WO2009010336A1 - Procédé de régénération d'au moins un agglomérateur de particules, et véhicule comprenant un système de post-traitement de gaz d'échappement - Google Patents

Procédé de régénération d'au moins un agglomérateur de particules, et véhicule comprenant un système de post-traitement de gaz d'échappement Download PDF

Info

Publication number
WO2009010336A1
WO2009010336A1 PCT/EP2008/057038 EP2008057038W WO2009010336A1 WO 2009010336 A1 WO2009010336 A1 WO 2009010336A1 EP 2008057038 W EP2008057038 W EP 2008057038W WO 2009010336 A1 WO2009010336 A1 WO 2009010336A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
exhaust gas
particle agglomerator
particle
Prior art date
Application number
PCT/EP2008/057038
Other languages
German (de)
English (en)
Inventor
Jörg-Roman KONIECZNY
Rolf BRÜCK
Original Assignee
Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft Für Emissionstechnologie Mbh filed Critical Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority to AT08760613T priority Critical patent/ATE520867T1/de
Priority to EP08760613A priority patent/EP2171228B1/fr
Priority to JP2010515443A priority patent/JP2010533254A/ja
Publication of WO2009010336A1 publication Critical patent/WO2009010336A1/fr
Priority to US12/686,532 priority patent/US20100175371A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/04Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the arrangement of an exhaust pipe, manifold or apparatus in relation to vehicle frame or particular vehicle parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters

Definitions

  • Process for the regeneration of at least one particle agglomerator and motor vehicle comprising an exhaust aftertreatment system
  • the present invention relates to a method for the regeneration of at least one particle agglomerator of an exhaust aftertreatment system of an internal combustion engine of a motor vehicle.
  • the invention also relates to a motor vehicle, comprising an internal combustion engine and an exhaust aftertreatment system, which is designed with at least one continuously regenerable particle agglomerator.
  • the invention relates in particular to the removal of soot particles of mobile internal combustion engines, such as diesel engines.
  • the particles entrained in the exhaust gas stream which essentially contain carbon
  • NO 2 nitrogen dioxide
  • particle agglomerators for example filters, particle separators and the like, in which the entrained particles are at least temporarily collected and deposited.
  • the particle agglomerator is heated to a level that is high enough (eg, above 800 ° C.) to react the carbon with oxygen introduced in the exhaust gas.
  • burners, heating elements, electrically heatable filters or an exothermic conversion of hydrocarbons can be used as a source of heat energy.
  • the so-called continuous regenerative conversion of particles relies on conversion of the carbonaceous particles at lower temperatures, for example below 400 ° C., using nitrogen dioxide.
  • CRT process continuous regenerative conversion of particles
  • nitrogen dioxide has a high affinity for carbon, so that contacts of the Nitrogen dioxide with the soot particles regularly forms carbon dioxide and nitrogen.
  • a practicable and cost-effective method for the regeneration of at least one particle agglomerator is to be specified, which in particular allows an on-demand passive regeneration.
  • a suitable device for such a method should be specified, which is characterized by a low pressure drop and a particularly high efficiency with small particles (for example, with a mean diameter of at most 500 nanometers).
  • the internal combustion engine is operated at least in an operating phase, that directly a sufficient proportion of nitrogen dioxide (NO 2 ) is generated in the exhaust gas to ensure a conversion of carbonaceous particles with the at least one particle agglomerator.
  • NO 2 nitrogen dioxide
  • the first particle agglomerator subsequently arranged in the internal combustion engine is regenerated in the manner proposed here. It is dispensed with a thermal regeneration, so that the reaction of carbonaceous particles takes place at temperatures below 400 0 C or even below 300 0 C.
  • the particle agglomerator may be designed in the manner of a filter, a particle separator or similar simple devices for temporarily stopping the particles.
  • the internal combustion engine is preferably a lean-burn engine, in which combustion predominantly takes place with excess air, for example in the case of the diesel engine or a so-called lean-burn engine.
  • a “regeneration phase” is understood to mean a time interval in which the amount of particles in the particle agglomerator is reduced, in particular by at least 20% by weight, optionally by at least 40% by weight or even by at least 80% by weight
  • Regeneration phase is understood to mean a time interval in which the amount of particles in the particle agglomerator is reduced, in particular by at least 20% by weight, optionally by at least 40% by weight or even by at least 80% by weight
  • Mechanisms of how the internal combustion engine can be regulated will be referred to in detail below, in which connection it is first proposed to use the internal combustion engine itself as a source of nitrogen dioxide for the regeneration of the particle agglomerator, so that additional sources of nitrogen dioxide, such as upstream oxidation catalysts , can be dispensed with.
  • the internal combustion engine is a proportion of nitrogen oxides (NO 2 ) in the range of 25 Vo 1 .-% to 60 vol .-% of all existing nitrogen oxides (NO x ).
  • the conditions in the combustion chamber of the internal combustion engine are adjusted so that the proportion of nitrogen oxides based on all generated nitrogen oxides reaches a significant range, in particular of more than 30 vol .-% or even 45 vol .-% (these ratios may possibly equally in Mo 1 .-% are used for regulation).
  • the 25% by volume can be used as the lower limit and / or as the mean value during the operating phase. It is also preferably proposed that the proportion of nitrogen dioxide does not substantially exceed 60% by volume, in order to still be able to generate sufficient power via the internal combustion engine.
  • the internal combustion engine actively generates nitrogen dioxide (NO 2 ) up to at least one particle agglomerator alone.
  • NO 2 nitrogen dioxide
  • the exhaust aftertreatment system between the internal combustion engine and the particle agglomerator concerned has no means or measures for targeted enrichment of the exhaust gas with nitrogen dioxide.
  • the method, or the device are particularly easy to perform and a targeted regeneration of the particle agglomerator can be controlled by the corresponding operation of the internal combustion engine.
  • redox processes will not be able to be suppressed in the exhaust gas itself, but these are generally not suitable for effecting a corresponding active, significant generation of nitrogen dioxide.
  • the method can be formed so that in the operating phase, an increase in the proportion of a recirculated into the internal combustion engine exhaust gas flow is effected.
  • a - exhaust gas is (partially) fed back to the internal combustion engine, in particular before it reaches the at least one particle lagglomerator.
  • a targeted increase in the exhaust gas recirculation rate can lead to a significant increase in the nitrogen dioxide content in the exhaust gas and thus favor the regeneration proposed here.
  • the rate of the recirculated stream is preferably in the range up to 60% by volume, in particular in a range from 20% by volume to 50% by volume.
  • a reduction in the combustion chamber temperature in the internal combustion engine is made in the operating phase. It has been found that combustion processes that are carried out at a lower temperature usually produce a high proportion of nitrogen dioxide in the exhaust gas.
  • the combustion chamber temperature is controlled for this purpose after a peak combustion temperature in a range below 450 0 C.
  • the exhaust aftertreatment system is designed for example with an exhaust gas turbocharger, which has a compression of the intake air flow result.
  • the boost pressure so the pressure in the combustion chamber of the internal combustion engine, the fuel-air mixture is usually in the range of 30 to 50 bar.
  • an increase in the charge pressure be made, for example, by at least 15%, possibly even 25%, of the previously regulated charge pressure.
  • the oxygen content in the fuel-air mixture can be increased by a value of at least 1% and, in particular, regulated in a range from lambda 1.05 to 1.1 (about 1% oxygen or 2% oxygen).
  • combustion-air ratio (lambda) sets the actual air mass m ⁇ ⁇ uF ⁇ , actually available for combustion, in relation to the at least necessary stoichiometric air mass m ⁇ ⁇ uF ⁇ , stochi- omet ⁇ sch) required for complete combustion , This effect can also, in particular for a short time, lead to the desired generation of nitrogen dioxides.
  • the internal combustion engine be operated in such a way that carbonaceous particles with a mean diameter of at most 200 nanometers [nm] are produced in the exhaust gas.
  • the internal combustion engine is operated so that the average diameter is at most 100 nanometers.
  • this also preferably applies in an operating state of the internal combustion engine which does not coincide with the operating phase for regeneration of the particle agglomerator (regeneration phase).
  • the very small particles can be converted particularly favorably with the provided nitrogen dioxide to carbon dioxide and elemental nitrogen.
  • the outlet of the combustion chamber and the exhaust pipe are to be adjusted so that an excessive agglomeration of particles towards a size above the limit value mentioned here is avoided.
  • an active temperature increase of the exhaust gas is carried out.
  • the exhaust gas in the exhaust aftertreatment system is brought into contact with additional means for increasing the temperature so that, at the latest when contacting with the particles to be reacted, this has a setpoint temperature for the significant implementation of the CRT process.
  • the means of temperature Increasing include in particular (uncoated) (electrically operated) radiators, heat exchangers and the like.
  • a motor vehicle comprising an internal combustion engine and an exhaust aftertreatment system
  • an exhaust aftertreatment system which is designed with at least one continuously regenerable particle lagglomerator, wherein the internal combustion engine sole active nitrogen dioxide (N ⁇ 2) source up to at least one particle agglomerator and the at least one particle agglomerator is a bypass filter (also called a "semi-filter").
  • N ⁇ 2 sole active nitrogen dioxide
  • the motor vehicle proposed here can be operated in particular according to the method described here according to the invention, so that a non-thermal regeneration of the at least one particle agglomerator at desired operating phases is possible.
  • the motor vehicle proposed here is distinguished by its particularly simply constructed exhaust aftertreatment system, with a corresponding control of the internal combustion engine resulting in a reliable regeneration of the particle agglomerator so that clogging of the particle agglomerator and thus an increase in pressure via the particle agglomerator is avoided.
  • bypass filter is characterized in that it provides a plurality of flow paths for the exhaust gas, the exhaust gas (theoretically) the possibility has to flow the particle agglomerator, without coming into contact with a filter material, or to flow through this.
  • the bypass filter can be formed in the manner of a honeycomb body, which is designed for example with channel walls which are at least partially formed with a gas-impermeable material and optionally may additionally comprise a filter medium.
  • the gas-impermeable material (preferably a metal foil) is now executed with elevations, guide vanes, which at least partially close (or deflect) the channel and thus cause a deflection of at least part of the exhaust gas flow towards the channel wall (or the filter medium).
  • the elevations are formed so that they do not completely close the channel at any point, thus allowing a bypass flow past the survey.
  • a possible construction of such a bypass filter is apparent, for example, from WO 01/80978 A1 or WO 02/00326 A1, so that reference may be made in particular to these documents for explanation.
  • the at least one particle agglomerator in the flow direction of the exhaust gas at least a first zone and a second zone, wherein the second zone extends to a downstream end side and the second zone comprises an oxidation dationskatalysator.
  • the particle agglomerator can be subdivided into at least two zones extending in the axial direction and over the entire cross section of the particle agglomerator, wherein the downstream zone extending to the downstream end of the particle lagglomerator is provided with an oxidation catalytic converter ,
  • the first zone is preferably catalytically inactive - that is, for example, free of a coating.
  • the oxidation catalyst can be designed, for example, in the manner of a customary washcoat coating with a noble metal doping.
  • FIG. 1 shows a first embodiment of an exhaust aftertreatment system of a motor vehicle
  • FIG. 4 shows a cross section through a further embodiment of a particle agglomerator.
  • the motor vehicle 4 thus initially has an internal combustion engine 3, in particular a diesel engine, which has a plurality of combustion chambers 21 in which the supplied fuel-air mixture is burned and from which the exhaust gas is discharged through the exhaust gas conduit 19 into the environment becomes.
  • an internal combustion engine 3 in particular a diesel engine, which has a plurality of combustion chambers 21 in which the supplied fuel-air mixture is burned and from which the exhaust gas is discharged through the exhaust gas conduit 19 into the environment becomes.
  • an exhaust aftertreatment system 2 which has a branch for an exhaust gas recirculation 12 in the flow direction 7 after the internal combustion engine 3, so that controlled part of the exhaust gas flow can again be supplied to the combustion chambers 21 of the internal combustion engine 3. Further downstream in the direction of the flow direction 7, a particle agglomerator 1 is shown. This is followed downstream of a turbocharger 13, wherein the passage of the exhaust gas 13 at the same time a turbine is driven, the Air quantity, which is supplied via the intake manifold 20 of the internal combustion engine 3, compressed.
  • the exhaust gas has flowed further in the direction of flow 7, the exhaust pipe 19, for example all the way into an underfloor region of the motor vehicle 4, it is further freed of pollutants with further exhaust aftertreatment units 24.
  • the exhaust gas flows in the flow direction 7 an oxidation catalyst 11, a filter 22 and an SCR catalyst 23 (for the selective catalytic reaction of nitrogen oxide), wherein the exhaust gas is mixed before the SCR catalyst 23 with a reducing agent that only one corresponding reducing agent addition 25 is initiated.
  • the thus purified and reacted exhaust gas then flows finally through the exhaust pipe 19 into the environment.
  • the construction of the exhaust aftertreatment system 2 illustrated here permits, in particular, a discontinuous, targeted regeneration of the particle agglomerator 1 with nitrogen dioxides, which are provided specifically with the internal combustion engine 3.
  • FIG. 2 schematically and by way of example illustrates different courses of the nitrogen dioxide concentration of the exhaust gas produced by the internal combustion engine for regeneration of the particle agglomerator.
  • the abscissa 30 indicates the time while the ordinate 31 substantially illustrates the nitrogen dioxide concentration.
  • the nitrogen dioxide concentration is usually arranged below a predetermined regeneration field 28 during operation of the internal combustion engine 3. If regeneration of the particle agglomerator now takes place, then the nitrogen dioxide concentration in the exhaust gas is adjusted via a regeneration phase 29 or an operating phase of the internal combustion engine such that it is located in regeneration field 28. Should the requirements of the internal combustion engine Change (eg, performance query, load range, ...) or be completed, the regeneration of the particle agglomerator, the internal combustion engine 3 can be operated again with a lower proportion of nitrogen dioxide in the exhaust gas. Thus, a non-thermal regeneration of the particle agglomerator can be carried out discontinuously and at predetermined and / or calculated times.
  • the proportion of nitrogen dioxide in the exhaust gas is in principle regulated so that it is at regular intervals and / or permanently in the region of the regeneration field 28, as illustrated in particular by the second curve 27 shown in dashed lines.
  • FIG. 3 illustrates a detail of an embodiment variant of a particle agglomerator 1. It is designed with essentially smooth ultrafine wire layers 15 in the manner of a metallic nonwoven, between which structured metal foils 14 are provided, so that in the flow direction 7 or a corresponding axis of the particle agglomerator 1 along extending channels 16 form.
  • channel fences 17 are formed by guide surfaces 32 in the metal foil 14, which cause a (partial) discharge of the exhaust gas flow to Feinstdrahtlage 15.
  • the channel galleries 17 and the guide surfaces 32 are formed so that the channel 16 is not completely closed, but a side stream 33 remains possible.
  • a passage opening 18 is formed, which allows the passage of exhaust gas to adjacent channels 16.
  • the exhaust gas containing nitrogen dioxide (NO 2 ), carbon (C) and oxygen (O 2 ) enters the particulate lagglomerator 1 and reacts therein with the carbonaceous particles 5 contained therein the nitrogen dioxide is used, so that nitrogen monoxide (NO), nitrogen (N 2 ), carbon dioxide (CO 2 ) and oxygen (O 2 ) finally leave the particle agglomerator 1 again.
  • nitrogen monoxide (NO), nitrogen (N 2 ), carbon dioxide (CO 2 ) and oxygen (O 2 ) finally leave the particle agglomerator 1 again.
  • the probability of the reaction of nitrogen oxide and soot particles is significantly increased, so that relatively high conversion rates can be realized with low pressure loss of the exhaust gas and clogging of the particle agglomerator is reliably avoided.
  • FIG. 4 shows a particle agglomerator 1 which initially has a first zone 8 in the flow direction 7 and then a second zone 9 which extends as far as a rear end face 10.
  • the particle agglomerator 1 is designed over its entire length with smooth ultrafine wire layers 15 and structured metal foils 14, the metal foils 14 in adjacent channels 16 having mutually (oppositely disposed) tapered channel channels 17 which simultaneously allow a side stream 33 and a portion of the exhaust gas cause the fine wire layer 15.
  • the particles 5, preferably with a diameter 6 less than 200 nm are deposited in or on the walls (or the fine wire layer) of the particle agglomerator 1 and reacted with the nitrogen dioxide provided.
  • the first zone 8 has no oxidatively effective coating
  • the second zone 9 again generates in situ by means of a correspondingly provided oxidation catalytic converter 11 new nitrogen dioxide for regeneration of the particle agglomerator in the rear part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Procédé de régénération d'au moins un agglomérateur de particules (1) d'un système de post-traitement de gaz d'échappement (2) d'un moteur à combustion interne (3) d'un véhicule (4), procédé caractérisé en ce que le moteur à combustion interne (3) est mis en service au moins dans une phase de fonctionnement de manière à produire directement dans les gaz d'échappement, une fraction de dioxydes d'azote (NO2) suffisante pour garantir une transformation des particules contenant du carbone (5) dans au moins l'agglomérateur de particules (1). L'invention concerne en outre un véhicule approprié pour la mise en oeuvre du procédé précité.
PCT/EP2008/057038 2007-07-13 2008-06-05 Procédé de régénération d'au moins un agglomérateur de particules, et véhicule comprenant un système de post-traitement de gaz d'échappement WO2009010336A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT08760613T ATE520867T1 (de) 2007-07-13 2008-06-05 Verfahren zur regeneration wenigstens eines partikelagglomerators sowie kraftfahrzeug umfassend eine abgasnachbehandlungsanlage
EP08760613A EP2171228B1 (fr) 2007-07-13 2008-06-05 Procédé de régénération d'au moins un agglomérateur de particules, et véhicule comprenant un système de post-traitement de gaz d'échappement
JP2010515443A JP2010533254A (ja) 2007-07-13 2008-06-05 少なくとも一つの粒子凝集器の再生方法、及び排出ガス後処理システムを有する自動車
US12/686,532 US20100175371A1 (en) 2007-07-13 2010-01-13 Method for regenerating at least one particle agglomerator and motor vehicle including an exhaust gas after-treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007032734.1 2007-07-13
DE102007032734A DE102007032734A1 (de) 2007-07-13 2007-07-13 Verfahren zur Regeneration wenigstens eines Partikelagglomerators sowie Kraftfahrzeug umfassend eine Abgasnachbehandlungsanlage

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/686,532 Continuation US20100175371A1 (en) 2007-07-13 2010-01-13 Method for regenerating at least one particle agglomerator and motor vehicle including an exhaust gas after-treatment system

Publications (1)

Publication Number Publication Date
WO2009010336A1 true WO2009010336A1 (fr) 2009-01-22

Family

ID=39705345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/057038 WO2009010336A1 (fr) 2007-07-13 2008-06-05 Procédé de régénération d'au moins un agglomérateur de particules, et véhicule comprenant un système de post-traitement de gaz d'échappement

Country Status (8)

Country Link
US (1) US20100175371A1 (fr)
EP (1) EP2171228B1 (fr)
JP (1) JP2010533254A (fr)
AT (1) ATE520867T1 (fr)
DE (1) DE102007032734A1 (fr)
ES (1) ES2370288T3 (fr)
TW (1) TWI461601B (fr)
WO (1) WO2009010336A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104422A1 (fr) 2009-03-12 2010-09-16 Volvo Lastavagnar Ab Procédé de fonctionnement d'un système de post-traitement d'échappement et système de post-traitement d'échappement
WO2014169967A1 (fr) * 2013-04-15 2014-10-23 Haldor Topsøe A/S Procédé et système de retrait de particules de suie, de cendres et de métaux lourds d'un gaz d'échappement de moteur

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1464818A1 (fr) * 2003-03-31 2004-10-06 Mazda Motor Corporation Dispositif de commande d'un moteur, moteur, méthode de commande pour un moteur et produit de programme informatique
DE102004045178A1 (de) 2004-09-17 2006-03-23 Zeuna-Stärker GmbH & Co. KG Abgasanlage eines Kfzs mit Dieselmotor
WO2006136431A1 (fr) * 2005-06-24 2006-12-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Procede permettant de faire fonctionner un piege a particules, et dispositif pour la mise en oeuvre de ce procede

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10020170C1 (de) * 2000-04-25 2001-09-06 Emitec Emissionstechnologie Verfahren zum Entfernen von Rußpartikeln aus einem Abgas und zugehöriges Auffangelement
FR2780096B1 (fr) * 1998-06-22 2000-09-08 Rhodia Chimie Sa Procede de traitement par combustion des particules carbonees dans un circuit d'echappement d'un moteur a combustion interne
JP3580188B2 (ja) * 1999-08-16 2004-10-20 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3726588B2 (ja) * 1999-09-27 2005-12-14 三菱自動車工業株式会社 内燃機関の制御装置
DE10031200A1 (de) 2000-06-27 2002-01-17 Emitec Emissionstechnologie Partikelfalle zum Abscheiden von Partikeln aus dem Strom eines Fluids, Verfahren zum Abscheiden von Partikeln aus dem Strom eines Fluids und Verwendung einer Partikelfalle
DE10104160B4 (de) * 2001-01-30 2008-07-10 Umicore Ag & Co. Kg Verfahren zum Betreiben einer Abgasreinigungsanlage für einen Verbrennungsmotor
DE20117873U1 (de) * 2001-11-06 2002-02-14 Emitec Emissionstechnologie Offener Filterkörper mit verbesserten Strömungseigenschaften
US6912847B2 (en) * 2001-12-21 2005-07-05 Engelhard Corporation Diesel engine system comprising a soot filter and low temperature NOx trap
US6964157B2 (en) * 2002-03-28 2005-11-15 Ricardo, Inc Exhaust emission control system and method for removal and storage of vehicle exhaust gas nitrogen oxides during cold operation
JP4107017B2 (ja) * 2002-09-02 2008-06-25 三菱ふそうトラック・バス株式会社 エンジン制御装置
US7155901B2 (en) * 2003-04-15 2007-01-02 Ford Global Technologies, Llc Catalyst temperature control on an electrically throttled engine
JP4158697B2 (ja) * 2003-06-17 2008-10-01 トヨタ自動車株式会社 内燃機関の排気浄化装置および排気浄化方法
JP2005083243A (ja) * 2003-09-08 2005-03-31 Ajiantamu:Kk 自動車用排気ガス昇温装置
JP4103753B2 (ja) * 2003-09-19 2008-06-18 日産自動車株式会社 エンジンの排気浄化装置
JP2006077672A (ja) * 2004-09-09 2006-03-23 Toyota Motor Corp 排ガス浄化フィルタ及び排ガス浄化装置
DE202005001257U1 (de) * 2004-09-17 2005-04-07 Arvinmeritor Emissions Tech Abgasanlage eines Kfzs mit Dieselmotor
DE102004054845A1 (de) * 2004-11-12 2006-06-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Beschichtete Partikelfalle mit Stickstoffdioxid-Neubildung
JP2006150223A (ja) * 2004-11-29 2006-06-15 Babcock Hitachi Kk 排ガス浄化フィルタ、該フィルタの製造方法および排ガス浄化装置
DE102005025045A1 (de) * 2005-05-30 2006-12-14 J. Eberspächer GmbH & Co. KG Abgasanlage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1464818A1 (fr) * 2003-03-31 2004-10-06 Mazda Motor Corporation Dispositif de commande d'un moteur, moteur, méthode de commande pour un moteur et produit de programme informatique
DE102004045178A1 (de) 2004-09-17 2006-03-23 Zeuna-Stärker GmbH & Co. KG Abgasanlage eines Kfzs mit Dieselmotor
WO2006136431A1 (fr) * 2005-06-24 2006-12-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Procede permettant de faire fonctionner un piege a particules, et dispositif pour la mise en oeuvre de ce procede

Also Published As

Publication number Publication date
US20100175371A1 (en) 2010-07-15
ES2370288T3 (es) 2011-12-14
DE102007032734A1 (de) 2009-01-15
EP2171228B1 (fr) 2011-08-17
JP2010533254A (ja) 2010-10-21
TWI461601B (zh) 2014-11-21
EP2171228A1 (fr) 2010-04-07
ATE520867T1 (de) 2011-09-15
TW200907165A (en) 2009-02-16

Similar Documents

Publication Publication Date Title
EP3475543B1 (fr) Procédé et dispositif de post-traitement de gaz d'échappement d'un moteur à combustion interne
EP2635790B1 (fr) Moteur à combustion interne de véhicule automobile équipé d'une recirculation de gaz d'échappement
EP2379851B1 (fr) Dispositif et procédé de régénération d'un filtre à particules disposé dans la conduite de gaz d'échappement d'un moteur à combustion interne
EP2183471B1 (fr) Post-traitement de gaz d'echappement en amont d'un turbocompresseur
EP2310656B1 (fr) Procédé de conduite d'une installation de traitement des gaz d'échappement à régulation lambda
EP2743470B1 (fr) Procédé et dispositif d'élévation de la température des gaz de combustion dans la ligne d'échappement d'un moteur à combustion interne turbochargé
EP2154344B1 (fr) Procédé et dispositif de régénération d'un filtre à particules agencé dans une ligne d'échappement d'un moteur à combustion interne
EP3418518B1 (fr) Système de retraitement des gaz d'échappement et procédé de retraitement des gaz d'échappement d'un moteur à combustion interne
DE102006038289A1 (de) Abgasnachbehandlungssystem
EP2452055B1 (fr) Procede et dispositif pour la regeneration d'un filtre a particule dans une ligne d'echappement d'un moteur a combustion
EP2376749B1 (fr) Procédé de conrôle de composants pour le post-traitement de gaz d'échappement et dispositif de post-traitement de gaz d'échappement
DE102011100677A1 (de) Betriebsverfahren für einen Kraftfahrzeug-Dieselmotor
EP1892394A1 (fr) Système de traitement postérieur de gaz d'échappement
WO2010052055A1 (fr) Moteur à combustion interne avec turbocompresseur et catalyseur d'oxydation
EP2557288A1 (fr) Dispositif et procédé de nettoyage de gaz d'échappement pour moteurs à combustion interne
WO2002083274A1 (fr) Systeme d'echappement
EP3486444A1 (fr) Procédé de traitement subséquent des gaz d'échappement d'un moteur à combustion interne
WO2020069551A1 (fr) Procédé et système de moteur à allumage commandé à post-traitement amélioré des gaz d'échappement par une stratégie de régénération
EP2171228B1 (fr) Procédé de régénération d'au moins un agglomérateur de particules, et véhicule comprenant un système de post-traitement de gaz d'échappement
WO2012022762A1 (fr) Procédé et dispositif pour traiter des gaz d'échappement
DE102004018393A1 (de) Abgasnachbehandlungseinrichtung
DE102006043151A1 (de) Verfahren und Vorrichtung zur Regeneration eines Partikelfilters
DE102019006494B4 (de) Abgasanlage für eine Verbrennungskraftmaschine eines Kraftfahrzeugs, Antriebseinrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug
DE102006043081A1 (de) Verfahren und Vorrichtung zur Unterstützung des Startens einer Abgasnachbehandlungsanlage
DE102006043083A1 (de) Verfahren und Vorrichtung zur Temperaturführung in einer Abgasnachbehandlungsanlage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08760613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515443

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008760613

Country of ref document: EP