WO2009004053A1 - Procede et dispositif de projection de matiere pulverulente dans un gaz porteur - Google Patents

Procede et dispositif de projection de matiere pulverulente dans un gaz porteur Download PDF

Info

Publication number
WO2009004053A1
WO2009004053A1 PCT/EP2008/058565 EP2008058565W WO2009004053A1 WO 2009004053 A1 WO2009004053 A1 WO 2009004053A1 EP 2008058565 W EP2008058565 W EP 2008058565W WO 2009004053 A1 WO2009004053 A1 WO 2009004053A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier gas
pulverulent material
zone
sonic
convergent
Prior art date
Application number
PCT/EP2008/058565
Other languages
English (en)
Inventor
Osvaldo Di Loreto
Original Assignee
Fib-Services International S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39060925&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009004053(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to AT08761417T priority Critical patent/ATE503855T1/de
Priority to EA201070102A priority patent/EA017535B1/ru
Priority to MX2010000186A priority patent/MX2010000186A/es
Priority to NZ583035A priority patent/NZ583035A/xx
Priority to AU2008270262A priority patent/AU2008270262B2/en
Priority to CA2692486A priority patent/CA2692486C/fr
Priority to US12/667,820 priority patent/US8408479B2/en
Priority to PL08761417T priority patent/PL2171118T3/pl
Priority to EP08761417A priority patent/EP2171118B1/fr
Application filed by Fib-Services International S.A. filed Critical Fib-Services International S.A.
Priority to UAA201001205A priority patent/UA98340C2/ru
Priority to CN2008800234261A priority patent/CN101755070B/zh
Priority to DE602008005889T priority patent/DE602008005889D1/de
Priority to JP2010513985A priority patent/JP5124641B2/ja
Priority to SI200830229T priority patent/SI2171118T1/sl
Priority to DK08761417.8T priority patent/DK2171118T3/da
Priority to BRPI0813988-1A priority patent/BRPI0813988B1/pt
Publication of WO2009004053A1 publication Critical patent/WO2009004053A1/fr
Priority to TNP2009000549A priority patent/TN2009000549A1/fr
Priority to EG2010010017A priority patent/EG25537A/xx
Priority to ZA2010/00478A priority patent/ZA201000478B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material

Definitions

  • the present invention relates to a method of spraying a powdery material into a carrier gas having an overall flow rate, said process comprising:
  • US-6,402,050 which describes apparatus for dynamic spraying of powdery materials with gases in the field of application of the production of coatings for example anticorrosion or reflective for machined surfaces.
  • This document describes the use of a sonic neck with a particular ratio of the cross-sectional areas between the sonic nozzle and the supply of pulverulent material, in order to maintain a pressure below atmospheric pressure to ensure the transport of the powder by a flow of air at atmospheric pressure.
  • This document does not disclose that the sonic type nozzle makes it possible to obtain a constant flow of powdery material.
  • an inert gas such as nitrogen, which is not compatible with the process according to the invention because the carrier gas must be reactive with an element of the material pulverulent and in any case requires an additional supply of nitrogen, which makes the process less flexible.
  • the invention therefore aims to overcome these disadvantages by providing a method in which the flow of pulverulent material is adjustable and reproducible without affecting the flow of the carrier gas.
  • the method according to the invention is characterized in that it further comprises an adjustment of said lower pressure, which exists in the depression zone by derivation or not, before the expansion, of an adjustable quantity of said gas carrier having been accelerated to reintroduce said adjustable amount in the aforesaid depression zone without modifying said flow rate, in particular in its entirety.
  • the amount of instant powdered material entrained should be advantageously optimized from the point of view of the excellence of the coating but also from the point of view of the cost of consumption of the latter. Upstream of the cane or spraying lance, it is therefore important to intimately mix the pulverulent material with the carrier and reagent gas in an adjustable amount. Therefore, constraints also dictate the value of this last parameter.
  • the method according to the invention as described above has the desired flexibility compared to a conventional method using a venturi effect.
  • the projection method according to the invention comprising a step of adjusting said depression by shunting or not, before the expansion of an adjustable amount of carrier gas has been accelerated, allows, while not changing the flow rate of carrier gas outlet, to change the value of the lower pressure in the vacuum zone, which allows to adjust the amount of pulverulent material entrained.
  • the amount of carrier and reactant gas withdrawn and reintroduced is large, the value of the pressure in the vacuum zone will be closer to the compression pressure and the amount of pulverulent material entrained will be reduced.
  • the quantity of carrier and reactive gas withdrawn and reintroduced is small, the value of the pressure in the depression zone will be considerably lower compared with the value of the aforesaid compression pressure and a quantity of substantial and close pulverulent material. its maximum value will also be driven. If the amount of carrier gas is zero, the value of the depression is maximum and has the value furthest away from the compression pressure that the process can achieve and the maximum amount of pulverulent material is entrained. Therefore, the amount of carrier gas and reactant derivative (that is to say, withdrawn and reintroduced) allows to adjust in a particularly clever way the amount of pulverulent material entrained.
  • the invention has thus made it possible to overcome at least part of the drawbacks of the state of the art by making it possible to adjust to a reproducible value the quantity of pulverulent material entrained while ensuring a flow of carrier gas which is constant, thereby guaranteeing a constant ejection speed.
  • the final result, the reproducibility and the quality of the projection depend directly on this flow of pulverulent material entrained by the said carrier gas.
  • An optimal carrier gas flow ensures optimal transport of the material to be sprayed and since the projection is made by means of a cane or projection lance, having a well-defined projection section, the projection speed for a given temperature carrier gas will be conditioned by the flow of this carrier gas.
  • the sonic blocking establishes a fixed flow rate which is not influenced by the variations in pressure drop in the downstream circuit. Therefore, the carrier gas flow has become constant and the projection speed conditioned by this constant flow is optimal.
  • the optimal ejection speed thus obtained in the carrier gas greatly increases the reliability and reproducibility of the pulverulent material spraying method according to the invention.
  • the method according to the invention can be advantageously applied in a reactive projection repair process which consists in projecting medium of a carrier gas stream on a zone concerned, a pulverulent material (comprising for example a refractory filler and metal powder), finely pulverized.
  • a reactive projection repair process which consists in projecting medium of a carrier gas stream on a zone concerned, a pulverulent material (comprising for example a refractory filler and metal powder), finely pulverized.
  • the quality of the coating obtained on the generally refractory wall depends on several parameters including the substrate temperature and the projection speed.
  • the carrier gas can also be advantageously a reactive gas with at least one of the elements of the pulverulent material and, in contact with the hot wall, the mixture reacts spontaneously and a series of chemical reactions leads to the formation of a homogeneous, adherent refractory material whose characteristics are compatible with those of the treated support.
  • the projection speed is a preponderant element. Indeed, if the latter is too weak, there is a risk of backfire. If it is too important, the amount of material may not react (because not participating in the exothermic reaction) and bounce excessively on the wall at the expense of the quality of the magma formation generated by the reactive projection.
  • the method according to the invention therefore aims to provide an optimum weld quality by providing a projection quality and impact of said powdery material on the surface to be repaired constant over time.
  • the method according to the invention makes it possible to obtain a flow of carrier and reactive gas directly dependent on the inlet pressure but independent of any pressure change resulting from the downstream circuit.
  • the grains constituting the pulverulent material sprayed are driven by an optimized speed thanks to the carrier gas which conveys the pulverulent material pneumatically and their quantity is adjustable.
  • the carrier gas is also a reactive gas that not only serves as a transport fluid but actively participates in the exothermic physicochemical reaction.
  • the final quality of the projected product depends mainly on the following factors:
  • the quantity of powder sprayed ie the mass flow rate of pulverulent material, the optimum flow rate of the carrier and reactive gas making it possible to obtain an optimal speed of ejection of the reagents for a given application.
  • the carrier gas flow according to the invention advantageously has a constant value at the outlet, free from any variation due to imperfections, the method according to the invention has an optimal speed of projection for a given application.
  • the method according to the invention further comprises a compression of said reactive carrier gas which has been accelerated prior to expansion, which improves the entrainment of the pulverulent material aforesaid.
  • a compression of said reactive carrier gas which has been accelerated prior to expansion, which improves the entrainment of the pulverulent material aforesaid.
  • the invention further relates to a device for spraying a powdery material in a carrier gas comprising:
  • a pressurized carrier gas inlet a convergent-divergent nozzle with a sonic neck in communication with said inlet of said underpressure carrier gas,
  • a supply of pulverulent material communicating with a zone of depression; means for expansion of the carrier gas connected to said convergent-divergent sonic-neck type nozzle receiving the pressurized carrier gas and ending in said zone of depression, and
  • the aim of the invention is to overcome the drawbacks of the state of the art by providing a device making it possible to obtain an optimum projection speed for a mass flow rate of selected powder, increasing the reproducibility of the work performed by the user of the device according to the invention. invention and accuracy as well as the costs of pulverulent material.
  • a device as indicated above characterized in that it further comprises a flow control device of said powder material in said carrier gas comprising a circuit of derivation of said carrier gas provided with a device for adjusting the amount of derivative carrier gas, said bypass circuit comprising a carrier gas sampling orifice disposed upstream of said vacuum zone of said carrier gas and a reintroduction orifice for said gas taken carrier located in said depression zone.
  • Said convergent-divergent type nozzle with a sonic collar makes it possible to maintain, downstream, a constant flow of carrier gas leading to a predetermined quantity of pulverulent material which is therefore adjustable by means of derivation.
  • the carrier gas that passes through the convergent-divergent nozzle sonic or also called Laval's son undergoes an acceleration to a sonic speed through a shock wave that was created in the venturi.
  • the sonic lock thus obtained establishes a fixed flow rate that is not influenced by the pressure difference between the upstream and the downstream of the nozzle.
  • the amount of adjustable powder material is also optimized. Therefore the flow rate of the mixture of pulverulent material in the carrier gas is optimal and the exothermic reaction also.
  • the total projection is optimized and the yield is increased.
  • the carrier gas reintroduced into the vacuum zone causes a counterpressure that acts on the vacuum and at most the amount of carrier gas reintroduced into the vacuum zone is large, the more the amount of pulverulent material entrained is low. The opposite is also applicable. If the user wishes to drive the maximum quantity of powdery material, it is sufficient not to take carrier gas. The amount of carrier gas withdrawn and reintroduced is adjusted using the control organ.
  • the device according to the invention comprises an injector communicating on the one hand with said convergent-divergent sonic-neck type nozzle and on the other hand with said expansion means and said depression zone, said injector comprising at least a narrowing zone.
  • said branch circuit control member is a needle valve. This makes it possible to obtain all the possible values between the maximum value of sampled gas and the minimum value, the needle valve operating by clamping and not by crenellations.
  • said sampling orifice is disposed upstream of said narrowing zone of said injector.
  • the carrier gas that is to be derived to regulate the amount of pulverulent material is removed prior to compression and represents a counterpressure to the pressure (lower pressure) prevailing in the vacuum zone, thereby permitting a more sensitive setting of the amount of pulverulent material sucked.
  • the vacuum zone is connected to a diverging passage, preferably made of tungsten carbide, itself connected to said outlet orifice of said pulverulent material entrained by the carrier gas.
  • the diverging passage is preferably made of an abrasion resistant material such as tungsten carbide and provides a similar operation to that of a nozzle.
  • said convergent-divergent sonic-neck type nozzle has a diameter smaller than the diameter of each element downstream of said convergent-divergent sonic-neck type nozzle.
  • the outlet of pulverulent material entrained by said carrier gas is a tubular orifice comprising the diverging passage, in which a first housing surrounds at least said tubular outlet orifice and in which a second housing surrounds a flexible pipe leading to a connected projection lance at said output, the two housings being connected together by conventional connection means.
  • a hot-melt wire connected on the one hand to a trigger which comprises an open position of carrier gas passage and a closed position of carrier gas lock and secondly in said second housing, said hot-melt wire being arranged to maintain said trigger in the open position.
  • the hot-melt wire breaks instantaneously and the trigger passes almost instantly to the closed position of the carrier gas (oxygen). This prevents the backward propagation of the flame front and thus the explosion or fire.
  • said first and second housings are connected to each other by biasing means having a predetermined restoring force, for example springs holding together conventional connection means.
  • biasing means having a predetermined restoring force, for example springs holding together conventional connection means.
  • the setting of the springs is such that, during an overpressure due to a flashback in the tubular outlet orifice it separates from the divergent, thus directly allowing a return to atmospheric pressure. Therefore, these two elements deviate from each other a few very brief moments, which also avoids the explosion or fire.
  • the second security box comprises two filtering devices that allow the evacuation of gases and dust while blocking a spread of flames during such an incident.
  • Figure 1 is a sectional view of a pulverulent material spraying device in a carrier gas according to the invention.
  • FIG. 2 is a sectional view of a complete assembly comprising the same device as that shown in Figure 1 where we can see the details of the hot-melt wire, the second housing and weighed springs according to the invention.
  • FIG. 3 is a view from above of a variant of the device for spraying a powdery material in a carrier gas according to the invention.
  • Figure 4 is a sectional view of a complete assembly of a variant of the device shown in Figure 1.
  • identical or similar elements bear the same references.
  • FIG. 1 illustrates a pulverulent material projection device in a carrier gas for implementing the projection method according to the invention.
  • the principle consists in projecting by means of a carrier gas a pulverulent material finely pulverized on a zone concerned.
  • the carrier gas is, for example, also reactive with an element of the pulverulent material.
  • the reactive carrier gas is, for example, oxygen which participates in the exothermic reaction of the metal powder contained in the pulverulent material.
  • the device according to the invention illustrated in FIG. 1 comprises an inlet 1 of gaseous oxygen under pressure coming either from a cylinder or from a compressed reservoir, for example at 200 bar.
  • the pressure of the pressurized oxygen entering the device according to the invention was previously regulated by means of a pressure reducer 2 or several regulators 2 in series connected to the cylinder or the tank (not shown).
  • a value of this pressure of oxygen under pressure given by way of example is 5.2 bar.
  • the pulverulent material enters the device according to the invention via a feed hopper 18 made of pulverulent material.
  • Gaseous oxygen under pressure enters the device according to the invention through the above-mentioned inlet 1 and reaches a nozzle 3 of the Laval type, that is to say of the convergent-divergent type, the dimensional factors of which are such that the nozzle 3 is considered sonic.
  • the Laval type nozzle comprises a convergent section 4, a sonic neck 5 and a diverging section 6.
  • the nozzle 3 is followed in the illustrated embodiment of a recess 7.
  • the recess 7 advantageously comprises at least one oxygen withdrawal for deriving a quantity of oxygen accelerated by said nozzle 3.
  • Part of the carrier oxygen and reagent is derived by two orthogonal bores 8, 8 'connected to a needle valve 9 which adjusts the value of the amount of oxygen derived.
  • the Laval-type or convergent-divergent type 3 sonic nozzle is secured to an injector 12 which will be supplied with carrier gas having been accelerated (oxygen) with a flow rate, a pressure and a speed dictated by the convergent-type nozzle. diverge 3 above.
  • the injector 12 is preferably made of a material compatible with the passage of oxygen.
  • the expansion of the carrier gas creates a vacuum in the aforesaid enclosure which has the effect of driving the powdery material in the feed hopper 18.
  • the enclosure is fed with pulverulent material by removing a shutter Controlled by control means, for example, pneumatically by means of a jack 21.
  • the expansion means may consist of any known expansion means, such as the chamber volume greater than that of the aforementioned injector, or the divergent portion of a venturi.
  • the position of the injector 12 is advantageously collinear with the outlet 22 of the pulverulent material entrained by the carrier and reactive oxygen.
  • the outlet is equipped with a diverging assembly 22 made of an abrasion resistant material such as, for example, tungsten carbide.
  • the injector 12 has a narrowing zone allowing the accelerated carrier gas to be compressed before it reaches the depression zone 19.
  • the Laval type nozzle 3 is secured to a preferably metallic assembly 13 which consists of three coaxial subassemblies 12, 14, 16.
  • the preferably metallic subassembly 14 has on its outside diameter a throat
  • the sub-assembly 16 is a ring for the closing of the groove 17 of the subassembly 14.
  • the ring 16 connects to the needle valve 9 through a bore in the ring 16 to the right of the groove 17 aforesaid.
  • the needle valve 9 is then connected to the bore 8 and / or the bore 8 'by a pipe 36 of a nature compatible with the passage of oxygen.
  • the closing or opening of the needle valve 9 allows or not the bypass (withdrawal) in the branch circuit 36 of an amount of oxygen necessary for the working conditions.
  • the oxygen thus withdrawn into the counterbore 7 (withdrawal orifice) through an opening of the needle valve 9 will then be reintroduced via the circuit 36 into the ring 17 (reintroduction orifice of the carrier gas), it will pass into the bore 15 and will then end in an annular space 25 existing between the metal sub-assembly 14 and the injector 12.
  • the bypass circuit 36 the assembly constituted by the recess 7, the bores 8, 8 ', the needle valve 9, the reintroduction orifice 17, the bore 15 and the annular space 25 are called.
  • the accelerated oxygen leaving the nozzle 3 has a flow rate d L , a speed v L and a pressure P L.
  • the oxygen flow rate passing into the injector is d ,.
  • the oxygen that passes into the injector is driven by a speed v, and has a pressure P 1 .
  • the oxygen of the portion of the flow derived from D is also driven by a speed v D and has a pressure P 0 in the annular space 25.
  • the oxygen will have a resulting pressure P R and a resulting speed v R.
  • These resulting pressures and velocities condition the amount of pulverulent material entrained.
  • the opening or closing of the needle valve 9 will cause a variation of the flow rates d, and d D , a variation of the pressures P 1 and P 0 as well as speed changes v, and v D.
  • the resulting pressure P R and the resulting velocity v R will therefore be variables.
  • the direct consequence is a variation in the amount of pulverulent material entrained, due to the variation of kinetic energy and the momentum. There will therefore be a change in the importance of the generated venturi effect.
  • the accelerated carrier gas flow values d L at the outlet of the Laval nozzle 3 and the outgoing oxygen flow rate of the device according to the invention d R are identical since the flow rate of the carrier gas remains constant during the crossing. of the device according to the invention. Therefore, by diverting or bypassing a portion of the flow rate D , by opening the needle valve 9 in the bypass circuit 36, the flow rate that passes into the injector 12 d is reduced accordingly. .
  • the characteristics such as pressure P 1 , mass flow M 1 , and speed v, out of the metal injector will be modified.
  • the amount of pulverulent material entrained will be the amount of minimum pulverulent material which can be driven by the device according to the invention (instantaneous quantity). If the needle valve 9 is closed and does not allow bypass, then the amount of pulverulent material entrained is at its maximum value. The bypass is not always necessary, it is advisable to provide the possibility of closing the adjustment member and in this case the needle valve 9 (instantaneous quantity).
  • the groove 17 may be an integral part of the support body of the assembly 13. Similarly, the skilled person will readily understand that the geometric positions of the radial bores may be very different depending on the requirements of the bulk.
  • the bores 8 'and 10' are machined perpendicular to the two bores 8 and 10 themselves orthogonal to the formed plane by chambering 7, but those skilled in the art will readily understand that these geometric positions are dictated only by steric constraints and congestion. It goes without saying that a single bore 8, 10 could be sufficient to derive accelerated oxygen or to measure the value of the static pressure and that there is no need for positioning for variants according to the invention.
  • the dimensional factors of the Laval type nozzle are such that the static pressure of the oxygen passing through said nozzle 3 has a value equal to or less than the product of the pressure at the inlet of the nozzle (compression pressure) and a factor of 0.528. Under these conditions, the nozzle 3 is considered sonic and the operating conditions of the assembly depend only on the initial fluid pressure upstream, that is to say the pressure dictated by the pressure regulator 2, consisting for example of one or more regulators 2.
  • the divergent tungsten carbide 22 can be positioned and fixed in a support block 23.
  • the dimensional factors of the injector assembly 12 and divergent 22 are such that the operating principle can also be likened to a venturi type nozzle.
  • a non-return safety device 24 having a normally open gate valve and making it possible to prevent the gas from backing up into the device according to the invention. 'invention. Indeed, when it is hot oxygen or a backfire, it is advantageous to have a non-return safety that blocks the passage in case of heating or return slag.
  • FIG. 2 illustrates a more complete reactive spray repair assembly comprising the same device as that shown in FIG. 1.
  • a hopper 18 'of greater capacity than the aforementioned feed hopper 18 is located at above this one.
  • the A pulverulent material composed of refractory and metal powders used in the process according to the invention is therefore transferred from the hopper 18 'to the hopper 18 by natural flow and by gravity.
  • a movable register 26 will advantageously be placed allowing a smooth flow in the mixing chamber of carrier gas (oxygen) and powder.
  • carrier gas oxygen
  • the pulverulent material therein is reactive (at least one of the elements constituting it) with the carrier gas ( oxygen)
  • the amount of pulverulent material liable to cause an explosion is reduced, and therefore the amount of pulverulent material lost.
  • the device illustrated in FIG. 2 also comprises, as previously mentioned, a support block 23 which is also referred to in the context of the present invention as the first housing 23 which surrounds the outlet 35 of pulverulent material entrained by the gas.
  • carrier in the form of a tubular orifice with diverging passage 22 (for example, anti-abrasion tungsten carbide).
  • the device according to the invention in its preferred form illustrated here further comprises a second housing 27.
  • the second housing 27 surrounds the lance 28 of reactive spraying of the pulverulent material entrained by said carrier gas and reagent.
  • the first housing 23 is connected to the second housing 27 by conventional connecting means 29 and 29 'such as a threaded projection and a thread, flanges and the like.
  • the conventional connection means 29 and 29 ' are held in place by the pressure exerted by a series of return means 30 having a predetermined restoring force.
  • return means 30 are, for example, calibrated springs.
  • the predetermined return force or the setting of the springs is such that during an overpressure in the projection lance 28 following a flashback, the two conventional connection means separate. This allows an instantaneous return to atmospheric pressure in enclosures in which there was a pressure conducive to ignition and explosion.
  • the device according to the invention also comprises an additional safety device.
  • the movable register 26 in the feed hopper 18 aforesaid, first and second housings 23 and 27, return means 30, the device further has a hot-melt thread
  • the hot-melt wire 31 is in the path of the hot gas stream.
  • the hot gas stream immediately melts the hot melt 31 which is then almost instantly cut. Its break releases the voltage on the trigger 32 security. The sudden release of the trigger
  • the device according to the invention is equipped at the second housing 27 of filtering devices 33 and 34 for the cooled evacuation of gases and dusts during such an incident (flashback).
  • the bypass circuit for adjusting the quantity of pulverulent material entrained by the carrier and reactive gas is arranged differently.
  • the other elements shown function as in and are described by the detailed description of Figures 1 and 2 including all the alternatives explained.
  • the bypass circuit 36 is composed of an adjusting member 9 (needle valve) of the amount of carrier gas derived from a carrier gas sampling port 7 and a reintroduction port 25 of the derivative gas in the enclosure of the depression zone.
  • the sampling or withdrawal orifice 7 is disposed at the outlet of the nozzle of Laval 3.
  • this draw-off orifice can be disposed in many other places provided that the latter is disposed upstream of said expansion zone 19 of said carrier gas, the operation will be optimal.
  • a hot-melt wire 31 is connected on the one hand to the trigger 32 and on the other hand to a point between said first 23 and said second housing 27.
  • the wire (hot melt) 31 holds the trigger 32 in the open position as long as there is no flashback. If an incident should occur, the conventional connection means
  • FIG. 4 illustrates a variant of the device illustrated in FIG. 1, in which the branch circuit is still arranged differently.
  • the other elements function as in the embodiment illustrated in FIG.
  • the device according to the invention illustrated in FIG. 4 comprises an inlet 1 of gaseous oxygen under pressure.
  • the pulverulent material enters the device according to the invention via a feed hopper 18 made of pulverulent material.
  • Gaseous oxygen under pressure enters the device according to the invention by the aforesaid inlet 1 and reaches a nozzle 3 Laval type (sonic).
  • the Laval type nozzle comprises a convergent section 4, a sonic neck 5 and a diverging section 6.
  • the nozzle 3 is followed in the illustrated embodiment of a recess 7.
  • the recess 7 advantageously comprises at least one oxygen withdrawal allowing to derive a quantity of oxygen accelerated by said nozzle 3 by means of an orthogonal bore 8 connected to a needle valve 9 which adjusts the value of the amount of oxygen derived. It is also provided in the illustrated embodiment to measure the value of the static pressure of oxygen accelerated by the nozzle 3 through an orthogonal bore 10 made in said recess 7, for example using a manometer 11.
  • the chambering connected to the nozzle type Laval is secured to an injector 12 which will be supplied with accelerated carrier gas (oxygen) with a flow rate, a pressure and a speed dictated by the nozzle 3 aforesaid.
  • the nozzle 3 has, for example, a diameter of 3.4 mm
  • the injector 12 for example having a diameter of 3.7 mm, therefore ends up in a depression zone 19, which is also, in this embodiment, an enclosure having a volume much greater than that of the nozzle of the injector 12 and thus serving as means of relaxation.
  • the expansion of the carrier gas creates a vacuum in the aforesaid enclosure which has the effect of driving the powdery material in the feed hopper 18.
  • the enclosure is fed with pulverulent material by removing a shutter Controlled by control means, for example, pneumatically by means of a jack 21.
  • the position of the injector 12 is advantageously collinear with the outlet 22 of the pulverulent material entrained by the carrier and reactive oxygen.
  • the outlet is equipped with a diverging assembly 22 made of an abrasion resistant material such as, for example, tungsten carbide.
  • the injector 12 has a narrowing zone allowing the accelerated carrier gas to be compressed before it reaches the depression zone 19.
  • the injector 12 is secured to the support block 23 which confines said depression zone 19 and the diverging passage 22 defining the outlet 35.
  • the support block 23 comprises on its outside diameter a groove 17 and an orthogonal bore 15 which allow the passage of a portion of the flow of oxygen from the conduit connected to the needle valve 9.
  • the needle valve 9 is then connected to the bore 8 by a pipe 36 of a nature compatible with the passage of oxygen.
  • the closing or opening of the needle valve 9 allows or not the bypass (withdrawal) in the branch circuit 36 of an amount of oxygen necessary for the working conditions.
  • the oxygen thus withdrawn into the counterbore 7 (withdrawal orifice) through an opening of the needle valve 9 will then be reintroduced via the circuit 36 into the ring 17 (reintroduction orifice of the carrier gas), it will pass into the bore 15 and will then end in an annular space at the depression zone 19.
  • the bypass circuit 36 is called the assembly constituted by the recess 7, the bore 8, the needle valve 9, the reintroduction orifice 17, the bore 15.
  • the maximum operating pressure at the inlet of the injector (static pressure) is 4.05 bar.
  • the needle valve, initially closed, was gradually opened and the mass flow rate of pulverulent material was measured. The results are shown below in the table.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Nozzles (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Procédé de projection d'une matière pulvérulente dans un gaz porteur comprenant une accélération du gaz porteur sous pression jusqu'à une vitesse sonique avant une détente permettant d'entraîner de la matière pulvérulente, avec formation d'un débit de gaz porteur constant entraînant une quantité prédéterminée ajustable de matière pulvérulente et dispositif sécurisé de projection de matière pulvérulente dans un gaz porteur.

Description

"PROCEDE ET DISPOSITIF DE PROJECTION DE MATIERE PULVERULENTE DANS UN GAZ PORTEUR"
La présente invention se rapporte à un procédé de projection d'une matière pulvérulente dans un gaz porteur présentant un débit global, ledit procédé comprenant :
- un écoulement dudit gaz porteur sous pression,
- une accélération dudit gaz porteur sous pression jusqu'à une vitesse sonique,
- une détente dudit gaz porteur sous pression avec formation d'une zone de dépression présentant une valeur inférieure à ladite pression d'écoulement du gaz porteur et un entraînement d'une quantité de ladite matière pulvérulente par ledit gaz porteur détendu, et
- une projection de ladite matière pulvérulente entraînée par ledit gaz porteur. Un tel procédé est par exemple connu du document
US-6.402.050 qui décrit des appareils de pulvérisation dynamique de matériaux pulvérulents par des gaz dans le domaine d'application de la production de revêtements par exemple anticorrosion ou réfléchissant pour des surfaces usinées. Ce document décrit l'utilisation d'un col sonique avec un rapport particulier des surfaces de section transversale entre la tuyère sonique et l'alimentation en matière pulvérulente, afin de maintenir une pression inférieure à la pression atmosphérique pour assurer le transport de la poudre par un flux d'air à la pression atmosphérique. Ce document ne divulgue pas que la tuyère de type sonique permet d'obtenir un débit de matière pulvérulente constant. Pourtant, dans le domaine de la réparation de parois réfractaires de four par projection à la flamme, du gunitage, de la soudure céramique ou projection réactive, la reproductibilité d'un procédé de projection de matière pulvérulente et tous les réglages qui y sont afférents comme ceux de la quantité de matière pulvérulente, de la vitesse de projection, de la force de l'impact, etc. sont directement influencés de manière néfaste par un débit de gaz porteur variable non reproductible.
Bien entendu, on connaît des dispositifs qui comprennent un débitmètre qui commande, via un régulateur, une vanne pour obtenir un débit de gaz constant, mais de tels systèmes sont complexes à mettre en œuvre et demandent des éléments dont les prix d'achat et de fonctionnement sont une fonction directe de la précision. Dès lors, ces systèmes sont peu applicables, sans parler du fait que la précision finale (probablement due à la séquence des éléments) laisse souvent à désirer. En outre, certains procédés connus dans le domaine de la réparation par projection de matière pulvérulente comprennent un ajustement de la quantité de matière pulvérulente entraînée au moyen d'une vis sans fin ou d'un plateau tournant à déversement mais l'utilisation de tels dispositifs d'entraînement requiert l'utilisation de moteurs électriques, ce qui est peu compatible avec l'utilisation d'un gaz porteur et réactif (par exemple l'oxygène) avec au moins un élément de ladite matière pulvérulente.
Pour pouvoir utiliser de manière sûre ces moteurs électriques, il faudrait utiliser un gaz inerte comme par exemple l'azote, ce qui n'est pas compatible avec le procédé selon l'invention car le gaz porteur doit être réactif avec un élément de la matière pulvérulente et demande dans tous les cas une alimentation supplémentaire en azote, ce qui rend le procédé moins flexible.
L'invention a donc pour but de pallier ces inconvénients en procurant un procédé dans lequel le débit de matière pulvérulente est ajustable et reproductible sans affecter le débit du gaz porteur. A cette fin, le procédé selon l'invention est caractérisé en ce qu'il comprend en outre un réglage de ladite pression inférieure, qui existe dans la zone de dépression par dérivation ou non, avant la détente, d'une quantité ajustable dudit gaz porteur ayant été accéléré pour réintroduire ladite quantité ajustable dans la zone de dépression susdite sans modification dudit débit, en particulier dans sa globalité.
La quantité de matière pulvérulente instantanée entraînée devrait être avantageusement optimalisée du point de vue de l'excellence du revêtement mais également du point de vue du coût de consommation de cette dernière. En amont de la canne ou lance de projection, il est donc important de pouvoir mélanger intimement la matière pulvérulente avec le gaz porteur et réactif en quantité ajustable. Dès lors, des contraintes dictent également la valeur de ce dernier paramètre.
Le procédé selon l'invention tel que décrit ci-dessus présente la souplesse voulue par rapport à un procédé classique utilisant un effet venturi. En effet, le procédé de projection suivant l'invention en comprenant une étape de réglage de ladite dépression par dérivation ou non, avant la détente d'une quantité ajustable de gaz porteur ayant été accéléré, permet, tout en ne modifiant rien au débit de sortie du gaz porteur, de modifier la valeur de la pression inférieure dans la zone de dépression, ce qui permet d'ajuster la quantité de matière pulvérulente entraînée.
Si la quantité de gaz porteur et réactif soutirée et réintroduite est importante, la valeur de la pression dans la zone de dépression sera plus proche de la pression de compression et la quantité de matière pulvérulente entraînée sera réduite. Par contre, si la quantité de gaz porteur et réactif soutirée et réintroduite est faible, la valeur de la pression dans la zone de dépression sera fortement abaissée par rapport à la valeur de la pression de compression susdite et une quantité de matière pulvérulente importante et proche de sa valeur maximale sera également entraînée. Si la quantité de gaz porteur dérivée est nulle, la valeur de la dépression est maximale et présente la valeur la plus éloignée par rapport à la pression de compression que le procédé peut atteindre et la quantité maximale de matière pulvérulente est entraînée. Dès lors, la quantité de gaz porteur et réactif dérivée (c'est-à-dire soutirée et réintroduite) permet d'ajuster de manière particulièrement astucieuse la quantité de matière pulvérulente entraînée.
L'invention a donc permis de pallier au moins une partie des inconvénients de l'état de la technique en permettant d'ajuster à une valeur reproductible la quantité de matière pulvérulente entraînée tout en assurant un débit de gaz porteur qui est constant, garantissant ainsi une vitesse d'éjection constante. En effet, le résultat final, la reproductibilité et la qualité de la projection dépendent directement de ce débit de matière pulvérulente entraînée par ledit gaz porteur.
Un débit de gaz porteur optimal assure un transport optimal de la matière à projeter et puisque la projection est faite par l'intermédiaire d'une canne ou lance de projection, ayant une section de projection bien définie, la vitesse de projection pour une température donnée du gaz porteur sera donc conditionnée par le débit de ce gaz porteur.
Grâce à l'accélération jusqu'à la vitesse sonique, par exemple obtenue en créant une onde de choc dans un venturi, le blocage sonique établit un débit fixe qui n'est pas influencé par les variations de perte de charge dans le circuit aval. Dès lors, le débit de gaz porteur est devenu constant et la vitesse de projection conditionnée par ce débit constant est optimale. La vitesse optimale d'éjection ainsi obtenue dans le gaz porteur augmente considérablement la fiabilité et la reproductibilité du procédé de projection de matière pulvérulente selon l'invention.
Dans le domaine de la réparation des parois en matériau réfractaire des fours, des installations de traitement de verre, de cokeries, etc., le procédé selon l'invention peut être avantageusement appliqué dans un procédé de réparation par projection réactive qui consiste à projeter au moyen d'un courant de gaz porteur sur une zone concernée, une matière pulvérulente (comprenant par exemple une charge réfractaire et de la poudre métallique), finement pulvérisée.
En effet, lorsqu'une paroi en matériau réfractaire présente des dégradations superficielles ou profondes, l'utilisateur doit les réparer le plus vite possible pour ne pas aggraver les dégradations étant donné les conditions intenses de fonctionnement.
Lors de l'opération de réparation par projection réactive, la qualité du revêtement obtenu sur la paroi généralement réfractaire, dépend de plusieurs paramètres dont notamment la température du support et la vitesse de projection.
Dans ce type de procédé, le gaz porteur peut également être avantageusement un gaz réactif avec au moins un des éléments de la matière pulvérulente et, au contact de la paroi chaude, le mélange réagit spontanément et une série de réactions chimiques conduit à la formation d'un matériau réfractaire homogène, adhérent, dont les caractéristiques sont compatibles avec celles du support traité.
La vitesse de projection est un élément prépondérant. En effet, si cette dernière est trop faible, il y a risque de retour de flamme. Si elle est trop importante, la quantité de matière peut ne pas réagir (car ne participant pas à la réaction exothermique) et rebondir exagérément sur la paroi au détriment de la qualité du magma en formation engendré par la projection réactive.
Le procédé selon l'invention a donc pour objet de permettre d'obtenir une qualité de soudure optimale en procurant une qualité de projection et d'impact de ladite matière pulvérulente sur la surface à réparer constante au cours du temps. Le procédé selon l'invention permet l'obtention d'un débit de gaz porteur et réactif dépendant directement de la pression d'entrée mais indépendant de toute modification de pression résultant du circuit aval Les grains composant la matière pulvérulente projetée sont animés d'une vitesse optimalisée grâce au gaz porteur qui transporte la matière pulvérulente pneumatiquement et leur quantité est ajustable.
Dans ce type d'application de la réparation par projection réactive, le gaz porteur est également un gaz réactif qui sert non seulement de fluide de transport mais participe activement à la réaction physicochimique exothermique. La qualité finale du produit projeté dépend essentiellement des facteurs suivants:
- de l'enthalpie globale produite lors de la réaction exothermique et donc de la quantité de gaz porteur et réactif utilisée ainsi que de la température, de la composition chimique ou de la formulation de la matière pulvérulente,
- de la quantité de poudre projetée, soit le débit massique de matière pulvérulente, - du débit optimal du gaz porteur et réactif permettant d'obtenir une vitesse optimale d'éjection des réactifs pour une application donnée.
Etant donné que le débit de gaz porteur présente suivant l'invention avantageusement une valeur constante à la sortie, exempte de toute variation due à des imperfections, le procédé selon l'invention présente une vitesse optimale de projection pour une application donnée.
Avantageusement, le procédé selon l'invention comprend en outre une compression dudit gaz porteur réactif ayant été accéléré préalablement à la détente, ce qui permet d'améliorer l'entraînement de la matière pulvérulente susdite. D'autres formes de réalisation du procédé selon l'invention sont mentionnées dans les revendications annexées.
L'invention se rapporte en outre à un dispositif de projection d'une matière pulvérulente dans un gaz porteur comprenant:
- une entrée de gaz porteur sous pression, - une tuyère de type convergent-divergent à col sonique en communication avec ladite entrée dudit gaz porteur sous-pression,
- une alimentation en matière pulvérulente communiquant avec une zone de dépression, - des moyens de détente du gaz porteur reliés à ladite tuyère de type convergent-divergent à col sonique recevant le gaz porteur sous pression et aboutissant dans ladite zone de dépression, et
- une sortie de ladite matière pulvérulente entraînée par ledit gaz porteur détendu hors de la zone de dépression. Malheureusement, un tel dispositif ne permet pas, comme mentionné précédemment d'obtenir une projection de matière pulvérulente optimale, ce qui nuit d'une part à la reproductibilité du travail accompli par ce dispositif et d'autre part à la qualité du travail fini, ni d'ajuster la quantité de matière pulvérulente entraînée. L'invention a pour but de pallier les inconvénients de l'état de la technique en procurant un dispositif permettant d'obtenir une vitesse de projection optimale pour un débit massique de poudre choisi augmentant la reproductibilité du travail accompli par l'utilisateur du dispositif selon l'invention et la précision ainsi que les coûts de matière pulvérulente. Pour résoudre ce problème, il est prévu suivant l'invention, un dispositif tel qu'indiqué ci-dessus, caractérisé en ce qu'il comprend en outre un dispositif de réglage de débit de ladite matière pulvérulente dans ledit gaz porteur comprenant un circuit de dérivation dudit gaz porteur muni d'un organe d'ajustement de la quantité de gaz porteur dérivée, ledit circuit de dérivation comprenant un orifice de prélèvement de gaz porteur disposé en amont de ladite zone de dépression dudit gaz porteur et un orifice de réintroduction dudit gaz porteur prélevé situé dans ladite zone de dépression.
Ladite tuyère de type convergent-divergent à col sonique permet de maintenir, en aval, un débit de gaz porteur constant entraînant une quantité prédéterminée de matière pulvérulente qui est donc ajustable grâce aux moyens de dérivation.
De cette façon, le gaz porteur qui passe au travers de la tuyère de type convergent-divergent à col sonique ou aussi appelée de Laval subit une accélération jusqu'à une vitesse sonique grâce à une onde de choc qui a été créée dans le venturi. Le blocage sonique ainsi obtenu établit un débit fixe qui n'est pas influencé par la différence de pression entre l'amont et l'aval de la tuyère. De plus, la quantité de matière pulvérulente ajustable est également optimalisée. Dès lors le débit du mélange de matière pulvérulente dans le gaz porteur est optimal et la réaction exothermique également. La projection totale est optimalisée et le rendement est augmenté.
Le gaz porteur réintroduit dans la zone de dépression provoque une contre-pression qui agit sur la dépression et au plus la quantité de gaz porteur réintroduite dans la zone de dépression est grande, au plus la quantité de matière pulvérulente entraînée est faible. Le contraire est également d'application. Si l'utilisateur souhaite entraîner la quantité de matière pulvérulente maximale, il suffit de ne pas prélever de gaz porteur. La quantité de gaz porteur soutirée et réintroduite est ajustée à l'aide de l'organe de contrôle.
Avantageusement, le dispositif selon l'invention comprend un injecteur en communication d'une part avec ladite tuyère de type convergent-divergent à col sonique et d'autre part avec les dits moyens de détente et ladite zone de dépression, ledit injecteur comprenant au moins une zone de rétrécissement. La présence de l'injecteur améliore l'entraînement de la matière pulvérulente dans la zone de dépression et la zone de rétrécissement permet d'augmenter la pression juste avant la détente. Dès lors, la différence de pression sera plus importante et l'efficacité de l'entraînement également. De préférence, ledit organe de contrôle du circuit de dérivation est une vanne à pointeau. Ceci permet d'obtenir toutes les valeurs possibles entre la valeur maximale de gaz prélevée et la valeur minimale, la vanne à pointeau fonctionnant par serrage et non par créneaux. Avantageusement, ledit orifice de prélèvement est disposé en amont de ladite zone de rétrécissement dudit injecteur. De cette façon, le gaz porteur qui doit être dérivé pour réguler la quantité de matière pulvérulente est prélevé avant la compression et représente une contre- pression vis-à-vis de la pression (pression inférieure) régnant dans la zone de dépression, permettant ainsi un réglage plus sensible de la quantité de matière pulvérulente aspirée.
Dans une forme de réalisation avantageuse, la zone de dépression est reliée à un passage divergent, de préférence en carbure de tungstène, lui-même relié audit orifice de sortie de ladite matière pulvérulente entraînée par le gaz porteur. Le passage divergent est de préférence en une matière résistante à l'abrasion comme par exemple le carbure de tungstène et permet d'obtenir un fonctionnement semblable à celui d'une tuyère.
Dans une forme de réalisation particulièrement avantageuse, ladite tuyère de type convergent-divergent à col sonique présente un diamètre inférieur au diamètre de chaque élément en aval de ladite tuyère de type convergent-divergent à col sonique.
Dès lors, c'est ladite tuyère de type convergent-divergent à col sonique qui dicte le débit constant jusqu'à la sortie du dispositif selon l'invention.
Dans une forme de réalisation préférentielle de l'invention, la sortie de matière pulvérulente entraînée par ledit gaz porteur est un orifice tubulaire comprenant le passage divergent, dans lequel un premier boîtier entoure au moins ledit orifice tubulaire de sortie et dans lequel un deuxième boîtier entoure un tuyau flexible conduisant à une lance de projection reliée à ladite sortie, les deux boîtiers étant reliés ensemble par des moyens de connexions conventionnels. Ceci permet d'obtenir un dispositif de projection de matière pulvérulente dans un gaz porteur compact et portable qui est suffisamment sûr. En effet, les éléments fragiles confinés à l'intérieur sont à l'abri de l'environnement. Les réactions exothermiques éventuelles accidentelles qui pourraient se produire lors de la projection sont également confinées dans le dispositif selon l'invention et dans le deuxième boîtier, ce qui permet d'éviter de blesser l'utilisateur. Le deuxième boîtier est particulièrement approprié en cas de retour de flamme pour éviter que l'utilisateur ne soit brûlé puisque généralement le gaz porteur et réactif est de l'oxygène.
De préférence, un fil thermofusible relié d'une part à une gâchette qui comprend une position ouverte de passage de gaz porteur et une position fermée de blocage de gaz porteur et d'autre part dans ledit deuxième boîtier, ledit fil thermofusible étant agencé pour maintenir ladite gâchette en position ouverte. De cette façon, en cas de retour de flamme, le fil thermofusible se rompt instantanément et la gâchette passe pratiquement instantanément en position fermée de blocage du gaz porteur (oxygène). Ceci permet d'éviter la propagation en arrière du front de flamme et donc l'explosion ou l'incendie.
Dans une forme de réalisation particulièrement sûre, ledit premier et ledit deuxième boîtiers sont reliés l'un à l'autre par des moyens de rappel présentant une force de rappel prédéterminée, par exemple des ressorts maintenant ensemble des moyens de connexion conventionnels. Le tarage des ressorts est tel que, lors d'une surpression due à un retour de flamme dans l'orifice tubulaire de sortie celui-ci se sépare du divergent, permettant ainsi directement un retour à la pression atmosphérique. Dès lors, ces deux éléments s'écartent l'un de l'autre quelques instants très brefs, ce qui permet également d'éviter l'explosion ou l'incendie. Avantageusement, le deuxième boîtier de sécurité comprend deux dispositifs filtrants qui permettent l'évacuation des gaz et des poussières tout en bloquant une propagation des flammes lors d'un tel incident.
D'autres formes de réalisation du dispositif suivant l'invention sont indiquées dans les revendications annexées.
D'autres caractéristiques, détails et avantages de l'invention ressortiront de la description donnée ci-après, à titre non limitatif et en faisant référence aux dessins annexés.
La figure 1 est une vue en coupe d'un dispositif de projection de matière pulvérulente dans un gaz porteur selon l'invention.
La figure 2 est une vue en coupe d'un ensemble complet comprenant le même dispositif que celui représenté à la figure 1 où l'on peut voir les détails du fil thermofusible, du deuxième boîtier et des ressorts tarés selon l'invention. La figure 3 est une vue d'en haut d'une variante du dispositif de projection d'une matière pulvérulente dans un gaz porteur selon l'invention.
La figure 4 est une vue en coupe d'un ensemble complet d'une variante du dispositif illustré à la figure 1. Sur les figures, les éléments identiques ou analogues portent les mêmes références.
La figure 1 illustre un dispositif de projection de matière pulvérulente dans un gaz porteur pour la mise en œuvre du procédé de projection selon l'invention. Comme on l'a mentionné ci-avant, le principe consiste à projeter au moyen d'un gaz porteur une matière pulvérulente finement pulvérisée sur une zone concernée. Le gaz porteur est, par exemple, également réactif avec un élément de la matière pulvérulente. Le gaz porteur réactif est par exemple de l'oxygène qui participe à la réaction exothermique de la poudre métallique contenue dans la matière pulvérulente. Le dispositif selon l'invention illustré à la figure 1 comprend une entrée 1 d'oxygène gazeux sous pression provenant soit d'une bonbonne, soit d'un réservoir comprimé, par exemple à 200 bar. La pression de l'oxygène sous pression entrant dans le dispositif selon l'invention a été préalablement régulée au moyen d'un détendeur 2 ou de plusieurs détendeurs 2 en série connecté(s) à la bonbonne ou au réservoir (non représenté). Une valeur de cette pression d'oxygène sous pression donnée à titre d'exemple est de 5,2 bar. La matière pulvérulente entre dans le dispositif selon l'invention par l'intermédiaire d'une trémie d'alimentation 18 en matière pulvérulente. L'oxygène gazeux sous pression pénètre dans le dispositif selon l'invention par l'entrée susdite 1 et atteint une tuyère 3 de type Laval, c'est-à-dire de type convergent-divergent, dont les facteurs dimensionnels sont tels que la tuyère 3 est considérée comme sonique. La tuyère de type Laval comprend une section convergente 4, un col sonique 5 et une section divergente 6.
La tuyère 3 est suivie dans la forme de réalisation illustrée d'un chambrage 7. Le chambrage 7 comprend avantageusement au moins un soutirage d'oxygène permettant de dériver une quantité d'oxygène accéléré par ladite tuyère 3. Une partie de l'oxygène porteur et réactif est donc dérivée par deux alésages orthogonaux 8, 8' reliés à une vanne à pointeau 9 qui permet d'ajuster la valeur de la quantité d'oxygène dérivée. Il est également prévu dans la forme de réalisation représentée de mesurer la valeur de la pression statique de l'oxygène accéléré par la tuyère 3 par l'intermédiaire de deux alésages orthogonaux 10, 10' pratiqués dans ledit chambrage 7. La mesure de cette pression statique se fera par exemple à l'aide d'un manomètre 11.
La tuyère de type Laval ou de type convergent-divergent 3 à col sonique est solidarisée à un injecteur 12 qui sera alimenté en gaz porteur ayant été accéléré (oxygène) avec un débit, une pression et une vitesse dictés par la tuyère de type convergent-divergent 3 susdite. L'injecteur 12 est réalisé de préférence en une matière compatible avec le passage de l'oxygène. L'oxygène porteur et réactif avec au moins un élément de la matière pulvérulente, qui a traversé l'injecteur, sous pression élevée, aboutit ensuite dans une zone de dépression 19, qui est, dans cette forme de réalisation, une enceinte ayant un volume bien supérieur à celui de la tubulure de l'injecteur 12 et servant ainsi de moyens de détente. La détente du gaz porteur crée une dépression dans l'enceinte susdite qui a pour effet d'entraîner la matière pulvérulente se trouvant dans la trémie d'alimentation 18. Avantageusement, l'enceinte est alimentée en matière pulvérulente grâce au retrait d'un obturateur 20 commandé par des moyens de commande, par exemple, pneumatiquement à l'aide d'un vérin 21.
Les moyens de détente peuvent être constitués de tous moyens de détente connus, comme l'enceinte à volume supérieur à celui de l'injecteur susdit, ou la partie divergente d'un venturi.
La position de l'injecteur 12 est avantageusement colinéaire avec la sortie 22 de la matière pulvérulente entraînée par l'oxygène porteur et réactif. La sortie est équipée d'un ensemble divergent 22 constitué d'une matière résistante à l'abrasion comme par exemple, le carbure de tungstène.
L'injecteur 12 comporte une zone de rétrécissement permettant une compression du gaz porteur accéléré avant que celui-ci aboutisse dans la zone de dépression 19.
Dans cette forme de réalisation illustrée, la tuyère de type Laval 3 est solidarisée à un ensemble de préférence métallique 13 qui est constitué de trois sous-ensembles coaxiaux 12, 14, 16. Le sous-ensemble de préférence métallique 14 comporte sur son diamètre extérieur une gorge
17 dans laquelle des alésages 15 réalisés radialement permettent le passage d'une partie du débit d'oxygène en provenance du conduit relié à la vanne à pointeau 9. Le sous-ensemble 16 est une bague permettant la fermeture de la gorge 17 du sous-ensemble 14. La bague 16 assure la connexion à la vanne à pointeau 9 par l'intermédiaire d'un alésage réalisé dans la bague 16, au droit de la gorge 17 susdite.
La vanne à pointeau 9 est alors reliée à l'alésage 8 et/ou à l'alésage 8' par une conduite 36 de nature compatible avec le passage de l'oxygène. La fermeture ou l'ouverture de la vanne à pointeau 9 permet ou non la dérivation (le soutirage) dans le circuit de dérivation 36 d'une quantité d'oxygène nécessaire pour les conditions de travail. L'oxygène ainsi soutiré dans le chambrage 7 (orifice de soutirage) par une ouverture de la vanne à pointeau 9 sera alors réintroduit via le circuit 36 dans la bague 17 (orifice de réintroduction du gaz porteur), il passera dans l'alésage 15 et aboutira ensuite dans un espace annulaire 25 existant entre le sous-ensemble métallique 14 et l'injecteur 12. De cette façon, à la sortie de l'injecteur 12, le débit d'oxygène accéléré au sortir de la tuyère de type convergent-divergent à col sonique 3 est recouvré. On appelle le circuit de dérivation 36, l'ensemble constitué par le chambrage 7, les alésages 8, 8', la vanne à pointeau 9, l'orifice de réintroduction 17, l'alésage 15 et l'espace annulaire 25.
En effet, l'oxygène accéléré sortant de la tuyère 3 présente un débit dL, une vitesse vL et une pression PL. Lorsqu'une partie dD du débit d'oxygène accéléré dL est dérivée, le débit d'oxygène qui passe dans l'injecteur est d,. L'oxygène qui passe dans l'injecteur est animé d'une vitesse v, et présente une pression P1. L'oxygène de la partie du débit dérivé dD est également animé d'une vitesse vD et présente une pression P0 dans l'espace annulaire 25.
A la sortie de l'injecteur 12 et de l'espace annulaire 25, l'oxygène aura une pression résultante PR et une vitesse résultante vR. Ces pressions et vitesse résultantes conditionnent la quantité de matière pulvérulente entraînée. L'ouverture ou la fermeture de la vanne à pointeau 9 provoquera une variation des débits d, et dD, une variation des pressions P1 et P0 ainsi que des changements de vitesse v, et vD. La pression résultante PR et la vitesse résultante vR seront dès lors des variables. La conséquence directe est une variation de la quantité de matière pulvérulente entraînée, du fait de la variation d'énergie cinétique et de la quantité de mouvement. Il y aura donc une modification de l'importance de l'effet venturi engendré.
Toutefois, les valeurs du débit de gaz porteur accéléré dL à la sortie de la tuyère de Laval 3 et du débit d'oxygène sortant du dispositif selon l'invention dR sont identiques puisque le débit de gaz porteur reste constant lors de la traversée du dispositif selon l'invention. Dès lors, grâce à la déviation ou dérivation d'une partie du débit dD, par l'ouverture de la vanne à pointeau 9 dans le circuit de dérivation 36, le débit qui passe dans l'injecteur 12 d, est diminué en conséquence. Les caractéristiques telles que pression P1, débit massique M1, et vitesse v, au sortir de l'injecteur métallique seront modifiées. Si Ia vanne à pointeau 9 est complètement ouverte et laisse passer un débit d'oxygène maximal correspondant à la valeur maximale que dD (débit d'oxygène dérivé) peut atteindre, la quantité de matière pulvérulente entraînée sera la quantité de matière pulvérulente minimale qui peut être entraînée par le dispositif selon l'invention (quantité instantanée). Si la vanne à pointeau 9 est fermée et ne permet pas de dérivation, alors la quantité de matière pulvérulente entraînée est à sa valeur maximale. La dérivation n'étant pas toujours nécessaire, il est judicieux de prévoir la possibilité de fermer l'organe d'ajustement et en l'occurrence la vanne à pointeau 9 (quantité instantanée). Dans une variante, la gorge 17 peut faire partie intégrante du corps support de l'ensemble 13. De même, l'homme de métier comprendra aisément que les positions géométriques des alésages radiaux peuvent être bien différentes en fonction des impératifs de l'encombrement.
Les alésages 8' et 10' sont usinés perpendiculairement aux deux alésages 8 et 10 eux-mêmes situés orthogonalement au plan formé par le chambrage 7, mais l'homme de métier comprendra aisément que ces positions géométriques ne sont dictées que par des contraintes stériques et d'encombrement. Il va de soi qu'un seul alésage 8, 10 pourrait suffire pour dériver de l'oxygène accéléré ou pour mesurer la valeur de la pression statique et qu'il n'y a aucun impératif de positionnement pour des variantes selon l'invention.
Les facteurs dimensionnels de la tuyère de type Laval sont tels que la pression statique de l'oxygène traversant ladite tuyère 3 a une valeur égale ou inférieure au produit de la pression à l'entrée de la tuyère (pression de compression) et d'un facteur de 0,528. Dans ces conditions, la tuyère 3, est considérée comme sonique et les conditions de fonctionnement de l'ensemble ne dépendent que de la pression initiale du fluide en amont, c'est-à-dire la pression dictée par le régulateur de pression 2, constitué par exemple d'un ou de plusieurs détendeurs 2. Le divergent en carbure de tungstène 22 peut être positionné et fixé dans un bloc support 23.
Les facteurs dimensionnels de l'ensemble injecteur 12 et divergent 22 sont tels que le principe de fonctionnement peut également être assimilé à une tuyère de type venturi. Dans une variante selon l'invention, en amont de la tuyère de type convergent-divergent à col sonique 3, on trouve une sécurité antiretour 24 présentant une soupape à gâchette normalement ouverte et permettant d'éviter le refoulement du gaz dans le dispositif selon l'invention. En effet, lorsqu'il s'agit d'oxygène chaud ou d'un retour de flamme, il est avantageux de présenter une sécurité antiretour qui bloque le passage en cas d'échauffement ou de retour de scories.
La figure 2 illustre un ensemble de réparation par projection réactive plus complet comprenant le même dispositif que celui représenté à la figure 1. Dans cet ensemble, une trémie 18' d'une plus grande capacité que la trémie d'alimentation 18 susdite est située au-dessus de celle-ci. La matière pulvérulente composée de poudres réfractaires et métalliques utilisée dans le procédé selon l'invention est donc transférée de la trémie 18' à la trémie 18 par écoulement naturel et par gravité.
Dans la trémie d'alimentation 18 aboutissant dans la zone de dépression 19, on aura placé avantageusement un registre mobile 26 permettant un écoulement régulier dans l'enceinte de mélange de gaz porteur (oxygène) et de poudre. Dans le cas d'un retour de flamme et dans le cas d'un retour gazeux susceptible de remonter dans la trémie 18, puisque la matière pulvérulente s'y trouvant est réactive (au moins un des éléments la constituant) avec le gaz porteur (oxygène), la quantité de matière pulvérulente susceptible de provoquer une explosion est réduite, et par conséquent la quantité de matière pulvérulente perdue.
Le dispositif illustré à la figure 2 comprend également, comme on l'a mentionné précédemment un bloc support 23 que l'on appelle également dans le contexte de la présente invention le premier boîtier 23 qui entoure la sortie 35 de matière pulvérulente entraînée par le gaz porteur sous la forme d'un orifice tubulaire à passage divergent 22 (par exemple, en carbure de tungstène anti-abrasion). Le dispositif selon l'invention, dans sa forme préférentielle illustrée ici comprend en outre un deuxième boîtier 27. Le deuxième boîtier 27 entoure la lance 28 de projection réactive de la matière pulvérulente entraînée par ledit gaz porteur et réactif.
Le premier boîtier 23 est relié au deuxième boîtier 27 à l'aide de moyens de connexion conventionnels 29 et 29' tels qu'une saillie filetée et un pas de vis, des brides et analogue. Les moyens de connexions conventionnels 29 et 29' sont maintenus en place grâce à la pression exercée par une série de moyens de rappel 30 présentant une force de rappel prédéterminée. Ces moyens de rappel 30 sont par exemple des ressorts 30 tarés. La force de rappel prédéterminée ou le tarage des ressorts est tel que lors d'une surpression dans la lance de projection 28 suite à un retour de flamme, les deux moyens de connexion conventionnels se séparent. Ceci permet un retour instantané à la pression atmosphérique dans des enceintes dans lesquels régnait une pression propice à l'inflammation et à l'explosion.
Comme on peut également le voir, le dispositif selon l'invention comporte également un dispositif de sécurité supplémentaire. En effet, en sus de la sécurité antiretour 24, du registre mobile 26 dans la trémie d'alimentation 18 susdite, des premier et deuxième boîtiers 23 et 27, des moyens de rappel 30, le dispositif possède en outre un fil thermofusible
31 judicieusement positionné. Le fil thermofusible 31 se trouve dans la trajectoire du flux gazeux chaud. Lors de la séparation des moyens de connexion conventionnels 29 et 29' sous l'effet d'une surpression sur incident ou lors d'un retour de flamme survenant dans ledit deuxième boîtier 27, le flux gazeux chaud fait immédiatement fondre le fil thermofusible 31 qui est alors quasi instantanément sectionné. Sa rupture permet de libérer la tension sur la gâchette 32 de sécurité. Le relâchement brutal de la gâchette
32 interrompt le débit d'oxygène et le passage de gaz est bloqué.
En outre, le dispositif selon l'invention est équipé au niveau du deuxième boîtier 27 de dispositifs filtrants 33 et 34 permettant l'évacuation refroidie des gaz et poussières lors d'un tel incident (retour de flamme). Dans la variante du dispositif selon l'invention illustrée à la figure 3, le circuit de dérivation permettant d'ajuster la quantité de matière pulvérulente entraînée par le gaz porteur et réactif est disposé différemment. Les autres éléments représentés fonctionnent comme dans et sont décrits par la description détaillée des figures 1 et 2 y compris toutes les alternatives expliquées.
Le circuit de dérivation 36 est composé d'un organe d'ajustement 9 (vanne à pointeau) de la quantité de gaz porteur dérivée, d'un orifice de prélèvement 7 de gaz porteur et d'un orifice de réintroduction 25 du gaz dérivé dans l'enceinte de la zone de dépression. L'orifice de prélèvement ou de soutirage 7 est disposé à la sortie de la tuyère de Laval 3. Bien entendu, cet orifice de soutirage peut être disposé à bien d'autres endroits pour autant que ce dernier soit disposé en amont de ladite zone de détente 19 dudit gaz porteur, le fonctionnement sera optimal.
De même, en tant que variante, un fil thermofusible 31 est relié d'une part à la gâchette 32 et d'autre part à un point situé entre ledit premier 23 et ledit deuxième boîtier 27. Le fil (thermofusible) 31 maintient la gâchette 32 en position ouverte tant qu'il n'y a pas de retour de flamme. S'il devait se produire un incident, les moyens de connexions conventionnels
29, 29' se sépareraient l'un de l'autre et l'extrémité du fil (thermofusible) 31 serait libérée, ce qui aurait pour effet de relâcher la pression sur la gâchette et de bloquer l'alimentation en oxygène.
La figure 4 illustre une variante du dispositif illustré à la figure 1 , dans lequel le circuit de dérivation est encore disposé différemment. Les autres éléments fonctionnent comme dans la forme de réalisation illustrée à la figure 1.
Le dispositif selon l'invention illustré à la figure 4 comprend une entrée 1 d'oxygène gazeux sous pression. La matière pulvérulente entre dans le dispositif selon l'invention par l'intermédiaire d'une trémie d'alimentation 18 en matière pulvérulente. L'oxygène gazeux sous pression pénètre dans le dispositif selon l'invention par l'entrée susdite 1 et atteint une tuyère 3 de type Laval (sonique). La tuyère de type Laval comprend une section convergente 4, un col sonique 5 et une section divergente 6.
La tuyère 3 est suivie dans la forme de réalisation illustrée d'un chambrage 7. Le chambrage 7 comprend avantageusement au moins un soutirage d'oxygène permettant de dériver une quantité d'oxygène accéléré par ladite tuyère 3 au moyen d'un alésage orthogonal 8 relié à une vanne à pointeau 9 qui permet d'ajuster la valeur de la quantité d'oxygène dérivée. Il est également prévu dans la forme de réalisation représentée de mesurer la valeur de la pression statique de l'oxygène accéléré par la tuyère 3 par l'intermédiaire d'un alésage orthogonal 10 pratiqué dans ledit chambrage 7, par exemple à l'aide d'un manomètre 11.
Le chambrage relié à la tuyère de type Laval est solidarisée à un injecteur 12 qui sera alimenté en gaz porteur accéléré (oxygène) avec un débit, une pression et une vitesse dictés par la tuyère 3 susdite. La tuyère 3 présente par exemple un diamètre de 3,4 mm
L'injecteur 12 ayant par exemple un diamètre de 3,7 mm aboutit donc dans une zone de dépression 19, qui est, également dans cette forme de réalisation, une enceinte ayant un volume bien supérieur à celui de la tubulure de l'injecteur 12 et servant ainsi de moyens de détente.
La détente du gaz porteur crée une dépression dans l'enceinte susdite qui a pour effet d'entraîner la matière pulvérulente se trouvant dans la trémie d'alimentation 18. Avantageusement, l'enceinte est alimentée en matière pulvérulente grâce au retrait d'un obturateur 20 commandé par des moyens de commande, par exemple, pneumatiquement à l'aide d'un vérin 21.
La position de l'injecteur 12 est avantageusement colinéaire avec la sortie 22 de la matière pulvérulente entraînée par l'oxygène porteur et réactif. La sortie est équipée d'un ensemble divergent 22 constitué d'une matière résistante à l'abrasion comme par exemple, le carbure de tungstène.
L'injecteur 12 comporte une zone de rétrécissement permettant une compression du gaz porteur accéléré avant que celui-ci aboutisse dans la zone de dépression 19.
Dans cette forme de réalisation illustrée, l'injecteur 12 est solidarisé au bloc support 23 qui confine ladite zone de dépression 19 et le passage divergent 22 définissant la sortie 35.
Le bloc support 23 comporte sur son diamètre extérieur une gorge 17 et un alésage orthogonal 15 qui permettent le passage d'une partie du débit d'oxygène en provenance du conduit relié à la vanne à pointeau 9. La vanne à pointeau 9 est alors reliée à l'alésage 8 par une conduite 36 de nature compatible avec le passage de l'oxygène. La fermeture ou l'ouverture de la vanne à pointeau 9 permet ou non la dérivation (le soutirage) dans le circuit de dérivation 36 d'une quantité d'oxygène nécessaire pour les conditions de travail. L'oxygène ainsi soutiré dans le chambrage 7 (orifice de soutirage) par une ouverture de la vanne à pointeau 9 sera alors réintroduit via le circuit 36 dans la bague 17 (orifice de réintroduction du gaz porteur), il passera dans l'alésage 15 et aboutira ensuite dans un espace annulaire au niveau de la zone de dépression 19. De cette façon, à la sortie de l'injecteur 12, le débit d'oxygène accéléré au sortir de la tuyère de type convergent-divergent à col sonique 3 est recouvré. On appelle le circuit de dérivation 36 l'ensemble constitué par le chambrage 7, l'alésage 8, la vanne à pointeau 9, l'orifice de réintroduction 17, l'alésage 15.
Le fonctionnement et les autres éléments sont identiques à ce qui a été décrit pour la figure 2.
EXEMPLE
Un débit d'O2 constant entre dans le dispositif selon l'invention avec une valeur de 30 Nm3/h et présente une pression à la sortie du détendeur 2 de 5,2 bar. La pression maximale utile à l'entrée de l'injecteur (pression statique) est de 4,05 bar. La vanne à pointeau, initialement fermé a été ouverte petit à petit et le débit massique de matière pulvérulente a été mesuré. Les résultats sont représentés ci-dessous au tableau.
Figure imgf000023_0001
Figure imgf000024_0001
II est bien entendu que la présente invention n'est en aucune façon limitée aux formes de réalisations décrites ci-dessus et que bien des modifications peuvent y être apportées sans sortir du cadre des revendications annexées.

Claims

REVENDICATIONS
1. Procédé de projection d'une matière pulvérulente dans un gaz porteur présentant un débit global, ledit procédé comprenant
- un écoulement dudit gaz porteur sous pression, - une accélération dudit gaz porteur sous pression jusqu'à une vitesse sonique,
- une détente dudit gaz porteur sous pression avec formation d'une zone de dépression présentant une valeur inférieure à ladite pression d'écoulement du gaz porteur et un entraînement d'une quantité de ladite matière pulvérulente par ledit gaz porteur détendu, et
- une projection de ladite matière pulvérulente entraînée par ledit gaz porteur, caractérisé en ce que le procédé comprend en outre un réglage de ladite pression inférieure par dérivation ou non, avant la détente, d'une quantité ajustable dudit gaz porteur ayant été accéléré pour réintroduire ladite quantité ajustable dans la zone de dépression susdite sans modification dudit débit global.
2. Procédé selon la revendication 1 , comprenant en outre une compression dudit gaz porteur accéléré préalablement à la détente.
3. Procédé selon la revendication 2, dans lequel ledit gaz porteur est un gaz réactif participant à une réaction exothermique avec au moins un élément de ladite matière pulvérulente.
4. Dispositif de projection d'une matière pulvérulente dans un gaz porteur comprenant: - une entrée (1 ) de gaz porteur sous pression
- une tuyère de type convergent-divergent à col sonique (3) en communication avec ladite entrée (1 ) dudit gaz porteur sous pression
- une alimentation (18) en matière pulvérulente communiquant avec une zone de dépression (19), - des moyens de détente du gaz porteur reliés à ladite tuyère de type convergent-divergent à col sonique (3) recevant le gaz porteur sous pression et aboutissant dans ladite zone de dépression (19) et
- une sortie (35) de ladite matière pulvérulente entraînée par ledit gaz porteur détendu hors de la zone de dépression (19), caractérisé en ce qu'il comprend en outre un dispositif de réglage de débit (11 , 7, 8, 15, 17, 36) de ladite matière pulvérulente dans ledit gaz porteur comprenant un circuit de dérivation (36) dudit gaz porteur muni d'un organe d'ajustement (9) de la quantité de gaz porteur dérivée, ledit circuit de dérivation (36) comprenant un orifice de prélèvement de gaz porteur (7,8) disposé en amont de ladite zone de dépression (19) dudit gaz porteur et un orifice de réintroduction (15,17) dudit gaz porteur prélevé situé dans ladite zone de dépression (19), ladite tuyère de type convergent-divergent à col sonique (3) étant agencée pour maintenir, en aval, un débit constant de gaz porteur entraînant une quantité prédéterminée de matière pulvérulente.
5. Dispositif selon la revendication 4, comprenant en outre un injecteur (12) en communication d'une part avec ladite tuyère de type convergent-divergent à col sonique (3) et d'autre part avec les dits moyens de détente et ladite zone de dépression (19), ledit injecteur (12) comprenant au moins une zone de rétrécissement.
6. Dispositif selon la revendication 4 ou la revendication 5, dans lequel ladite tuyère de type convergent-divergent à col sonique (3) présente un diamètre inférieur au diamètre de chaque élément en aval de ladite tuyère de type convergent-divergent à col sonique (3).
7. Dispositif selon l'une des revendications 4 à 6, dans lequel ledit organe d'ajustement est une vanne à pointeau (9).
8. Dispositif selon l'une quelconque des revendications 4 à 7, dans lequel ledit orifice de prélèvement (7, 8) est disposé en amont de ladite zone de rétrécissement dudit injecteur (12).
9. Dispositif selon l'une quelconque des revendications 4 à 8, dans lequel ladite zone de dépression (19) est reliée à un passage divergent (22), par exemple en carbure de tungstène, lui-même relié à ladite sortie (35) de ladite matière pulvérulente entraînée par le gaz porteur.
10. Dispositif selon la revendication 9, dans lequel ladite sortie
(35) de matière pulvérulente entraînée par ledit gaz porteur est un orifice tubulaire comprenant le passage divergent (22), dans lequel un premier boîtier (23) entoure au moins ledit orifice tubulaire de sortie (35) et dans lequel un deuxième boîtier (27) entoure un tuyau flexible conduisant à une lance de projection (28) reliée à ladite sortie (35), les deux boîtiers (23,27) étant reliés ensemble.
11. Dispositif selon la revendication 10, comprenant en outre un fil thermofusible (31 ) relié d'une part à une gâchette (32) qui comprend une position ouverte de passage de gaz porteur et une position fermée de blocage de gaz porteur et d'autre part dans ledit deuxième boîtier (27), ledit fil thermofusible (31 ) étant agencé pour maintenir ladite gâchette (32) en position ouverte.
12. Dispositif selon la revendication 10 ou la revendication 11 , dans lequel ledit premier et ledit deuxième boîtier (23,27) sont reliés l'un à l'autre par des moyens de rappel (30) présentant une force de rappel prédéterminée.
13. Dispositif selon la revendication 12 lorsqu'elle dépend de la revendication 10, comprenant en outre un fil (31 ) thermofusible relié d'une part à une gâchette (32) qui comprend une position ouverte de passage de gaz porteur et une position fermée de blocage de gaz porteur et d'autre part entre ledit premier et ledit deuxième boîtier (23,27), ledit fil thermofusible (31 ) étant agencé pour maintenir ladite gâchette (32) en position ouverte.
PCT/EP2008/058565 2007-07-05 2008-07-03 Procede et dispositif de projection de matiere pulverulente dans un gaz porteur WO2009004053A1 (fr)

Priority Applications (19)

Application Number Priority Date Filing Date Title
BRPI0813988-1A BRPI0813988B1 (pt) 2007-07-05 2008-07-03 Processo e dispositivo de projeção de matéria pulverulenta em um gás portador
CN2008800234261A CN101755070B (zh) 2007-07-05 2008-07-03 向载气中喷射粉末材料的方法和设备
UAA201001205A UA98340C2 (ru) 2007-07-05 2008-07-03 Процесс и устройство струйного напыления порошкообразного материала в несущем газе
DE602008005889T DE602008005889D1 (de) 2007-07-05 2008-07-03 Verfahren und vorrichtung zum einsprühen eines pulverförmigen materials in ein trägergas
EA201070102A EA017535B1 (ru) 2007-07-05 2008-07-03 Устройство и способ распыления порошкообразного вещества в газе-носителе
CA2692486A CA2692486C (fr) 2007-07-05 2008-07-03 Procede et dispositif de projection de matiere pulverulente dans un gaz porteur
US12/667,820 US8408479B2 (en) 2007-07-05 2008-07-03 Method and device for spraying a pulverulent material into a carrier gas
PL08761417T PL2171118T3 (pl) 2007-07-05 2008-07-03 Sposób i urządzenie do wtryskiwania sproszkowanej substancji w gaz nośny
EP08761417A EP2171118B1 (fr) 2007-07-05 2008-07-03 Procede et dispositif de projection de matiere pulverulente dans un gaz porteur
AT08761417T ATE503855T1 (de) 2007-07-05 2008-07-03 Verfahren und vorrichtung zum einsprühen eines pulverförmigen materials in ein trägergas
MX2010000186A MX2010000186A (es) 2007-07-05 2008-07-03 Procedimiento y dispositivo de proyeccion de materia polvorienta en un gas portador.
AU2008270262A AU2008270262B2 (en) 2007-07-05 2008-07-03 Method and device for spraying a pulverulent material into a carrier gas
NZ583035A NZ583035A (en) 2007-07-05 2008-07-03 Method and device for spraying a pulverulent material into a carrier gas
JP2010513985A JP5124641B2 (ja) 2007-07-05 2008-07-03 粉材料をキャリヤガス中に導入して噴霧する方法及び装置
SI200830229T SI2171118T1 (sl) 2007-07-05 2008-07-03 Postopek in naprava za razprĺ evanje praĺ kastega materiala v nosilni plin
DK08761417.8T DK2171118T3 (da) 2007-07-05 2008-07-03 Fremgangsmåde og indretning til sprøjtning af et pulverformet materiale ind i en bæregas
TNP2009000549A TN2009000549A1 (fr) 2007-07-05 2009-12-31 Procede et dispositif de projection de matiere pulverulente dans un gaz porteur
EG2010010017A EG25537A (en) 2007-07-05 2010-01-04 Method and device for spraying a pulverulent material into a carrier gas
ZA2010/00478A ZA201000478B (en) 2007-07-05 2010-01-21 Method and device for spraying a pulverulent material into a carrier gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2007/0334A BE1017673A3 (fr) 2007-07-05 2007-07-05 Procede et dispositif de projection de matiere pulverulente dans un gaz porteur.
BE2007/0334 2007-07-05

Publications (1)

Publication Number Publication Date
WO2009004053A1 true WO2009004053A1 (fr) 2009-01-08

Family

ID=39060925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/058565 WO2009004053A1 (fr) 2007-07-05 2008-07-03 Procede et dispositif de projection de matiere pulverulente dans un gaz porteur

Country Status (27)

Country Link
US (1) US8408479B2 (fr)
EP (1) EP2171118B1 (fr)
JP (1) JP5124641B2 (fr)
KR (1) KR101573796B1 (fr)
CN (1) CN101755070B (fr)
AT (1) ATE503855T1 (fr)
AU (1) AU2008270262B2 (fr)
BE (1) BE1017673A3 (fr)
BR (1) BRPI0813988B1 (fr)
CA (1) CA2692486C (fr)
CO (1) CO6251353A2 (fr)
DE (1) DE602008005889D1 (fr)
DK (1) DK2171118T3 (fr)
EA (1) EA017535B1 (fr)
EG (1) EG25537A (fr)
ES (1) ES2362385T3 (fr)
MA (1) MA31582B1 (fr)
MX (1) MX2010000186A (fr)
NZ (1) NZ583035A (fr)
PL (1) PL2171118T3 (fr)
PT (1) PT2171118E (fr)
RS (1) RS51850B (fr)
SI (1) SI2171118T1 (fr)
TN (1) TN2009000549A1 (fr)
UA (1) UA98340C2 (fr)
WO (1) WO2009004053A1 (fr)
ZA (1) ZA201000478B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3592469A4 (fr) * 2017-04-19 2020-03-25 Hollison, LLC Applicateur pour additifs particulaires

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8544408B2 (en) * 2011-03-23 2013-10-01 Kevin Wayne Ewers System for applying metal particulate with hot pressurized air using a venturi chamber and a helical channel
GB201417502D0 (en) * 2014-10-03 2014-11-19 Zephyros Inc Improvements in or relating to powdered adhesives
CN106999965B (zh) * 2014-10-09 2020-01-17 喷雾系统制造欧洲有限公司 双材料喷嘴
JP6518161B2 (ja) * 2015-07-27 2019-05-22 黒崎播磨株式会社 溶射施工方法
US9950328B2 (en) * 2016-03-23 2018-04-24 Alfa Laval Corporate Ab Apparatus for dispersing particles in a fluid
US10857507B2 (en) * 2016-03-23 2020-12-08 Alfa Laval Corporate Ab Apparatus for dispersing particles in a liquid
JP6426647B2 (ja) * 2016-03-24 2018-11-21 タツタ電線株式会社 スプレーノズル、皮膜形成装置、及び皮膜の形成方法
CN115196624A (zh) * 2016-09-30 2022-10-18 加利福尼亚大学董事会 通过压缩流连续产生剥离型2d层状材料
BR112019020889A2 (pt) * 2017-04-06 2020-07-07 Effusiontech Pty Ltd aparelho para deposição por aspersão
CN107185765B (zh) * 2017-05-04 2019-04-30 江苏大学 一种带可旋涡流叶轮的阶梯腔式低频超声雾化喷头
KR200488144Y1 (ko) * 2017-08-11 2018-12-19 (주)단단 저온 분사 코팅 장치
CN108489865B (zh) * 2018-03-07 2020-06-16 太原理工大学 一种高温烟尘气体射流实验装置及方法
CN108980823B (zh) * 2018-09-26 2023-10-10 洛阳帝博石化装备有限公司 一种高效节能型燃烧喷嘴
CN109701769A (zh) * 2019-02-21 2019-05-03 孙国杰 音速喷嘴
EP4021591A4 (fr) 2019-08-26 2023-12-27 Murray, Donald A. Appareil de protection et d'extinction d'incendie, matériaux, systèmes et procédés d'utilisation associés
CN112108284B (zh) * 2020-09-25 2023-07-21 应急管理部上海消防研究所 一种压缩气体驱动的粉剂喷射器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343605A (en) * 1980-05-23 1982-08-10 Browning Engineering Corporation Method of dual fuel operation of an internal burner type ultra-high velocity flame jet apparatus
US5330798A (en) * 1992-12-09 1994-07-19 Browning Thermal Systems, Inc. Thermal spray method and apparatus for optimizing flame jet temperature
US6402050B1 (en) * 1996-11-13 2002-06-11 Alexandr Ivanovich Kashirin Apparatus for gas-dynamic coating
US20050161532A1 (en) * 2004-01-23 2005-07-28 Steenkiste Thomas H.V. Modified high efficiency kinetic spray nozzle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69016433T2 (de) * 1990-05-19 1995-07-20 Papyrin Anatolij Nikiforovic Beschichtungsverfahren und -vorrichtung.
US6502767B2 (en) * 2000-05-03 2003-01-07 Asb Industries Advanced cold spray system
US6811812B2 (en) * 2002-04-05 2004-11-02 Delphi Technologies, Inc. Low pressure powder injection method and system for a kinetic spray process
JP4310251B2 (ja) * 2003-09-02 2009-08-05 新日本製鐵株式会社 コールドスプレー用ノズル及びコールドスプレー被膜の製造方法
US20060040048A1 (en) * 2004-08-23 2006-02-23 Taeyoung Han Continuous in-line manufacturing process for high speed coating deposition via a kinetic spray process
US7900812B2 (en) * 2004-11-30 2011-03-08 Enerdel, Inc. Secure physical connections formed by a kinetic spray process
DE602005013058D1 (de) * 2005-03-09 2009-04-16 Solmics Co Ltd Düse zum Kaltgasspritzen und Vorrichtung mit solch einer Düse
RU2288970C1 (ru) * 2005-05-20 2006-12-10 Общество с ограниченной ответственностью Обнинский центр порошкового напыления (ООО ОЦПН) Устройство для газодинамического нанесения покрытий и способ нанесения покрытий
CN100406130C (zh) * 2005-06-30 2008-07-30 宝山钢铁股份有限公司 冷气动力喷涂方法和装置
US7559489B2 (en) * 2006-08-23 2009-07-14 Valiant Corporation High-pressure pulse nozzle assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343605A (en) * 1980-05-23 1982-08-10 Browning Engineering Corporation Method of dual fuel operation of an internal burner type ultra-high velocity flame jet apparatus
US5330798A (en) * 1992-12-09 1994-07-19 Browning Thermal Systems, Inc. Thermal spray method and apparatus for optimizing flame jet temperature
US6402050B1 (en) * 1996-11-13 2002-06-11 Alexandr Ivanovich Kashirin Apparatus for gas-dynamic coating
US20050161532A1 (en) * 2004-01-23 2005-07-28 Steenkiste Thomas H.V. Modified high efficiency kinetic spray nozzle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3592469A4 (fr) * 2017-04-19 2020-03-25 Hollison, LLC Applicateur pour additifs particulaires
US10973254B2 (en) 2017-04-19 2021-04-13 Hollison, LLC Applicator for particulate additives

Also Published As

Publication number Publication date
PL2171118T3 (pl) 2011-07-29
KR20100046175A (ko) 2010-05-06
CA2692486A1 (fr) 2009-01-08
MA31582B1 (fr) 2010-08-02
ES2362385T3 (es) 2011-07-04
EP2171118B1 (fr) 2011-03-30
EP2171118A1 (fr) 2010-04-07
AU2008270262A1 (en) 2009-01-08
SI2171118T1 (sl) 2011-08-31
JP2010532252A (ja) 2010-10-07
EG25537A (en) 2012-02-06
US8408479B2 (en) 2013-04-02
BRPI0813988B1 (pt) 2019-05-28
EA017535B1 (ru) 2013-01-30
CO6251353A2 (es) 2011-02-21
PT2171118E (pt) 2011-04-29
UA98340C2 (ru) 2012-05-10
EA201070102A1 (ru) 2010-08-30
BE1017673A3 (fr) 2009-03-03
NZ583035A (en) 2012-09-28
CN101755070A (zh) 2010-06-23
ZA201000478B (en) 2011-04-28
ATE503855T1 (de) 2011-04-15
MX2010000186A (es) 2010-04-27
RS51850B (en) 2012-02-29
BRPI0813988A2 (pt) 2017-05-09
US20100193600A1 (en) 2010-08-05
DE602008005889D1 (de) 2011-05-12
JP5124641B2 (ja) 2013-01-23
CA2692486C (fr) 2015-09-08
DK2171118T3 (da) 2011-05-23
CN101755070B (zh) 2012-12-05
AU2008270262B2 (en) 2012-04-26
TN2009000549A1 (fr) 2011-03-31
KR101573796B1 (ko) 2015-12-02

Similar Documents

Publication Publication Date Title
EP2171118B1 (fr) Procede et dispositif de projection de matiere pulverulente dans un gaz porteur
EP0755720B1 (fr) Dispositif de pulvérisation d'un produit liquide
RU2261763C1 (ru) Устройство и сопло для холодного напыления порошкового материала
EP2249968B1 (fr) Appareil et procede pour faire varier les proprietes d'un jet multiphasique
US20160024633A1 (en) Cold Gas Dynamic Spray Apparatus, System and Method
CA2492133C (fr) Dispositif d'extinction de feu
WO2008003907A2 (fr) Appareil d' injection d' un jet de fluide de direction et/ou ouverture variable
EP1609507A1 (fr) Dispositif d'extinction de feu par injection d'un gaz généré par la combustion d'un bloc pyrotechnique
FR2528974A1 (fr) Appareil de mesure du debit des poudres
FR2906163A1 (fr) Dispositif de projection de particules solides a froid
FR2565254A1 (fr) Dispositif d'application d'un revetement par detonation
CH644534A5 (fr) Dispositif de projection a la flamme.
FR2854086A1 (fr) Procede de revetement par flamme et dispositif correspondant
FR2623890A1 (fr) Lance a neige carbonique pour la metallurgie
CA1153685A (fr) Procede et dispositif de dispersion de gaz combustibles dans l'atmosphere
EP1866098B1 (fr) Installation de projection electrostatique de produit de revetement et procede de commande de l'alimentation en courant de moyens elevateurs de tension dans une telle installation
EP4237160A1 (fr) Dispositif de generation d'un jet de fluide diphasique
BE652927A (fr)
FR2834554A1 (fr) Procede et dispositif de refroidissement d'une veine de fluide gazeux, et procede de refroidissement d'articles
CH354884A (fr) Brûleur de combustibles liquides à pulvérisation mécanique à grande variation de débit pour une faible variation de l'angle de divergence du cône de combustible pulvérisé
BE492878A (fr)
BE828518A (fr) Bruleur cyclonique multi-combustibles
FR2969515A1 (fr) Pulverisateurs et procedes de pulverisation hybrides
FR2947192A1 (fr) Procede de fabrication et de controle d'un injecteur de brumisation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880023426.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08761417

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2692486

Country of ref document: CA

Ref document number: 2010010017

Country of ref document: EG

Ref document number: 203125

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2010513985

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/000186

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: DZP2010000057

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 2008270262

Country of ref document: AU

Ref document number: 2008761417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 583035

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 632/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 201070102

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20107002732

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201001205

Country of ref document: UA

Ref document number: 10012788

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 12667820

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2008270262

Country of ref document: AU

Date of ref document: 20080703

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P-2011/0189

Country of ref document: RS

ENP Entry into the national phase

Ref document number: PI0813988

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100105