WO2009010544A1 - Behälter zur aufnahme eines fluids - Google Patents

Behälter zur aufnahme eines fluids Download PDF

Info

Publication number
WO2009010544A1
WO2009010544A1 PCT/EP2008/059341 EP2008059341W WO2009010544A1 WO 2009010544 A1 WO2009010544 A1 WO 2009010544A1 EP 2008059341 W EP2008059341 W EP 2008059341W WO 2009010544 A1 WO2009010544 A1 WO 2009010544A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
insulating layer
inner container
container according
outer shell
Prior art date
Application number
PCT/EP2008/059341
Other languages
English (en)
French (fr)
Inventor
Josef Mikl
Original Assignee
Josef Mikl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Josef Mikl filed Critical Josef Mikl
Priority to CN200880024985A priority Critical patent/CN101754913A/zh
Priority to MX2010000713A priority patent/MX2010000713A/es
Priority to EP08775160A priority patent/EP2176143A1/de
Priority to US12/452,718 priority patent/US20100282764A1/en
Priority to CA2693194A priority patent/CA2693194A1/en
Priority to BRPI0814089-8A2A priority patent/BRPI0814089A2/pt
Publication of WO2009010544A1 publication Critical patent/WO2009010544A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/12Large containers rigid specially adapted for transport
    • B65D88/128Large containers rigid specially adapted for transport tank containers, i.e. containers provided with supporting devices for handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/74Large containers having means for heating, cooling, aerating or other conditioning of contents
    • B65D88/748Large containers having means for heating, cooling, aerating or other conditioning of contents for tank containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/06Coverings, e.g. for insulating purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene

Definitions

  • Container for receiving a fluid
  • the present invention relates to a container for holding a fluid, comprising a rigid outer shell, which is formed substantially in one piece as a closed container, an insulating layer which is supported on the outer shell surface and at least one inner container, which is supported flat against the insulating layer.
  • the transport of goods in containers is becoming increasingly important due to the simple logistics. This also applies to liquids and gases, ie fluids that are transported in so-called tank containers.
  • the conventional tank container is constructed so that inside a cuboid frame, which has the standard dimensions of a container, an inner container is attached, which receives the fluid. In many cases it is necessary to keep the fluid at a certain temperature. In these cases, the inner container is covered with an insulating layer.
  • the application of the insulating layer is relatively complex and there is always the risk that the insulating layer is damaged during the handling of the container, as it is freely accessible through the interstices of the frame.
  • Another disadvantage of the conventional tank container is that the inner container must be made sufficiently stable to accommodate the required loads can. These are in particular the weight of the content and the pressure forces due to the internal pressure. Due to these facts, conventional tank containers are heavy and expensive.
  • a tank container which has a thin-walled inner container, which is surrounded on its outer side with an insulating layer.
  • the insulating layer takes in addition to the thermal insulation and the task of supporting the inner container, since this alone would not be able to withstand the loads acting on it.
  • Such a container solves some of the problems described above and can be particularly easily and material-saving formed.
  • it is critical that the insulating layer must derive the supporting forces of the inner container on a frame-shaped outer structure and therefore itself must have a relatively high strength. When choosing the insulating material, therefore, a compromise between insulating effect and mechanical strength must be considered.
  • such a container can be produced only with great effort and costly.
  • the object of the present invention is to avoid these disadvantages and to provide a container which has a simple structure, is robust and has good insulation properties with low weight. In particular, it should be possible to represent a high filling volume with given external dimensions.
  • the insulating layer has inserts made of vacuum insulation panels (VIP).
  • VIP vacuum insulation panels
  • An essential aspect of the present invention is initially that a standard container can be used as the outer shell. Such containers are available in large numbers, mass-produced inexpensively and extremely robust to handle.
  • Another essential aspect of the invention is that the insulating layer can be supported substantially over the entire surface of the outer shell, so that it is mechanically subjected only to a small pressure load. In this way it is possible to select an insulating material which has optimum insulation properties, since the mechanical properties are largely uncritical.
  • the insulating layer is protected by the outer shell against mechanical damage, so that the containers are very durable. Depending on the given requirements, a compromise between thermal insulation and volume of the inner container can be discussed in the container according to the invention.
  • brackets or the like are provided, which thermally connect the inner container with the outer shell and thus represent thermal bridges that degrade the insulation properties.
  • VIPs vacuum insulation panels
  • the goal of a large filling volume is achieved in particular by the fact that the insulating layer has inserts made of vacuum insulation panels (VIP).
  • VIPs are used extensively when it comes to achieving the highest possible insulation values.
  • VIPs consist of a gas- and water-vapor-tight envelope and a filling material housed in the envelope, wherein after evacuation to a negative pressure, the envelope is closed.
  • Such vacuum insulation panels are eg in the DE 198 14 271 A, DE 298 09 807 U or DE 298 11 136.5 A.
  • silica is pressed as a filler to a plate and then the plate is sealed in a vacuum in a gas and water vapor-tight film.
  • Glass fiber, open-cell plastic foams, silicic acid, and degassed polyurethane foam from waste refrigerators have hitherto been known as further fillers for producing VIP. It is also known to fill filler loose in a wrapper and then to evacuate the wrapper. This gives the panel its stability.
  • the envelopes may be made of metal foil, plastic films or a combination of such films.
  • Important properties of vacuum panels and thus also of their fillers are low thermal conductivity, pressure resistance, thermal resistance and the highest possible heat capacity dimensional stability.
  • a particularly simple production and a high-quality insulating layer is achieved when the insulating layer is foamed substantially in situ. Only at the end faces of the inner container, it may be advantageous to keep the inner container freely accessible to make the appropriate maintenance can. In this context, it is particularly advantageous if the required fittings, such as shut-off valves, filling openings, manholes and the like are arranged in this area and thus freely accessible. In order to ensure the insulating effect, appropriate moldings of insulating material are provided to complete the insulating layer here. Alternatively, insulating foils which are foamed in situ may also be provided on the end faces, but these foils are provided inside foils in order to prevent sticking to the doors of the container or to the fittings.
  • An alternative solution provides that the entire insulating layer is composed of a plurality of moldings. In this way it is possible to remove the inner container as needed and to use the container that forms the outer shell, otherwise.
  • a particular advantage of the solution according to the invention is that even if the inner container is designed as a pressure vessel, it is not necessarily required that it has a circular cross-section. It is quite possible and useful, the inner container in cross section Rectangular shape with rounded corners to avoid dead space and increase the volume accordingly.
  • At least one recess for a heat transfer medium is provided in the region of the inner container.
  • a heat transfer medium in the interior of the insulating layer, which is sufficient to comply with the temperature limits.
  • this heat transfer medium can be ice or dry ice.
  • the heat transfer medium can be, for example, hot water or a chemical which has a phase transition in a suitable temperature range.
  • a recess may be provided in the insulating layer. It is particularly favorable, however, if the heat transfer medium is arranged in a further flexible container, which is arranged together with the inner container within the insulating layer.
  • a closable maintenance opening can be provided in the area of the doors. This makes it possible to provide access to the faucets without having to open the doors themselves. Under certain circumstances, the doors themselves can be permanently closed, for example welded, for the operation of the container, since the operationally required manipulations can be made via the service openings. If necessary, it is also possible to provide further maintenance openings in other places, such as the top of the container.
  • FIG. 1 shows a longitudinal section through a container according to the invention with a horizontal sectional plane.
  • Figure 2 is a section along line II-II in Fig. 1. and FIG. 3 shows a section along line III-III in FIG. 1.
  • the container of Fig. 1 consists of an outer shell 1, which is designed as a standard container. Inside the outer shell 1, an inner container 2 is arranged, which is designed as a thin-walled stainless steel tank depending on the static requirements with a wall thickness of, for example, 0.8 mm.
  • the inner container 2 is supported flat on an insulating layer 3, which in turn is supported on the inside of the outer shell 1.
  • the insulating layer 3 is largely foamed in one piece in situ and consists of polyurethane with a density of about 30 kg / m 3 to 80 kg / m 3 .
  • doors 6 are provided to allow access to the interior. In this area, fittings, such as shut-off valves 4 or a manhole 5 are provided.
  • molded parts 7 are provided of insulating material, which complete the insulating layer 3 in this area.
  • a cleaning line (CIP line) 8 is used to clean the inner container. 2
  • FIG. 11 shows an insert of a vacuum insulation panel (VIP) in the region of a side wall.
  • VIP vacuum insulation panel
  • inserts can also be provided on the other walls laterally, above and below.
  • the inserts extend only in areas of low wall thickness of the insulating layer 3 and may be formed relatively small in circular inner containers 2. This achieves optimum cost efficiency.
  • a closable maintenance opening 10 is provided within the door 6, which serves for inspection purposes and for filling and emptying.
  • the inner container 2 is formed out of round and has a substantially rectangular shape with rounded corners. In this way, the internal volume can be maximized.
  • the present invention makes it possible to present tank containers cost-effective, robust and with optimum insulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Packages (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Die Erfindung betrifft einen Behälter zur Aufnahme eines Fluids, umfassend eine starre Außenhülle (1), eine Isolierschicht (3) und mindestens einen Innenbehälter (2), der sich flächig an der Isolierschicht (3) abstützt. Eine robuste und kostengünstige Lösung wird dadurch erreicht, dass die Außenhülle (1) im Wesentlichen einstückig als geschlossener Container ausgebildet ist und dass sich die Isolierschicht (3) flächig an der Außenhülle (1) abstützt.

Description

Behälter zur Aufnahme eines Fluids
Die vorliegende Erfindung betrifft einen Behälter zur Aufnahme eines Fluids, umfassend eine starre Außenhülle, die im Wesentlichen einstückig als geschlossener Container ausgebildet ist, eine Isolierschicht, die sich flächig an der Außenhülle abstützt und mindestens einen Innenbehälter, der sich flächig an der Isolierschicht abstützt.
Der Transport von Gütern in Containern gewinnt aufgrund der einfachen Logistik stark an Bedeutung. Dies betrifft auch Flüssigkeiten und Gase, also Fluide, die in sogenannten Tankcontainern befördert werden. Der herkömmliche Tankcontainer ist dabei so aufgebaut, dass im Inneren eines quaderförmigen Rahmens, der die Normabmessungen eines Containers besitzt, ein Innenbehälter befestigt ist, der das Fluid aufnimmt. In vielen Fällen ist es erforderlich, das Fluid auf einer bestimmten Temperatur zu halten. In diesen Fällen wird der Innenbehälter mit einer Isolierschicht umhüllt. Das Aufbringen der Isolierschicht ist dabei relativ aufwändig und es besteht stets die Gefahr, dass die Isolierschicht beim Umschlag des Containers beschädigt wird, da sie durch die Zwischenräume des Rahmens hindurch frei zugänglich ist. Ein weiterer Nachteil der herkömmlichen Tankcontainer besteht darin, dass der Innenbehälter ausreichend stabil ausgebildet sein muss, um die erforderlichen Belastungen aufnehmen zu können. Dabei handelt es sich insbesondere um das Gewicht des Inhaltes und die Druckkräfte aufgrund des Innendruckes. Aufgrund dieser Tatsachen sind herkömmliche Tankcontainer schwer und aufwändig.
Aus der EP 0 025 792 B ist ein Tankbehälter bekannt, der einen dünnwandigen Innenbehälter aufweist, der an seiner Außenseite mit einer Isolierschicht umgeben ist. Die Isolierschicht übernimmt dabei neben der thermischen Isolierung auch die Aufgabe, den Innenbehälter abzustützen, da dieser für sich allein genommen nicht in der Lage wäre, den auf ihn wirkenden Belastungen standzuhalten. Ein solcher Behälter löst einige der oben beschriebenen Probleme und kann insbesondere leicht und materialsparend ausgebildet werden. Kritisch ist jedoch dabei, dass die Isolierschicht die Stützkräfte des Innenbehälters auf eine rahmenförmige Außenstruktur ableiten muss und daher selbst eine relativ große Festigkeit aufweisen muss. Bei der Auswahl des Isoliermaterials muss daher ein Kompromiss zwischen Isolierwirkung und mechanischer Belastbarkeit eingegangen werden. Zudem ist ein solcher Behälter nur unter großem Aufwand herzustellen und kostenintensiv. Weitere bekannte Lösungen zur Verbesserung des Transportsystems sind in der DE 25 41 375 A, der US 3,115,982 A, der DE 712 09 59 U und ferner in der DE 37 02 792 A gezeigt. Alle diese Lösungen sind vergleichsweise aufwändig und besitzen eine unzureichende thermische Isolation. Weitere bekannte Lösungen sind in der DE 26 36 310 A und in der DE 28 56 442 A beschrieben.
Aufgabe der vorliegenden Erfindung ist es, diese Nachteile zu vermeiden und einen Behälter anzugeben, der einen einfachen Aufbau besitzt, robust ist und bei geringem Gewicht gute Isolationseigenschaften aufweist. Insbesondere soll es möglich sein, bei vorgegebenen Außenabmessungen ein hohes Füllvolumen darzustellen.
Erfindungsgemäß werden diese Aufgaben dadurch gelöst, dass die Isolierschicht Einlagen aus Vakuum-Isolationspaneels (VIP) aufweist. Ein wesentlicher Aspekt der vorliegenden Erfindung ist zunächst, dass als Außenhülle ein Standardcontainer verwendet werden kann. Solche Container sind in großer Zahl verfügbar, serienmäßig kostengünstig herstellbar und in der Handhabung äußerst robust. Ein weiterer wesentlicher Aspekt der Erfindung besteht darin, dass sich die Isolierschicht im Wesentlichen vollflächig an der Außenhülle abstützen kann, so dass sie mechanisch lediglich einer geringen Druckbelastung unterworfen ist. Auf diese Weise ist es möglich, ein Isoliermaterial auszuwählen, das optimale Isolationseigenschaften aufweist, da die mechanischen Eigenschaften weitgehend unkritisch sind. Darüber hinaus ist die Isolierschicht durch die Außenhülle vor mechanischer Beschädigung geschützt, so dass die Behälter sehr langlebig sind. Je nach den gegebenen Erfordernissen kann beim erfindungsgemäßen Behälter ein Kompromiss zwischen thermischer Isolation und Rauminhalt des Innenbehälters eingegangen werden.
Ein weiterer wichtiger Aspekt der vorliegenden Erfindung ist es, dass keine Halterungen oder dgl. vorgesehen sind, die den Innenbehälter thermisch mit der Außenhülle verbinden und so Wärmebrücken darstellen, die die Isolationseigenschaften verschlechtern.
Das Ziel eines großen Füllvolumens wird insbesondere dadurch erreicht, dass die Isolierschicht Einlagen aus Vakuum-Isolatiospaneels (VIP) aufweist. VIPs werden in großem Umfang eingesetzt, wenn es darauf ankommt, größtmögliche Isolationswerte zu erzielen. Es sind Anwendungen in Kühlgeräten, mobilen Kühlboxen und Kühlwänden für Kühlhäuser und Kühlfahrzeuge bekannt. VIPs bestehen aus einer gas- und wasserdampfdichten Umhüllung und einem in der Umhüllung untergebrachten Füllmaterial, wobei nach Evakuierung auf einen Unterdruck die Umhüllung verschlossen wird. Derartige Vakuumisolationspaneele sind z.B. in der DE 198 14 271 A, der DE 298 09 807 U oder der DE 298 11 136.5 A beschrieben. Üblicherweise wird Kieselsäure als Füllmaterial zu einer Platte verpresst und anschließend wird die Platte im Vakuum in eine gas- und wasserdampfdichte Folie eingesiegelt.
Als weitere Füllstoffe zur Herstellung von VIP sind bisher Glasfaser, offenzellige Kunststoffschäume, Kieselsäure, und entgaster PUR-Schaum aus Altkühlgeräten bekannt. Auch ist es bekannt, Füllmaterial lose in eine Umhüllung einzufüllen und dann die Umhüllung zu evakuieren. Hierdurch erhält das Paneel seine Stabilität.
Die Umhüllungen können aus Metall(-folien), Kunststofffolien oder aus einer Kombination solcher Folien bestehen. Wichtige Eigenschaften an Vakuumpaneele und somit auch an deren Füllstoffe sind geringe Wärmeleitfähigkeit, Druckbeständigkeit thermische Beständigkeit bzw. möglichst hohe Wärmekapazität Formstabilität. Durch den Einsatz der VIPs in den kritischen Bereichen geringer Wandstärke, d.h. in der Regel im mittleren Bereich der Wände, kann ein Innenbehälter mit großem Durchmesser eingesetzt werden, da die erforderlichen Isolationswerte auch mit vergleichsweise geringen Wandstärken darstellbar sind.
Eine besonders einfache Herstellung und eine hochwertige Isolierschicht wird erreicht, wenn die Isolierschicht im Wesentlichen in situ geschäumt ist. Lediglich an den Stirnflächen des Innenbehälters kann es von Vorteil sein, den Innenbehälter frei zugänglich zu halten, um die entsprechenden Wartungsarbeiten vornehmen zu können. In diesem Zusammenhang ist es insbesondere von Vorteil, wenn die erforderlichen Armaturen, wie Absperrventile, Füllöffnungen, Mannlöcher und dergleichen in diesem Bereich angeordnet und somit frei zugänglich sind. Um die Isolierwirkung zu gewährleisten, sind entsprechende Formkörper aus Isoliermaterial vorgesehen, um die Isolierschicht hier zu vervollständigen. Alternativ können an den Stirnseiten aber auch in situ geschäumte Isolationskörper vorgesehen sein, die jedoch innerhalb von Folien vorgesehen sind, um das Ankleben an die Türen des Containers oder an die Armaturen zu verhindern.
Eine alternative Lösung sieht vor, dass die gesamte Isolierschicht aus einer Mehrzahl von Formkörpern zusammengesetzt ist. Auf diese Weise ist es möglich, bei Bedarf den Innenbehälter zu entnehmen und den Container, der die Außenhülle bildet, anderweitig zu benutzen.
Ein besonderer Vorteil der erfindungsgemäßen Lösung besteht darin, dass es auch dann, wenn der Innenbehälter als Druckbehälter ausgebildet ist, nicht notwendiger Weise erforderlich ist, dass dieser einen kreisförmigen Querschnitt aufweist. Es ist durchaus möglich und sinnvoll, den Innenbehälter im Querschnitt rechteckig mit abgerundeten Ecken auszubilden, um Toträume zu vermeiden und das Volumen entsprechend zu vergrößern.
Vorzugsweise ist im Bereich des Innenbehälters mindestens eine Ausnehmung für ein Wärmeträgermedium vorgesehen. Für längere Transporte und kritische Güter kann auch eine sehr gute Isolierung nicht ausreichend sein, um das erforderliche Temperaturniveau einzuhalten. Um die Verwendung von Kühl- oder Wärmeaggregaten zu vermeiden, kann man im Inneren der Isolierschicht ein Wärmeträgermedium vorsehen, das dazu beträgt, die Temperaturgrenzwerte einzuhalten. Bei Kühltransporten kann dieses Wärmeträgermedium Eis oder Trockeneis sein, Bei Transporten bei denen das Gut eine bestimmte Mindesttemperatur nicht unterschreiten darf, kann das Wärmeträgermedium beispielsweise Heißwasser sein oder eine Chemikalie die in einem passenden Temperaturbereich einen Phasenübergang aufweist. Zur Aufnahme des Wärmeträgermediums kann in der Isolierschicht eine Ausnehmung vorgesehen sein. Besonders günstig ist es jedoch, wenn das Wärmeträgermedium in einem weiteren flexiblen Behälter angeordnet ist, der gemeinsam mit dem Innenbehälter innerhalb der Isolierschicht angeordnet ist.
Weiters kann im Bereich der Türen eine verschließbare Wartungsöffnung vorgesehen sein. Dadurch ist es möglich, den Zugang zu den Armaturen zu ermöglichen, ohne die Türen selbst öffnen zu müssen. Die Türen selbst können unter Umständen für den Betrieb des Containers dauerhaft verschlossen, etwa verschweißt werden, da die betriebsmäßig erforderlichen Manipulationen über die Wartungsöffnungen vorgenommen werden können. Bei Bedarf ist es auch möglich, weitere Wartungsöffnungen an anderen Stellen, etwa der Oberseite, des Containers vorzusehen.
In der Folge wird die vorliegende Erfindung anhand des in den Figuren dargestellten Ausführungsbeispiels näher erläutert. Es zeigen :
Fig. 1 einen Längsschnitt durch einen erfindungsgemäßen Behälter mit waagrechter Schnittebene;
Fig. 2 einen Schnitt nach Linie II-II in Fig. 1; und Fig. 3 einen Schnitt nach Linie III-III in Fig. 1.
Der Behälter von Fig. 1 besteht aus einer Außenhülle 1, die als Normcontainer ausgebildet ist. Im Inneren der Außenhülle 1 ist ein Innenbehälter 2 angeordnet, der als dünnwandiger Edelstahltank je nach statischen Erfordernissen mit einer Wandstärke von beispielsweise 0,8 mm ausgebildet ist. Der Innenbehälter 2 stützt sich flächig an einer Isolierschicht 3 ab, die sich ihrerseits an der Innenseite der Außenhülle 1 abstützt. Die Isolierschicht 3 ist weitgehend einstückig in situ geschäumt und besteht aus Polyurethan mit einem Raumgewicht von etwa 30 kg/m3 bis 80 kg/m3. An einer Stirnseite der Außenhülle 1 sind, wie bei Containern üblich, Türen 6 vorgesehen, um den Zugang ins Innere zu ermöglichen. In diesem Bereich sind auch Armaturen, wie etwa Absperrventile 4 oder ein Mannloch 5 vorgesehen. Im Bereich zwischen den Türen 6 und dem Innenbehälter 2 sind Formteile 7 aus Isoliermaterial vorgesehen, die die Isolierschicht 3 in diesem Bereich vervollständigen. Eine Reinigungsleitung (CIP-Leitung) 8 dient zur Reinigung des Innenbehälters 2.
Mit 11 ist eine Einlage aus einem Vakuum-Isolationspaneel (VIP) im Bereich einer Seitenwand dargestellt. In analoger Weise können solche Einlagen auch an den anderen Wänden seitlich, oben und unten vorgesehen sein. Die Einlagen erstrecken sich nur im Bereichen geringer Wandstärke der Isolierschicht 3 vorgesehen und kann bei kreisrunden Innenbehältern 2 relativ klein ausgebildet sein. Dadurch wird ein Optimum an Kosteneffizienz erreicht.
Weiters ist innerhalb der Tür 6 eine verschließbare Wartungsöffnung 10 vorgesehen, die zu Inspektionszwecken und zur Befüllung und Entleerung dient.
Aus Fig. 3 ist ersichtlich, dass der Innenbehälter 2 unrund ausgebildet ist und im Wesentlichen eine rechteckige Form mit abgerundeten Ecken aufweist. Auf diese Weise kann das Innenvolumen maximiert werden.
Die vorliegende Erfindung ermöglicht es, Tankcontainer kostengünstig, robust und mit optimaler Isolierwirkung darzustellen.

Claims

PATENTANSPRÜCHE
1. Behälter zur Aufnahme eines Fluids, umfassend eine starre Außenhülle (1), die im Wesentlichen einstückig als geschlossener Container ausgebildet ist, eine Isolierschicht (3), die sich flächig an der Außenhülle (1) abstützt und mindestens einen Innenbehälter (2), der sich flächig an der Isolierschicht (3) abstützt, dadurch gekennzeichnet, dass die Isolierschicht (3) Einlagen (11) aus Vakuum-Isolationspaneels (VIP) aufweist.
2. Behälter nach Anspruch 1, dadurch gekennzeichnet, dass die Vakuum- Isolatiospaneels (VIP) in den Bereichen geringster Dicke der Isolierschicht (3) angeordnet sind.
3. Behälter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Isolierschicht (3) zumindest unterhalb, oberhalb und an den Seiten des Innenbehälters (2) in situ geschäumt ist.
4. Behälter nach Anspruch 3, dadurch gekennzeichnet, dass die die Isolierschicht (3) an mindestens einer Stirnseite des Innenbehälters (2) in situ innerhalb einer Schutzfolie geschäumt ist.
5. Behälter nach Anspruch 3, dadurch gekennzeichnet, dass die Isolierschicht (3) an mindestens einer Stirnseite des Innenbehälters (2) aus mindestens einem starren Formteil besteht.
6. Behälter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Isolierschicht (3) aus mehreren starren Formteilen aufgebaut ist.
7. Behälter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Innenbehälter (2) Armaturen (4, 5) aufweist, die an einer Stirnseite angeordnet sind.
8. Behälter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Innenbehälter (2) eine unrunde Querschnittsform aufweist, die an den rechteckigen Querschnitt der Außenhülle (1) angepasst ist.
9. Behälter nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Außenhülle (1) als Normcontainer ausgebildet ist.
10. Behälter nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass im Bereich des Innenbehälters (2) mindestens eine Ausnehmung für ein Wärmeträgermedium vorgesehen ist.
11. Behälter nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass im Bereich der Türen (6) eine verschließbare Wartungsöffnung (10) vorgesehen ist.
PCT/EP2008/059341 2007-07-19 2008-07-17 Behälter zur aufnahme eines fluids WO2009010544A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200880024985A CN101754913A (zh) 2007-07-19 2008-07-17 用于容纳流体的容器
MX2010000713A MX2010000713A (es) 2007-07-19 2008-07-17 Contenedor de fluidos.
EP08775160A EP2176143A1 (de) 2007-07-19 2008-07-17 Behälter zur aufnahme eines fluids
US12/452,718 US20100282764A1 (en) 2007-07-19 2008-07-17 Fluid container
CA2693194A CA2693194A1 (en) 2007-07-19 2008-07-17 Fluid container
BRPI0814089-8A2A BRPI0814089A2 (pt) 2007-07-19 2008-07-17 Recipiente para acomodação de um fluido

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0114707A AT505660B1 (de) 2007-07-19 2007-07-19 Behälter zur aufnahme eines fluids
ATA1147/2007 2007-07-19

Publications (1)

Publication Number Publication Date
WO2009010544A1 true WO2009010544A1 (de) 2009-01-22

Family

ID=39789860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/059341 WO2009010544A1 (de) 2007-07-19 2008-07-17 Behälter zur aufnahme eines fluids

Country Status (10)

Country Link
US (1) US20100282764A1 (de)
EP (1) EP2176143A1 (de)
KR (1) KR20100054801A (de)
CN (1) CN101754913A (de)
AT (1) AT505660B1 (de)
BR (1) BRPI0814089A2 (de)
CA (1) CA2693194A1 (de)
MX (1) MX2010000713A (de)
RU (1) RU2010105849A (de)
WO (1) WO2009010544A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083824A1 (en) * 2014-11-27 2016-06-02 Tetainer Uk Ltd Insulated tank with internal heating system
EP3932828A1 (de) * 2020-07-02 2022-01-05 Enregis GmbH Einrichtung zum speichern eines fluids

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443223B2 (en) 2010-01-07 2016-09-13 Bimodal Llc System and method for hosting a social networking website having a theme of achievement
US20120067499A1 (en) * 2010-09-22 2012-03-22 Basf Se Fixing of vacuum insulation panels in cooling apparatuses
US9430791B1 (en) 2011-05-02 2016-08-30 Drake Sutton-Shearer Virtual goods having nested content and system and method for distributing the same
FR3019165B1 (fr) * 2014-03-28 2017-03-03 Total Marketing Services Installation de stockage et de distribution d'un produit, procede de fabrication et utilisation d'une telle installation
CN106939964A (zh) * 2017-03-04 2017-07-11 杭州医学院 一种热水瓶式液氮罐及内胆替换方法
RU192384U1 (ru) * 2019-06-17 2019-09-16 Анатолий Александрович Катаев Резервуар для огнетушащей жидкости

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3115982A (en) 1960-03-18 1963-12-31 Liquefreeze Company Inc Insulated freight car
DE7120959U (de) 1971-05-29 1971-11-04 Licentia Gmbh Beheizbarer Tank-Container
DE2541375A1 (de) 1975-09-17 1977-03-24 Mueller & Co Schwelmer Eisen Vorrichtung zum transport von aggressiven fluessigkeiten
DE2636310A1 (de) 1976-08-12 1978-02-16 Gerhard Dr Bock Vorrichtung zum transport von verfluessigten gasen
DE2856442A1 (de) 1978-12-28 1980-07-17 Schwieter Tank & Apparatebau Containergestell mit darin angeordnetem tank
JPS5899383A (ja) * 1981-12-10 1983-06-13 小西工機株式会社 陸送用液体収容装置
EP0025792B1 (de) 1979-03-28 1983-07-20 Dynatrans Ab Isolierter tankbehälter
DE3702792A1 (de) 1987-01-30 1988-08-11 Graaff Kg Tankcontainer
WO1994028319A1 (en) * 1993-06-02 1994-12-08 Actionenergy Limited Thermal storage device
DE102004053113A1 (de) * 2004-10-28 2006-05-04 Hubert Fuchs Tragbarer wärmeisolierter Transportbehälter
US20070034110A1 (en) * 2003-02-13 2007-02-15 Zupancich Ronald J Insulated cargo containers
EP1785337A2 (de) 2005-11-14 2007-05-16 Fahrzeugwerk Bernard Krone GmbH Aufbau für Transportfahrzeuge

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2175948A (en) * 1937-04-13 1939-10-10 Oil Well Supply Co Boiler insulation
US2962323A (en) * 1956-01-04 1960-11-29 Clarence E Mcbride Heat insulating enclosure
BE629418A (de) * 1962-03-12
US3393920A (en) * 1966-02-21 1968-07-23 Monon Trailer & Body Mfg Compa Insulated vehicle body construction
GB1436109A (en) * 1972-08-10 1976-05-19 Marine Ind Developments Ltd Storage tanks particularly for liquefied gases
US4514450A (en) * 1983-11-01 1985-04-30 Union Carbide Corporation Peg supported thermal insulation panel
US4821915A (en) * 1987-03-09 1989-04-18 Corespan, Inc. Twin wall fiberglass tank and method of producing the same
DE8800536U1 (de) * 1988-01-19 1988-03-17 Cassens, Holger, 2000 Hamburg Temperierbarer Tankcontainer für flüssige oder fließfähige Güter
US5102004A (en) * 1988-06-08 1992-04-07 Transtech Service Network, Inc. Method and apparatus for packaging refrigerated goods
US4972759A (en) * 1989-02-13 1990-11-27 Nelson Thomas E Thermal insulation jacket
US5011729A (en) * 1989-11-15 1991-04-30 Mcallister Ian R Vacuum insulated panels with concave surfaces on the surface layers
US5081761A (en) * 1990-04-17 1992-01-21 Rinehart Ronald K Double wall steel tank
FR2688293B1 (fr) * 1992-03-09 1994-06-03 Enthalpy Sa Capitonnage isolant modulaire pour enceinte fermee.
US5449081A (en) * 1993-05-21 1995-09-12 Stoughton Composites, Inc. Modular insulated intermodal container construction
US5797513A (en) * 1996-02-29 1998-08-25 Owens Corning Fiberglas Technology, Inc. Insulated vessels
US5934085A (en) * 1997-02-24 1999-08-10 Matsushita Electric Industrial Co., Ltd. Thermal insulator cabinet and method for producing the same
DE29809807U1 (de) * 1997-06-25 1998-11-19 UVT GmbH, 74918 Angelbachtal Vakuumisolationspaneel
DE19814271A1 (de) * 1998-03-31 1999-11-25 Uvt Umwelt Und Verfahrens Tech Vakuumisolationspaneele
US6098744A (en) * 1998-07-08 2000-08-08 Isuzu Ceramics Research Institute Co., Ltd. Thermal-and sound-insulating container of multilayer insulations
FR2813111B1 (fr) * 2000-08-18 2002-11-29 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante aretes longitudinales ameliorees
US6838146B2 (en) * 2002-09-09 2005-01-04 Merrill Ezra L Vacuum thermal insulation product and method for making same
US6708502B1 (en) * 2002-09-27 2004-03-23 The Regents Of The University Of California Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage
US20060086741A1 (en) * 2004-10-21 2006-04-27 Chicago Bridge & Iron Company Low temperature/cryogenic liquid storage structure

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3115982A (en) 1960-03-18 1963-12-31 Liquefreeze Company Inc Insulated freight car
DE7120959U (de) 1971-05-29 1971-11-04 Licentia Gmbh Beheizbarer Tank-Container
DE2541375A1 (de) 1975-09-17 1977-03-24 Mueller & Co Schwelmer Eisen Vorrichtung zum transport von aggressiven fluessigkeiten
DE2636310A1 (de) 1976-08-12 1978-02-16 Gerhard Dr Bock Vorrichtung zum transport von verfluessigten gasen
DE2856442A1 (de) 1978-12-28 1980-07-17 Schwieter Tank & Apparatebau Containergestell mit darin angeordnetem tank
EP0025792B1 (de) 1979-03-28 1983-07-20 Dynatrans Ab Isolierter tankbehälter
JPS5899383A (ja) * 1981-12-10 1983-06-13 小西工機株式会社 陸送用液体収容装置
DE3702792A1 (de) 1987-01-30 1988-08-11 Graaff Kg Tankcontainer
WO1994028319A1 (en) * 1993-06-02 1994-12-08 Actionenergy Limited Thermal storage device
US20070034110A1 (en) * 2003-02-13 2007-02-15 Zupancich Ronald J Insulated cargo containers
DE102004053113A1 (de) * 2004-10-28 2006-05-04 Hubert Fuchs Tragbarer wärmeisolierter Transportbehälter
EP1785337A2 (de) 2005-11-14 2007-05-16 Fahrzeugwerk Bernard Krone GmbH Aufbau für Transportfahrzeuge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083824A1 (en) * 2014-11-27 2016-06-02 Tetainer Uk Ltd Insulated tank with internal heating system
EP3932828A1 (de) * 2020-07-02 2022-01-05 Enregis GmbH Einrichtung zum speichern eines fluids

Also Published As

Publication number Publication date
US20100282764A1 (en) 2010-11-11
RU2010105849A (ru) 2011-08-27
MX2010000713A (es) 2010-06-01
CA2693194A1 (en) 2009-01-22
KR20100054801A (ko) 2010-05-25
AT505660B1 (de) 2009-03-15
AT505660A4 (de) 2009-03-15
BRPI0814089A2 (pt) 2015-02-03
EP2176143A1 (de) 2010-04-21
CN101754913A (zh) 2010-06-23

Similar Documents

Publication Publication Date Title
AT505660B1 (de) Behälter zur aufnahme eines fluids
DE10113183C1 (de) Wechselbar temperierfähiges Behältnis
EP2732225B1 (de) Vakuumisolationselement
DE60205908T2 (de) System für die wärmeisolierung rohrförmiger körper
EP3209581B1 (de) Thermoisolierter transportbehälter mit an den wänden anliegender thermoisolierung
EP1169608A1 (de) Wärmeisolierende wandung
DE1931749B2 (de) Zylindrischer tank zur aufnahme tiefsiedender verfluessigter gase
WO2018015350A1 (de) Kühlbehälter und verfahren zum transport von kryoproben
EP1571390B1 (de) Doppelwandiger Behälter mit magnetischer Aufhängung
DE10139353B4 (de) Ortveränderliche, komplett vorgefertigte Tankanlage
DE1501753A1 (de) Membran-Tankaufbauten
AT505397B1 (de) Behälter zur aufnahme eines fluids
DE102006016796B4 (de) Verbundpaneelsystem für den Bau von Behältern für tiefkalte Medien
EP0990406A2 (de) Isoliergehäuse
DE202004016939U1 (de) Tragbarer wärmeisolierter Transportbehälter
DE102004053113A1 (de) Tragbarer wärmeisolierter Transportbehälter
DE102010032309A1 (de) Fracht- und Lager-Container nach ISO-Normen, hergestellt aus faserverstärkten Kunststoffen (FK) und FK-Verbundmaterialien
WO1991019931A1 (de) Grossbehälter zur lagerung oder zum transport verflüssigter gase
EP1243525A2 (de) Transportbehältnis für Langzeittransporte mit hochisolierenden Komponenten
EP1536178A2 (de) Vakuumisolierter Kryobehälter
DE4413816A1 (de) Wärmedämmkassette und ihre Verwendung
DE29513656U1 (de) Thermisch isolierter Tank- oder Silobehälter
WO2013041068A1 (de) Stapelbarer grossraumcontainer
DE10259551A1 (de) Isolierbehälter
DE2044715A1 (de) Behalter mit Warmeisolation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880024985.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08775160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 259/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2693194

Country of ref document: CA

Ref document number: MX/A/2010/000713

Country of ref document: MX

Ref document number: 2008775160

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107003166

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010105849

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12452718

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0814089

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100118