WO2009024312A2 - Method for the production and stabilization of functional metal nanoparticles in ionic liquids - Google Patents

Method for the production and stabilization of functional metal nanoparticles in ionic liquids Download PDF

Info

Publication number
WO2009024312A2
WO2009024312A2 PCT/EP2008/006768 EP2008006768W WO2009024312A2 WO 2009024312 A2 WO2009024312 A2 WO 2009024312A2 EP 2008006768 W EP2008006768 W EP 2008006768W WO 2009024312 A2 WO2009024312 A2 WO 2009024312A2
Authority
WO
WIPO (PCT)
Prior art keywords
imidazolium
methyl
ammonium
ionic liquid
nanoparticles
Prior art date
Application number
PCT/EP2008/006768
Other languages
German (de)
French (fr)
Other versions
WO2009024312A3 (en
Inventor
Christoph Janiak
Engelbert Redel
Marco Klingele
Thomas Schubert
Tom Beyersdorff
Original Assignee
Albert-Ludwigs-Universität Freiburg
Iolitec Ionic Liquids Technologies Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albert-Ludwigs-Universität Freiburg, Iolitec Ionic Liquids Technologies Gmbh & Co. Kg filed Critical Albert-Ludwigs-Universität Freiburg
Publication of WO2009024312A2 publication Critical patent/WO2009024312A2/en
Publication of WO2009024312A3 publication Critical patent/WO2009024312A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0282Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aliphatic ring, e.g. morpholinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/17Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • C02F1/505Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment by oligodynamic treatment

Definitions

  • the present invention describes a process for the reductive production and stabilization of functional metal nanoparticles in ionic liquids using elemental hydrogen, which makes it possible to adjust the particle size and the size distribution by suitable choice of the ionic liquid used.
  • Nanomaterials ie materials with a particle size in the nanometer range, represent a new class of materials, which is of increasing importance for more and more technical areas.
  • nanomaterials are of inorganic nature, e.g. Metals, metal oxides, metal phosphates, metal alloys or non-metals, but there are also organic nanomaterials.
  • nanoparticles are characterized by the fact that they have a huge surface area relative to their volume, which means that they have far more atoms on their surface compared to materials with larger particle sizes.
  • the special properties of nanomaterials are founded, the old known materials improved or completely new properties and thus can open up new applications [G. Schmid, Nanoparticles: From Theory to Application, Wiley-VCH, Weinheim, 2003, pages 1-434].
  • Nanoscale metal powders can be sintered without pressure and at lower temperatures. The resulting materials are characterized by greater compactness and improved mechanical properties. Nanoscale silver gives workpieces antimicrobial properties when applied in the form of a coating or added as a dopant to the material. This property is used in particular Area of sanitary facilities, used in the food and hygiene sector, for example, in coating dispensers for hospitals, housing of medical equipment or in refrigerators.
  • nanomaterials can often be used as efficient catalysts for a wide variety of processes [D. Astruc, Nanoparticles and Catalysis, Wiley-VCH, Weinheim, 2007, pp. 1-634].
  • An industrially very important oxidation process is, for example, the conversion of olefins into epoxides [K. Weissermel, HJ Arpe, Industrial Organic Chemistry, 4th Edition, Wiley-VCH, Weinheim, 2003, pp. 145-192 and 267-312; BK Hodnett, Heterogeneous Catalytic Oxidation, Wiley-VCH, Weinheim, 2000, pp. 160-188].
  • Oxidative petroleum products, such as acrylates are important monomers or intermediates for the chemical and pharmaceutical industries.
  • Catalytically active, stabilized metal nanoparticles, in particular silver manoparticles can also serve valuable purposes for their production and lead to more efficient processes.
  • nanoparticles Another production method for nanoparticles is the milling process.
  • the comminution of microscale materials in special nanomills Since grinding at the nanometer level is very energy-intensive, this method has proved uneconomical for large-scale industry.
  • contamination of the nanopowders may occur due to the grinding materials used.
  • reaction media are often used toxic, flammable and volatile organic solvents, which are usually difficult or impossible to reuse due to the entry of the reagents.
  • the unavoidable use of surfactants for stabilization also occupies much of the surface of the nanoparticles of stabilizer molecules, greatly reducing the useful surface area of the particles for further use as a catalyst or for subsequent functionalization, and the metal nanoparticles prepared in this manner for these purposes often unusable.
  • the findings from the metal industry on the electrorefining of metals are used here.
  • electrochemical processes are characterized in particular in comparison to the steam condensation process by much higher efficiency.
  • a further disadvantage of the electrochemical processes is that they hitherto only permit the production of smaller amounts of nanopowders.
  • organic solvents and surface-blocking stabilizers are also frequently used here.
  • the aim of the present invention is therefore to provide a process for the preparation and stabilization of functional metal nanoparticles that avoids the disadvantages of the above-mentioned processes by the use of ionic liquids as the reaction medium and elemental hydrogen as the reducing agent. That the generation of nanocrystalline deposits on a substrate is advantageously possible by electrochemical reduction from ionic liquids has already been shown elsewhere [M. Bukowski, F. Endres, R. Hempelmann, H. Natter, Patent Publication DE10108893, 2002].
  • the possibility of producing catalytically active iridium and rhodium nanoparticles by the reduction of corresponding metal salts with hydrogen in ionic liquids is known [G. S. Fonseca, A.P.
  • Ionic liquids are defined liquid compounds exclusively composed of ions, which differ from classic molten salts, especially due to the unusually low temperatures (preferably ⁇ 100 0 C) differ, in which they are present in the liquid state of matter [T. Welton, Chem. Rev. 1999, 99, 2071-2083; P. Wasserscheid, W. Keim, Angew. Chem. 2000, 112, 3926-3945; P. Wasserscheid, T. Welton, Lonic Liquids in Synthesis, Wiley-VCH, Weinheim, 2003, pp. 1-364].
  • ionic liquids have negligible vapor pressure, high thermal, chemical and electrochemical stability, and have versatile miscibility with water and organic solvents, which can be used to advantage in productions or product recovery or catalyst recovery.
  • the solution is transferred to the autoclave and dried under high vacuum. Thereafter, the autoclave is filled directly with hydrogen and the reaction mixture is heated. After cooling, the nanoparticles formed can be separated off from the ionic liquid by centrifuging, so that the ionic liquid, if appropriate after an intermediate purification step, can be reused for further reactions. Alternatively, the obtained nanoparticle dispersion can also be used directly. The process will be explained below using the example of the preparation of silver nanoparticles.
  • Some silver (I) salts for example silver (I) tetrafluoroborate (AgBF 4 ), silver (I) hexafluorophosphate (AgPF 6 ) or silver (I) trifluoromethanesulfonate (AgOTf), can be dissolved in ionic liquids, for example 1- butyl-3-methyl-imidazolium tetrafluoroborate (BMIM-BF 4 ), 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIM-PF 6 ), 1-butyl-3-methyl-imidazolium trifluoromethanesulfonate (BMIM-OTf) or butyl-trimethyl-ammonium-bis ( trifluoromethylsulfonyl) imide (Ni, i, ⁇ 4 -NTf 2 ), dissolve and reduce by hydrogen to silver nanoparticles.
  • ionic liquids for example 1- butyl-3-methyl-imidazolium t
  • the acid formed during the reduction from hydrogen and the anion of the salt used for example tetrafluoroboric acid (HBF 4 ), hexafluorophosphoric acid (HPF 6 ), trifluoromethanesulfonic acid (TfOH) or bis (trifluoromethylsulfonyl) imide (HNTf 2 ), not by an added proton scavenger - preferably bound to the ionic liquid used nitrogen base - bound, the uniform particle formation is inhibited because the stabilizing core-shell structure of nanoparticles and ionic liquid is disturbed. There is an agglomeration of the formed nanoparticles, and a very broad size distribution results, s.
  • FIG. 1 tetrafluoroboric acid
  • HPF 6 hexafluorophosphoric acid
  • TfOH trifluoromethanesulfonic acid
  • HNTf 2 bis (trifluoromethylsulfonyl) imide
  • FIG. 2 TEM image of Ag nanoparticles prepared in BMIM-BF 4 from AgBF 4 with addition of 1-butylimidazole as proton scavenger
  • FIG. 4 Plot of the anion size (molar volumes) of the ionic liquid used against the particle size of the resulting Ag nanoparticles.
  • proton scavengers are those materials which form cations by the uptake of protons whose molar volume corresponds approximately to the size of the cations of the ionic liquid used.
  • the ionic liquid underlying nitrogen base used is particularly preferred. This can be released again after the reaction by neutralization, for example with sodium hydroxide, separated from the ionic liquid and reused, s. Figur.3.
  • the stabilization of nanoparticles in ionic liquids takes place through the formation of alternating layers
  • the thickness of the shell is dependent on the molar volume of the ions of the ionic liquid used. It is generally believed that the first ionic layer directly surrounding the nanoparticles is composed of anions. It follows that the anions of the ionic liquid have the greatest influence on the size and stability of the ionic liquid
  • Nanoparticles should have.
  • the essential advantages of the present invention are therefore that by using ionic liquids as the reaction medium metal nanoparticles can be produced in a new economical, energy-efficient and environmentally friendly process without the use of toxic, flammable, and volatile solvents. Furthermore, no separate surface-active substances for stabilizing the nanoparticles are needed, which occupy the usable surface of the resulting nanoparticles and in particular reduce their catalytic activity. Thus, the mere presence of the ionic liquid and the associated strong electrostatic stabilization can be used to produce "naked" metal nanoparticles in a gentle manner.
  • Reducing agent also makes it possible to produce nanoparticles in high purity. Furthermore, the process described here is in principle also suitable for the production and isolation of metal nanoparticles on a larger scale.
  • the initial dispersions of nanoparticles in ionic liquids can also be used directly in catalytic processes. Another important advantage of the present invention results from the controllability of the particle size and size distribution by suitable choice of the ionic liquid used, which in turn results in the possibility of controllability of the catalytic activity of the metal nanoparticles.
  • nanoparticles of all metals which form salts soluble in ionic liquids and whose salts can be reduced with hydrogen to the corresponding metal.
  • nanoparticles of the transition metals ie metals of groups 3 to 12 of the periodic table, can preferably be prepared by the process described here.
  • Particularly preferred metals are silver (Ag), copper (Cu), gold (Au) 1 nickel (Ni), palladium (Pd), platinum (Pt), Cobalt (Co), rhodium (Rh), iridium (Ir), iron (Fe), ruthenium (Ru), osmium (Os), zinc (Zn), cadmium (Cd), manganese (Mn), rhenium (Re), Chromium (Cr), molybdenum (Mo), tungsten (W), vanadium, niobium (Nb), tantalum (Ta), 1 titanium (Ti), zirconium (Zr), hafnium (Hf), scandium (Sc) and yttrium (Y ).
  • Ionic liquids in the sense of the present invention are preferably salts of the general formula ## STR5 ## which are composed of cations [Q n + ] and anions [Z " 1" ]
  • radicals R 1 to R 13 independently of one another represent hydrogen or a monovalent carbon-containing organic, saturated or unsaturated, linear or branched, acyclic or cyclic, aliphatic, aromatic or araliphatic, unsubstituted, partially or completely halogenated or by 1 to 5 hetero atoms or functional Groups are interrupted or substituted radicals having from 1 to 30 carbon atoms;
  • two adjacent radicals from the series R1 to R13 together also represent a divalent carbon-containing organic, saturated or unsaturated, linear or branched, acyclic or cyclic, aliphatic, aromatic or araliphatic, unsubstituted, partially or completely halogenated or by 1 to 5 heteroatoms or functional groups are interrupted or substituted radicals having 1 to 30 carbon atoms.
  • Particularly preferred heteroatoms which can occur in the radicals R 1 to R 13 are oxygen, sulfur, selenium, tellurium, nitrogen, phosphorus and silicon.
  • the radicals R 1 to R 13 can be bonded either via a carbon atom or a heteroatom.
  • Preferred functional groups which can occur in the radicals R 1 to R 13 are, in particular, hydroxyl, carbonyl, carboxyl, carboxamido, amino and cyano groups.
  • halogens its called fluorine, chlorine, bromine and iodine.
  • Heptylimidazolium 1-octylimidazolium, 1-nonylimidazolium, 1-decylimidazolium, 1-undecylimidazolium, 1-dodecylimidazolium, 1-tridecylimidazolium, 1-tetradecylimidazolium, 1-pentadecyl imidazolium, 1-hexadecyl-imidazolium, 1-octadecyl-imidazolium and 1-eicosyl-imidazolium; • the 1,2-dialkylated protic imidazolium cations:
  • Particularly preferred cations of group (V) are the 1-alkylated pyridinium cations:
  • Decyl-3,5-dimethyl-pyridinium 1-dodecyl-3,5-dimethyl-pyridinium, 3,5-dimethyl-1-tetradecyl-pyridinium, 1-hexadecyl-3,5-dimethyl-pyridinium and 3,5- Dimethyl 1-octadecyl-pyridinium.
  • guanidinium 1,1,3,3-tetramethyl-guanidinium, 1,1,3,3,4-pentamethyl-guanidinium, 4-ethyl-1,1,3,3-tetramethyl-guanidinium , 1,1,3,3-Tetramethyl-4-propyl-guanidinium, 4-isopropyl-1,1,3,3-tetramethyl-guanidinium, 4-butyl-1,1,3,3-tetramethyl-guanidinium, 1 , 1,3,3,4,4-hexamethyl-guanidinium, 4-ethyl-1,1,3,3,4-pentamethyl-guanidinium, 1,1,3,3,4-pentamethyl-4-propyl- guanidinium, 4-isopropyl-1, 1, 3,3,4-pentamethyl-guanidinium, 4-butyl-1,1,3,3,4-pentamethyl-guanidinium, 1,1,3,3-tetraethyl-4,
  • Particularly preferred cations of the group (XI) are: 1,2-dimethylpyrazolium, 1,2,4-trimethylpyrozolium, 1,2-diethylpyrazolium and 1,2,4-triethylpyrazolium.
  • anions all anions are suitable in principle, which can lead to an ionic liquid in the context of the present invention in conjunction with cations according to the invention.
  • Decachlorotrialuminate Al 3 Cl ⁇ f
  • tetrabromoaluminate AIBr 4 "
  • hexafluorosilicate SiF 6 2"
  • hexacyanoferrate III
  • radicals R A to R D independently of one another represent a monovalent, carbon-containing and carbon-bonded, saturated or unsaturated, linear or branched, acyclic or cyclic, aliphatic, aromatic radical or araliphatic, unsubstituted, partially or completely halogenated or interrupted by 1 to 5 heteroatoms or functional groups radical or having 1 to 30 carbon atoms;
  • Very particularly preferred anions of the ionic liquids in the context of the present invention are tetrafluoroborate (BF 4 " ), hexafluorophosphate (PF 6 " ),
  • Trifluoromethanesulfonate (OTf “ ), 4-toluenesulfonate (OTs “ ), acetate (CH 3 CO 2 " ),
  • Trifluoroacetate CF 3 CO 2 "
  • bis (trifluoromethylsulfonyl) imide NTf 2 "
  • nitrate NO 3 "
  • Dihydrogen phosphate H 2 PO 4 "
  • dimethyl phosphate [(MeO) 2 PO 2 " ]
  • diethyl phosphate [(EtO) 2 PO 2 -]
  • hydrogen sulfate H 2 PO 4 "
  • methylsulfate MeOSO 3
  • ethyl sulfate EtOSO 3
  • Suitable metal salts in the context of the present invention are salts formed from cations and anions, in which the cation and / or the anion contains one or more metal atoms.
  • the metal atoms in the cation can be free, that is, simple metal cations of any value, or by any desired
  • the metal atoms in the anion must be complexed by any number of neutral and / or anionic, organic or inorganic ligands of any denticity.
  • the stainless steel autoclave is evacuated again and kept for 1 hour at 100 0 C under high vacuum at about 0.1 mbar to excess 1-butyl-imidazole from the Remove reaction mixture.
  • the characterization of the silver nanoparticles formed is done in situ by TEM and shows that the reaction is complete.
  • the mean particle size is 2.80 ⁇ 0.78 nm with a minimum size of 1.25 nm and a maximum size of 4.68 nm.
  • the stainless steel autoclave is evacuated again and kept for 1 hour at 100 0 C in a high vacuum at about 0.1 mbar to remove excess 1-butyl-imidazole from the reaction mixture.
  • the characterization of the silver nanoparticles formed is done in situ by TEM and shows that the reaction is complete.
  • the mean particle size is 4.36 ⁇ 1, 25 nm with a minimum size of 2.04 nm and a maximum size of 9.75 nm. ⁇

Abstract

The present invention relates to a method for the reductive production and stabilization of functional metal nanoparticles under mild conditions in ionic liquids from the associated soluble salt sources by using elemental hydrogen in the presence of a proton catcher, allowing to adjust the particle size and the size distribution thereof by the appropriate choice of the used ionic liquid.

Description

Verfahren zur Herstellung und Stabilisierung von funktionellen Metallnanopartikeln in ionischen Flüssigkeiten Process for the preparation and stabilization of functional metal nanoparticles in ionic liquids
Die vorliegende Erfindung beschreibt ein Verfahren zur reduktiven Herstellung und Stabilisierung von funktionellen Metallnanopartikeln in ionischen Flüssigkeiten unter Verwendung von elementarem Wasserstoff, das es ermöglicht, durch geeignete Wahl der verwendeten ionischen Flüssigkeit die Partikelgröße und die Größenverteilung einzustellen.The present invention describes a process for the reductive production and stabilization of functional metal nanoparticles in ionic liquids using elemental hydrogen, which makes it possible to adjust the particle size and the size distribution by suitable choice of the ionic liquid used.
Nanomaterialien, also Materialien mit einer Partikelgröße im Nanometerbereich, stellen eine neue Werkstoffklasse dar, die von wachsender Bedeutung für immer mehr technische Bereiche ist. Zumeist sind Nanomaterialien anorganischer Natur, z.B. Metalle, Metalloxide, Metallphosphate, Metalllegierungen oder Nichtmetalle, es gibt jedoch auch organische Nanomaterialien. Nanopartikel zeichnen sich vor allem dadurch aus, dass sie relativ zu ihrem Volumen eine riesige Oberfläche besitzen, bei ihnen also im Vergleich zu Materialien mit größeren Partikelgrößen weit mehr Atome an der Oberfläche liegen. Hierin liegen häufig die besonderen Eigenschaften von Nanomaterialien begründet, die altbekannten Werkstoffen verbesserte oder völlig neue Eigenschaften verleihen und dadurch neue Anwendungsbereiche erschließen können [G. Schmid, Nanoparticles: From Theory to Application, Wiley-VCH, Weinheim, 2003, Seiten 1-434].Nanomaterials, ie materials with a particle size in the nanometer range, represent a new class of materials, which is of increasing importance for more and more technical areas. In most cases, nanomaterials are of inorganic nature, e.g. Metals, metal oxides, metal phosphates, metal alloys or non-metals, but there are also organic nanomaterials. Above all, nanoparticles are characterized by the fact that they have a huge surface area relative to their volume, which means that they have far more atoms on their surface compared to materials with larger particle sizes. Herein often the special properties of nanomaterials are founded, the old known materials improved or completely new properties and thus can open up new applications [G. Schmid, Nanoparticles: From Theory to Application, Wiley-VCH, Weinheim, 2003, pages 1-434].
Metallnanopartikel finden schon heute breite Verwendung in verschiedensten Bereichen der Chemie und der Material Wissenschaften. Als Komponente von Hybridwerkstoffen können sie dem Material neue Eigenschaften verleihen oder bereits vorhandene physikalische oder mechanische Eigenschaften, z.B. die elektrische Leitfähigkeit, Wärmeleitfähigkeit oder Bruchsicherheit, bei gleichzeitiger Gewichtsreduzierung verstärken. Nanoskalige Metallpulver können ohne Druck und bei niedrigeren Temperaturen gesintert werden. Die daraus resultierenden Werkstoffe zeichnen sich durch größere Kompaktheit und verbesserte mechanische Eigenschaften aus. Nanoskaliges Silber verleiht Werkstücken antimikrobielle Eigenschaften, wenn es in Form einer Beschichtung aufgetragen wird oder als Dotierung dem Werkstoff beigemischt ist. Diese Eigenschaft wird insbesondere im Bereich sanitärer Anlagen, im Lebensmittel- und im Hygienebereich ausgenutzt, z.B. in Streichbezügen für Krankenhäuser, Gehäuse von medizinischen Geräten oder in Kühlschränken. Weiterhin können Nanomaterialien häufig als effiziente Katalysatoren für verschiedenste Prozesse eingesetzt werden [D. Astruc, Nanoparticles and Catalysis, Wiley-VCH, Weinheim, 2007, Seiten 1-634]. Ein industriell sehr bedeutsamer Oxidationsprozess ist beispielsweise die Umwandlung von Olefinen in Epoxide [K. Weissermel, H. J. Arpe, Industrial Organic Chemistry, 4. Auflage, Wiley- VCH, Weinheim, 2003, Seiten 145-192 und 267-312; B. K. Hodnett, Heterogeneous Catalytic Oxidation, Wiley-VCH, Weinheim, 2000, Seiten 160-188]. Oxidativ erzeugte Erdölfolgeprodukte, z.B. Acrylate, sind wichtige Monomere bzw. Zwischenstufen für die chemische und pharmazeutische Industrie. Auch zu deren Herstellung können katalytisch aktive, stabilisierte Metallnanopartikel, insbesondere Silbemanopartikel, wertvolle Dienste leisten und zu effizienteren Prozessen führen.Metal nanoparticles are already widely used in various fields of chemistry and materials science. As a component of hybrid materials, they can impart new properties to the material or reinforce existing physical or mechanical properties, eg electrical conductivity, thermal conductivity or resistance to breakage, while at the same time reducing weight. Nanoscale metal powders can be sintered without pressure and at lower temperatures. The resulting materials are characterized by greater compactness and improved mechanical properties. Nanoscale silver gives workpieces antimicrobial properties when applied in the form of a coating or added as a dopant to the material. This property is used in particular Area of sanitary facilities, used in the food and hygiene sector, for example, in coating dispensers for hospitals, housing of medical equipment or in refrigerators. Furthermore, nanomaterials can often be used as efficient catalysts for a wide variety of processes [D. Astruc, Nanoparticles and Catalysis, Wiley-VCH, Weinheim, 2007, pp. 1-634]. An industrially very important oxidation process is, for example, the conversion of olefins into epoxides [K. Weissermel, HJ Arpe, Industrial Organic Chemistry, 4th Edition, Wiley-VCH, Weinheim, 2003, pp. 145-192 and 267-312; BK Hodnett, Heterogeneous Catalytic Oxidation, Wiley-VCH, Weinheim, 2000, pp. 160-188]. Oxidative petroleum products, such as acrylates, are important monomers or intermediates for the chemical and pharmaceutical industries. Catalytically active, stabilized metal nanoparticles, in particular silver manoparticles, can also serve valuable purposes for their production and lead to more efficient processes.
Für die Herstellung von Metallnanopartikeln stehen heute schon mehrere Verfahren zur Verfügung, die nachfolgend kurz erläutert werden [C. N. R. Rao, A. Müller, A. Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications, Wiley-VCH, Weinheim, 2004, Seiten 1-741 ; B. Bhushan, Springer Handbook of Nanotechnology, 2. Auflage, Springer, Berlin, 2007, Seiten 1-1916].Several processes are already available today for the preparation of metal nanoparticles, which are briefly explained below [C. N.R. Rao, A.M., A. Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications, Wiley-VCH, Weinheim, 2004, pp. 1-741; B. Bhushan, Springer Handbook of Nanotechnology, 2nd edition, Springer, Berlin, 2007, pages 1-1916].
(1 ) Dampfkondensationsverfahren:(1) Steam condensation method:
Bei Dampfkondensationsverfahren, z.B. CVD oder PVD, werden die Metalle im Vakuum verdampft und durch anschließendes Abschrecken in nanoskaligen Pulvern abgeschieden. Erfolgt das Abschrecken in einer Schutzgasatmosphäre, werden Metallnanopartikel erhalten. In Gegenwart von Sauerstoff fallen dagegen nanoskalige Metalloxide an, in Gegenwart von Stickstoff können Metallnitridnanopartikel hergestellt werden. In einer Sonderform dieses Verfahrens werden CVD-Vorstufen, also Metallverbindungen, in der Gasphase unter Bildung von Nanopartikeln thermisch zersetzt. Diese Gasphasenmethoden werden relativ selten für die Herstellung von Metallnanopartikeln verwendet. Zu ihren größten Nachteilen zählen der sehr hohe Investitionsbedarf sowie die laufenden Prozesskosten, hervorgerufen durch die Vakuumerzeugung und Metallverdampfung. Darüber hinaus ist die sind die resultierenden Partikelgrößen und Größenverteilungen nur schwer durch die Wahl der Prozessbedingungen kontrollierbar. (2) Mahlverfahren:In steam condensation processes, eg CVD or PVD, the metals are evaporated in vacuo and separated by subsequent quenching in nanoscale powders. If the quenching is carried out in a protective gas atmosphere, metal nanoparticles are obtained. In the presence of oxygen, on the other hand, nanoscale metal oxides are produced; in the presence of nitrogen, metal nitride nanoparticles can be produced. In a special form of this process, CVD precursors, ie metal compounds, are thermally decomposed in the gas phase to form nanoparticles. These gas phase methods are relatively rarely used for the production of metal nanoparticles. Their biggest drawbacks include the very high investment requirements and the ongoing process costs caused by vacuum generation and metal evaporation. In addition, the resulting particle sizes and size distributions are difficult to control by the choice of process conditions. (2) milling method:
Eine weitere Herstellungsmethode für Nanopartikel ist das Mahlverfahren. Hierbei erfolgt die Zerkleinerung von mikroskaligen Materialien in speziellen Nanomühlen. Da das Mahlen auf Nanometer-Niveau sehr energieaufwendig ist, hat sich diese Methode für die Großindustrie als unwirtschaftlich erwiesen. Außerdem kann es zu Verunreinigung der Nanopulver durch die verwendeten Mahlmaterialien kommen.Another production method for nanoparticles is the milling process. Here, the comminution of microscale materials in special nanomills. Since grinding at the nanometer level is very energy-intensive, this method has proved uneconomical for large-scale industry. In addition, contamination of the nanopowders may occur due to the grinding materials used.
(3) Nasschemische Methoden: Durch chemische Methoden, z.B. dem Sol-Gel-Verfahren oder der nasschemischen Reduktion, lassen sich die Form und Größe der Nanopartikel wesentlich besser kontrollieren. Die Wahl eines geeigneten oberflächenaktiven Stoffes (Tensids) ermöglicht die Herstellung vieler Metall- und Metalloxidnanopartikel in Fällungsreaktionen. Der größte Nachteil dieser Verfahren ist, dass sich Verunreinigungen aus der Reaktionslösung, z.B. unumgesetzte Edukte oder Reagenzien, in den Nanopulvern wiederfinden können und diese deshalb aufwendig und unter kontrollierten Bedingungen gereinigt und getrocknet werden müssen. Als Substrate werden aus Kostengründen in den meisten Fällen Metallhalogenide (vorzugsweise Chloride) verwendet; der Preis der wesentlich besser geeigneten Alkoxide führt zu wesentlich höheren Kosten und würde in vielen Fällen den Prozess unwirtschaftlich machen. Darüber hinaus werden als Reaktionsmedien häufig giftige, brennbare und leicht flüchtige organische Lösungsmittel verwendet, die aufgrund des Eintrages der Reagenzien meist nur schwer oder gar nicht wiederverwendbar sind. Durch die unvermeidbare Verwendung von oberflächenaktiven Substanzen zur Stabilisierung wird außerdem ein Großteil der Oberfläche der Nanopartikel von Stabilisatormolekülen belegt, was die nutzbare Oberfläche der Partikel für die weitere Verwendung als Katalysator oder für eine anschließende Funktionalisierung stark reduziert und die auf diese Weise hergestellten Metallnanopartikel für diese Zwecke oftmals unbrauchbar macht.(3) Wet chemical methods: By chemical methods, e.g. the sol-gel process or the wet-chemical reduction, the shape and size of the nanoparticles can be much better controlled. The choice of a suitable surfactant enables the preparation of many metal and metal oxide nanoparticles in precipitation reactions. The biggest disadvantage of these methods is that impurities from the reaction solution, e.g. unreacted starting materials or reagents, can find in the nanopowders and therefore need to be cleaned and dried consuming and under controlled conditions. As substrates, metal halides (preferably chlorides) are used in most cases for cost reasons; The price of the much more suitable alkoxides leads to significantly higher costs and would in many cases make the process uneconomical. In addition, as reaction media are often used toxic, flammable and volatile organic solvents, which are usually difficult or impossible to reuse due to the entry of the reagents. The unavoidable use of surfactants for stabilization also occupies much of the surface of the nanoparticles of stabilizer molecules, greatly reducing the useful surface area of the particles for further use as a catalyst or for subsequent functionalization, and the metal nanoparticles prepared in this manner for these purposes often unusable.
(4) Elektrochemische Verfahren:(4) Electrochemical methods:
Im Vergleich zu den vorgenannten Methoden der Nanopartikelherstellung sind elektrochemische Verfahren wesentlich effizienter und verlässlicher. Auf dem Wege der elektrochemischen Reduktion lassen sich sowohl Metall- als auch - A -Compared to the aforementioned methods of nanoparticle production, electrochemical processes are much more efficient and reliable. By way of electrochemical reduction, both metal and - A -
Metalloxidnanopartikel - letztere durch Oxidation der durch den Reduktionsvorgang gebildeten Metallnanopartikel durch ein zugesetztes Oxidationsmittel oder Luftsauerstoff in situ - aus den jeweiligen Metallen oder Metallsalzen in hohen Reinheiten herstellen. Die aus der Metallindustrie stammenden Erkenntnisse zur Elektroraffination von Metallen kommen hierbei zum Einsatz. Weiterhin zeichnen sich elektrochemische Verfahren vor allem im Vergleich zu den Dampfkondensationsverfahren durch wesentlich höhere Wirtschaftlichkeit aus. Allerdings ist es bei der elektrochemischen Herstellung von Nanopartikeln nach wie vor schwierig, die resultierenden Partikelgrößen und die Größenverteilungen durch geeignete Wahl der Prozessparameter zu kontrollieren. Ein weiterer Nachteil der elektrochemischen Verfahren ist, dass sie bislang nur die Herstellung von kleineren Mengen Nanopulver erlauben. Des weiteren kommen auch hier häufig organische Lösungsmittel und oberflächenblockierende Stabilisatoren zum Einsatz.Metal oxide nanoparticles - the latter by oxidation of the metal nanoparticles formed by the reduction process by an added oxidizing agent or atmospheric oxygen in situ - from the respective metals or metal salts in high purity produce. The findings from the metal industry on the electrorefining of metals are used here. Furthermore, electrochemical processes are characterized in particular in comparison to the steam condensation process by much higher efficiency. However, in the electrochemical production of nanoparticles, it is still difficult to control the resulting particle sizes and size distributions by appropriate choice of process parameters. A further disadvantage of the electrochemical processes is that they hitherto only permit the production of smaller amounts of nanopowders. In addition, organic solvents and surface-blocking stabilizers are also frequently used here.
Ziel der vorliegenden Erfindung ist es daher, ein Verfahren zur Herstellung und Stabilisierung von funktionellen Metallnanopartikeln bereit zu stellen, dass durch die Verwendung von ionischen Flüssigkeiten als Reaktionsmedium und von elementarem Wasserstoff als Reduktionsmittel die Nachteile der oben genannten Verfahren vermeidet. Dass die Erzeugung nanokristalliner Abscheidungen auf einem Substrat vorteilhaft durch elektrochemische Reduktion aus ionische Flüssigkeiten möglich ist, wurde bereits an anderer Stelle gezeigt [M. Bukowski, F. Endres, R. Hempelmann, H. Natter, Offenlegungsschrift DE10108893, 2002]. Die Möglichkeit der Herstellung von katalytisch aktiven Iridium- und Rhodiumnanopartikeln durch die Reduktion entsprechender Metallsalze mit Wasserstoff in ionischen Flüssigkeiten ist bekannt [G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, S. R. Teixeira, J. Dupont, Chem. Eur. J. 2003, 9, 3263-3269]. Die Stabilisierung von Übergangsmetallnanopartikeln durch ionische Flüssigkeiten nach dem Kern-Schale- Prinzip und die daraus resultierende Möglichkeit der Herstellung funktioneller, katalytisch aktiver Metallnanopartikel wurde ebenfalls bereits beschrieben [M. Antonietti, D. Kuang, B. Smarly, Y. Zhou, Angew. Chem. 2004, 116, 5096-5100; D. Astruc, F. Lu, J. R. Aranzaes, Angew. Chem. 2005, 117, 8062-8083].The aim of the present invention is therefore to provide a process for the preparation and stabilization of functional metal nanoparticles that avoids the disadvantages of the above-mentioned processes by the use of ionic liquids as the reaction medium and elemental hydrogen as the reducing agent. That the generation of nanocrystalline deposits on a substrate is advantageously possible by electrochemical reduction from ionic liquids has already been shown elsewhere [M. Bukowski, F. Endres, R. Hempelmann, H. Natter, Patent Publication DE10108893, 2002]. The possibility of producing catalytically active iridium and rhodium nanoparticles by the reduction of corresponding metal salts with hydrogen in ionic liquids is known [G. S. Fonseca, A.P. Umpierre, P.F.P. Fichtner, S.R. Teixeira, J. Dupont, Chem. Eur. J. 2003, 9, 3263-3269]. The stabilization of transition metal nanoparticles by ionic liquids on the core-shell principle and the resulting possibility of producing functional, catalytically active metal nanoparticles has also been described [M. Antonietti, D. Kuang, B. Smarly, Y. Zhou, Angew. Chem. 2004, 116, 5096-5100; D. Astruc, F. Lu, J.R. Aranzaes, Angew. Chem. 2005, 117, 8062-8083].
Ionische Flüssigkeiten sind definierte, ausschließlich aus Ionen aufgebaute flüssige Verbindungen, die sich von klassischen Salzschmelzen vor allem durch die ungewöhnlich niedrigen Temperaturen (bevorzugt <100 0C) unterscheiden, bei denen sie im flüssigen Aggregatzustand vorliegen [T. Welton, Chem. Rev. 1999, 99, 2071-2083; P. Wasserscheid, W. Keim, Angew. Chem. 2000, 112, 3926-3945; P. Wasserscheid, T. Welton, lonic Liquids in Synthesis, Wiley-VCH, Weinheim, 2003, Seiten 1-364]. Darüber hinaus haben ionische Flüssigkeiten einen vernachlässigbar kleinen Dampfdruck, weisen eine hohe thermische, chemische und elektrochemische Stabilität auf und verfügen über vielfältige Mischbarkeit mit Wasser und organischen Lösungsmitteln, was in Produktionsprozessen vorteilhaft zur Produktisolierung oder Katalysatorrückgewinnung ausgenutzt werden kann.Ionic liquids are defined liquid compounds exclusively composed of ions, which differ from classic molten salts, especially due to the unusually low temperatures (preferably <100 0 C) differ, in which they are present in the liquid state of matter [T. Welton, Chem. Rev. 1999, 99, 2071-2083; P. Wasserscheid, W. Keim, Angew. Chem. 2000, 112, 3926-3945; P. Wasserscheid, T. Welton, Lonic Liquids in Synthesis, Wiley-VCH, Weinheim, 2003, pp. 1-364]. In addition, ionic liquids have negligible vapor pressure, high thermal, chemical and electrochemical stability, and have versatile miscibility with water and organic solvents, which can be used to advantage in productions or product recovery or catalyst recovery.
Es wurde nun gefunden, dass sich funktionelle, stabile Metallnanopartikel mit schmaler Größenverteilung vorteilhaft durch Reduktion von geeigneten Metallsalzen mit elementarem Wasserstoff in ionischen Flüssigkeiten, bevorzugt in Gegenwart einer als Protonenfänger dienenden Stickstoffbase, herstellen lassen und dass sich die Größe der im Reduktionsprozess gebildeten Metallnanopartikel durch geeignete Wahl der ionischen Flüssigkeit, d.h. durch die Verwendung von Anionen und Kationen bestimmter Größe, steuern lässt. Die Reduktion wird in einem Edelstahlautoklaven bei erhöhter Temperatur und unter Wasserstoff-Überdruck durchgeführt. Typischerweise wird ein hochreines Metallsalz bei Raumtemperatur in einer geeigneten ionischen Flüssigkeit gelöst. Eine ausreichende Löslichkeit des Metallsalzes in der verwendeten ionischen Flüssigkeit ist Grundvoraussetzung für die Anwendbarkeit des vorliegenden Verfahrens. Anschließend wird die Lösung in den Autoklaven überführt und im Hochvakuum getrocknet. Danach wird der Autoklav direkt mit Wasserstoff befüllt und das Reaktionsgemisch erwärmt. Nach dem Abkühlen können die gebildeten Nanopartikel durch Zentrifugieren von der ionischen Flüssigkeit abgetrennt werden, so dass die ionische Flüssigkeit, ggf. nach einem zwischengeschalteten Reinigungsschritt, für weitere Umsetzungen wieder verwendet werden kann. Alternativ kann die erhaltene Nanopartikel-Dispersion auch direkt verwendet werden. Das Verfahren soll im Folgenden am Beispiel der Herstellung von Silbernanopartikeln erläutert werden.It has now been found that functional, stable metal nanoparticles with a narrow size distribution can advantageously be prepared by reduction of suitable metal salts with elemental hydrogen in ionic liquids, preferably in the presence of a nitrogen base serving as proton scavenger, and that the size of the metal nanoparticles formed in the reduction process can be reduced by suitable Choice of ionic liquid, ie through the use of anions and cations of a certain size. The reduction is carried out in a stainless steel autoclave at elevated temperature and under hydrogen pressure. Typically, a high purity metal salt is dissolved at room temperature in a suitable ionic liquid. A sufficient solubility of the metal salt in the ionic liquid used is a prerequisite for the applicability of the present method. Subsequently, the solution is transferred to the autoclave and dried under high vacuum. Thereafter, the autoclave is filled directly with hydrogen and the reaction mixture is heated. After cooling, the nanoparticles formed can be separated off from the ionic liquid by centrifuging, so that the ionic liquid, if appropriate after an intermediate purification step, can be reused for further reactions. Alternatively, the obtained nanoparticle dispersion can also be used directly. The process will be explained below using the example of the preparation of silver nanoparticles.
Einige Silber(l)-Salze, z.B. Silber(l)-tetrafluoroborat (AgBF4), Silber(l)- hexafluorophosphat (AgPF6) oder Silber(l)-trifluormethansulfonat (AgOTf), lassen sich in ionischen Flüssigkeiten, z.B. 1-Butyl-3-methyl-imidazolium-tetrafluoroborat (BMIM-BF4), 1-Butyl-3-methyl-imidazolium-hexafluorophosphat (BMIM-PF6), 1-Butyl- 3-methyl-imidazolium-trifluormethansulfonat (BMIM-OTf) oder Butyl-trimethyl- ammonium-bis(trifluormethylsulfonyl)imid (Ni,i ,^4-NTf2), lösen und durch Wasserstoff zu Silbernanopartikeln reduzieren. Wird die bei der Reduktion aus Wasserstoff und dem Anion des verwendeten Salzes gebildete Säure, z.B. Tetrafluorborsäure (HBF4), Hexafluorphosphorsäure (HPF6), Trifluormethansulfonsäure (TfOH) oder Bis(trifluormethylsulfonyl)imid (HNTf2), nicht durch einen zugesetzten Protonenfänger - bevorzugt die der verwendeten ionischen Flüssigkeit zugrundeliegende Stickstoffbase - gebunden, wird die einheitliche Partikelbildung gehemmt, da der stabilisierende Kern-Schale-Aufbau aus Nanopartikel und ionischer Flüssigkeit gestört wird. Es kommt zu einer Agglomeration der gebildeten Nanopartikel, und eine sehr breite Größenverteilung resultiert, s. Figur 1.Some silver (I) salts, for example silver (I) tetrafluoroborate (AgBF 4 ), silver (I) hexafluorophosphate (AgPF 6 ) or silver (I) trifluoromethanesulfonate (AgOTf), can be dissolved in ionic liquids, for example 1- butyl-3-methyl-imidazolium tetrafluoroborate (BMIM-BF 4 ), 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIM-PF 6 ), 1-butyl-3-methyl-imidazolium trifluoromethanesulfonate (BMIM-OTf) or butyl-trimethyl-ammonium-bis ( trifluoromethylsulfonyl) imide (Ni, i, ^ 4 -NTf 2 ), dissolve and reduce by hydrogen to silver nanoparticles. If the acid formed during the reduction from hydrogen and the anion of the salt used, for example tetrafluoroboric acid (HBF 4 ), hexafluorophosphoric acid (HPF 6 ), trifluoromethanesulfonic acid (TfOH) or bis (trifluoromethylsulfonyl) imide (HNTf 2 ), not by an added proton scavenger - preferably bound to the ionic liquid used nitrogen base - bound, the uniform particle formation is inhibited because the stabilizing core-shell structure of nanoparticles and ionic liquid is disturbed. There is an agglomeration of the formed nanoparticles, and a very broad size distribution results, s. FIG. 1
Wird die Reduktion hingegen in Gegenwart eines Protonenfängers durchgeführt, wird die Agglomeration der gebildeten Nanopartikel verhindert. Man erhält Dispersionen von feinverteilten, nahezu monodispersen Nanopartikeln in der ionischen Flüssigkeit, s. Figur 2. Es zeigen:On the other hand, if the reduction is carried out in the presence of a proton scavenger, the agglomeration of the nanoparticles formed is prevented. Dispersions of finely divided, almost monodisperse nanoparticles in the ionic liquid are obtained. Figure 2. It shows:
Fig. 1 : TEM-Aufnahme von Ag-Nanopartikeln, hergestellt in BMIM-OTf aus AgOTf ohne Zusatz eines Protonenfängers1: TEM image of Ag nanoparticles prepared in BMIM-OTf from AgOTf without addition of a proton scavenger
Fig. 2: TEM-Aufnahme von Ag-Nanopartikeln, hergestellt in BMIM-BF4 aus AgBF4 unter Zusatz von 1-Butylimidazol als ProtonenfängerFIG. 2: TEM image of Ag nanoparticles prepared in BMIM-BF 4 from AgBF 4 with addition of 1-butylimidazole as proton scavenger
Fig. 3: Übersichtsschema zur Synthese von Metallnanopartikeln durch Reduktion von Metallsalzen mit Wasserstoff in ionischen Flüssigkeiten am Beispiel von Ag-Nanopartikeln, hergestellt aus AgOTf und BMIM-OTf unter Zusatz von 1-Butylimidazol als Protonenfänger.3: Overview scheme for the synthesis of metal nanoparticles by reduction of metal salts with hydrogen in ionic liquids using the example of Ag nanoparticles prepared from AgOTf and BMIM-OTf with addition of 1-butylimidazole as proton scavenger.
Fig. 4: Auftragung der Anionengröße (molare Volumina) der verwendeten ionischen Flüssigkeit gegen die Partikelgröße der erhaltenen Ag-Nanopartikel. AIs Protonenfänger eignen sich besonders solche Materialien, die durch die Aufnahme von Protonen Kationen bilden, deren molares Volumen in etwa der Größe der Kationen der verwendeten ionischen Flüssigkeit entspricht. Besonders bevorzugt kommt hierbei die der ionischen Flüssigkeit zugrundeliegende Stickstoffbase zum Einsatz. Diese kann nach der Umsetzung durch Neutralisation, z.B. mit Natriumhydroxid, wieder freigesetzt, von der ionischen Flüssigkeit abgetrennt und wiederverwendet werden, s. Figur.3.FIG. 4: Plot of the anion size (molar volumes) of the ionic liquid used against the particle size of the resulting Ag nanoparticles. Particularly suitable as proton scavengers are those materials which form cations by the uptake of protons whose molar volume corresponds approximately to the size of the cations of the ionic liquid used. Particularly preferred here is the ionic liquid underlying nitrogen base used. This can be released again after the reaction by neutralization, for example with sodium hydroxide, separated from the ionic liquid and reused, s. Figur.3.
Nach dem Kern-Schale-Prinzip erfolgt die Stabilisierung von Nanopartikel in ionischen Flüssigkeiten durch die Ausbildung von sich abwechselnden Schichten ausAccording to the core-shell principle, the stabilization of nanoparticles in ionic liquids takes place through the formation of alternating layers
Anionen und Kationen um den Kern. Dabei ist die Dicke der Schale abhängig vom molaren Volumen der Ionen der verwendeten ionischen Flüssigkeit. Es wird allgemein angenommenen, dass die erste, die Nanopartikel direkt umgebende lonenschicht aus Anionen aufgebaut ist. Daraus ergibt sich, dass die Anionen der ionischen Flüssigkeit den größten Einfluss auf die Größe und Stabilität derAnions and cations around the nucleus. The thickness of the shell is dependent on the molar volume of the ions of the ionic liquid used. It is generally believed that the first ionic layer directly surrounding the nanoparticles is composed of anions. It follows that the anions of the ionic liquid have the greatest influence on the size and stability of the ionic liquid
Nanopartikel haben sollten.Nanoparticles should have.
Tabelle 1 :Table 1 :
Mittlere PartikelgrößeMean particle size
Verwendetes Molare VolumenUsed molar volume
Ionische Flüssigkeit der Ag-Nanopartikel Ag-SaIz des Anions [nm3] [nm]Ionic liquid of the Ag nanoparticles Ag-SaIz of the anion [nm 3 ] [nm]
BMIM-BF4 AgBF4 0.073 ± 0.009 2,80 ± 0,78BMIM-BF 4 AgBF 4 0.073 ± 0.009 2.80 ± 0.78
BMIM-PF6 AgPF6 0.109 ± 0.008 4,36 ± 1 ,25BMIM-PF 6 AgPF 6 0.109 ± 0.008 4.36 ± 1.25
BMIM-OTf AgOTf 0.131 ± 0.015 7,65 ± 4,50 (*)BMIM-OTf AgOTf 0.131 ± 0.015 7.65 ± 4.50 ( * )
Ni1I1M-NTf2 AgOTf 0.232 ± 0.015 26,08 ± 6,39 (*) = in Abwesenheit eines ProtonenfängersNi 1I1 M-NTf 2 AgOTf 0.232 ± 0.015 26.08 ± 6.39 (*) = in the absence of a proton scavenger
Tatsächlich wurde nun gefunden, dass nach dem vorliegenden Verfahren in Abhängigkeit der Anionen der verwendeten ionischen Flüssigkeiten unterschiedliche Partikelgrößen eingestellt werden können, wobei ein linearer Zusammenhang zwischen dem molaren Volumen des Anions und der mittleren Partikelgröße der erhaltenen Nanopartikel besteht, wie in Tabelle 1 und Figur 4 gezeigt. Tabelle 1 zeigt die Abhängigkeit der Partikelgröße der erhaltenen Ag-Nanopartikel von der Anionengrößen (molare Volumina) der verwendeten ionischen Flüssigkeit. Eine Variation des Kations der verwendeten ionischen Flüssigkeit hat nur einen untergeordneten Einfluss auf die Partikelgröße, kann jedoch zusätzlich als Möglichkeit zur Feineinstellung der Partikelgröße herangezogen werden. Die mit dem vorliegenden Verfahren hergestellten Metallnanopartikel zeigen Größenverteilungen ≤30%.In fact, it has now been found that, according to the present method, different particle sizes can be set depending on the anions of the ionic liquids used, with a linear relationship between the molar volume of the anion and the mean particle size of the nanoparticles obtained, as in Table 1 and FIG shown. Table 1 shows the dependence of the particle size of the resulting Ag nanoparticles on the anion sizes (molar volumes) of the ionic liquid used. A variation of the cation of the ionic liquid used has only a minor influence on the particle size, but can additionally be used as a possibility for finely adjusting the particle size. The metal nanoparticles produced by the present process show size distributions ≤30%.
Die wesentlichen Vorteile der vorliegenden Erfindung bestehen also darin, dass durch die Verwendung ionischer Flüssigkeiten als Reaktionsmedium Metallnanopartikel in einem neuen ökonomischen, energieeffizienten und umweltschonenden Prozess ohne die Verwendung von giftigen, brennbaren, und leichtflüchtigen Lösungsmitteln hergestellt werden können. Weiterhin werden keine gesonderten oberflächenaktiven Substanzen zur Stabilisierung der Nanopartikel benötigt, welche die nutzbare Oberfläche der resultierenden Nanopartikel belegen und insbesondere deren katalytische Aktivität herabsetzen. Somit können allein durch die Anwesenheit der ionischen Flüssigkeit und der damit verbundenen starken elektrostatischen Stabilisierung „nackte" Metallnanopartikel auf schonende Weise hergestellt werden. Der Einsatz von Wasserstoff als „rückstandsfreies"The essential advantages of the present invention are therefore that by using ionic liquids as the reaction medium metal nanoparticles can be produced in a new economical, energy-efficient and environmentally friendly process without the use of toxic, flammable, and volatile solvents. Furthermore, no separate surface-active substances for stabilizing the nanoparticles are needed, which occupy the usable surface of the resulting nanoparticles and in particular reduce their catalytic activity. Thus, the mere presence of the ionic liquid and the associated strong electrostatic stabilization can be used to produce "naked" metal nanoparticles in a gentle manner.
Reduktionsmittel ermöglicht es außerdem, Nanopartikel in hoher Reinheit herzustellen. Des Weiteren ist das hier beschriebene Verfahren grundsätzlich auch für die Herstellung und Isolierung von Metallnanopartikeln in größerem Maßstab geeingnet. Die Zunächst anfallenden Dispersionen von Nanopartikel in ionischen Flüssigkeiten können auch direkt in katalytischen Prozessen eingesetzt werden. Ein weiterer wesentlicher Vorteil der vorliegenden Erfindung ergibt sich aus der Kontrollierbarkeit der Partikelgröße und Größenverteilung durch geeignete Wahl der verwendeten ionischen Flüssigkeit, woraus wiederum die Möglichkeit zur Steuerbarkeit der katalytischen Aktivität der Metallnanopartikel resultiert.Reducing agent also makes it possible to produce nanoparticles in high purity. Furthermore, the process described here is in principle also suitable for the production and isolation of metal nanoparticles on a larger scale. The initial dispersions of nanoparticles in ionic liquids can also be used directly in catalytic processes. Another important advantage of the present invention results from the controllability of the particle size and size distribution by suitable choice of the ionic liquid used, which in turn results in the possibility of controllability of the catalytic activity of the metal nanoparticles.
GG
Das vorliegende Verfahren eignet sich prinzipiell zur Herstellung von Nanopartikeln aller Metalle, die in ionischen Flüssigkeiten lösliche Salze bilden und deren Salze sich mit Wasserstoff zum entsprechenden Metall reduzieren lassen. Ohne Einschränkung der Allgemeinheit lassen sich bevorzugt Nanopartikel der Übergangsmetalle, d.h. Metalle der Gruppen 3 bis 12 des Periodensystems, nach dem hier beschriebenen Verfahren herstellen. Als besonders bevorzugte Metalle seien Silber (Ag), Kupfer (Cu), Gold (Au)1 Nickel (Ni), Palladium (Pd), Platin (Pt), Cobalt (Co), Rhodium (Rh), Iridium (Ir), Eisen (Fe), Ruthenium (Ru), Osmium (Os), Zink (Zn), Cadmium (Cd), Mangan (Mn), Rhenium (Re), Chrom (Cr), Molybdän (Mo), Wolfram (W), Vanadium, Niob (Nb), Tantal (Ta)1 Titan (Ti), Zirkonium (Zr), Hafnium (Hf), Scandium (Sc) und Yttrium (Y).The present method is suitable in principle for the production of nanoparticles of all metals which form salts soluble in ionic liquids and whose salts can be reduced with hydrogen to the corresponding metal. Without limiting the generality, nanoparticles of the transition metals, ie metals of groups 3 to 12 of the periodic table, can preferably be prepared by the process described here. Particularly preferred metals are silver (Ag), copper (Cu), gold (Au) 1 nickel (Ni), palladium (Pd), platinum (Pt), Cobalt (Co), rhodium (Rh), iridium (Ir), iron (Fe), ruthenium (Ru), osmium (Os), zinc (Zn), cadmium (Cd), manganese (Mn), rhenium (Re), Chromium (Cr), molybdenum (Mo), tungsten (W), vanadium, niobium (Nb), tantalum (Ta), 1 titanium (Ti), zirconium (Zr), hafnium (Hf), scandium (Sc) and yttrium (Y ).
Ionische Flüssigkeiten im Sinne der vorliegenden Erfindung sind vorzugsweise aus Kationen [Qn+] und Anionen [Z"1"] aufgebaute Salze der allgemeinen FormelIonic liquids in the sense of the present invention are preferably salts of the general formula ## STR5 ## which are composed of cations [Q n + ] and anions [Z "1" ]
[Qn+]m [Z^n [Q n + ] m [Z ^ n
mit n = m oder n ≠ m sowie 1 ≤ n ≤ 4 und 1 ≤ m ≤ 4 einschließlich Gemische mehrer solcher Salze, die einen Schmelzpunkt <180°C, bevorzugt <120°C und ganz besonders bevorzugt <1 OfJ0C haben, wobei solche ionische Flüssigkeiten besonders bevorzugt sind, bei denen n = m = 1 ist.with n = m or n ≠ m and 1 ≦ n ≦ 4 and 1 ≦ m ≦ 4 including mixtures of several such salts having a melting point <180 ° C, preferably <120 ° C and most preferably <1 OfJ 0 C, wherein those ionic liquids are particularly preferred in which n = m = 1.
Ohne Einschränkung der Allgemeinheit sind geeignete Kationen [Qn+] beispielsweiseFor example, without limitation of generality, suitable cations [Q n + ] are
(I) Imidazolium-Kationen der allgemeinen Struktur:(I) Imidazolium cations of the general structure:
Figure imgf000011_0001
Figure imgf000011_0001
(II) Ammonium-Kationen der allgemeinen Struktur:(II) Ammonium cations of the general structure:
R2R2
R3-N-R1 R4R3-N-R1 R4
(III) Pyrrolidinium-Kationen der allgemeinen Struktur:(III) pyrrolidinium cations of the general structure:
Figure imgf000011_0002
(IV) Piperidinium-Kationen der allgemeinen Struktur:
Figure imgf000012_0001
Figure imgf000011_0002
(IV) piperidinium cations of the general structure:
Figure imgf000012_0001
(V) Pyridinium-Kationen der allgemeinen Struktur:
Figure imgf000012_0002
(V) pyridinium cations of the general structure:
Figure imgf000012_0002
(VI) Morpholinium-Kationen der allgemeinen Struktur:
Figure imgf000012_0003
(VII) Guanidinium-Kationen der allgemeinen Struktur:
Figure imgf000012_0004
(VI) Morpholinium cations of the general structure:
Figure imgf000012_0003
(VII) guanidinium cations of the general structure:
Figure imgf000012_0004
(VII) Benzotriazolium-Kationen der allgemeinen Struktur:
Figure imgf000012_0005
oder (IX) Chinolinium-Kationen der allgemeinen Struktur:
Figure imgf000013_0001
(VII) Benzotriazolium cations of the general structure:
Figure imgf000012_0005
or (IX) Quinolinium cations of the general structure:
Figure imgf000013_0001
(X) Isochinolinium-Kationen der allgemeinen Struktur:
Figure imgf000013_0002
(X) isoquinolinium cations of the general structure:
Figure imgf000013_0002
(Xl) Pyrazolium-Kationen der allgemeinen Struktur:
Figure imgf000013_0003
(XI) pyrazolium cations of the general structure:
Figure imgf000013_0003
(XII) 1 ,4-Diazabicyclo[2.2.2]-octan-1-ium-Kationen der allgemeinen Struktur:
Figure imgf000013_0004
(XII) 1, 4-diazabicyclo [2.2.2] octane-1-ium cations of the general structure:
Figure imgf000013_0004
(XIII) 1 ,2,4-Triazolium-Kationen der allgemeinen Struktur:
Figure imgf000013_0005
(XIII) 1, 2,4-triazolium cations of the general structure:
Figure imgf000013_0005
(XIV) Pyridazinium-Kationen der allgemeinen Struktur:
Figure imgf000013_0006
(XV) Pyrimidinium-Kationen der allgemeinen Struktur:
(XIV) pyridazinium cations of the general structure:
Figure imgf000013_0006
(XV) pyrimidinium cations of the general structure:
Figure imgf000014_0001
Figure imgf000014_0001
(XVI) Pyrazinium-Kationen der allgemeinen Struktur:(XVI) pyrazinium cations of the general structure:
Figure imgf000014_0002
Figure imgf000014_0002
(XVII) 1 ,3,5'Triazinium-Kationen der allgemeinen Struktur:(XVII) 1, 3,5'-triazinium cations of the general structure:
R3R3
R4^ ^N R2 R1R4 ^ ^ N R2 R1
(XVIII) 1 ,2,3-Triazolium-Kationen der allgemeinen Struktur:(XVIII) 1, 2,3-triazolium cations of the general structure:
Figure imgf000014_0003
Figure imgf000014_0003
(XIX) Piperazinium-Kationen der allgemeinen Struktur:(XIX) piperazinium cations of the general structure:
Figure imgf000014_0004
Figure imgf000014_0004
(XX) Oxazolium-Kationen der allgemeinen Struktur:(XX) oxazolium cations of the general structure:
Figure imgf000014_0005
(XXI) Oxazolidinium-Kationen der allgemeinen Struktur:
Figure imgf000015_0001
Figure imgf000014_0005
(XXI) oxazolidinium cations of the general structure:
Figure imgf000015_0001
(XXII) Thiazolium-Kationen der allgemeinen Struktur:
Figure imgf000015_0002
(XXII) Thiazolium cations of the general structure:
Figure imgf000015_0002
(XXIII) Chinoxalinium-Kationen der allgemeinen Struktur:
Figure imgf000015_0003
(XXIV) Benzimidazolium-Kationen der allgemeinen Struktur:
Figure imgf000015_0004
(XXIII) Quinoxalinium cations of the general structure:
Figure imgf000015_0003
(XXIV) benzimidazolium cations of the general structure:
Figure imgf000015_0004
(XXV) Imidazolidinium-Kationen der allgemeinen Struktur:
Figure imgf000015_0005
(XXV) imidazolidinium cations of the general structure:
Figure imgf000015_0005
(XXVI) Indolinium-Kationen der allgemeinen Struktur:
Figure imgf000015_0006
(XXVII) Thiomoφholium-Kationen der allgemeinen Struktur:
(XXVI) indolinium cations of the general structure:
Figure imgf000015_0006
(XXVII) Thiomoφholium cations of the general structure:
Figure imgf000016_0001
Figure imgf000016_0001
In den oben genannten allgemeinen Strukturen (I) bis (XXVII) stehen:In the above-mentioned general structures (I) to (XXVII):
• die Reste R1 bis R13 unabhängig voneinander für Wasserstoff oder einen einbindigen, Kohlenstoff enthaltenden organischen, gesättigten oder ungesättigten, linearen oder verzweigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten, teilweise oder vollständig halogenierten oder durch 1 bis 5 Heteroatome oder funktionelle Gruppen unterbrochenen oder substituierten Rest mit 1 bis 30 Kohlenstoffatomen;The radicals R 1 to R 13 independently of one another represent hydrogen or a monovalent carbon-containing organic, saturated or unsaturated, linear or branched, acyclic or cyclic, aliphatic, aromatic or araliphatic, unsubstituted, partially or completely halogenated or by 1 to 5 hetero atoms or functional Groups are interrupted or substituted radicals having from 1 to 30 carbon atoms;
• zwei benachbarte Reste aus der Reihe R1 bis R13 zusammen auch für einen zweibindigen, Kohlenstoff enthaltenden organischen, gesättigten oder ungesättigten, linearen oder verzweigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten, teilweise oder vollständig halogenierten oder durch 1 bis 5 Heteroatome oder funktionelle Gruppen unterbrochenen oder substituierten Rest mit 1 bis 30 Kohlenstoffatomen.• two adjacent radicals from the series R1 to R13 together also represent a divalent carbon-containing organic, saturated or unsaturated, linear or branched, acyclic or cyclic, aliphatic, aromatic or araliphatic, unsubstituted, partially or completely halogenated or by 1 to 5 heteroatoms or functional groups are interrupted or substituted radicals having 1 to 30 carbon atoms.
Als besonders bevorzugte Heteroatome, die in den Resten R1 bis R13 vorkommen können, seien Sauerstoff, Schwefel, Selen, Tellur, Stickstoff, Phosphor und Silicium genannt. Prinzipiell können die Reste R1 bis R13 entweder über ein Kohlenstoffatom oder ein Heteroatom gebunden sein.Particularly preferred heteroatoms which can occur in the radicals R 1 to R 13 are oxygen, sulfur, selenium, tellurium, nitrogen, phosphorus and silicon. In principle, the radicals R 1 to R 13 can be bonded either via a carbon atom or a heteroatom.
Bevorzugte funktionelle Gruppen, die in den Resten R1 bis R13 vorkommen können, sind insbesondere Hydroxyl-, Carbonyl-, Carboxyl-, Carboxamido-, Amino- und Cyano-Gruppen. Als Halogene seinen Fluor, Chlor, Brom und lod genannt.Preferred functional groups which can occur in the radicals R 1 to R 13 are, in particular, hydroxyl, carbonyl, carboxyl, carboxamido, amino and cyano groups. As halogens its called fluorine, chlorine, bromine and iodine.
Besonders bevorzugte Kationen der Gruppe (I) sindParticularly preferred cations of group (I) are
• die unsymmetrisch 1 ,3-dialkylierten, nicht protischen Imidazolium-Kationen . 1-Ethyl-3-methyl-imidazolium, 1-Methyl-3-propyl-imidazolium, 1 -lsopropyl-3- methyl-imidazolium, 1 -Butyl-3-methyl-imidazolium, 1 -Methyl-3-pentyl- imidazolium, 1-Hexyl-3-methyl-imidazolium, i-Heptyl-3-methyl-imidazolium, 1- Methyl-3-octyl-imidazolium, 1 -Methyl-3-nonyl-imidazolium, 1 -Decyl-3-methyl- imidazolium, 1-Methyl-3-undecyl-imidazoliumt 1-Dodecyl-3-methyl-imidazolium, 1 -Methyl-3-tridecyl-imidazolium, 1 -Methyl-3-tetradecyl-imidazolium, 1 -Methyl-3- pentadecyl-imidazolium, 1-Hexadecyl-3-methyl-imidazolium, 1-Methyl-3- octadecyl-imidazolium und 1-Eicosyl-3-methyl-imidazolium sowie• the asymmetric 1, 3-dialkylated, non-protic imidazolium cations. 1-ethyl-3-methyl-imidazolium, 1-methyl-3-propyl-imidazolium, 1-isopropyl-3-methyl-imidazolium, 1-butyl-3-methyl-imidazolium, 1-methyl-3-pentyl imidazolium, 1-hexyl-3-methyl-imidazolium, i-heptyl-3-methyl-imidazolium, 1-methyl-3-octyl-imidazolium, 1-methyl-3-nonyl-imidazolium, 1-decyl-3-methyl imidazolium, 1-methyl-3-undecyl-imidazolium t 1-dodecyl-3-methyl-imidazolium, 1-methyl-3-tridecyl-imidazolium, 1-methyl-3-tetradecyl-imidazolium, 1-methyl-3-pentadecyl imidazolium, 1-hexadecyl-3-methyl-imidazolium, 1-methyl-3-octadecyl-imidazolium and 1-eicosyl-3-methyl-imidazolium, as well
1 -Butyl-3-ethyl-imidazolium, 1 -Ethyl-3-hexyl-imidazolium, 1 -Ethyl-3-octyl- imidazolium, 1-Decyl-3-ethyl-imidazolium, i-Dodecyl-3-ethyl-imidazolium, 1- Ethyl-3-tetradecyl-imidazolium, 1-Ethyl-3-hexadecyl-imidazolium, 1 -Ethyl-3- octadecyl-imidazolium, 1 -Butyl-3-hexyl-imidazolium, 1 -Butyl-3-octyl- imidazolium, i-Butyl-3-decyl-imidazolium, 1-Butyl-3-dodecyl-imidazolium, 1- Butyl-3-tetradecyl-imidazolium, 1 -Butyl-3-hexadecyl-imidazolium, 1 -Butyl-3- octadecyl-imidazolium, 1 -Hexyl-3-octyl-imidazolium, 1 -Decyl-3-hexyl- imidazolium, 1-Dodecyl-3-hexyl-imidazolium, i-Hexyl-3-tetradecyl-imidazolium,1-butyl-3-ethyl-imidazolium, 1-ethyl-3-hexyl-imidazolium, 1-ethyl-3-octyl-imidazolium, 1-decyl-3-ethyl-imidazolium, i-dodecyl-3-ethyl-imidazolium, 1-ethyl-3-tetradecyl-imidazolium, 1-ethyl-3-hexadecyl-imidazolium, 1-ethyl-3-octadecyl-imidazolium, 1-butyl-3-hexyl-imidazolium, 1-butyl-3-octyl-imidazolium, i-butyl-3-decyl-imidazolium, 1-butyl-3-dodecyl-imidazolium, 1-butyl-3-tetradecyl-imidazolium, 1-butyl-3-hexadecyl-imidazolium, 1-butyl-3-octadecyl-imidazolium, 1-hexyl-3-octyl-imidazolium, 1-decyl-3-hexyl-imidazolium, 1-dodecyl-3-hexyl-imidazolium, i-hexyl-3-tetradecyl-imidazolium,
1 -Hexadecyl-3-hexyl-imidazolium, 1 -Hexyl-S-octadecyl-imidazolium, 1 -Decyl-3- octyl-imidazolium, 1 -Dodecyl-3-octyl-imidazolium, 1 -Octyl-3-tetradecyl- imidazolium, 1 -Hexadecyl-3-octyl-imidazolium, 1 -Octadecyl-S-octyl-imidazolium, i-Decyl-3-dodecyl-imidazolium, i-Decyl-3-tetradecyl-imidazolium, 1-Decyl-3- hexadecyl-imidazolium, i-Decyl-S-octadecyl-imidazolium, 1-Dodecyl-3- tetradecyl-imidazolium, 1 -Dodecyl-S-hexadecyl-imidazolium, 1 -Dodecyl-3- octadecyl-imidazolium, 1 -Hexadecyl-S-tetradecyl-imidazolium, 1 -Octadecyl-3- tetradecyl-imidazolium und 1 -Hexadecyl-S-octadecyl-imidazolium;1-hexadecyl-3-hexyl-imidazolium, 1-hexyl-S-octadecyl-imidazolium, 1-decyl-3-octyl-imidazolium, 1-dodecyl-3-octyl-imidazolium, 1-octyl-3-tetradecyl-imidazolium, 1-hexadecyl-3-octyl-imidazolium, 1-octadecyl-S-octyl-imidazolium, i-decyl-3-dodecyl-imidazolium, i-decyl-3-tetradecyl-imidazolium, 1-decyl-3-hexadecyl-imidazolium, i-decyl-S-octadecylimidazolium, 1-dodecyl-3-tetradecylimidazolium, 1-dodecyl-S-hexadecylimidazolium, 1-dodecyl-3-octadecylimidazolium, 1-hexadecyl-S-tetradecylimidazolium, 1-octadecyl-3-tetradecyl-imidazolium and 1-hexadecyl-S-octadecyl-imidazolium;
• die symmetrisch 1 ,3-dialkylierten, nicht protischen Imidazolium-Kationen: 1 ,3-Dimethyl-imidazolium, 1 ,3-Diethyl-imidazolium, 1 ,3-Dipropyl-imidazolium,The symmetrically 1,3-dialkylated, non-protic imidazolium cations: 1,3-dimethylimidazolium, 1,3-diethylimidazolium, 1,3-dipropylimidazolium,
1 ,3-Diisopropyl-imidazolium, 1 ,3-Dibutyl-imidazolium, 1 ,3-Dipentyl-imidazolium, 1 ,3-Dihexyl-imidazolium, 1 ,3-Diheptyl-imidazolium, 1 ,3-Dioctyl-imidazolium, 1 ,3- Dinonyl-imidazolium, 1 ,3-Didecyl-imidazolium, 1 ,3-Diundecyl-imidazolium, 1 ,3- Didodecyl-imidazolium, 1,3-Ditridecyl-imidazolium, 1 ,3-Ditetradecyl- imidazolium, 1 ,3-Dipentadecyl-imidazolium, 1 ,3-Dihexadecyl-imidazolium, 1 ,3-1,3-diisopropylimidazolium, 1,3-dibutylimidazolium, 1,3-dipentylimidazolium, 1,3-dihexylimidazolium, 1,3-diheptylimidazolium, 1,3-dioctylimidazolium, 1, 3-dinonylimidazolium, 1, 3-didecylimidazolium, 1, 3-diundecylimidazolium, 1, 3-didodecylimidazolium, 1,3-ditridecylimidazolium, 1, 3-ditetradecylimidazolium, 1, 3 Dipentadecylimidazolium, 1,3-dihexadecylimidazolium, 1, 3
Dioctadecyl-imidazolium und 1 ,3-Dieicosyl-imidazolium;Dioctadecylimidazolium and 1,3-dieicosylimidazolium;
• die 1 ,2,3-trialkylierten, nicht protischen Imidazolium-Kationen:• the 1,3,3-trialkylated, non-protic imidazolium cations:
1 ,2,3-Trimethyl-imidazolium, 1-Ethyl-2,3-dimethyl-imidazolium, 1 ,2-Dimethyl-3- propyl-imidazolium, 1 -lsopropyl-2,3-dimethyl-imidazolium, 1 -Butyl-2,3-dimethyl- imidazolium, 1 ,2-Dimethyl-3-pentyl-imidazolium, 1-Hexyl-2,3-dimethyl- imidazolium, 1-Heptyl-2,3-dimethyl-imidazolium, 1 ,2-Dimethyl-3-octyl- imidazolium, 1 ,2-Dimethyl-3-nonyl-imidazolium, 1-Decyl-2,3-dimethyl- imidazolium, 1 ,2-Dimethyl-3-undecyl-imidazolium, 1-Dodecyl-2,3-dimethyl- imidazolium, 1 ,2-Dimethyl-3-tridecyl-imidazolium, 1 ,2-Dimethyl-3-tetradecyl- imidazolium, 1 ,2-Dimethyl-3-pentadecyl-imidazolium, 1-Hexadecyl-2,3-dimethyl- imidazolium, i ^-Dimethyl-S-octadecyl-imidazolium und 1-Eicosyl-2,3-dimethyl- imidazolium sowie 1 ,3-Diethyl-2-methyl-imidazolium, I .S-Dibutyl^-methyl-imidazolium, 1 ,3-1, 2,3-trimethyl-imidazolium, 1-ethyl-2,3-dimethyl-imidazolium, 1, 2-dimethyl-3-propyl-imidazolium, 1-isopropyl-2,3-dimethyl-imidazolium, 1-butyl 2,3-dimethyl- imidazolium, 1, 2-dimethyl-3-pentylimidazolium, 1-hexyl-2,3-dimethylimidazolium, 1-heptyl-2,3-dimethylimidazolium, 1, 2-dimethyl-3-octylimidazolium, 1, 2-dimethyl-3-nonylimidazolium, 1-decyl-2,3-dimethylimidazolium, 1, 2-dimethyl-3-undecylimidazolium, 1-dodecyl-2,3-dimethylimidazolium, 1, 2-Dimethyl-3-tridecyl-imidazolium, 1, 2-dimethyl-3-tetradecyl-imidazolium, 1, 2-dimethyl-3-pentadecyl-imidazolium, 1-hexadecyl-2,3-dimethyl-imidazolium, 1'-dimethyl -S-octadecylimidazolium and 1-eicosyl-2,3-dimethylimidazolium and 1,3-diethyl-2-methylimidazolium, I, S-dibutyl-methylimidazolium, 1, 3
Dihexyl-2-methyl-imidazolium, 2-Methyl-1 ,3-dioctyl-imidazolium, 1 ,3-Didecyl-2- methyl-imidazolium, 1 ,3-Didodecyl-2-methyl-imidazolium, 2-Methyl-1 ,3- ditetradecyl-imidazolium, 1 ,3-Dihexadecyl-2-methyl-imidazolium, 2-Methyl-1 ,3- dioctadecyl-imidazolium, 1 ,2-Diethyl-3-methyl-imidazolium und 1 ,2,3-Triethyl- imidazolium;Dihexyl-2-methyl-imidazolium, 2-methyl-1,3-dioctylimidazolium, 1,3-didecyl-2-methyl-imidazolium, 1,3-didodecyl-2-methyl-imidazolium, 2-methyl-1, 3-ditetradecylimidazolium, 1, 3-dihexadecyl-2-methylimidazolium, 2-methyl-1,3-dioctadecylimidazolium, 1, 2-diethyl-3-methylimidazolium and 1,2,3-triethyl imidazolium;
• die 1 ,3,4,5-tetraalkylierten, nicht protischen Imidazolium-Kationen:The 1, 3,4,5-tetraalkylated, non-protic imidazolium cations:
1 ,3,4,5-Tetramethyl-imidazolium, 1-Ethyl-3,4,5-trimethyl-imidazolium, 1-Butyl- 3,4,5-trimethyl-imidazolium, 1-Hexyl-3,4,5-trimethyl-imidazolium, 1 ,4,5- Trimethyl-3-octyl-imidazolium, 1 -Decyl-3,4,5-trimethyl-imidazolium, 1 -Dodecyl- 3,4,5-trimethyl-imidazolium, 1 ,4,5-Trimethyl-3-tetradecyl-imidazolium, 1-1, 3,4,5-tetramethylimidazolium, 1-ethyl-3,4,5-trimethylimidazolium, 1-butyl-3,4,5-trimethylimidazolium, 1-hexyl-3,4,5- trimethyl-imidazolium, 1, 4,5-trimethyl-3-octyl-imidazolium, 1-decyl-3,4,5-trimethyl-imidazolium, 1 -dodecyl-3,4,5-trimethyl-imidazolium, 1, 4, 5-trimethyl-3-tetradecylimidazolium, 1-
Hexadecyl-3,4,5-trimethyl-imidazolium und 1 ,4,5-Trimethyl-3-octadecyl- imidazolium;Hexadecyl-3,4,5-trimethylimidazolium and 1, 4,5-trimethyl-3-octadecylimidazolium;
• die 1-alkylierten, protischen Imidazolium-Kationen:• the 1-alkylated, protic imidazolium cations:
1-Methyl-imidazolium, 1-Ethyl-imidazolium, 1-Propyl-imidazolium, 1-lsopropyl- imidazolium, 1-Butyl-imidazolium, 1-Pentyl-imidazolium, 1-Hexyl-imidazolium, 1-1-methyl-imidazolium, 1-ethyl-imidazolium, 1-propyl-imidazolium, 1-isopropyl-imidazolium, 1-butyl-imidazolium, 1-pentyl-imidazolium, 1-hexyl-imidazolium, 1
Heptyl-imidazolium, 1-Octyl-imidazolium, 1-Nonyl-imidazolium, 1-Decyl- imidazolium, 1-Undecyl-imidazolium, 1-Dodecyl-imidazolium, 1-Tridecyl- imidazolium, 1-Tetradecyl-imidazolium, 1-Pentadecyl-imidazolium, 1- Hexadecyl-imidazolium, 1-Octadecyl-imidazolium und 1-Eicosyl-imidazolium; • die 1 ,2-dialkylierten, protischen Imidazolium-Kationen:Heptylimidazolium, 1-octylimidazolium, 1-nonylimidazolium, 1-decylimidazolium, 1-undecylimidazolium, 1-dodecylimidazolium, 1-tridecylimidazolium, 1-tetradecylimidazolium, 1-pentadecyl imidazolium, 1-hexadecyl-imidazolium, 1-octadecyl-imidazolium and 1-eicosyl-imidazolium; • the 1,2-dialkylated protic imidazolium cations:
1 ,2-Dimethyl-imidazolium, 1-Ethyl-2-methyl-imidazolium, 1 -Methyl-2-propyl- imidazolium, 1 -lsopropyl-2-methyl-imidazolium, 1 -Butyl-2-methyl-imidazolium, 1 -Methyl-2-pentyl-imidazolium, 1 -Hexyl-2-methyl-imidazolium, 1 -Heptyl-2- methyl-imidazolium, 1 -Methyl-2-octyl-imidazolium, 1 -Methyl-2-nonyl- imidazolium, i-Decyl-2-methyl-imidazolium, 1-Methyl-2-undecyl-imidazolium, 1- Dodecyl-2-methyl-imidazolium, 1 -Methyl-2-tridecyl-imidazolium, 1 -Methyl-2- tetradecyl-imidazolium, 1 -Methyl-2-pentadecyl-imidazolium, 1 -Hexadecyl-2- methyl-imidazlium, i-Methyl-2-octadecyl-imidazolium und 1 -Eicosyl-2-methyl- imidazolium;1, 2-dimethyl-imidazolium, 1-ethyl-2-methyl-imidazolium, 1-methyl-2-propyl-imidazolium, 1-isopropyl-2-methyl-imidazolium, 1-butyl-2-methyl-imidazolium, 1 - Methyl 2-pentylimidazolium, 1-hexyl-2-methylimidazolium, 1-heptyl-2-methylimidazolium, 1-methyl-2-octylimidazolium, 1-methyl-2-nonylol imidazolium, i-decyl-2-methyl-imidazolium, 1-methyl-2-undecyl-imidazolium, 1-dodecyl-2-methyl-imidazolium, 1-methyl-2-tridecyl-imidazolium, 1-methyl-2-tetradecyl imidazolium, 1-methyl-2-pentadecyl-imidazolium, 1-hexadecyl-2-methyl-imidazlium, i-methyl-2-octadecyl-imidazolium and 1-eicosyl-2-methylimidazolium;
• die 1 ,3- und 1 ,2,3- substituierten, nicht protischen Imidazolium-Kationen:The 1, 3 and 1, 2,3-substituted, non-protic imidazolium cations:
1 -Methyl-3-vinyl-imidazolium, 1 -Allyl-3-methyl-imidazolium, 1 -Benzyl-3-methyl- imidazolium, 1 -(2-Hydroxyethyl)-3-methyl-imidazolium, 1 -(2-Hydroxyethyl)-2,3- dimethyl-imidazolium, 1-(2-Methoxyethyl)-3-methyl-imidazolium und 1-(2- Methoxyethyl)-2,3-dimethyl-imidazolium.1-methyl-3-vinyl-imidazolium, 1-allyl-3-methyl-imidazolium, 1-benzyl-3-methyl-imidazolium, 1- (2-hydroxyethyl) -3-methyl-imidazolium, 1- (2-hydroxyethyl ) -2,3-dimethylimidazolium, 1- (2-methoxyethyl) -3-methylimidazolium and 1- (2-methoxyethyl) -2,3-dimethylimidazolium.
Besonders bevorzugte Kationen der Gruppe (II) sindParticularly preferred cations of group (II) are
• die quartären, nicht protischen Ammonium-Kationen:• the quaternary, non-protic ammonium cations:
Tetramethyl-ammonium, Tetraethyl-ammonium, Tetrapropyl-ammonium, Tetraisopropyl-ammonium, Tetrabutyl-ammonium, Tetrapentyl-ammonium,Tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetraisopropylammonium, tetrabutylammonium, tetrapentylammonium,
Tetrahexyl-ammonium, Tetraheptyl-ammonium, Tetraoctyl-ammonium, Tetranonyl-ammonium, Tetradecyl-ammonium, Ethyl-trimethyl-ammonium, Trimethyl-propyl-ammonium, Isopropyl-trimethyl-ammonium, Butyl-trimethyl- ammonium, Trimethyl-pentyl-ammonium, Hexyl-trimethyl-ammonium, Heptyl- trimethyl-ammonium, Trimethyl-octyl-ammonium, Trimethyl-nonyl-ammonium,Tetrahexylammonium, tetraheptylammonium, tetraoctylammonium, tetranonylammonium, tetradecylammonium, ethyltrimethylammonium, trimethylpropylammonium, isopropyltrimethylammonium, butyltrimethylammonium, trimethylpentylammonium, Hexyl-trimethyl-ammonium, heptyl-trimethyl-ammonium, trimethyl-octyl-ammonium, trimethyl-nonyl-ammonium,
Decyl-trimethyl-ammonium, Dodecyl-trimethyl-ammonium, Trimethyl-tetradecyl- ammonium, Hexadecyl-trimethyl-ammonium, Trimethyl-octadecyl-ammonium, Triethyl-methyl-ammonium, Triethyl-propyl-ammonium, Triethyl-isopropyl- ammonium, Butyl-triethyl-ammonium, Triethyl-pentyl-ammonium, Triethyl-hexyl- ammonium, Triethyl-heptyl-ammonium, Triethyl-octyl-ammonium, Triethyl- nonyl-ammonium, Decyl-triethyl-ammonium, Dodecyl-triethyl-ammonium, Triethyl-tetradecyl-ammonium, Triethyl-hexadecyl-ammonium, Triethyl- octadecyl-ammonium, Tripropyl-undecyl-ammonium, Tributyl-methyl- ammonium, Tributyl-ethyl-ammonium, Tributyl-propyl-ammonium, Tributyl- isopropyl-ammonium, Tributyl-pentyl-ammonium, Tributyl-hexyl-ammonium,Decyl-trimethyl-ammonium, dodecyl-trimethyl-ammonium, trimethyl-tetradecyl-ammonium, hexadecyl-trimethyl-ammonium, trimethyl-octadecyl-ammonium, triethyl-methyl-ammonium, triethyl-propyl-ammonium, triethyl-isopropyl-ammonium, butyl- triethylammonium, triethyl-pentyl-ammonium, triethyl-hexyl-ammonium, triethyl-heptyl-ammonium, triethyl-octyl-ammonium, triethyl-nonyl-ammonium, decyl-triethyl-ammonium, dodecyl-triethyl-ammonium, triethyl-tetradecyl- ammonium, triethyl-hexadecyl-ammonium, triethyl-octadecyl-ammonium, tripropyl-undecyl-ammonium, tributyl-methyl-ammonium, tributyl-ethyl-ammonium, tributyl-propyl-ammonium, tributyl-isopropyl-ammonium, tributyl-pentyl-ammonium, tributyl-hexyl-ammonium,
Tributyl-heptyl-ammonium, Tributyl-octyl-ammonium, Tributyl-nonyl-ammonium, Tributyl-decyl-ammonium, Tributyl-dodecyl-ammonium, Tributyl-tetradecyl- ammonium, Tributyl-hexadecyl-ammonium, Tributyl-octadecyl-ammonium, Trihexyl-methyl-ammonium, Ethyl-trihexyl-ammonium, Trihexyl-propyl- ammonium, Trihexyl-isopropyl-ammonium, Butyl-trihexyl-ammonium, Methyl- trioctyl-ammonium, Ethyl-trioctyl-ammonium, Trioctyl-propyl-ammonium, Isopropyl-trioctyl-ammonium, Butyl-trioctyl-ammonium, Diethyl-dimethyl- ammonium, Dimethyl-dipropyl-ammonium, Diisopropyl-dimethyl-ammonium, Dimethyl-dinonyl-ammonium, Didodecyl-dimethyl-ammonium, Diethyl-dipropyl- ammonium, Diethyl-diisopropyl-ammonium, Dibutyl-diethyl-ammonium, Diethyl- dihexyl-ammonium, Diethyl-diheptyl-ammonium, Diethyl-dioctyl-ammonium, Dibutyl-dihexyl-ammonium, Diheptyl-dipropyl-ammonium, 2-Hydroxyethyl- trimethyl-ammonium (Cholin) und Tris(2-hydroxyethyl)-methyl-ammonium; • die tertiären, protischen Ammonium-Kationen:Tributyl heptyl ammonium, tributyl octyl ammonium, tributyl nonyl ammonium, tributyl decyl ammonium, tributyl dodecyl ammonium, tributyl tetradecyl ammonium, tributyl hexadecyl ammonium, tributyl octadecyl ammonium, trihexyl methyl ammonium, ethyl trihexyl ammonium, trihexyl propyl ammonium, trihexylisopropylammonium, butyltrihexylammonium, methyltrioctylammonium, ethyltrioctylammonium, trioctylpropylammonium, isopropyltrioctylammonium, butyltrioctylammonium, diethyldimethylammonium, Dimethyl-dipropyl-ammonium, diisopropyl-dimethyl-ammonium, dimethyl-dinonyl-ammonium, didodecyl-dimethyl-ammonium, diethyl-dipropyl-ammonium, diethyl-diisopropyl-ammonium, dibutyl-diethyl-ammonium, diethyl-dihexyl-ammonium, diethyl- diheptyl ammonium, diethyl dioctyl ammonium, dibutyl dihexyl ammonium, diheptyl dipropyl ammonium, 2-hydroxyethyl trimethyl ammonium (choline) and tris (2-hydroxyethyl) methyl ammonium; • the tertiary, protic ammonium cations:
Trimethyl-ammonium, Triethyl-ammonium, Tripropyl-ammonium, Triisopopyl- ammonium, Tributyl-ammonium, Tripentyl-ammonium, Trihexyl-ammonium, Triheptyl-ammonium, Trioctyl-ammonium, Diethyl-methyl-ammonium und Tris(2-hyd roxyethyl )-ammon iu m ; • die sekundären, protischen Ammonium-Kationen:Trimethylammonium, triethylammonium, tripropylammonium, triisopopylammonium, tributylammonium, tripentylammonium, trihexylammonium, triheptylammonium, trioctylammonium, diethylmethylammonium and tris (2-hydroxyethyl) - ammon iu m; • the secondary, protic ammonium cations:
Dimethyl-ammonium, Diethyl-ammonium, Dipropyl-ammonium, Diisopropyl- ammonium, Dibutyl-ammonium, Dipentyl-ammonium, Dihexyl-ammonium, Diheptyl-ammonium, Dioctyl-ammonium, Dinonyl-ammonium, Didecyl- ammonium, Didodecyl-ammonium und Bis(2-hydroxyethyl)-ammonium; • die primären, protischen Ammonium-Kationen:Dimethyl ammonium, diethyl ammonium, dipropyl ammonium, diisopropyl ammonium, dibutyl ammonium, dipentyl ammonium, dihexyl ammonium, diheptyl ammonium, dioctyl ammonium, dinonyl ammonium, didecyl ammonium, didodecyl ammonium and bis ( 2-hydroxyethyl) ammonium; • the primary, protic ammonium cations:
Methyl-ammonium, Ethyl-ammonium, Propyl-ammonium, Isopropyl-ammonium, Butyl-ammonium, Pentyl-ammonium, Hexyl-ammonium, Heptyl-ammonium, Octyl-ammonium, Nonyl-ammonium, Decyl-ammonium, Dodecyl-ammonium, Tetradecyl-ammonium, Hexadecyl-ammonium, Octadecyl-ammonium und 2- Hydroxyethyl-ammonium.Methyl ammonium, ethyl ammonium, propyl ammonium, isopropyl ammonium, butyl ammonium, pentyl ammonium, hexyl ammonium, heptyl ammonium, octyl ammonium, nonyl ammonium, decyl ammonium, dodecyl ammonium, tetradecyl ammonium ammonium, hexadecylammonium, octadecylammonium and 2-hydroxyethylammonium.
Besonders bevorzugte Kationen der Gruppe (III) sind:Particularly preferred cations of group (III) are:
1 ,1-Dimethyl-pyrrolidinium, 1-Ethyl-1-methyl-pyrrolidinium, 1 -Methyl- 1-propyl- pyrrolidinium, 1-Butyl-1-methyl-pyrrolidinium, 1-Hexyl-1-methyl-pyrrolidinium, 1- Methyl-1-octyl-pyrrolidinium, 1 ,1-Diethyl-pyrrolidinium, 1 -Ethyl-1 -propyl- pyrrolidinium, 1-Ethyl-1-butyl-pyrrolidinium, 1-Ethyl-1-hexyl-pyrrolidinium, 1- Ethyl-1-octyl-pyrrolidinium, 1 ,1-Dipropyl-pyrrolidinium, 1 ,1-Dibutyl-pyrrolidinium, 1 ,1-Dihexyl-pyrrolidinium und 1 ,1-Dioctyl-pyrrolidinium. Besonders bevorzugte Kationen der Gruppe (IV) sind:1, 1-dimethylpyrrolidinium, 1-ethyl-1-methylpyrrolidinium, 1-methyl-1-propylpyrrolidinium, 1-butyl-1-methyl-pyrrolidinium, 1-hexyl-1-methylpyrrolidinium, 1 Methyl 1-octyl-pyrrolidinium, 1, 1-diethyl-pyrrolidinium, 1-ethyl-1-propyl-pyrrolidinium, 1-ethyl-1-butyl-pyrrolidinium, 1-ethyl-1-hexyl-pyrrolidinium, 1-ethyl 1-octyl-pyrrolidinium, 1, 1-dipropyl-pyrrolidinium, 1, 1-dibutyl-pyrrolidinium, 1, 1-dihexyl-pyrrolidinium and 1, 1-dioctyl-pyrrolidinium. Particularly preferred cations of group (IV) are:
1 , 1 -Dimethyl-piperidinium, 1 -Ethyl-1 -methyl-piperidinium, 1 -Methyl-1 -propyl- piperidinium, 1-Butyl-1 -methyl-piperidinium, 1-Hexyl-1 -methyl-piperidinium, 1- Methyl-1-octyl-piperidinium, 1 ,1-Diethyl-piperidinium, 1 -Ethyl-1 -propyl- piperidinium, 1 -Ethyl-1 -butyl-piperidinium, 1 -Ethyl-1 -hexyl-piperidinium, 1-Ethyl-1, 1-Dimethyl-piperidinium, 1-ethyl-1-methyl-piperidinium, 1-methyl-1-propyl-piperidinium, 1-butyl-1-methyl-piperidinium, 1-hexyl-1-methyl-piperidinium, 1 Methyl 1-octyl-piperidinium, 1, 1-diethyl-piperidinium, 1-ethyl-1-propyl-piperidinium, 1-ethyl-1-butyl-piperidinium, 1-ethyl-1-hexyl-piperidinium, 1-ethyl-
1-octyl-piperidinium, 1 ,1-Dipropyl-piperidinium, 1 ,1-Dibutyl-piperidinium, 1 ,1- Dihexyl-piperidinium und 1 ,1-Dioctyl-piperidinium.1-octyl-piperidinium, 1, 1-dipropyl-piperidinium, 1, 1-dibutyl-piperidinium, 1, 1-dihexyl-piperidinium and 1, 1-dioctyl-piperidinium.
Besonders bevorzugte Kationen der Gruppe (V) sind • die 1-alkylierten Pyridinium-Kationen:Particularly preferred cations of group (V) are the 1-alkylated pyridinium cations:
1-Methyl-pyridinium, 1-Ethyl-pyridinium, 1-Propyl-pyridinium, 1-Butyl-pyridinium, 1-Pentyl-pyridinium, 1-Hexyl-pyridinium, 1-Octyl-pyridinium, 1-Decyl-pyridinium, 1-Dodecyl-pyridinium, 1-Tetradecyl-pyridinium, 1-Hexadecyl-pyridinium und 1- Octadecyl-pyridinium; • die 1 ,2-dialkylierten Pyridinium-Kationen: . . ,1-methylpyridinium, 1-ethylpyridinium, 1-propylpyridinium, 1-butylpyridinium, 1-pentylpyridinium, 1-hexylpyridinium, 1-octylpyridinium, 1-decylpyridinium, 1 Dodecylpyridinium, 1-tetradecylpyridinium, 1-hexadecylpyridinium and 1-octadecylpyridinium; • the 1, 2-dialkylated pyridinium cations:. , .
1 ,2-Dimethyl-pyridinium, 1-Ethyl-2-methyl-pyridinium, 2-Methyl-1 -propyl- pyridinium, 1-Butyl-2-methyl-pyridinium, 2-Methyl-1-pentyl-pyridinium, 1-Hexyl- 2-methyl-pyridinium, 2-Methyl-1-octyl-pyridinium, i-Decyl-2-methyl-pyridinium, 1 -Dodecyl-2-methyl-pyridinium, 2-Methyl-1 -tetradecyl-pyridinium, 1 -Hexadecyl- 2-methyl-pyridinium und 2-Methyl-1-octadecyl-pyridinium sowie1, 2-Dimethyl-pyridinium, 1-ethyl-2-methyl-pyridinium, 2-methyl-1-propyl-pyridinium, 1-butyl-2-methyl-pyridinium, 2-methyl-1-pentyl-pyridinium, 1 Hexyl 2-methyl-pyridinium, 2-methyl-1-octylpyridinium, i-decyl-2-methylpyridinium, 1-dodecyl-2-methyl-pyridinium, 2-methyl-1-tetradecylpyridinium, 1 - Hexadecyl-2-methyl-pyridinium and 2-methyl-1-octadecyl-pyridinium as well
1 ,2-Diethyl-pyridinium, 2-Ethyl-1-propyl-pyridinium, 1-Butyl-2-ethyl-pyridinium, 2-Ethyl-1-pentyl-pyridinium, 2-Ethyl-1-hexyl-pyridinium, 2-Ethyl-1-octyl- pyridinium, 1-Decyl-2-ethyl-pyridinium, 1-Dodecyl-2-ethyl-pyridinium, 2-Ethyl-1- tetradecyl-pyridinium, 2-Ethyl-1-hexadecyl-pyridinium und 2-Ethyl-1-octadecyl- pyridinium; • die 1 ,3-dialkylierten Pyridinium-Kationen:1, 2-diethyl-pyridinium, 2-ethyl-1-propyl-pyridinium, 1-butyl-2-ethyl-pyridinium, 2-ethyl-1-pentyl-pyridinium, 2-ethyl-1-hexyl-pyridinium, 2- Ethyl 1-octylpyridinium, 1-decyl-2-ethyl-pyridinium, 1-dodecyl-2-ethyl-pyridinium, 2-ethyl-1-tetradecyl-pyridinium, 2-ethyl-1-hexadecylpyridinium and Ethyl 1-octadecylpyridinium; The 1,3-dialkylated pyridinium cations:
1 ,3-Dimethyl-pyridinium, 1-Ethyl-3-methyl-pyridinium, 3-Methyl-1-propyl- pyridinium, 1-Butyl-3-methyl-pyridinium, 3-Methyl-1-pentyl-pyridinium, 1-Hexyl- 3-methyl-pyridinium, 3-Methyl-1-octyl-pyridinium, i-Decyl-3-methyl-pyridinium,1,3-Dimethyl-pyridinium, 1-ethyl-3-methyl-pyridinium, 3-methyl-1-propyl-pyridinium, 1-butyl-3-methyl-pyridinium, 3-methyl-1-pentyl-pyridinium, 1 Hexyl-3-methylpyridinium, 3-methyl-1-octylpyridinium, i-decyl-3-methylpyridinium,
1 -Dodecyl-3-methyl-pyridinium, 3-Methyl-1 -tetradecyl-pyridinium, 1 -Hexadecyl- 3-methyl-pyridinium und 3-Methyl-1-octadecyl-pyridinium sowie 1 ,3-Diethyl-pyridinium, 3-Ethyl-1-propyl-pyridinium, 1-Butyl-3-ethyl-pyridinium, 3-Ethyl-1 -pentyl-pyridinium, 3-Ethyl-1 -hexyl-pyridinium, 3-Ethyl-1 -octyl- pyridinium, i-Decyl-3-ethyl-pyridinium, 1-Dodecyl-3-ethyl-pyridiniumf 3-Ethyl-1- tetradecyl-pyridinium, 3-Ethyl-1-hexadecyl-pyridinium und 3-Ethyl-1 -octadecyl- pyridinium;1 -dodecyl-3-methyl-pyridinium, 3-methyl-1-tetradecyl-pyridinium, 1-hexadecyl-3-methyl-pyridinium and 3-methyl-1-octadecyl-pyridinium, and 1, 3-diethyl-pyridinium, 3-ethyl-1-propyl-pyridinium, 1-butyl-3-ethyl-pyridinium, 3-ethyl-1-pentyl-pyridinium, 3-ethyl-1-hexyl-pyridinium, 3 Ethyl 1-octylpyridinium, i-decyl-3-ethyl-pyridinium, 1-dodecyl-3-ethylpyridinium, f- 3-ethyl-1-tetradecyl-pyridinium, 3-ethyl-1-hexadecyl-pyridinium, and Ethyl 1-octadecylpyridinium;
• die 1 ,4-dialkylierten Pyridinium-Kationen:The 1,4-dialkylated pyridinium cations:
1 ,4-Dimethyl-pyridinium, 1-Ethyl-4-methyl-pyridinium, 4-Methyl-1-propyl- pyridinium, 1-Butyl-4-methyl-pyridinium, 4-Methyl-1 -pentyl-pyridinium, 1-Hexyl- 4-methyl-pyridinium, 4-Methyl-1 -octyl-pyridinium, 1 -Decyl-4-methyl-pyridinium, 1-Dodecyl-4-methyl-pyridinium, 4-Methyl-1-tetradecyl-pyridinium, 1-Hexadecyl-1, 4-dimethylpyridinium, 1-ethyl-4-methylpyridinium, 4-methyl-1-propylpyridinium, 1-butyl-4-methyl-pyridinium, 4-methyl-1-pentyl-pyridinium, 1 Hexyl 4-methylpyridinium, 4-methyl-1-octylpyridinium, 1-decyl-4-methyl-pyridinium, 1-dodecyl-4-methylpyridinium, 4-methyl-1-tetradecyl-pyridinium, 1 hexadecyl
4-methyl-pyridinium und 4-Methyl-1-octadecyl-pyridinium;4-methylpyridinium and 4-methyl-1-octadecylpyridinium;
• die 1 ,3,5-trialkylierten Pyridinium-Kationen:The 1,3,5-trialkylated pyridinium cations:
1 ,3,5-Trimethyl-pyridinium, 1-Ethyl-3,5-dimethyl-pyridinium, 3,5-Dimethyl-1- propyl-pyridinium, 1 -Butyl-3,5-dimethyl-pyridinium, 3,5-Dimethyl-1 -pentyl- pyridinium, 1-Hexyl-3,5-dimethyl-pyridinium, 3,5-Dimethyl-1 -octyl-pyridinium, 1-1, 3,5-trimethyl-pyridinium, 1-ethyl-3,5-dimethyl-pyridinium, 3,5-dimethyl-1-propyl-pyridinium, 1-butyl-3,5-dimethyl-pyridinium, 3,5- Dimethyl-1-pentyl-pyridinium, 1-hexyl-3,5-dimethyl-pyridinium, 3,5-dimethyl-1-octyl-pyridinium, 1
Decyl-3,5-dimethyl-pyridinium, 1 -Dodecyl-3,5-dimethyl-pyridinium, 3,5-Dimethyl- 1-tetradecyl-pyridinium, 1-Hexadecyl-3,5-dimethyl-pyridinium und 3,5-Dimethyl- 1 -octadecyl-pyridinium.Decyl-3,5-dimethyl-pyridinium, 1-dodecyl-3,5-dimethyl-pyridinium, 3,5-dimethyl-1-tetradecyl-pyridinium, 1-hexadecyl-3,5-dimethyl-pyridinium and 3,5- Dimethyl 1-octadecyl-pyridinium.
Besonders bevorzugte Kationen der Gruppe (VI) sind:Particularly preferred cations of group (VI) are:
4,4-Dimethyl-morpholinium, 4-Ethyl-4-methyl-morpholjnium, 4-Methyl-4-propyl- morpholinium, 4-Butyl-4-methyl-morpholinium, 4-Hexyl-4-methyl-morpholinium, 4-Methyl-4-octyl-morpholinium, 4,4-Diethyl-morpholinium, 4-Ethyl-4-propyl- morpholinium, 4-Ethyl-4-butyl-morpholinium, 4-Ethyl-4-hexyl-morpholinium, 4- Ethyl-4-octyl-morpholinium, 4,4-Dipropyl-morpholinium, 4,4-Dibutyl- morpholinium, 4,4-Dihexyl-morpholinium und 4,4-Dioctyl-morpholinium.4,4-dimethyl-morpholinium, 4-ethyl-4-methyl-morpholium, 4-methyl-4-propylmorpholinium, 4-butyl-4-methyl-morpholinium, 4-hexyl-4-methyl-morpholinium, 4- Methyl 4-octyl-morpholinium, 4,4-diethyl-morpholinium, 4-ethyl-4-propyl-morpholinium, 4-ethyl-4-butyl-morpholinium, 4-ethyl-4-hexyl-morpholinium, 4-ethyl 4-octylmorpholinium, 4,4-dipropylmorpholinium, 4,4-dibutylmorpholinium, 4,4-dihexylmorpholinium and 4,4-dioctylmorpholinium.
Besonders bevorzugte Kationen der Gruppe (VII) sindParticularly preferred cations of group (VII) are
• die offenkettigen Guanidinium-Kationen: Guanidinium, 1 ,1 ,3,3-Tetramethyl-guanidinium, 1 ,1 ,3,3,4-Pentamethyl- guanidinium, 4-Ethyl-1 ,1 ,3,3-tetramethyl-guanidinium, 1 ,1 ,3,3-Tetramethyl-4- propyl-guanidinium, 4-lsopropyl-1 ,1 ,3,3-tetramethyl-guanidinium, 4-Butyl- 1 ,1 ,3,3-tetramethyl-guanidinium, 1 ,1 ,3,3,4 ,4-Hexamethyl-guanidinium, 4-Ethyl- 1 ,1 ,3,3,4-pentamethyl-guanidinium, 1 ,1 ,3,3,4-Pentamethyl-4-propyl- guanidinium, 4-lsopropyl-1 ,1 ,3,3,4-pentamethyl-guanidinium, 4-Butyl-1 ,1 ,3,3,4- pentamethyl-guanidinium, 1 ,1 ,3,3-Tetraethyl-4,4-dimethyl-guanidinium, 1 ,1 ,3,3- Tetrabutyl-4,4-dimethyl-guanidinium, 1 ,1 ,3,3-Tetrahexyl-4,4-dimethyl- guanidinium, 4,4-Dimethyl-1 ,1 ,3,3-tetraoctyl-guanidinium und 1 ,3-DiethyM ,3- dibutyl-4,4-dimethyl-guanidinium;The open-chain guanidinium cations: guanidinium, 1,1,3,3-tetramethyl-guanidinium, 1,1,3,3,4-pentamethyl-guanidinium, 4-ethyl-1,1,3,3-tetramethyl-guanidinium , 1,1,3,3-Tetramethyl-4-propyl-guanidinium, 4-isopropyl-1,1,3,3-tetramethyl-guanidinium, 4-butyl-1,1,3,3-tetramethyl-guanidinium, 1 , 1,3,3,4,4-hexamethyl-guanidinium, 4-ethyl-1,1,3,3,4-pentamethyl-guanidinium, 1,1,3,3,4-pentamethyl-4-propyl- guanidinium, 4-isopropyl-1, 1, 3,3,4-pentamethyl-guanidinium, 4-butyl-1,1,3,3,4-pentamethyl-guanidinium, 1,1,3,3-tetraethyl-4, 4-dimethyl-guanidinium, 1,1,3,3-tetrabutyl-4,4-dimethyl-guanidinium, 1,1,3,3-tetrahexyl-4,4-dimethyl-guanidinium, 4,4-dimethyl-1, 1, 3,3-tetraoctyl-guanidinium and 1, 3-diethyM, 3-dibutyl-4,4-dimethyl-guanidinium;
• die cyclischen Guanidinium-Kationen:The cyclic guanidinium cations:
1 ,3-Ethylen-1 ,3,4-trimethyl-guanidinium, 4-Ethyl-1 ,3-ethylen-1 ,3-dimethyl- guanidinium, 1 ,3-Ethylen-1 ,3-dimethyl-4-propyl-guanidinium, 4-Butyl-1 ,3- ethylen-1 ,3-dimethyl-guanidinium, 1 ,3-Ethylen-1 ,3,4,4-tetramethyl-guanidinium, 4-Ethyl-1 ,3-ethylen-1 ,3,4-trimethyl-guanidinium, 1 ,3-Ethylen-1 ,3,4-trimethyl-4- propyl-guanidinium und 4-Butyl-1 ,3-ethylen-1 ,3,4-trimethyl-guanidinium sowie1, 3-ethylene-1, 3,4-trimethyl-guanidinium, 4-ethyl-1,3-ethylene-1,3-dimethyl-guanidinium, 1,3-ethylene-1,3-dimethyl-4-propyl- guanidinium, 4-butyl-1,3-ethylene-1,3-dimethyl-guanidinium, 1,3-ethylene-1,3,4,4-tetramethyl-guanidinium, 4-ethyl-1,3-ethylene-1, 3,4-trimethyl-guanidinium, 1, 3-ethylene-1, 3,4-trimethyl-4-propyl-guanidinium and 4-butyl-1,3-ethylene-1,3,4-trimethyl-guanidinium, and
1 ,3,4-TrimethyM ,3-propylen-guanidinium, 4-Ethyl-1 ,3-dimethyl-1 ,3-propylen- guanidinium, 1 ,3-Dimethyl-4-propyl-1 ,3-propylen-guanidinium, 4-Butyl-1 ,3- dimethyl-1 ,3-propylen-guanidinium, 1 ,3,4,4-TetramethyM ,3-propylen- guanidinium, 4-Ethyl-1 ,3,4-trimethyM ,3-propylen-guanidinium, 1 ,3,4-Trimethyl- 4-propyl-1 ,3-propylen-guanidinium und 4-Butyl-1 ,3,4-trimethyl-1 ,3-propylen- guanidinium.1, 3,4-trimethyl, 3-propylene-guanidinium, 4-ethyl-1,3-dimethyl-1,3-propylene-guanidinium, 1,3-dimethyl-4-propyl-1,3-propylene-guanidinium, 4-butyl-1,3-dimethyl-1,3-propylene-guanidinium, 1,3,4,4-tetramethyl, 3-propylene-guanidinium, 4-ethyl-1,3,4-trimethyl, 3-propylene guanidinium, 1, 3,4-trimethyl-4-propyl-1,3-propylene-guanidinium and 4-butyl-1,3,4-trimethyl-1,3-propylene-guanidinium.
Besonders bevorzugte Kationen der Gruppe (VII) sind:Particularly preferred cations of group (VII) are:
1 -Butyl-3-methyl-benzotriazolium, 1 -Butyl-3-ethyl-benzotriazolium, 1 -Butyl-3- propyl-benzotriazolium, 1 ,3-Dibutyl-benzotriazolium und 1-Benzyl-3-methyl- benzotriazolium.1-Butyl-3-methyl-benzotriazolium, 1-butyl-3-ethyl-benzotriazolium, 1-butyl-3-propyl-benzotriazolium, 1, 3-dibutyl-benzotriazolium and 1-benzyl-3-methyl-benzotriazolium.
Besonders bevorzugte Kationen der Gruppe (IX) sindParticularly preferred cations of the group (IX) are
1-Methyl-chinolinium, 1-Ethyl-chinolinium, 1-Propyl-chinolinium, 1-Butyl- chinolinium, 1-Hexyl-chinolinium, 1-Octyl-chinolinium, 1-Decyl-chinolinium, 1- Dodecyl-chinolinium, 1-Tetradecyl-chinolinium, 1-Hexadecyl-chinolinium und 1- Octadecyl-chinolinium.1-methyl quinolinium, 1-ethyl quinolinium, 1-propyl quinolinium, 1-butyl quinolinium, 1-hexyl quinolinium, 1-octyl quinolinium, 1-decyl quinolinium, 1-dodecyl quinolinium, 1- Tetradecyl quinolinium, 1-hexadecyl quinolinium and 1-octadecyl quinolinium.
Besonders bevorzugte Kationen der Gruppe (X) sind:Particularly preferred cations of the group (X) are:
1-Methyl-isochinolinium, 1-Ethyl-isochinolinium, 1-Propyl-isochinolinium, 1- Butyl-isochinolinium, 1-Hexyl-isochinolinium, 1-Octyl-isochinolinium, 1-Decyl- isochinolinium, 1-Dodecyl-isochinolinium, 1-Tetradecyl-isochinolinium, 1- Hexadecyl-isochinolinium und i-Octadecyl-isochinolinium.1-methylisoquinolinium, 1-ethylisoquinolinium, 1-propylisoquinolinium, 1-butylisoquinolinium, 1-hexylisoquinolinium, 1-octylisoquinolinium, 1-decyl isoquinolinium, 1-dodecyl-isoquinolinium, 1-tetradecyl-isoquinolinium, 1-hexadecyl-isoquinolinium and i-octadecyl-isoquinolinium.
Besonders bevorzugte Kationen der Gruppe (Xl) sind: 1 ,2-Dimethyl-pyrazolium, 1 ,2,4-Trimethyl-pyrozolium, 1 ,2-Diethyl-pyrazolium und 1 ,2,4-Triethyl-pyrazolium.Particularly preferred cations of the group (XI) are: 1,2-dimethylpyrazolium, 1,2,4-trimethylpyrozolium, 1,2-diethylpyrazolium and 1,2,4-triethylpyrazolium.
Besonders bevorzugte Kationen der Gruppe (XII) sind:Particularly preferred cations of the group (XII) are:
1 -Methyl-1 ,4-diazabicyclo[2.2.2]-octan-1 -ium, 1 -Ethyl-1 ,4-diazabicyclo[2.2.2]- octan-1-ium, 1-Propyl-1 ,4-diazabicyclo[2.2.2]-octan-1-ium, 1-Butyl-1 ,4- diazabicyclo[2.2.2]-octan-1-ium, 1-Pentyl-1 ,4-diazabicyclo[2.2.2]-octan-1-ium, 1- Hexyl-1 ,4-diazabicyclo[2.2.2]-octan-1 -ium, 1 -Heptyl-1 ,4-diazabicyclo[2.2.2]- octan-1 -ium, 1 -Octyl-1 ,4-diazabicyclo[2.2.2]-octan-1 -ium, 1 -Nonyl-1 ,4- diazabicyclo[2.2.2]-octan-1-ium und 1-Decyl-1 ,4-diazabicyclo[2.2.2]-octan-1- ium.1-Methyl-1,4-diazabicyclo [2.2.2] octan-1-ethyl, 1-ethyl-1,4-diazabicyclo [2.2.2] octan-1-ium, 1-propyl-1, 4- diazabicyclo [2.2.2] octan-1-ium, 1-butyl-1, 4-diazabicyclo [2.2.2] octane-1-ium, 1-pentyl-1,4-diazabicyclo [2.2.2] octane 1-ium, 1-hexyl-1,4-diazabicyclo [2.2.2] octane-1-yl, 1-heptyl-1,4-diazabicyclo [2.2.2] octane-1-yl, 1-octyl 1,4-diazabicyclo [2.2.2] octan-1-yl, 1-nyl-1, 4-diazabicyclo [2.2.2] octane-1-ium and 1-decyl-1,4-diazabicyclo [2.2 .2] octane-1-ium.
Als Anionen für sind prinzipiell alle Anionen geeignet, die in Verbindung mit erfindungsgemäßen Kationen zu einer ionischen Flüssigkeit im Sinne der vorliegenden Erfindung führen können.As anions, all anions are suitable in principle, which can lead to an ionic liquid in the context of the present invention in conjunction with cations according to the invention.
Ohne Einschränkung der Allgemeinheit sind geeignete Anionen [Z™~] beispielsweiseFor example, without limitation of generality, suitable anions [Z ™ ~ ] are
II
(A) die Halogenide(A) the halides
Fluorid (F") , Chlorid (Cl"), Bromid (Br") und lodid (P);Fluoride (F " ), chloride (Cl " ), bromide (Br " ) and iodide (P);
(B) die Polyhalogenide(B) the polyhalides
Tribromid (Br3 ~), Triiodid (I3 "), lododibromid (IBr2 "), Diodobromid (I2Br"), Pentaiodid (I5 ") und Heptaiodid (I7 ");Tribromide (Br 3 ~ ), triiodide (I 3 " ), iododibromide (IBr 2 " ), diiodobromide (I 2 Br " ), pentaiodide (I 5 " ) and heptaiodide (I 7 " );
(C) die Pseudohalogenide(C) the pseudohalides
Cyanid (CN"), Cyanat (OCN"), Thiocyanat (SCN"), Selenocyanat (SeCN") und Dicyanamid [N(CN)2 "]; (D) die Phosphate der allgemeinen Formeln H2PO4 ", HPO4 2", PO4 3", (RAO)(RBO)PO4 ", H(RAO)PO3 " und (RAO)PO3 2~ sowie Hexafluorophosphat (PF6 "), Tris(pentafluoroethyl)-trifluorophosphat [(C2Fs)3PF3I Tris(heptafluoropropyl)- trifluorophosphat [(C3F7)3PF3 ~] und Tris(nonafluorobutyl)-trifluorophosphat
Figure imgf000025_0001
Cyanide (CN " ), cyanate (OCN " ), thiocyanate (SCN " ), selenocyanate (SeCN " ) and dicyanamide [N (CN) 2 " ]; (D) the phosphates of the general formulas H 2 PO 4 " , HPO 4 2" , PO 4 3 " , (R A O) (R B O) PO 4 " , H (R A O) PO 3 " and (R A O) PO 3 2 ~ and hexafluorophosphate (PF 6 " ), tris (pentafluoroethyl) trifluorophosphate [(C 2 Fs) 3 PF 3 I tris (heptafluoropropyl) trifluorophosphate [(C 3 F 7 ) 3 PF 3 ~ ] and tris (nonafluorobutyl) -trifluorophosphat
Figure imgf000025_0001
(E) die Phosphite der allgemeinen Formel (RAO)(RBO)PO";(E) the phosphites of the general formula (R A O) (R B O) PO " ;
(F) die Phosphonate der allgemeinen Formeln RAHPO3 ", RAPO3 2~ und RA(RBO)PO2 ";(F) the phosphonates of the general formulas R A HPO 3 " , R A PO 3 2 ~ and R A (R B O) PO 2 " ;
(G) die Phosphinate der allgemeinen Formel RARBPO2 ";(G) the phosphinates of the general formula R A R B PO 2 " ;
(H) die Sulfate der allgemeinen Formeln HSO4 ", SO4 2" und (RAO)SO3 ";(H) the sulfates of the general formulas HSO 4 " , SO 4 2" and (R A O) SO 3 " ;
(I) die Sulfonate der allgemeinen Formel RASO3 ~;(I) the sulfonates of the general formula R A SO 3 ~ ;
(J) die Borate der allgemeinen Formeln BO3 3", HBO3 2", H2BO3", (RAO)(RBO)BO", (RAO)HBO2 " , (RAO)BO2 2" (RAO)(RBO)(RCO)(RDO)B" sowie Tetrafluoroborat (BF4 "),(J) the borates of the general formulas BO 3 3 " , HBO 3 2" , H 2 BO 3 " , (R A O) (R B O) BO " , (R A O) HBO 2 " , (R A O ) BO 2 2 " (R A O) (R B O) (R C O) (R D O) B " as well as tetrafluoroborate (BF 4 " ),
Tetrachlorborat (BCI4 "), Tetracyanoborat ([B(CN)4^, Bis(oxalato)borat [B(O2C- CO2J2^, Bis(malonato)borat [B(O2C-CH2-CO2J2 "], Bis(benzol-1 ,2-diolato)borat [B(O-C6H4O)2^, Bis(2,2'-biphenyl-1 ,r-diolato)borat [B(O-C6H4-C6H4O)2I und Bis(salicylato)borat [B(O-C6H4-CO2)2 "l;Tetrachloroborate (BCI 4 " ), tetracyano borate ([B (CN) 4 ], bis (oxalato) borate [B (O 2 C-CO 2 J 2 ], bis (malonato) borate [B (O 2 C-CH 2 - CO 2 J 2 " ], bis (benzene-1,2-diolato) borate [B (OC 6 H 4 O) 2 ], bis (2,2'-biphenyl-1, r-diolato) borate [B (OC 6 H 4 -C 6 H 4 O) 2 I and bis (salicylato) borate [B (OC 6 H 4 -CO 2 ) 2 " 1;
(K) die Boronate der allgemeinen Formel RAHBO2 ", RABO2 2" und RA(RBO)BO~; (L) die Carboxylate der allgemeinen Formel RA2 ~;(K) the boronates of the general formula R A HBO 2 " , R A BO 2 2" and R A (R B O) BO ~ ; (L) the carboxylates of the general formula R A CO 2 ~ ;
(M) die Carbonate der allgemeinen Formel HCO3 ", CO3 2" und (RAO)CO2 ";(M) the carbonates of the general formula HCO 3 " , CO 3 2" and (R A O) CO 2 " ;
(N) die Alkoxide der allgemeinen Formel RO";(N) the alkoxides of the general formula RO " ;
(O) sowie die Anionen(O) and the anions
Bis(trifluormethylsulfonyl)imid (NTf2 "), Bis(pentafluorethylsulfonyl)imid [(C2F5SO2J2NI, Tricyanomethid [C(CN)3 "!, Tris(trifluormethylsulfonyl)methid (CTf3 "), Hexafluoroantimonat (SbF6 "), Hexafluoroarsenat (AsF6 "), Nitrat (NO3 "), Nitrit (NO2 "), Tetrachloroferrat(lll) (FeCI4 "), Tetrabromoferrat(lll) (FeBr4 "), Tetrachloroaluminat (AICI4 "), Heptachlorodialuminiat (AI2CI7 "),Bis (trifluoromethylsulfonyl) imide (NTf 2 " ), bis (pentafluoroethylsulfonyl) imide [(C 2 F 5 SO 2 J 2 NI, tricyanomethide [C (CN) 3 " ], tris (trifluoromethylsulfonyl) methide (CTf 3 " ), hexafluoroantimonate (SbF 6 " ), hexafluoroarsenate (AsF 6 " ), nitrate (NO 3 " ), nitrite (NO 2 " ), tetrachloroferrate (III) (FeCl 4 " ), tetrabromoferrate (III) (FeBr 4 " ), tetrachloroaluminate (AICI 4 " ), heptachlorodialuminate (Al 2 Cl 7 " ),
Decachlorotrialuminat (AI3Clκf), Tetrabromoaluminat (AIBr4 "), Hexafluorosilicat (SiF6 2") und Hexacyanoferrat(lll) ([Fe(CN)6]3").Decachlorotrialuminate (Al 3 Clκf), tetrabromoaluminate (AIBr 4 " ), hexafluorosilicate (SiF 6 2" ) and hexacyanoferrate (III) ([Fe (CN) 6 ] 3 " ).
In den oben genannten allgemeinen Formeln (D) bis (N) stehen • die Reste RA bis RD unabhängig voneinander für einen einbindigen, Kohlenstoff enthaltenden und über Kohlenstoff gebundenen, gesättigten oder ungesättigten, linearen oder verzweigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten, teilweise oder vollständig halogenierten oder durch 1 bis 5 Heteroatome oder funktionelle Gruppen unterbrochenen oder substituierten Rest mit 1 bis 30 Kohlenstoffatomen;In the abovementioned general formulas (D) to (N), the radicals R A to R D independently of one another represent a monovalent, carbon-containing and carbon-bonded, saturated or unsaturated, linear or branched, acyclic or cyclic, aliphatic, aromatic radical or araliphatic, unsubstituted, partially or completely halogenated or interrupted by 1 to 5 heteroatoms or functional groups radical or having 1 to 30 carbon atoms;
• zwei benachbarte Reste aus der Reihe RA bis RD zusammen auch für einen zweibindigen, Kohlenstoff enthaltenden und über Kohlenstoff gebundenen, gesättigten oder ungesättigten, linearen oder verzweigten, acyclischen oder cyclischen, aliphatischen, aromatischen oder araliphatischen, unsubstituierten, teilweise oder vollständig halogenierten oder durch 1 bis 5 Heteroatome oder funktionelle Gruppen unterbrochenen oder substituierten Rest mit 1 bis 30 Kohlenstoffatomen. AIs besonders bevorzugte Heteroatome, die in den Resten RA bis RD vorkommen können, seien Sauerstoff, Schwefel, Selen, Tellur, Stickstoff, Phosphor und Silicium genannt.• two adjacent radicals from the series R A to R D together also for a divalent, carbon-containing and carbon-bonded, saturated or unsaturated, linear or branched, acyclic or cyclic, aliphatic, aromatic or araliphatic, unsubstituted, partially or completely halogenated or by 1 to 5 heteroatoms or functional groups interrupted or substituted radical having 1 to 30 carbon atoms. AIs particularly preferred heteroatoms, which may occur in the radicals R A to R D, may be mentioned oxygen, sulfur, selenium, tellurium, nitrogen, phosphorus and silicon.
Im Sinne der vorliegenden Erfindung ganz besonders bevorzugte Anionen der ionischen Flüssigkeiten sind Tetrafluoroborat (BF4 "), Hexafluorophosphat (PF6 "),Very particularly preferred anions of the ionic liquids in the context of the present invention are tetrafluoroborate (BF 4 " ), hexafluorophosphate (PF 6 " ),
Hexafluoroantimonat (SbF6 "), Hexafluoroarsenat (AsF6 "), Methansulfonat (OMs"),Hexafluoroantimonate (SbF 6 " ), hexafluoroarsenate (AsF 6 " ), methanesulfonate (OMs " ),
Trifluormethansulfonat (OTf"), 4-Toluolsulfonat (OTs"), Acetat (CH3CO2 "),Trifluoromethanesulfonate (OTf " ), 4-toluenesulfonate (OTs " ), acetate (CH 3 CO 2 " ),
Trifluoracetat (CF3CO2 "), Bis(trifluormethylsulfonyl)imid (NTf2 "), Nitrat (NO3 "),Trifluoroacetate (CF 3 CO 2 " ), bis (trifluoromethylsulfonyl) imide (NTf 2 " ), nitrate (NO 3 " ),
Dihydrogenphosphat (H2PO4 "), Dimethylphosphat [(MeO)2PO2 "], Diethylphosphat [(EtO)2PO2-], Hydrogensulfat (HSO4 "), Methylsulfat (MeOSO3 "), Ethylsulfat (EtOSO3 " Dihydrogen phosphate (H 2 PO 4 " ), dimethyl phosphate [(MeO) 2 PO 2 " ], diethyl phosphate [(EtO) 2 PO 2 -], hydrogen sulfate (HSO 4 " ), methylsulfate (MeOSO 3 " ), ethyl sulfate (EtOSO 3 "
), Thiocyanat (SCN"), Dicyanamid [N(CN)2 "!, Tricyanomethid [C(CN)3I Glycolat), Thiocyanate (SCN " ), dicyanamide [N (CN) 2 " ], tricyanomethide [C (CN) 3 I glycolate
[HOCH2CO2η, Lactat [CH3CH(OH)CO2I.[HOCH 2 CO 2 η, lactate [CH 3 CH (OH) CO 2 I.
Geeignete Metallsalze im Sinne der vorliegenden Erfindung sind aus Kationen und Anionen aufgebaute Salze, bei denen das Kation und/oder das Anion ein oder mehrere Metallatome enthält. Dabei können die Metallatome im Kation frei vorliegen, also einfache Metallkationen beliebiger Wertigkeit sein, oder durch eine beliebigeSuitable metal salts in the context of the present invention are salts formed from cations and anions, in which the cation and / or the anion contains one or more metal atoms. In this case, the metal atoms in the cation can be free, that is, simple metal cations of any value, or by any desired
Anzahl neutraler und/oder anionischer, organischer oder anorganischer Liganden beliebiger Zähnigkeit komplex gebunden sein. Die Metallatome im Anion müssen durch eine beliebige Anzahl neutraler und/oder anionischer, organischer oder anorganischer Liganden beliebiger Zähnigkeit komplex gebunden sein.Number of neutral and / or anionic, organic or inorganic ligands of any denticity complexed. The metal atoms in the anion must be complexed by any number of neutral and / or anionic, organic or inorganic ligands of any denticity.
Ausführungsbeispieleembodiments
Beispiel 1 :Example 1 :
AgBF4 (0,035 g, 0,179 mmol) und (0,040 g, 0,319 mmol) 1-Butyl-imidazol werden unter Argon und Lichtausschluss bei Raumtemperatur in 1-Butyl-3-methyl- imidazolium-tetrafluoroborat (2 g) gelöst. Die resultierende Lösung enthält ca. 1% Silber. Die Lösung wird unter Argon in einen Edelstahlautoklaven überführt und 20 Minuten am Hochvakuum bei ca. 0,1 mbar getrocknet. Anschließend wird der Autoklav direkt mit Wasserstoff bis zu einem Druck von 4 bar gefüllt und das Reaktionsgemisch 2 Stunden lang auf 85°C erwärmt. Abschließend wird der Edelstahlautoklav wieder evakuiert und 1 Stunde lang bei 1000C im Hochvakuum bei ca. 0,1 mbar gehalten, um überschüssiges 1-Butyl-imidazol aus der Reaktionsmischung zu entfernen. Die Charakterisierung der gebildeten Silbernanopartikel erfolgt in situ mittelsTEM und zeigt, dass die Umsetzung vollständig ist. Die mittlere Partikelgröße beträgt 2,80 ± 0,78 nm bei einer Minimalgröße von 1 ,25 nm und einer Maximalgröße von 4,68 nm.AgBF 4 (0.035 g, 0.179 mmol) and (0.040 g, 0.319 mmol) of 1-butyl-imidazole are dissolved in 1-butyl-3-methyl-imidazolium-tetrafluoroborate (2 g) under argon and light-exclusion at room temperature. The resulting solution contains about 1% silver. The solution is transferred under argon into a stainless steel autoclave and dried for 20 minutes in a high vacuum at about 0.1 mbar. The autoclave is then filled directly with hydrogen up to a pressure of 4 bar and the reaction mixture is heated to 85 ° C. for 2 hours. Finally, the stainless steel autoclave is evacuated again and kept for 1 hour at 100 0 C under high vacuum at about 0.1 mbar to excess 1-butyl-imidazole from the Remove reaction mixture. The characterization of the silver nanoparticles formed is done in situ by TEM and shows that the reaction is complete. The mean particle size is 2.80 ± 0.78 nm with a minimum size of 1.25 nm and a maximum size of 4.68 nm.
Beispiel 2:Example 2:
AgPF6 (0,010 g, 0,040 mmol) und (0,012 g, 0,096 mmol) 1-Butyl-imidazol werden unter Argon und Lichtausschluss bei Raumtemperatur in 1-Butyl-3-methyl- imidazolium-hexafluorophosphat (2 g) gelöst. Die resultierende Lösung enthält ca. 0,15% Silber. Die Lösung wird unter Argon in einen Edelstahlautoklaven überführt und 20 Minuten am Hochvakuum bei ca. 0,1 mbar getrocknet. Anschließend wird der Autoklav direkt mit Wasserstoff bis zu einem Druck von 4 bar gefüllt und das Reaktionsgemisch 2 Stunden lang auf 85°C erwärmt. Abschließend wird der Edelstahlautoklav wieder evakuiert und 1 Stunde lang bei 1000C im Hochvakuum bei ca. 0,1 mbar gehalten, um überschüssiges 1-Butyl-imidazol aus der Reaktionsmischung zu entfernen. Die Charakterisierung der gebildeten Silbernanopartikel erfolgt in situ mittelsTEM und zeigt, dass die Umsetzung vollständig ist. Die mittlere Partikelgröße beträgt 4,36 ± 1 ,25 nm bei einer Minimalgröße von 2,04 nm und einer Maximalgröße von 9,75 nm. π AgPF 6 (0.010 g, 0.040 mmol) and (0.012 g, 0.096 mmol) 1-butyl-imidazole are dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate (2 g) under argon and light at room temperature. The resulting solution contains about 0.15% silver. The solution is transferred under argon into a stainless steel autoclave and dried for 20 minutes in a high vacuum at about 0.1 mbar. The autoclave is then filled directly with hydrogen up to a pressure of 4 bar and the reaction mixture is heated to 85 ° C. for 2 hours. Finally, the stainless steel autoclave is evacuated again and kept for 1 hour at 100 0 C in a high vacuum at about 0.1 mbar to remove excess 1-butyl-imidazole from the reaction mixture. The characterization of the silver nanoparticles formed is done in situ by TEM and shows that the reaction is complete. The mean particle size is 4.36 ± 1, 25 nm with a minimum size of 2.04 nm and a maximum size of 9.75 nm. Π

Claims

Patentansprüche claims
1. Ein Verfahren zur Herstellung und Stabilisierung von funktionellen Metallnanopartikeln im Partikelgrößenbereich von 0,1 bis 1000 nm durch Reduktion von löslichen Metallsalzen mit Wasserstoff in ionischen Flüssigkeiten, dadurch gekennzeichnet, dass durch Zugabe eines Protonenfängers zum Reaktionsgemisch eine enge Partikelgrößenverteilung erreicht wird.1. A process for the preparation and stabilization of functional metal nanoparticles in the particle size range of 0.1 to 1000 nm by reduction of soluble metal salts with hydrogen in ionic liquids, characterized in that a narrow particle size distribution is achieved by adding a proton scavenger to the reaction mixture.
2. Ein Verfahren gemäß dem Anspruch 1 , dadurch gekennzeichnet, dass eine Stickstoffbase als Protonenfänger dem Reaktionsgemisch zugesetzt wird, die in ihrer protonierten Form ein molares Volumen ähnlich dem des Kations der verwendeten ionischen Flüssigkeit besitzt.2. A process according to claim 1, characterized in that a nitrogen base is added as a proton scavenger to the reaction mixture, which in its protonated form has a molar volume similar to that of the cation of the ionic liquid used.
3. Ein Verfahren gemäß dem Anspruch 1 und 2, dadurch gekennzeichnet, dass es sich bei der als Protonenfänger eingesetzten Stickstoffbase um die dem Kation der verwendeten ionischen Flüssigkeit zugrunde liegende Stickstoffbase handelt.3. A process according to claims 1 and 2, characterized in that the nitrogen base used as proton scavenger is the nitrogen base underlying the cation of the ionic liquid used.
4. Ein Verfahren gemäß mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Anion des Metallsalzes ähnlich oder identisch dem4. A method according to any one of claims 1 to 3, characterized in that the anion of the metal salt similar or identical to the
Anion der verwendeten ionischen Flüssigkeit ist.Anion of the ionic liquid used is.
5. Ein Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die verwendete ionische Flüssigkeit ein aus Kationen [Qn+] und Anionen [ZmT aufgebautes Salz der allgemeinen Formel [Qn+]m [Z1^n oder ein Gemisch mehrer solcher Salze ist, wobei n = m oder n ≠ m sowie 1 ≤ n ≤ 4 und 1 < m < 4 ist und solche ionische Flüssigkeiten besonders bevorzugt sind, bei denen n = m = 1 ist.5. A process according to any one of claims 1 to 4, characterized in that the ionic liquid used is a salt of cations [Q n + ] and anions [Z m T built salt of the general formula [Q n + ] m [Z 1 ^ n or a Mixture of several such salts, where n = m or n ≠ m and 1 ≤ n ≤ 4 and 1 <m <4 and those ionic liquids are particularly preferred in which n = m = 1.
6. Ein Verfahren gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die verwendete ionische Flüssigkeit einen Schmelzpunkt <180°C, bevorzugt <120°C und ganz besonders bevorzugt <100°C hat. 6. A method according to any one of claims 1 to 5, characterized in that the ionic liquid used has a melting point <180 ° C, preferably <120 ° C and most preferably <100 ° C.
7. Ein Verfahren gemäß mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Kation der verwendeten ionischen Flüssigkeit ein Imidazolium-, Ammonium-, Pyrrolidinium-, Piperidinium-, Pyridinium-, Morpholinium-, Guanidinium-, Benzotriazolium-, Chinolinium-, Isochinolinium-, Pyrazolium-, 1 ,4-Diazabicyclo[2.2.2]-octan-1-ium-, 1 ,2,4-Triazolium-,7. A method according to any one of claims 1 to 6, characterized in that the cation of the ionic liquid used, an imidazolium, ammonium, pyrrolidinium, piperidinium, pyridinium, morpholinium, guanidinium, benzotriazolium, quinolinium , Isoquinolinium, pyrazolium, 1,4-diazabicyclo [2.2.2] octan-1-ium, 1, 2,4-triazolium,
Pyridazinium-, Pyrimidinium-, Pyrazinium-, 1 ,3,5-Triazinium-, 1 ,2,3-Triazolium-, Piperazinium-, Oxazolium-, Oxazolidinium-, Thiazolium-, Chinoxalinium-, Benzimidazolium-, Imidazolidinium-, Indolinium- oder Thiomorpholinium-Kation ist.Pyridazinium, pyrimidinium, pyrazinium, 1, 3,5-triazinium, 1, 2,3-triazolium, piperazinium, oxazolium, oxazolidinium, thiazolium, quinoxalinium, benzimidazolium, imidazolidinium, indolinium or thiomorpholinium cation.
8. Ein Verfahren gemäß mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Anion der verwendeten ionischen Flüssigkeit ein Halogenid, Polyhalogenid, Pseudohalogenid, Phosphat, Phosphit, Phosphonat, Phosphinat, Sulfat, Sulfonat, Borat, Boronat, Carboxylat, Carbonat, Alkoxid oder Bis(trifluormethylsulfonyl)imid (NTf2 "), Bis(pentafluorethylsulfonyl)imid
Figure imgf000030_0001
Tricyanomethid [C(CN)3 "], Tris(trifluormethylsulfonyl)methid (CTf3 "), Hexafluoroantimonat (SbF6 "), Hexafluoroarsenat (AsF6 "), Nitrat (NO3 "), Nitrit (NO2 "), Tetrachloroferrat(lll) (FeCI4 "), Tetrabromoferrat(lll) (FeBr4 "), Tetrachloroaluminat (AICI4-), Heptachlorodialuminiat (AI2CI7 "), Decachlorotrialuminat (AI3Clio~), Tetrabromoaluminat (AIBr4 "), Hexafluorosilicat
8. A method according to any one of claims 1 to 7, characterized in that the anion of the ionic liquid used, a halide, polyhalide, pseudohalide, phosphate, phosphite, phosphonate, phosphinate, sulfate, sulfonate, borate, boronate, carboxylate, carbonate, Alkoxide or bis (trifluoromethylsulfonyl) imide (NTf 2 " ), bis (pentafluoroethylsulfonyl) imide
Figure imgf000030_0001
Tricyanomethide [C (CN) 3 " ], tris (trifluoromethylsulfonyl) methide (CTf 3 " ), hexafluoroantimonate (SbF 6 " ), hexafluoroarsenate (AsF 6 " ), nitrate (NO 3 " ), nitrite (NO 2 " ), tetrachloroferrate (III) (FeCl 4 "), tetrabromoferrate (III) bromide (FeBr 4"), tetrachloroaluminate (AlCl 4 -), Heptachlorodialuminiat (AI 2 CI 7 "), Decachlorotrialuminat (AI 3 Clio ~) Tetrabromoaluminat (AlBr 4"), hexafluorosilicate
(SiF6 2") oder Hexacyanoferrat(lll) ([Fe(CN)6]3") ist.(SiF 6 2 " ) or hexacyanoferrate (III) ([Fe (CN) 6 ] 3" ).
9. Ein Verfahren gemäß mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es sich bei der verwendeten ionischen Flüssigkeit um eine hydrophobe, mit Wasser nicht mischbare ionische Flüssigkeit handelt.9. A method according to any one of claims 1 to 8, characterized in that it is the ionic liquid used is a hydrophobic, immiscible with water ionic liquid.
10. Ein Verfahren gemäß mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die hergestellten Metallnanopartikel aus der zunächst erhaltenen Metallnanopartikel-Dispersion isoliert werden.10. A process according to any one of claims 1 to 9, characterized in that the metal nanoparticles produced are isolated from the initially obtained metal nanoparticle dispersion.
11. Ein Verfahren gemäß mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die zunächst erhaltene Metallnanopartikel-Dispersion mit Luft, Sauerstoff oder einem anderen geeigneten Oxidationsmittel behandelt wird und dadurch Metalloxidnanopartikel erhalten werden. 11. A process according to any one of claims 1 to 10, characterized in that the initially obtained metal nanoparticle dispersion is treated with air, oxygen or another suitable oxidizing agent and thereby metal oxide nanoparticles are obtained.
12. Ein Verfahren gemäß mindestens einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass es sich bei den hergestellten Nanopartikeln um Silberig), Kupfer-(Cu), Cobalt-(Co), Eisen-(Fe), Iridiυm-(lr), Rhodium-(Rh), Palladium-(Pd), Platin-(Pt), GoId-(Au), Ruthenium-(Ru), (Nickel- (Ni), Zink- (Zn),12. A method according to any one of claims 1 to 11, characterized in that it is the manufactured nanoparticles to Silberig), copper (Cu), cobalt (Co), iron (Fe), Iridiυm- (lr) , Rhodium (Rh), palladium (Pd), platinum (Pt), gold (Au), ruthenium (Ru), (nickel (Ni), zinc (Zn),
Cadmium- (Cd), Mangan- (Mn), Rhenium- (Re), Chrom- (Cr), Molybdän- (Mo), Wolfram- (W), Vanadium- (V), Niob- (Nb), Tantal- (Ta), Titan- (Ti), Zirkonium- (Zr), Hafnium- (Hf), Scandium- (Sc) oder Yttriumnanopartikel (Y) handelt.Cadmium (Cd), manganese (Mn), rhenium (Re), chromium (Cr), molybdenum (Mo), tungsten (W), vanadium (V), niobium (Nb), tantalum (Ta), titanium (Ti), zirconium (Zr), hafnium (Hf), scandium (Sc) or yttrium nanoparticles (Y).
13. Ein Verfahren gemäß mindestens einem der Ansprüche 1 bis 11 dadurch gekennzeichnet, dass nach der Isolierung der Metallnanopartikel die verwendete ionische Flüssigkeit zurückgewonnen, gereinigt und für weitere Umsetzungen wiederverwendet wird.13. A method according to any one of claims 1 to 11, characterized in that after the isolation of the metal nanoparticles, the ionic liquid used is recovered, purified and reused for further reactions.
14. Verwendung der gemäß mindestens einem der Ansprüche 1 bis 9 erhaltenen Metallnanopartikel-Dispersion direkt als aktives Material in katalytischen Prozessen.14. Use of the metal nanoparticle dispersion obtained according to at least one of claims 1 to 9 directly as an active material in catalytic processes.
15. Verwendung der gemäß mindestens einem der Ansprüche 1 bis 9 erhaltenen Metallnanopartikel-Dispersion direkt als aktiver Sensorbestandteil.15. Use of the metal nanoparticle dispersion obtained according to at least one of claims 1 to 9 directly as an active sensor component.
16. Verwendung der gemäß mindestens einem der Ansprüche 1 bis 9 erhaltenen Metallnanopartikel-Dispersion direkt oder nach einem nachgelagerten Formulierungsschritt als antimikrobieller Anstrich oder als Dekontaminationsanstrich. 16. Use of the metal nanoparticle dispersion obtained according to at least one of claims 1 to 9 directly or after a downstream formulation step as an antimicrobial coating or as a decontamination paint.
PCT/EP2008/006768 2007-08-17 2008-08-18 Method for the production and stabilization of functional metal nanoparticles in ionic liquids WO2009024312A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007038879.0 2007-08-17
DE102007038879A DE102007038879A1 (en) 2007-08-17 2007-08-17 Process for the preparation and stabilization of functional metal nanoparticles in ionic liquids

Publications (2)

Publication Number Publication Date
WO2009024312A2 true WO2009024312A2 (en) 2009-02-26
WO2009024312A3 WO2009024312A3 (en) 2009-12-23

Family

ID=40279507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/006768 WO2009024312A2 (en) 2007-08-17 2008-08-18 Method for the production and stabilization of functional metal nanoparticles in ionic liquids

Country Status (2)

Country Link
DE (1) DE102007038879A1 (en)
WO (1) WO2009024312A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013852A2 (en) 2010-07-30 2012-02-02 Universidade De Santiago De Compostela Method for the preparation of nanoparticles in ionic liquids
CN103691966A (en) * 2014-01-06 2014-04-02 中南大学 Method for preparing silver nanoparticles based on poly(2-acrylamino-2-methyl propanesulfonic acid)
WO2014096732A1 (en) 2012-12-21 2014-06-26 Centre National De La Recherche Scientifique (Cnrs) Metal nano-catalysts in glycerol and applications in organic synthesis
CN109490522A (en) * 2018-12-04 2019-03-19 北京倍肯恒业科技发展股份有限公司 A kind of nano colloid gold and the preparation method and application thereof
CN111203545A (en) * 2020-01-16 2020-05-29 河南科技大学 Preparation method of chrysanthemum-shaped Pd nanoparticles regulated and controlled by ionic liquid
CN111922360A (en) * 2020-10-19 2020-11-13 西安宏星电子浆料科技股份有限公司 Preparation method of nano copper powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032572A2 (en) * 1998-12-04 2000-06-08 Symyx Technologies Combinatorial discovery and testing of ionic liquids
WO2007001355A2 (en) * 2004-09-08 2007-01-04 Rensselaer Polytechnic Institute Enhanced stability of proteins immobilized on nanoparticles
WO2008145835A2 (en) * 2007-04-26 2008-12-04 I.F.P. Method for hydrogenating an aromatic charge using as a catalyst a suspension of metal nanoparticles containing a nitrogen ligand in an ionic liquid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108893C5 (en) 2001-02-23 2011-01-13 Rolf Prof. Dr. Hempelmann Process for the production of metals and their alloys
US20070101824A1 (en) * 2005-06-10 2007-05-10 Board Of Trustees Of Michigan State University Method for producing compositions of nanoparticles on solid surfaces

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032572A2 (en) * 1998-12-04 2000-06-08 Symyx Technologies Combinatorial discovery and testing of ionic liquids
WO2007001355A2 (en) * 2004-09-08 2007-01-04 Rensselaer Polytechnic Institute Enhanced stability of proteins immobilized on nanoparticles
WO2008145835A2 (en) * 2007-04-26 2008-12-04 I.F.P. Method for hydrogenating an aromatic charge using as a catalyst a suspension of metal nanoparticles containing a nitrogen ligand in an ionic liquid

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FONSECA ET AL: "Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids" JOURNAL OF COLLOID AND INTERFACE SCIENCE, ACADEMIC PRESS, NEW YORK, NY, US, Bd. 301, Nr. 1, 1. September 2006 (2006-09-01), Seiten 193-204, XP005569349 ISSN: 0021-9797 *
FONSECA G S ET AL: "The use of imidazolium ionic liquids for the formation and stabilization of Ir DEG and Rh DEG nanoparticles: efficient catalysts for the hydrogenation of arenes" CHEMISTRY - A EUROPEAN JOURNAL, WILEY - V C H VERLAG GMBH & CO. KGAA, WEINHEIM, DE, Bd. 9, 1. Januar 2003 (2003-01-01), Seiten 3263-3269, XP002462143 ISSN: 0947-6539 in der Anmeldung erwähnt *
REDEL E., E.A.: "First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume" INORGANIC CHEMISTRY, Bd. 47, Nr. 1, 12. August 2007 (2007-08-12), Seiten 14-16, XP002552684 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013852A2 (en) 2010-07-30 2012-02-02 Universidade De Santiago De Compostela Method for the preparation of nanoparticles in ionic liquids
WO2014096732A1 (en) 2012-12-21 2014-06-26 Centre National De La Recherche Scientifique (Cnrs) Metal nano-catalysts in glycerol and applications in organic synthesis
CN103691966A (en) * 2014-01-06 2014-04-02 中南大学 Method for preparing silver nanoparticles based on poly(2-acrylamino-2-methyl propanesulfonic acid)
CN103691966B (en) * 2014-01-06 2015-07-29 中南大学 A kind of method preparing nano silver particles based on poly-(2-acrylamide-2-methylpro panesulfonic acid)
CN109490522A (en) * 2018-12-04 2019-03-19 北京倍肯恒业科技发展股份有限公司 A kind of nano colloid gold and the preparation method and application thereof
CN109490522B (en) * 2018-12-04 2022-03-11 北京倍肯恒业科技发展股份有限公司 Nano colloidal gold and preparation method and application thereof
CN111203545A (en) * 2020-01-16 2020-05-29 河南科技大学 Preparation method of chrysanthemum-shaped Pd nanoparticles regulated and controlled by ionic liquid
CN111203545B (en) * 2020-01-16 2022-09-13 河南科技大学 Preparation method of chrysanthemum-shaped Pd nanoparticles regulated and controlled by ionic liquid
CN111922360A (en) * 2020-10-19 2020-11-13 西安宏星电子浆料科技股份有限公司 Preparation method of nano copper powder

Also Published As

Publication number Publication date
DE102007038879A1 (en) 2009-02-19
WO2009024312A3 (en) 2009-12-23

Similar Documents

Publication Publication Date Title
EP2519471B1 (en) Synthesis of nanoparticles by means of ionic liquids
EP3177396B1 (en) Method for producing an adsorbent from organometallic framework structures (mof)
EP2295398B1 (en) Method for producing ionic liquids, ionic solids or mixtures thereof
WO2009024312A2 (en) Method for the production and stabilization of functional metal nanoparticles in ionic liquids
EP1182196B1 (en) Halogen-free preparation of ionic fluids
EP1360344B1 (en) Electrochemical production of nanoscale metal (mixed) oxides
EP1711472A1 (en) Mehtod for producing ionic liquids
DE19840842A1 (en) Electrochemical production of amorphous or crystalline metal oxides with particle sizes in the nanometer range
EP1137625A1 (en) Methods for producing or purifying onium hydroxides by means of electrodialysis
EP3732315A2 (en) Method for producing a functionalized semiconductor or conductor material and use thereof
WO2006053362A2 (en) Method for depositing layers from ionic liquids
DE102010030293A1 (en) Electrode for electrolytic chlorine extraction
WO2012107032A1 (en) Process for producing a catalyst comprising at least one transition metal on a nitrogen-modified porous carbon support
DE19623062C2 (en) Process for the preparation of low-salt silica sol dispersions in low-boiling alcohols
EP1495036B1 (en) Method for the production of monohydro-perfluoroalkanes, bis(perfluoroalkyl)phosphinates, and perfluoroalkylphosphonates
DE102007045878B4 (en) Process for the preparation of metal-containing nanoparticles
WO2005023422A2 (en) Production and use of ionic liquids containing thiocyanato anions
WO2016059102A1 (en) Production of vanadyl sulfate from vanadium pentoxide
WO2004054991A1 (en) Ionic liquids comprising [n(cf3)2]- anions
DE102008029248B4 (en) Process for the preparation of inorganic fullerene-like metal disulfide nanostructures, nanostructures prepared therefrom and their use
DE102011007559A1 (en) Electrochemical coating of a substrate surface with aluminum using an electrolyte, which is produced by e.g. dissolving or suspending aluminum trihalides in a non-ionic solvents, adding at least one ionic liquid or a solvent mixture
EP2742028B1 (en) Process for the purification of ionic liquids
DE2239800C3 (en) Tertiary perfluoroamino ethers and processes for their preparation
DE102018211178A1 (en) Process for doping H2081Ti12O25 with metal ions and using the doped H2Ti12O25
DE102011007566A1 (en) Preparing composition of aluminum trihalide and solvent, useful for electrochemical coating of substrate with aluminum, comprises e.g. dissolving or suspending aluminum trihalide in cycloaliphatic solvent and adding required solvent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08785599

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 08785599

Country of ref document: EP

Kind code of ref document: A2