WO2009024312A2 - Procédé de production et de stabilisation de nanoparticules métalliques fonctionnelles dans des liquides ioniques - Google Patents

Procédé de production et de stabilisation de nanoparticules métalliques fonctionnelles dans des liquides ioniques Download PDF

Info

Publication number
WO2009024312A2
WO2009024312A2 PCT/EP2008/006768 EP2008006768W WO2009024312A2 WO 2009024312 A2 WO2009024312 A2 WO 2009024312A2 EP 2008006768 W EP2008006768 W EP 2008006768W WO 2009024312 A2 WO2009024312 A2 WO 2009024312A2
Authority
WO
WIPO (PCT)
Prior art keywords
imidazolium
methyl
ammonium
ionic liquid
nanoparticles
Prior art date
Application number
PCT/EP2008/006768
Other languages
German (de)
English (en)
Other versions
WO2009024312A3 (fr
Inventor
Christoph Janiak
Engelbert Redel
Marco Klingele
Thomas Schubert
Tom Beyersdorff
Original Assignee
Albert-Ludwigs-Universität Freiburg
Iolitec Ionic Liquids Technologies Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albert-Ludwigs-Universität Freiburg, Iolitec Ionic Liquids Technologies Gmbh & Co. Kg filed Critical Albert-Ludwigs-Universität Freiburg
Publication of WO2009024312A2 publication Critical patent/WO2009024312A2/fr
Publication of WO2009024312A3 publication Critical patent/WO2009024312A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0282Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aliphatic ring, e.g. morpholinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/17Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • C02F1/505Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment by oligodynamic treatment

Definitions

  • the present invention describes a process for the reductive production and stabilization of functional metal nanoparticles in ionic liquids using elemental hydrogen, which makes it possible to adjust the particle size and the size distribution by suitable choice of the ionic liquid used.
  • Nanomaterials ie materials with a particle size in the nanometer range, represent a new class of materials, which is of increasing importance for more and more technical areas.
  • nanomaterials are of inorganic nature, e.g. Metals, metal oxides, metal phosphates, metal alloys or non-metals, but there are also organic nanomaterials.
  • nanoparticles are characterized by the fact that they have a huge surface area relative to their volume, which means that they have far more atoms on their surface compared to materials with larger particle sizes.
  • the special properties of nanomaterials are founded, the old known materials improved or completely new properties and thus can open up new applications [G. Schmid, Nanoparticles: From Theory to Application, Wiley-VCH, Weinheim, 2003, pages 1-434].
  • Nanoscale metal powders can be sintered without pressure and at lower temperatures. The resulting materials are characterized by greater compactness and improved mechanical properties. Nanoscale silver gives workpieces antimicrobial properties when applied in the form of a coating or added as a dopant to the material. This property is used in particular Area of sanitary facilities, used in the food and hygiene sector, for example, in coating dispensers for hospitals, housing of medical equipment or in refrigerators.
  • nanomaterials can often be used as efficient catalysts for a wide variety of processes [D. Astruc, Nanoparticles and Catalysis, Wiley-VCH, Weinheim, 2007, pp. 1-634].
  • An industrially very important oxidation process is, for example, the conversion of olefins into epoxides [K. Weissermel, HJ Arpe, Industrial Organic Chemistry, 4th Edition, Wiley-VCH, Weinheim, 2003, pp. 145-192 and 267-312; BK Hodnett, Heterogeneous Catalytic Oxidation, Wiley-VCH, Weinheim, 2000, pp. 160-188].
  • Oxidative petroleum products, such as acrylates are important monomers or intermediates for the chemical and pharmaceutical industries.
  • Catalytically active, stabilized metal nanoparticles, in particular silver manoparticles can also serve valuable purposes for their production and lead to more efficient processes.
  • nanoparticles Another production method for nanoparticles is the milling process.
  • the comminution of microscale materials in special nanomills Since grinding at the nanometer level is very energy-intensive, this method has proved uneconomical for large-scale industry.
  • contamination of the nanopowders may occur due to the grinding materials used.
  • reaction media are often used toxic, flammable and volatile organic solvents, which are usually difficult or impossible to reuse due to the entry of the reagents.
  • the unavoidable use of surfactants for stabilization also occupies much of the surface of the nanoparticles of stabilizer molecules, greatly reducing the useful surface area of the particles for further use as a catalyst or for subsequent functionalization, and the metal nanoparticles prepared in this manner for these purposes often unusable.
  • the findings from the metal industry on the electrorefining of metals are used here.
  • electrochemical processes are characterized in particular in comparison to the steam condensation process by much higher efficiency.
  • a further disadvantage of the electrochemical processes is that they hitherto only permit the production of smaller amounts of nanopowders.
  • organic solvents and surface-blocking stabilizers are also frequently used here.
  • the aim of the present invention is therefore to provide a process for the preparation and stabilization of functional metal nanoparticles that avoids the disadvantages of the above-mentioned processes by the use of ionic liquids as the reaction medium and elemental hydrogen as the reducing agent. That the generation of nanocrystalline deposits on a substrate is advantageously possible by electrochemical reduction from ionic liquids has already been shown elsewhere [M. Bukowski, F. Endres, R. Hempelmann, H. Natter, Patent Publication DE10108893, 2002].
  • the possibility of producing catalytically active iridium and rhodium nanoparticles by the reduction of corresponding metal salts with hydrogen in ionic liquids is known [G. S. Fonseca, A.P.
  • Ionic liquids are defined liquid compounds exclusively composed of ions, which differ from classic molten salts, especially due to the unusually low temperatures (preferably ⁇ 100 0 C) differ, in which they are present in the liquid state of matter [T. Welton, Chem. Rev. 1999, 99, 2071-2083; P. Wasserscheid, W. Keim, Angew. Chem. 2000, 112, 3926-3945; P. Wasserscheid, T. Welton, Lonic Liquids in Synthesis, Wiley-VCH, Weinheim, 2003, pp. 1-364].
  • ionic liquids have negligible vapor pressure, high thermal, chemical and electrochemical stability, and have versatile miscibility with water and organic solvents, which can be used to advantage in productions or product recovery or catalyst recovery.
  • the solution is transferred to the autoclave and dried under high vacuum. Thereafter, the autoclave is filled directly with hydrogen and the reaction mixture is heated. After cooling, the nanoparticles formed can be separated off from the ionic liquid by centrifuging, so that the ionic liquid, if appropriate after an intermediate purification step, can be reused for further reactions. Alternatively, the obtained nanoparticle dispersion can also be used directly. The process will be explained below using the example of the preparation of silver nanoparticles.
  • Some silver (I) salts for example silver (I) tetrafluoroborate (AgBF 4 ), silver (I) hexafluorophosphate (AgPF 6 ) or silver (I) trifluoromethanesulfonate (AgOTf), can be dissolved in ionic liquids, for example 1- butyl-3-methyl-imidazolium tetrafluoroborate (BMIM-BF 4 ), 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIM-PF 6 ), 1-butyl-3-methyl-imidazolium trifluoromethanesulfonate (BMIM-OTf) or butyl-trimethyl-ammonium-bis ( trifluoromethylsulfonyl) imide (Ni, i, ⁇ 4 -NTf 2 ), dissolve and reduce by hydrogen to silver nanoparticles.
  • ionic liquids for example 1- butyl-3-methyl-imidazolium t
  • the acid formed during the reduction from hydrogen and the anion of the salt used for example tetrafluoroboric acid (HBF 4 ), hexafluorophosphoric acid (HPF 6 ), trifluoromethanesulfonic acid (TfOH) or bis (trifluoromethylsulfonyl) imide (HNTf 2 ), not by an added proton scavenger - preferably bound to the ionic liquid used nitrogen base - bound, the uniform particle formation is inhibited because the stabilizing core-shell structure of nanoparticles and ionic liquid is disturbed. There is an agglomeration of the formed nanoparticles, and a very broad size distribution results, s.
  • FIG. 1 tetrafluoroboric acid
  • HPF 6 hexafluorophosphoric acid
  • TfOH trifluoromethanesulfonic acid
  • HNTf 2 bis (trifluoromethylsulfonyl) imide
  • FIG. 2 TEM image of Ag nanoparticles prepared in BMIM-BF 4 from AgBF 4 with addition of 1-butylimidazole as proton scavenger
  • FIG. 4 Plot of the anion size (molar volumes) of the ionic liquid used against the particle size of the resulting Ag nanoparticles.
  • proton scavengers are those materials which form cations by the uptake of protons whose molar volume corresponds approximately to the size of the cations of the ionic liquid used.
  • the ionic liquid underlying nitrogen base used is particularly preferred. This can be released again after the reaction by neutralization, for example with sodium hydroxide, separated from the ionic liquid and reused, s. Figur.3.
  • the stabilization of nanoparticles in ionic liquids takes place through the formation of alternating layers
  • the thickness of the shell is dependent on the molar volume of the ions of the ionic liquid used. It is generally believed that the first ionic layer directly surrounding the nanoparticles is composed of anions. It follows that the anions of the ionic liquid have the greatest influence on the size and stability of the ionic liquid
  • Nanoparticles should have.
  • the essential advantages of the present invention are therefore that by using ionic liquids as the reaction medium metal nanoparticles can be produced in a new economical, energy-efficient and environmentally friendly process without the use of toxic, flammable, and volatile solvents. Furthermore, no separate surface-active substances for stabilizing the nanoparticles are needed, which occupy the usable surface of the resulting nanoparticles and in particular reduce their catalytic activity. Thus, the mere presence of the ionic liquid and the associated strong electrostatic stabilization can be used to produce "naked" metal nanoparticles in a gentle manner.
  • Reducing agent also makes it possible to produce nanoparticles in high purity. Furthermore, the process described here is in principle also suitable for the production and isolation of metal nanoparticles on a larger scale.
  • the initial dispersions of nanoparticles in ionic liquids can also be used directly in catalytic processes. Another important advantage of the present invention results from the controllability of the particle size and size distribution by suitable choice of the ionic liquid used, which in turn results in the possibility of controllability of the catalytic activity of the metal nanoparticles.
  • nanoparticles of all metals which form salts soluble in ionic liquids and whose salts can be reduced with hydrogen to the corresponding metal.
  • nanoparticles of the transition metals ie metals of groups 3 to 12 of the periodic table, can preferably be prepared by the process described here.
  • Particularly preferred metals are silver (Ag), copper (Cu), gold (Au) 1 nickel (Ni), palladium (Pd), platinum (Pt), Cobalt (Co), rhodium (Rh), iridium (Ir), iron (Fe), ruthenium (Ru), osmium (Os), zinc (Zn), cadmium (Cd), manganese (Mn), rhenium (Re), Chromium (Cr), molybdenum (Mo), tungsten (W), vanadium, niobium (Nb), tantalum (Ta), 1 titanium (Ti), zirconium (Zr), hafnium (Hf), scandium (Sc) and yttrium (Y ).
  • Ionic liquids in the sense of the present invention are preferably salts of the general formula ## STR5 ## which are composed of cations [Q n + ] and anions [Z " 1" ]
  • radicals R 1 to R 13 independently of one another represent hydrogen or a monovalent carbon-containing organic, saturated or unsaturated, linear or branched, acyclic or cyclic, aliphatic, aromatic or araliphatic, unsubstituted, partially or completely halogenated or by 1 to 5 hetero atoms or functional Groups are interrupted or substituted radicals having from 1 to 30 carbon atoms;
  • two adjacent radicals from the series R1 to R13 together also represent a divalent carbon-containing organic, saturated or unsaturated, linear or branched, acyclic or cyclic, aliphatic, aromatic or araliphatic, unsubstituted, partially or completely halogenated or by 1 to 5 heteroatoms or functional groups are interrupted or substituted radicals having 1 to 30 carbon atoms.
  • Particularly preferred heteroatoms which can occur in the radicals R 1 to R 13 are oxygen, sulfur, selenium, tellurium, nitrogen, phosphorus and silicon.
  • the radicals R 1 to R 13 can be bonded either via a carbon atom or a heteroatom.
  • Preferred functional groups which can occur in the radicals R 1 to R 13 are, in particular, hydroxyl, carbonyl, carboxyl, carboxamido, amino and cyano groups.
  • halogens its called fluorine, chlorine, bromine and iodine.
  • Heptylimidazolium 1-octylimidazolium, 1-nonylimidazolium, 1-decylimidazolium, 1-undecylimidazolium, 1-dodecylimidazolium, 1-tridecylimidazolium, 1-tetradecylimidazolium, 1-pentadecyl imidazolium, 1-hexadecyl-imidazolium, 1-octadecyl-imidazolium and 1-eicosyl-imidazolium; • the 1,2-dialkylated protic imidazolium cations:
  • Particularly preferred cations of group (V) are the 1-alkylated pyridinium cations:
  • Decyl-3,5-dimethyl-pyridinium 1-dodecyl-3,5-dimethyl-pyridinium, 3,5-dimethyl-1-tetradecyl-pyridinium, 1-hexadecyl-3,5-dimethyl-pyridinium and 3,5- Dimethyl 1-octadecyl-pyridinium.
  • guanidinium 1,1,3,3-tetramethyl-guanidinium, 1,1,3,3,4-pentamethyl-guanidinium, 4-ethyl-1,1,3,3-tetramethyl-guanidinium , 1,1,3,3-Tetramethyl-4-propyl-guanidinium, 4-isopropyl-1,1,3,3-tetramethyl-guanidinium, 4-butyl-1,1,3,3-tetramethyl-guanidinium, 1 , 1,3,3,4,4-hexamethyl-guanidinium, 4-ethyl-1,1,3,3,4-pentamethyl-guanidinium, 1,1,3,3,4-pentamethyl-4-propyl- guanidinium, 4-isopropyl-1, 1, 3,3,4-pentamethyl-guanidinium, 4-butyl-1,1,3,3,4-pentamethyl-guanidinium, 1,1,3,3-tetraethyl-4,
  • Particularly preferred cations of the group (XI) are: 1,2-dimethylpyrazolium, 1,2,4-trimethylpyrozolium, 1,2-diethylpyrazolium and 1,2,4-triethylpyrazolium.
  • anions all anions are suitable in principle, which can lead to an ionic liquid in the context of the present invention in conjunction with cations according to the invention.
  • Decachlorotrialuminate Al 3 Cl ⁇ f
  • tetrabromoaluminate AIBr 4 "
  • hexafluorosilicate SiF 6 2"
  • hexacyanoferrate III
  • radicals R A to R D independently of one another represent a monovalent, carbon-containing and carbon-bonded, saturated or unsaturated, linear or branched, acyclic or cyclic, aliphatic, aromatic radical or araliphatic, unsubstituted, partially or completely halogenated or interrupted by 1 to 5 heteroatoms or functional groups radical or having 1 to 30 carbon atoms;
  • Very particularly preferred anions of the ionic liquids in the context of the present invention are tetrafluoroborate (BF 4 " ), hexafluorophosphate (PF 6 " ),
  • Trifluoromethanesulfonate (OTf “ ), 4-toluenesulfonate (OTs “ ), acetate (CH 3 CO 2 " ),
  • Trifluoroacetate CF 3 CO 2 "
  • bis (trifluoromethylsulfonyl) imide NTf 2 "
  • nitrate NO 3 "
  • Dihydrogen phosphate H 2 PO 4 "
  • dimethyl phosphate [(MeO) 2 PO 2 " ]
  • diethyl phosphate [(EtO) 2 PO 2 -]
  • hydrogen sulfate H 2 PO 4 "
  • methylsulfate MeOSO 3
  • ethyl sulfate EtOSO 3
  • Suitable metal salts in the context of the present invention are salts formed from cations and anions, in which the cation and / or the anion contains one or more metal atoms.
  • the metal atoms in the cation can be free, that is, simple metal cations of any value, or by any desired
  • the metal atoms in the anion must be complexed by any number of neutral and / or anionic, organic or inorganic ligands of any denticity.
  • the stainless steel autoclave is evacuated again and kept for 1 hour at 100 0 C under high vacuum at about 0.1 mbar to excess 1-butyl-imidazole from the Remove reaction mixture.
  • the characterization of the silver nanoparticles formed is done in situ by TEM and shows that the reaction is complete.
  • the mean particle size is 2.80 ⁇ 0.78 nm with a minimum size of 1.25 nm and a maximum size of 4.68 nm.
  • the stainless steel autoclave is evacuated again and kept for 1 hour at 100 0 C in a high vacuum at about 0.1 mbar to remove excess 1-butyl-imidazole from the reaction mixture.
  • the characterization of the silver nanoparticles formed is done in situ by TEM and shows that the reaction is complete.
  • the mean particle size is 4.36 ⁇ 1, 25 nm with a minimum size of 2.04 nm and a maximum size of 9.75 nm. ⁇

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

L'invention concerne un procédé de production par voie de réduction, et de stabilisation, de nanoparticules métalliques fonctionnelles, dans des conditions modérées, dans des liquides ioniques provenant de sources salines solubles correspondantes, avec utilisation d'hydrogène élémentaire en présence d'un capteur de protons, le procédé permettant, par un choix approprié du liquide ionique utilisé, d'ajuster la granulométrie des particules ainsi que leur répartition de taille.
PCT/EP2008/006768 2007-08-17 2008-08-18 Procédé de production et de stabilisation de nanoparticules métalliques fonctionnelles dans des liquides ioniques WO2009024312A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007038879A DE102007038879A1 (de) 2007-08-17 2007-08-17 Verfahren zur Herstellung und Stabilisierung von funktionellen Metallnanopartikeln in ionischen Flüssigkeiten
DE102007038879.0 2007-08-17

Publications (2)

Publication Number Publication Date
WO2009024312A2 true WO2009024312A2 (fr) 2009-02-26
WO2009024312A3 WO2009024312A3 (fr) 2009-12-23

Family

ID=40279507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/006768 WO2009024312A2 (fr) 2007-08-17 2008-08-18 Procédé de production et de stabilisation de nanoparticules métalliques fonctionnelles dans des liquides ioniques

Country Status (2)

Country Link
DE (1) DE102007038879A1 (fr)
WO (1) WO2009024312A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013852A2 (fr) 2010-07-30 2012-02-02 Universidade De Santiago De Compostela Procédé pour la préparation de nanoparticules dans des liquides ioniques
CN103691966A (zh) * 2014-01-06 2014-04-02 中南大学 一种基于聚(2-丙烯酰胺基-2-甲基丙磺酸)制备纳米银粒子的方法
WO2014096732A1 (fr) 2012-12-21 2014-06-26 Centre National De La Recherche Scientifique (Cnrs) NANO-CATALYSEURS METALLIQUES DANS LE GLYCEROL et APPLICATIONS EN SYNTHESE ORGANIQUE
CN109490522A (zh) * 2018-12-04 2019-03-19 北京倍肯恒业科技发展股份有限公司 一种纳米胶体金及其制备方法与应用
CN111203545A (zh) * 2020-01-16 2020-05-29 河南科技大学 一种离子液体调控的菊花状Pd纳米粒子的制备方法
CN111922360A (zh) * 2020-10-19 2020-11-13 西安宏星电子浆料科技股份有限公司 一种纳米铜粉的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032572A2 (fr) * 1998-12-04 2000-06-08 Symyx Technologies Decouverte et essais combinatoires de liquides ioniques
WO2007001355A2 (fr) * 2004-09-08 2007-01-04 Rensselaer Polytechnic Institute Amelioration de la stabilite des proteines immobilisees sur des nanoparticules
WO2008145835A2 (fr) * 2007-04-26 2008-12-04 I.F.P. Procede d'hydrogenation d'une charge aromatique utilisant comme catalyseur une suspension de nanoparticules metalliques contenant un ligand azote dans un liquide ionique

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108893C5 (de) 2001-02-23 2011-01-13 Rolf Prof. Dr. Hempelmann Verfahren zur Herstellung von Metallen und deren Legierungen
US20070101824A1 (en) * 2005-06-10 2007-05-10 Board Of Trustees Of Michigan State University Method for producing compositions of nanoparticles on solid surfaces

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032572A2 (fr) * 1998-12-04 2000-06-08 Symyx Technologies Decouverte et essais combinatoires de liquides ioniques
WO2007001355A2 (fr) * 2004-09-08 2007-01-04 Rensselaer Polytechnic Institute Amelioration de la stabilite des proteines immobilisees sur des nanoparticules
WO2008145835A2 (fr) * 2007-04-26 2008-12-04 I.F.P. Procede d'hydrogenation d'une charge aromatique utilisant comme catalyseur une suspension de nanoparticules metalliques contenant un ligand azote dans un liquide ionique

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FONSECA ET AL: "Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids" JOURNAL OF COLLOID AND INTERFACE SCIENCE, ACADEMIC PRESS, NEW YORK, NY, US, Bd. 301, Nr. 1, 1. September 2006 (2006-09-01), Seiten 193-204, XP005569349 ISSN: 0021-9797 *
FONSECA G S ET AL: "The use of imidazolium ionic liquids for the formation and stabilization of Ir DEG and Rh DEG nanoparticles: efficient catalysts for the hydrogenation of arenes" CHEMISTRY - A EUROPEAN JOURNAL, WILEY - V C H VERLAG GMBH & CO. KGAA, WEINHEIM, DE, Bd. 9, 1. Januar 2003 (2003-01-01), Seiten 3263-3269, XP002462143 ISSN: 0947-6539 in der Anmeldung erwähnt *
REDEL E., E.A.: "First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume" INORGANIC CHEMISTRY, Bd. 47, Nr. 1, 12. August 2007 (2007-08-12), Seiten 14-16, XP002552684 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013852A2 (fr) 2010-07-30 2012-02-02 Universidade De Santiago De Compostela Procédé pour la préparation de nanoparticules dans des liquides ioniques
WO2014096732A1 (fr) 2012-12-21 2014-06-26 Centre National De La Recherche Scientifique (Cnrs) NANO-CATALYSEURS METALLIQUES DANS LE GLYCEROL et APPLICATIONS EN SYNTHESE ORGANIQUE
CN103691966A (zh) * 2014-01-06 2014-04-02 中南大学 一种基于聚(2-丙烯酰胺基-2-甲基丙磺酸)制备纳米银粒子的方法
CN103691966B (zh) * 2014-01-06 2015-07-29 中南大学 一种基于聚(2-丙烯酰胺基-2-甲基丙磺酸)制备纳米银粒子的方法
CN109490522A (zh) * 2018-12-04 2019-03-19 北京倍肯恒业科技发展股份有限公司 一种纳米胶体金及其制备方法与应用
CN109490522B (zh) * 2018-12-04 2022-03-11 北京倍肯恒业科技发展股份有限公司 一种纳米胶体金及其制备方法与应用
CN111203545A (zh) * 2020-01-16 2020-05-29 河南科技大学 一种离子液体调控的菊花状Pd纳米粒子的制备方法
CN111203545B (zh) * 2020-01-16 2022-09-13 河南科技大学 一种离子液体调控的菊花状Pd纳米粒子的制备方法
CN111922360A (zh) * 2020-10-19 2020-11-13 西安宏星电子浆料科技股份有限公司 一种纳米铜粉的制备方法

Also Published As

Publication number Publication date
WO2009024312A3 (fr) 2009-12-23
DE102007038879A1 (de) 2009-02-19

Similar Documents

Publication Publication Date Title
EP2519471B1 (fr) Synthèse de nanoparticules au moyen de liquides ioniques
EP3177396B1 (fr) Procédé servant à fabriquer un adsorbant à partir de structures organo-métalliques (mof)
EP2295398B1 (fr) Procédé pour produire des liquides ioniques, des solides ioniques ou leurs melanges
WO2009024312A2 (fr) Procédé de production et de stabilisation de nanoparticules métalliques fonctionnelles dans des liquides ioniques
EP1182196B1 (fr) Préparation sans halogénures de fluides ioniques
EP1360344B1 (fr) Production electrochimique d'oxydes (mixtes) metalliques nanometriques
EP1711472A1 (fr) Procede de fabrication de liquides ioniques
DE19840842A1 (de) Elektrochemische Herstellung amorpher oder kristalliner Metalloxide mit Teilchengrößen im Nanometerbereich
EP1137625A1 (fr) Procedes pour la production ou la purification d'hydroxydes d'onium par electrodialyse
EP3732315A2 (fr) Procédé de fabrication d'un matériau semi-conducteur ou conducteur fonctionnalisé et son utilisation
WO2006053362A2 (fr) Procede pour le depot de couches a partir de liquides ioniques
DE102010030293A1 (de) Elektrode für die elektrolytische Chlorgewinnung
WO2012107032A1 (fr) Procédé de préparation d'un catalyseur contenant au moins un métal de transition sur un support de carbone poreux modifié à l'azote
DE19623062C2 (de) Verfahren zur Herstellung salzarmer Kieselsoldispersionen in niedrigsiedenden Alkoholen
EP1495036B1 (fr) Procede pour produire des monohydro-perfluoroalcanes, des bis(perfluoroalkyle)phosphinates et des perfluoralkyle phosphonates
DE102007045878B4 (de) Verfahren zur Herstellung von metallhaltigen Nanopartikeln
WO2005023422A2 (fr) Preparation et utilisation de liquides ioniques comprenant des anions thiocyanato
WO2016059102A1 (fr) Production de sulfate de vanadyle à partir de pentoxyde de vanadyle
WO2004054991A1 (fr) Liquides ioniques contenant des anions [n(cf3)2]-
DE102008029248B4 (de) Verfahren zur Herstellung von anorganischen fullerenartigen Nanostrukturen aus Metalldisulfiden, danach hergestellte Nanostrukturen und ihre Verwendung
DE102011007559A1 (de) Verfahren zur Herstellung von Elektrolyten für die Aluminiumabscheidung
EP3081529A1 (fr) Procede de liberation d'hydrogene a partir d'un additif d'ammoniac et borane et utilisation de catalyseurs depourvus de metal de transition destines a la liberation d'hydrogene a partir d'un additif d'ammoniac et de borane
EP2742028B1 (fr) Procédé d'épuration de liquides ioniques
DE102018211178A1 (de) Verfahren zur Dotierung von H2081Ti12O25 mit Metallionen und Verwendung des dotierten H2Ti12O25
DE102011007566A1 (de) Verfahren zur Herstellung von Zusammensetzungen, welche Aluminiumtrihalogenide enthalten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08785599

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 08785599

Country of ref document: EP

Kind code of ref document: A2