et 1200°C, et ceci sous une atmosphère nécessairement réductrice. Après traitement, le produit est lavé puis rincé, de manière à obtenir un luminophore le plus pur possible et dans un état désaggloméré. Dans d'autres cas, on pourra également simplement traiter thermiquement le produit, et ceci en l'absence de tout flux, à une température d'au moins 1000°C, généralement comprise entre 1000 et 1200°C. Que l'une ou l'autre des voies ci-dessus aient été utilisées, on obtient toujours finalement un luminophore à base de phosphate de lanthane, dopé au thulium et, éventuellement, codopé au gadolinium, présentant une taille moyenne de particules comprise entre 1 et 20 microns, de préférence entre 2 et 6 microns, et ceci avec un indice de dispersion très faible, inférieur à 0,5, de préférence d'au plus 0,4.
Ce luminophore présente une structure cristalline de type monoclinique. Les teneurs en thulium et, éventuellement en gadolinium, sont celles données plus haut pour le phosphate.
Des exemples vont maintenant être donnés
EXEMPLE 1
Cet exemple concerne la préparation de phosphates et de luminophores selon l'invention à différents taux de thulium.
On prépare tout d'abord un phosphate de formule P04- Sur un pied de cuve agité, constitué de 1 ,341 d'une solution d'acide phosphorique à 1,1 M/1, préneutralisée à un pH de 1 ,6 par une solution d'ammoniaque et chauffée à 60°C, on ajoute en 1 heure 0,551 de nitrates de terres rares à 2.2M/I, tout en maintenant la température du mélange ainsi que son pH par ajout d'ammoniaque.
L'ajout terminé, on filtre le précipité puis on le lave à l'eau déminéralisée froide. Le gâteau obtenu est ensuite calciné à 900°C pendant 2 heures.
La poudre obtenue présente une structure cristallographique monoclinique et un diamètre moyen de 5μm avec un indice de dispersion de 0,4. Après ajout de LiF (1 % massique) le précurseur est transformé en luminophore par un traitement thermique à 1000°C.
On prépare de la même manière des phosphates et luminophores présentant le taux de thulium indiqué dans le tableau 1 ci-dessous en ajoutant les quantités stoechiométriques de nitrates. Les produits obtenus présentent les mêmes caractéristiques granulométriques et cristallographiques que le phosphate précédent.
EXEMPLE 2
On mesure l'intensité du pic d'émission de Tm3+ situé à 450nm dans le bleu sous excitation X des luminophores préparés dans l'exemple 1 en fonction de la teneur en thulium. Les résultats sont donnés ci-dessous.
Tableau 1
En l'absence de thulium, on n'observe aucune émission dans les mêmes conditions d'excitation.
EXEMPLE 3
Le produit à 0,5% atomique de thulium a été évalué sur une cellule de test d'écran plasma contenant un gaz xénon-néon. On a observé une émission lumineuse bleue caractéristique du thulium trivalent.

Claims

REVENDICATIONS
1- Utilisation comme luminophore dans un système à plasma ou à rayonnement X, d'un composé à base d'un phosphate de lanthane comprenant du thulium.
2- Utilisation selon la revendication 1 , caractérisée en ce que le phosphate de lanthane comprend en outre du gadolinium.
3- Utilisation selon la revendication 1 ou 2, caractérisée en ce que la teneur en thulium, exprimée en % atomique par rapport au lanthane, est comprise entre 0,1 et 10, plus particulièrement entre 0,5 et 5.
4- Utilisation selon l'une des revendications 1 à 3, caractérisée en ce que le phosphate de lanthane est constitué de particules de taille moyenne comprise entre 1 et 20μm avec un indice de dispersion inférieur à 0,6.
5- Système à plasma ou à rayonnement X, caractérisé en ce qu'il comprend comme luminophore un composé à base d'un phosphate de lanthane comprenant du thulium.
6- Système selon la revendication 5, caractérisé en ce que le composé précité comprend en outre du gadolinium.
7- Système selon la revendication 5 ou 6, caractérisé en ce que la teneur en thulium du composé précité, exprimée en % atomique par rapport au lanthane, est comprise entre
0,1 et 10, plus particulièrement entre 0,5 et 5.
8- Système selon l'une des revendications 5 à 7, caractérisé en ce que le phosphate de lanthane est constitué de particules de taille moyenne comprise entre 1 et 20μm avec un indice de dispersion inférieur à 0,6.
9- Phosphate de lanthane, caractérisé en ce qu'il comprend du thulium et en ce qu'il est constitué de particules de taille moyenne comprise entre 1 et 20μm avec un indice de dispersion inférieur à 0,6.
10- Phosphate selon la revendication 9, caractérisé en ce qu'il comprend en outre du gadolinium. 1 1- Phosphate selon la revendication 9 ou 10, caractérisé en ce que la teneur en thulium, exprimée en % atomique par rapport au lanthane, est comprise entre 0,1 et 10, plus particulièrement entre 0,5 et 5.
12- Phosphate selon l'une des revendications 9 à 11 , caractérisé en ce qu'il est constitué de particules présentant un indice de dispersion d'au plus 0,5.
13- Luminophore à base de phosphate de lanthane, caractérisé en ce qu'il comprend du thulium et en ce qu'il est constitué de particules de taille moyenne comprise entre 1 et 20μm avec un indice de dispersion inférieur à 0,6.
14- Luminophore selon la revendication 13, caractérisé en ce qu'il comprend en outre du gadolinium.
15- Luminophore selon la revendication 13 ou 14, caractérisé en ce qu'il est constitué de particules présentant un indice de dispersion d'au plus 0,5.
16- Luminophore selon l'une des revendications 13 à 15, caractérisé en ce que la teneur en thulium, exprimée en % atomique par rapport au lanthane, est comprise entre 0,1 et 10, plus particulièrement entre 0,5 et 5.
17- Procédé de préparation d'un phosphate selon l'une des revendications 9 à 12, caractérisé en ce qu'il consiste à introduire une première solution contenant des sels solubles de lanthane, de thulium et, éventuellement de gadolinium, dans une seconde solution contenant des ions phosphates et présentant un pH initial inférieur à 3, à contrôler au cours de la précipitation le pH du milieu de précipitation à une valeur sensiblement constante et inférieure à 2, puis à récupérer le précipité ainsi obtenu et enfin, éventuellement, à le traiter thermiquement.
18- Procédé de préparation d'un luminophore selon l'une des revendications 13 à 16, caractérisé en ce qu'on calcine à une température d'au moins 1000°C un phosphate selon l'une des revendications 9 à 12.
EP98951544A 1997-10-24 1998-10-23 Utilisation comme luminophore dans un systeme a plasma ou a rayonnement x, d'un phosphate de lanthane comprenant du thulium Withdrawn EP1027401A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9713367 1997-10-24
FR9713367A FR2770223B1 (fr) 1997-10-24 1997-10-24 Utilisation comme luminophore dans un systeme a plasma ou a rayonnement x, d'un phosphate de lanthane comprenant du thulium
PCT/FR1998/002275 WO1999021938A1 (fr) 1997-10-24 1998-10-23 Utilisation comme luminophore dans un systeme a plasma ou a rayonnement x, d'un phosphate de lanthane comprenant du thulium

Publications (1)

Publication Number Publication Date
EP1027401A1 true EP1027401A1 (fr) 2000-08-16

Family

ID=9512620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98951544A Withdrawn EP1027401A1 (fr) 1997-10-24 1998-10-23 Utilisation comme luminophore dans un systeme a plasma ou a rayonnement x, d'un phosphate de lanthane comprenant du thulium

Country Status (8)

Country Link
US (1) US6419852B1 (fr)
EP (1) EP1027401A1 (fr)
JP (1) JP2001521055A (fr)
KR (1) KR20010015788A (fr)
CN (1) CN1278855A (fr)
CA (1) CA2307132A1 (fr)
FR (1) FR2770223B1 (fr)
WO (1) WO1999021938A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187225B1 (en) 1998-07-06 2001-02-13 Matsushita Electric Industrial Company, Ltd. Blue phosphor for plasma display and lamp application and method of making
KR20060021308A (ko) * 2003-05-15 2006-03-07 오스람 실바니아 인코포레이티드 화학 증착에 의한 인광물질의 피막 방법
US7179402B2 (en) * 2004-02-02 2007-02-20 General Electric Company Phosphors containing phosphate and/or borate of metals of group IIIA, group IVA, and lanthanide series, and light sources incorporating the same
JP3804804B2 (ja) * 2004-04-08 2006-08-02 信越化学工業株式会社 希土類元素りん酸塩組成物及びその製造方法
US8545784B2 (en) * 2006-10-20 2013-10-01 Neo International Corp. Method for the production of rare earth containing phosphates
JP4991471B2 (ja) * 2007-05-16 2012-08-01 株式会社日本触媒 グリセリン脱水用触媒、およびアクロレインの製造方法
FR2931143B1 (fr) * 2008-05-15 2011-01-07 Rhodia Operations Phosphate de lanthane et d'au moins une terre rare choisie parmi le cerium et le terbium sous forme d'une suspension, procede de preparation et utilisation comme luminophore
KR100952140B1 (ko) * 2009-07-08 2010-04-09 한국조폐공사 위변조 방지용 엑스레이 감지 잉크
CN101962805B (zh) * 2010-10-15 2012-04-25 浙江大学 一种磷酸镧或稀土掺杂磷酸镧薄膜的电化学制备方法
FR2979351B1 (fr) * 2011-08-31 2013-10-11 Rhodia Operations Luminophore a base d'un phosphate de lanthane, de cerium et de terbium a brillance stabilisee, procede de preparation et utilisation dans un dispositif luminescent
CN104178164B (zh) * 2014-07-15 2016-05-04 宜兴新威利成稀土有限公司 一种高发光效率小粒度磷酸镧铈铽稀土产品的制备方法
CN115340077B (zh) * 2022-07-22 2024-05-03 承德莹科精细化工股份有限公司 一种高纯度磷酸镧的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0133524B1 (ko) * 1988-12-28 1998-04-20 아라이 기꾸지 형광체
US5156764A (en) * 1988-12-28 1992-10-20 Kasei Optonix, Ltd. Phosphor
US5743955A (en) * 1995-10-23 1998-04-28 Phillips; Mark L. F. Method for synthesizing fine-grained phosphor powders of the type (RE1- Lnx)(P1-y Vy)O4
US5989454A (en) * 1998-07-06 1999-11-23 Matsushita Electric Industrial Co., Ltd. Method for making small particle blue emitting lanthanum phosphate based phosphors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9921938A1 *

Also Published As

Publication number Publication date
FR2770223A1 (fr) 1999-04-30
JP2001521055A (ja) 2001-11-06
KR20010015788A (ko) 2001-02-26
US6419852B1 (en) 2002-07-16
FR2770223B1 (fr) 2002-06-14
CN1278855A (zh) 2001-01-03
WO1999021938A1 (fr) 1999-05-06
CA2307132A1 (fr) 1999-05-06

Similar Documents

Publication Publication Date Title
EP0581621B1 (fr) Nouveaux luminophores verts à base de phosphate mixte de lanthane, cerium et terbium, précurseurs de ceux-ci et procédés de synthèse
EP0581622B1 (fr) Procédé de préparation de phosphates de terres rares et produits obtenus
CA2752381C (fr) Phosphate de lanthane, de cerium et de terbium de type coeur/coquille, luminophore comprenant ce phosphate et procedes de preparation
CA2180174C (fr) Utilisation comme luminophore dans les systemes a plasma d&#39;un compose a base d&#39;un phosphate de terre rare
WO2010112394A1 (fr) Composition a base d&#39;europium, d&#39;oxyde d&#39;yttrium ou de gadolinium, de type coeur/coquille, luminophore comprenant cette composition et procedes de preparation
EP1027401A1 (fr) Utilisation comme luminophore dans un systeme a plasma ou a rayonnement x, d&#39;un phosphate de lanthane comprenant du thulium
CA2752196C (fr) Composition comprenant un phosphate de cerium et/ou de terbium, de type coeur/coquille, luminophore issu de cette composition et leurs procedes de preparation
WO2011128298A1 (fr) Phosphate de lanthane, de cerium et de terbium de type coeur/coquille, luminophore a stabilite thermique amelioree comprenant ce phosphate
CA2767284A1 (fr) Composition comprenant un phosphate de cerium et/ou de terbium et du sodium, de type coeur/coquille, luminophore issu de cette composition et leurs procedes de preparation
CA2741976C (fr) Phosphate de lanthanides a teneur en potassium, leurs fabrications et leurs utilisations
CA2741979C (fr) Phosphate de cerium et/ou de terbium, eventuellement avec du lanthane, luminophore issu de ce phosphate et procedes de preparation de ceux-ci
EP2751221B1 (fr) Luminophore a base d&#39;un phosphate de lanthane, de cerium et de terbium a brillance stabilisee, procede de preparation et utilisation dans un dispositif luminescent
FR2938526A1 (fr) Phosphate de cerium et/ou de terbium, eventuellement avec du lanthane, luminophore issu de ce phosphate et procedes de preparation de ceux-ci
CA2791430A1 (fr) Luminophore de type coeur/coquille obtenu par traitement thermique d&#39;un precurseur en presence de tetraborate de lithium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040304