WO2009003396A1 - Dispositif de diffusion de chaleur à ventilation directe et procédé de commande - Google Patents

Dispositif de diffusion de chaleur à ventilation directe et procédé de commande Download PDF

Info

Publication number
WO2009003396A1
WO2009003396A1 PCT/CN2008/071462 CN2008071462W WO2009003396A1 WO 2009003396 A1 WO2009003396 A1 WO 2009003396A1 CN 2008071462 W CN2008071462 W CN 2008071462W WO 2009003396 A1 WO2009003396 A1 WO 2009003396A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
outlet
ventilation heat
direct ventilation
Prior art date
Application number
PCT/CN2008/071462
Other languages
English (en)
French (fr)
Inventor
Yuxi Wan
Feng Peng
Weifeng Hu
Rehfeldt Jens
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009003396A1 publication Critical patent/WO2009003396A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20618Air circulating in different modes under control of air guidance flaps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/207Thermal management, e.g. cabinet temperature control

Definitions

  • the present invention relates to the field of electronic communication technologies, and more particularly to a direct ventilation heat sink and a control method thereof. Background technique
  • the common temperature control scheme is to install a temperature control unit in the equipment.
  • the general temperature control unit includes: heat exchanger and air conditioner. Since the heat exchange mechanism of the heat exchanger and the air conditioner is realized by two closed internal and external circulations, the inside of the equipment is completely isolated from the external environment into two systems, and the dust, salt and the like are well protected.
  • the heat exchanger is used, the temperature of the air inside the equipment is always higher than the external environment, which not only reduces the ability of the equipment to withstand the highest ambient temperature, but also reduces the heat exchange temperature difference.
  • the disadvantage of air conditioning is its low reliability and the need to consume a large amount of electrical energy and high operating costs. In carrying out the invention, the inventors have found that at least the following problems exist in the prior art:
  • the two common temperature control units are used to solve the heat dissipation scheme of the devices.
  • the common disadvantage is that they require additional equipment such as heat exchange units and cooling equipment, which increases the maintenance cost, weight, and total energy consumption of the entire equipment. . Therefore, the temperature control unit takes up a lot of volume. Increasing the load of the equipment, the maintainability of the equipment is poor, the replacement is difficult, the noise problem is outstanding, and the design concept of miniaturization, cost-effectiveness and energy saving of the equipment is violated.
  • the use of direct ventilation and heat dissipation scheme greatly increases the heat exchange temperature difference, and uses less system airflow to dissipate more heat. It has its unique practicability, has been commercialized in communication equipment, and has caused a large number of equipment suppliers. s concern.
  • the direct ventilation cooling solution can eliminate the extra temperature gradient between the interior of the device and the environment, which is beneficial to heat dissipation.
  • the cooling system consumes the least energy and reduces operating costs.
  • the direct ventilation cooling solution can reduce equipment noise, reduce the size and weight of the equipment, make the equipment more compact, and achieve the lowest cost of the cooling system.
  • the direct ventilation cooling solution still faces many application problems: the optimal matching of the cooling air volume with the equipment temperature, the dustproof and waterproof of the equipment, and the response time of the cold start.
  • FIG. 1 shows the structure of the air duct.
  • the external environment air is directly used to directly cool the device, and under the premise of satisfying heat dissipation, the air volume of the system is reduced, and the purpose of reducing noise is achieved.
  • the equipment uses front and rear air ducts, and the equipment passes through the gas permeable membrane.
  • the embodiment of the invention provides a direct ventilation heat dissipation device and a control method thereof, which can solve the problem that the wind tunnel design in the related technical solution has a recirculation zone and the wind resistance increases.
  • One embodiment of the present invention provides a direct ventilation heat sink comprising: a machine rejection (16); a device enclosure (15) disposed in a central region of the machine rejection (16); a first air inlet (3, 6) And a first air outlet (10), both located on a first side of the machine rejection (16); a wind deflector (14) disposed between the first side of the machine rejection (16) and the equipment enclosure (15) a gap separating the first air inlet (3, 6) from the first air outlet (10) at the gap; the first air passage (19) connecting the first air inlet (3, 6) and the first The air outlet (10) is formed by a gap between the other three sides of the machine rejection (16) and the equipment enclosure (15).
  • Another embodiment of the present invention provides a method for controlling a direct ventilation heat sink, comprising the steps of: measuring an outlet temperature and a direct ventilation in an air outlet of a direct ventilation heat sink; The ambient temperature outside the air inlet of the heat sink; the temperature difference between the wind temperature and the ambient temperature is calculated; and the speed of the fan for forming the heat dissipation airflow in the direct ventilation heat sink is controlled according to the temperature difference.
  • Another embodiment of the present invention provides a method for controlling a direct ventilation heat sink, comprising the steps of: measuring an inlet air temperature in an air inlet of a direct ventilation heat dissipation device; and controlling a temperature difference according to an inlet air temperature and an ambient temperature; The damper of the air inlet and the air outlet; and the operation of the heating wire for the low temperature start in the direct ventilation heat sink according to the inlet air temperature.
  • the air inlet of the direct ventilation heat dissipation device has a gas permeable membrane before, and includes the following steps: measuring an air inlet pressure of the air inlet surface of the gas permeable membrane and The outlet pressure of the air outlet surface of the gas permeable membrane; the pressure difference between the inlet air pressure and the outlet pressure is calculated; and the state of use of the gas permeable membrane is measured according to the pressure difference to determine whether or not to replace the gas permeable membrane.
  • the first air passage (19) is bypassed from the back of the equipment enclosure, and the second air passage (20) passes through the inside of the equipment enclosure. Therefore, there is no recirculation area in the air passage design, which is reasonable.
  • control method provided in the above technical solution controls the rotation speed of the fan according to the temperature difference, so that the use efficiency of the fan is higher.
  • FIG. 1 is a structural view showing a direct ventilation heat sink according to the related art
  • FIG. 3 is a structural view showing a direct ventilation heat sink according to an embodiment of the present invention.
  • FIG. 4 is a structural view of another direct ventilation heat sink according to an embodiment of the present invention
  • FIG. 5 is a structural view showing a still ventilation heat sink according to an embodiment of the present invention
  • FIG. 6 shows an embodiment according to the present invention. a schematic cross-sectional view of a double-layered orifice plate
  • FIG. 7 is a flow chart showing a control method of a direct ventilation heat sink according to an embodiment of the present invention.
  • FIG. 8 is a temperature control graph of a fan speed deltT according to an embodiment of the present invention
  • FIG. 9 is a graph showing a heater start control curve according to an embodiment of the present invention
  • Figure 10 shows a damper control graph in accordance with an embodiment of the present invention
  • Fig. 11 is a graph showing a pressure difference detecting of a gas permeable membrane according to an embodiment of the present invention. detailed description
  • FIG. 3 is a structural view of a direct ventilation heat sink according to an embodiment of the present invention, including: a machine rejection 16; a device enclosure 15 disposed in a central region of the machine rejection 16; a first air inlet 3 or 6 and a first outlet
  • the tuyere 10 is located on the first side of the machine rejection 16; the windshield 14 is disposed at a gap between the first side of the machine rejection 16 and the equipment enclosure 15 to block the first air inlets 3, 6 and the first outlet
  • the air duct 10 is connected at the gap; the first air duct 19 is connected to the first air inlets 3, 6 and the first air outlet 10, and is formed by a gap between the other three sides of the machine 16 and the equipment frame 15 .
  • This embodiment optimizes the air duct design.
  • the upper and lower air ducts are used to eliminate the recirculation zone in the related art diagram 1 to minimize the resistance, which can reduce the power of the fan and save energy and noise. This allows the system to minimize the amount of air required by the system at the same amount of heat dissipation.
  • the first air duct 19 can have multiple implementations.
  • the first air inlet has two openings 3 and 6, however in other embodiments of the invention, the opening may be a One or more than two.
  • the number of openings in the first air outlet is also not limited.
  • the equipment enclosures 15 may be multiple, and there are also gaps between them. These gaps may be ventilated as a branch of the first air duct 19 for the effect of air convection surrounding the equipment enclosure 15.
  • fans 4, 5 may be provided at the first air inlets 3, 6 to promote air flow.
  • 4 is a block diagram showing another direct ventilation heat sink according to an embodiment of the present invention.
  • the second air duct 20 is newly added with respect to FIG. 3, and specifically includes: a second air inlet 21 located at a position of the equipment enclosure 15 adjacent to the first air inlets 3, 6; 22, the device enclosure 15 is located near the first air outlet 10; the second air duct 20 is connected to the second air inlet 21 and the second air outlet 22, and passes through the interior of the equipment enclosure 15. Since the second air passage 20 is added, the heat dissipation effect is enhanced.
  • the second air inlet 21 can be the same air inlet as the first air inlet, and the second air outlet and the first air outlet can also be the same air outlet; the second air duct 20 and the first air duct can communicate with each other, and the communication can be At the bottom or top of the machine, it can also be between the upper and lower adjacent device enclosures.
  • a fan may be disposed in at least one of the first air outlet 10, the second air inlet 21, and the second air outlet 22, which is advantageous for accelerating air flow and enhancing heat dissipation.
  • Figure 5 shows a block diagram of a still venting heat sink in accordance with an embodiment of the present invention.
  • a fan tray 9 can be provided in the second duct and a fan can be provided, which can be used to accelerate the air flow in the second ducts 20, 21.
  • the air inlets 3, 6 can be a plurality of air inlets, each having a fan, and a heater is disposed beside each fan, which can accelerate the heating process.
  • a gas permeable membrane 1 may be disposed on the front side of the first air inlets 3, 6 for blocking dust.
  • the air inlets 3, 6 can be placed close to the middle of the gas permeable membrane 1 for better results.
  • the gas permeable membrane 1 may be located on one side of the side where the air inlets 3, 6 of the direct ventilation heat sink are located, and the air outlet 10 may be in another area side by side with this side, so that the air is not affected.
  • FIG. 5 it is also possible to provide a double-layered orifice plate 2, which includes a pair of phases, before the gas permeable membrane 1 A plate that is oriented parallel to the misaligned opening.
  • the gas permeable membrane itself has the ability of dustproof and waterproof, in order to improve the reliability of the equipment, the outside air can pass through the gas permeable membrane and pass through a double-layered orifice plate 2 with a misaligned opening.
  • the cross-sectional schematic view is as shown in FIG. 6: Large particles such as dust and water vapor carried by the outside air begin to precipitate in the double-layer orifice module, which enhances the protection capability of the equipment and improves the reliability of the heat dissipation system.
  • At least one of the first air inlets 3, 6, the first air outlet 10, the second air inlet 21, and the second air outlet 22 may further have a damper.
  • the air inlets 3, 6 and the air outlet 10, the opening 21 have The damper, which can be used to automatically open and close during the low temperature start-up of the direct ventilation heat sink.
  • the damper setting facilitates the control of the heating process, and the specific control method will be described below.
  • the outdoor equipment has a complicated working environment, and the high temperature can reach 45 ⁇ 55 °C.
  • the devices in the equipment need to be in the normal working temperature to ensure the performance.
  • the embodiment shown in Fig. 5 solves the problem of high temperature heat dissipation: the outside air is The centrifugal fan 4, 5 at the air inlet is drawn into the device, and the air first enters the gas permeable membrane.
  • the gas permeable membrane has the function of dustproof and waterproof. In order to improve the reliability of the protection, the air needs to pass through the double orifice plate 2 after passing through the gas permeable membrane. To a more effective waterproofing effect.
  • the air entering the device through the air inlets 3, 6 of the damper is divided into three parts into the equipment enclosure 15: - part of the air enters directly from the front of the equipment enclosure 15, a part of the air enters from the bottom of the equipment enclosure 15, and a part of the air is inserted by the equipment
  • the back of the frame flows.
  • the fan tray 9 is added to the frame to enhance the heat dissipation capability of the device.
  • the air from the air outlet of the device is removed from the air outlet. To prevent the hot air from flowing out of the device enclosure 15 and return to the air inlet of the device enclosure 15, use the windshield 14 to isolate the air inlet and outlet.
  • it may further comprise: a temperature sensor 11, 12, 13 located at at least one of the following positions: in the air inlets 3, 6, in the air outlet 10 and before the gas permeable membrane 1, which can be used to measure the temperature of the position .
  • the temperature at these locations can be used to control the fan speed.
  • Step S10 measuring an outlet air temperature in an air outlet of the direct ventilation heat dissipation device and an ambient temperature outside the air inlet of the direct ventilation heat dissipation device;
  • Step S20 calculating a temperature difference between the wind temperature and the ambient temperature
  • Step S30 controlling the rotation speed of the fan for forming the heat dissipation airflow in the direct ventilation heat dissipation device according to the temperature difference.
  • the wind temperature and the ambient temperature are measured by providing temperature sensors in the air outlet and outside the air inlet, respectively.
  • the overall air volume of the cooling system consists of two air inlet of fan speed control, not only can
  • the above control method can be applied to various direct ventilation heat sinks, for example, it can be applied to the direct ventilation heat sink shown in Figs. 1, 3, 4, and 5.
  • the direct ventilation heat dissipation device shown in FIG. 5 will be exemplified below, but the low temperature start control method provided in this embodiment is not limited to the direct ventilation heat dissipation device shown in FIG. 5.
  • the speed regulation strategy includes: when it is determined that the wind temperature is greater than the ambient temperature, the fan increases the predetermined rotation speed; when it is determined that the wind temperature is lower than the ambient temperature, the fan decreases the predetermined rotation speed; continuously adjusts until the wind is discharged The temperature is equal to the ambient temperature.
  • the fan speed is set by using the temperature difference deltT of the outlet air temperature T intemal and the ambient temperature T ambient as a reference point, which specifically includes: during the change with the ambient temperature T ambient , the deltT curve uses the PID controller For control, this controller continuously adjusts the fan speed until the outlet temperature T intemal reaches the set value T, which greatly improves the accuracy.
  • a PID controller has 10 control points I n , as shown in Figure 8: Each control point 1 is under? 10 fan control strategies are different, can be based on heat dissipation The demand provides the smallest amount of air, which fully matches the speed of the fan.
  • This not only greatly increases the service life of the fan, but also solves the problem of precise control of the ventilation volume, solves the problem of obtaining the ventilation as small as possible to meet the heat dissipation requirements of the device, and can reduce the dust of the entry machine and prolong the service life of the gas permeable membrane.
  • the inlet air temperature in the air inlet of the direct ventilation heat sink can be measured; the air inlet and the air outlet damper are controlled according to the temperature difference between the inlet air temperature and the ambient temperature; and the direct air ventilation device is used for controlling the low temperature start according to the inlet air temperature. Heating wire work.
  • Embodiments of the present invention provide a control method for low temperature start-up, which will be described in detail below.
  • the dampers of the air inlet 3, the air inlet 6, and the air outlet 10 are maintained.
  • the air inlet 3, the air inlet 6, and the air outlet 10 have three air outlets.
  • the damper is closed.
  • the fan tray starts to work.
  • the air in the machine rejects 16 air enters the device enclosure 15 from the front air outlet and the bottom air outlet of the equipment enclosure 15 and forms a closed loop with the internal fan tray, which greatly reduces the response time of the cold start.
  • the air outlet The closing of the damper of 10 causes the air in the air outlet area to return to the air, so the temperature of the air outlet measured by the temperature sensor 13 of the air outlet! ⁇ is closer to the internal temperature of the device enclosure 15, which reduces the temperature difference from the device startup temperature in the device enclosure 15, which enhances the reliability of the cold start.
  • the above method when the ambient temperature is lower than the low temperature starting temperature point, for example, reaching - 30 ° C ⁇ - 40 ° C or even lower temperature, the above method heats the air to 5 by the low temperature start heating. °C ⁇ 10 °C to ensure that the machine refuses to work reliably.
  • FIG. 9 shows a heater start control graph according to an embodiment of the present invention.
  • the heater start control uses the air outlet temperature sensor to report the temperature T intemal as a monitoring point.
  • the entire cooling system has two heaters: Heat 1#7 and Heat 2 # , and its control curve is as shown: When the air outlet temperature T intemal reaches (for example, 5 °C), Heatl # automatically starts, if the air outlet Temperature T internal rises H D (for example, 5 °C), then Heatl #Automatically shuts off; If the outlet temperature T intemal continues to drop until H 2 ( -10 ° C ), Heat2 # automatically starts, Heat2 # starts, after the outlet temperature rises H D , Heat2 # will automatically shut down.
  • the installation of the damper at the inlet and outlet ports allows the equipment to automatically open and close during the low temperature start-up process, forming an internal closed loop to shorten the equipment startup time.
  • the control method of the damper is similar to the control method of the fan speed regulation. It is also the deltT control mode, but the reference point of the damper control is determined according to the temperature difference deltT supp of the inlet air temperature T supply and the ambient temperature T ambient in the air inlet.
  • Figure 10 shows a damper control graph in accordance with an embodiment of the present invention.
  • the damper controls the temperature difference deltT of the inlet air temperature T supply and the ambient temperature T ambient by the rotation angle to maintain a temperature difference of 10 ° C;
  • the damper is fully opened to maintain the temperature difference deltT to a predetermined value, for example, 1 ⁇ 2 ° C, that is, the temperature difference between the air passing through the gas permeable membrane is about 1 ⁇ 2 ° C.
  • the damper When the outside air temperature T ambient rises abruptly, the damper is immediately closed when the temperature T supply of the device air inlet T ambient ⁇ ambient temperature T ambient occurs. For example, if the temperature rises suddenly from 40 °C to 70 °C, the damper will be closed immediately, which will protect the equipment from high temperature. At the same time, after the damper is closed, since the air duct inside the equipment is a closed air duct, the temperature T supply of the air inlet will continue to rise. Since the temperature difference deltT is 1 ⁇ 2 °C, when the air inlet temperature rises to 72 °C, The damper will open.
  • the embodiment of the present invention also provides a control method for replacing the gas permeable membrane, which will be described in detail below.
  • the direct ventilation heat sink may further include: pressure sensors 17, 18 which are respectively located before and after the gas permeable membrane 1 for measuring the pressure at the position.
  • Figure 11 is a graph showing the pressure difference detection of a gas permeable membrane according to an embodiment of the present invention. From the initial resistance of the new gas permeable membrane to 2 months after use, the differential pressure before and after the gas permeable membrane is increased due to the dust accumulation on the surface, which is reflected in the pressure difference curve in Figure 11 (the pressure difference curve of the gas permeable membrane is zero point).
  • the angular offset of the oblique line that is, when the measured pressure difference exceeds the preset final pressure difference (the final pressure difference of the gas permeable membrane is determined by the minimum air volume required for system cooling)
  • the gas permeable membrane is considered Need to be replaced, that is, the intersection of the pressure difference between the end of the gas permeable membrane and the fan curve is the alarm point for the replacement of the gas permeable membrane.
  • the minimum air volume required for system cooling g vmm ( 3 // is:
  • Failure to replace the gas permeable membrane in time may result in: When the new gas permeable membrane starts to work, the pressure difference between the front and the back changes greatly. When the operation is continued for a period of time, the change is slow, but when the pressure difference between the gas and the membrane reaches the final pressure difference, the resistance change will rise sharply. Therefore, when the pressure difference between the front and the back of the gas permeable membrane reaches the final pressure difference, it should be replaced in time. Otherwise, the sharp decrease of the system air volume will cause the equipment to overheat, affecting the normal operation of the whole machine, and even burning the device and the board.
  • K K - Q Pilter
  • the embodiment of the invention provides a device for direct ventilation and heat dissipation, which controls the air temperature in the device through a unique air channel design and temperature control scheme, thereby ensuring the heat dissipation performance of the device and making the device dustproof. Waterproof and accelerated low temperature start response time, high reliability and maintainability of the equipment. By eliminating the need for conventional temperature control units such as heat exchangers and air conditioners, this solution can reduce the size and noise of the equipment, and has advantages in performance and cost, in line with the concept of energy-saving design.
  • the embodiment of the invention provides a complete set of operability temperature and flow control system, which not only ensures the heat dissipation performance, but also optimizes the control curve of the fan through the change of the ambient temperature. Accurately control the amount of ventilation to achieve the purpose of adjusting the fan speed to achieve the minimum ventilation to meet the heat dissipation requirements of the equipment.
  • the technical solution proposed by the embodiment of the invention can more effectively utilize the system air volume, so that the heat dissipation is satisfied under the minimum system air volume, and the energy efficiency ratio of the device is improved.
  • the optimization of the air duct and the labyrinth design can make the equipment more reliable and dustproof and waterproof.
  • the temperature difference deltaT of the air outlet air temperature and the ambient temperature is used as the temperature control reference point.
  • the PID controller is used to control the fan speed, so that the air volume required by the system can be adjusted to the minimum in real time on the premise of meeting the heat dissipation requirements of the equipment. , thereby reducing the power consumption of the fan, improving the energy efficiency ratio of the direct ventilation and cooling system, and prolonging the service life of the fan and the gas permeable membrane;
  • the optimization of the air duct reduces the resistance of the air duct of the system, and realizes the uniform heating inside the equipment during the cold start heating process, and the reliability of the temperature measurement point monitoring of the air outlet is enhanced;
  • the temperature difference between the inlet air temperature and the ambient temperature deltaT is the temperature control reference point, which not only accelerates the response time of the cold start of the equipment, but also has a high temperature mutation protection function;
  • the heater automatically reports the temperature start and stop through the air outlet temperature sensor, which not only improves the reliability of the equipment, but also saves energy consumption;
  • double-layer orifice plate enhances the dustproof and waterproof capacity of the direct ventilation and cooling system, and has good environmental adaptability
  • the pressure film can be replaced in time by detecting the pressure before and after the gas permeable membrane.

Description

直通风散热装置及其控制方法 技术领域
本发明涉及电子通信技术领域, 尤其涉及直通风散热装置及其控制方 法。 背景技术
随着市场需求的多元化, 在化工、 暖通、 机械、 通讯等各行业中, 对 户外设备的功能要求越来越高, 导致设备的配置功率也随之增大。 然而设 备在运行过程中绝大部分消耗的电能会转化为热能, 设备的过热会导致设 备性能的下降以至引起损坏。 为了确保设备的正常工作, 必须让设备所处 的温度在允许范围之内, 迫切需要解决设备内的散热问题。 产品小型化是 当今市场的趋向所在, 在更小的空间散去更多的热量, 强势的散热能力已 成为户外设备的核心竟争力之一。
目前,常见的温控方案是在设备中安装温控单元,通用的温控单元有: 热交换器和空调。 由于热交换器和空调换热机理是通过两个封闭的内、 外 循环实现的, 因此将设备内部与外界环境完全隔离为两个系统, 有很好的 灰尘、 盐类等的防护能力。 釆用热交换器时设备内的空气温度始终会高于 外界环境, 这样不仅降低了设备内器件所能承受的最高环境温度的能力, 而且换热温差的减小使得能效比不高。 空调的缺点是可靠性低, 并且需要 消耗大量的电能, 运行成本高。 在实现本发明过程中, 发明人发现现有技 术中至少存在如下问题:
使用这两种常见的温控单元来解决设备散热的方案, 共同具有的缺点 是它们需要附加的设备例如热交换单元, 冷却设备, 这使得整个设备维护 成本增加、 重量增大、 总能耗增加。 因此, 温控单元会占用很大的体积, 增加设备的载重, 设备的可维护性差, 更换困难, 噪声问题突出, 违背设 备小型化、 性价比高、 节能的设计理念。
基于常用温控方案的种种不利, 业界开始使用一种将外界环境空气直 接弓 ]入设备解决散热的方案一一直通风散热方案。 在实现本发明过程中, 发明人发现:
直通风散热方案的使用大大增加了换热温差, 使用更小的系统风量散 去更多的热量, 具有其独特的实用性, 在通讯设备已经有商业化的案例, 并已引起广大设备供应商的关注。 直通风散热方案与热交换器方案相比, 可以消除设备内部与环境之间额外的温度梯度, 有利于散热; 与空调方案 相比, 冷却系统消耗的能量最低, 降低运营成本。 直通风散热方案可以降 低设备噪声, 减小设备的体积、 重量, 使得设备更加紧凑, 冷却系统的成 本达到最低。 然而直通风散热方案仍面临着许多应用问题: 散热风量与设 备温度的优化匹配、 设备的防尘、 防水以及冷启动的响应时间等。
面对以上涉及到的应用问题, 相关技术中的一种解决方式是设计一个 适合直通风散热的温度控制系统和匹配的风道,图 1示出了该风道的结构。 利用专用的前后风道、 上下风道, 解决温度控制问题以及部分散热问题, 并增加防尘设施, 解决灰尘问题。 在该方法当中, 充分利用外界环境空气 直接冷却设备, 在满足散热的前提下, 减少了系统的风量, 达到降低噪声 的目的。
在这个直通风散热技术方案中, 设备使用前后风道, 设备通过透气膜
1进行防尘、 防水, 进风口 2处安装的风扇 3抽气, 提供整个系统风量。 风扇的转速控制主要是通过出风口的空气温度 TEXH所决定,风扇转速控 制方案中设定两个温度值 Tm、 Th如图 2所表示:
1. 当出风口的空气温度 TEXH < Tm,风扇保持最低转速;
2. 当出风口的空气温度 Tm < TEXH < Th,风扇的转速随出风口的空 气温度成线性变化; 3. 当出风口的空气温度 TEXH > Th,风扇保持全速转。
在该方案中, 在进风口 2、 出风口 6处安置了两个温度传感器, 通过 其上报温度 Tin、 Tout控制三个加热器 8, 进行冷启动, 其温控方式如图 3 所示: 整个冷启动必须确保 Tout< 10°C。
1. 当 Tin<0°C并且 Tout< 10°C, 开启一个加热器;
2. 当 Tin<-10°C并且 Tout< 10°C时, 开启二个加热器;
3. 当 Tin<-25°C并且 Tout< 10°C时, 开启三个加热器;
4. 进风口 2使用风门控制, 有效地缩短了加热时间, 减小了冷启动 的响应时间。
在该技术方案中, 存在回流区 7会导致进风阻力损失增大的缺点, 在 散热过程中, 风扇的调速釆用与出风口温度传感器上报温度 Tout 线性控 制, 这对于风扇的保护是不利的, 缩短风扇的使用寿命。 风扇所需要的转 速增大的缺点。 发明内容
本发明实施例提供了一种直通风散热装置及其控制方法, 能够解决相 关技术方案中的风道设计存在回流区导致风阻增大的问题。
本发明的一个实施例提供了一种直通风散热装置, 包括: 机拒( 16) ; 设备插框( 15) , 设置在机拒( 16) 的中央区域; 第一进风口 (3、 6)和 第一出风口 ( 10) , 其均位于机拒 (16) 的第一侧; 挡风板(14) , 其设 置在机拒 ( 16) 的第一侧与设备插框 ( 15)之间的间隙, 隔断第一进风口 (3、 6) 与第一出风口 ( 10)在该间隙处的连通; 第一风道( 19) , 其连 接第一进风口 (3、 6)和第一出风口 ( 10) , 由位于机拒( 16) 的另外三 侧与设备插框 ( 15)之间的间隙形成。
本发明的本发明的另一实施例提供了一种直通风散热装置的控制方 法, 包括以下步骤: 测量直通风散热装置的出风口中的出风温度和直通风 散热装置的进风口之外的环境温度; 计算出风温度与环境温度之间的温 差; 以及按照温差来控制直通风散热装置中用于形成散热气流的风扇的转 速。
本发明的本发明的另一实施例提供了一种直通风散热装置的控制方 法, 包括以下步骤: 测量直通风散热装置的进风口中的进风温度; 根据进 风温度与环境温度的温差控制进风口和出风口的风门; 以及按照进风温度 来控制直通风散热装置中用于低温启动的加热丝的工作。
本发明的本发明的另一实施例提供了一种直通风散热装置的控制方 法, 直通风散热装置的进风口之前具有透气膜, 包括以下步骤: 测量透气 膜的进风面的进风压力和透气膜的出风面的出风压力; 计算进风压力与出 风压力之间的压差; 以及根据压差测算透气膜的使用状态以确定是否更换 透气膜。
上述技术方案中, 第一风道( 19 )从设备插框的背部绕过, 第二风道 ( 20 )从设备插框的内部穿过, 所以风道设计中不存在回流区域, 比较合 理。
另外, 上述技术方案中提供的控制方法按照温差来控制风扇的转速, 使风扇的使用效率更高。
本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从 说明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其 他优点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结 构来实现和获得。 附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一 部分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发 明的不当限定。 在附图中: 图 1示出了根据相关技术的直通风散热装置的结构图;
图 2示出了根据相关技术的风扇转速的控制曲线图;
图 3示出了根据本发明实施例的直通风散热装置的结构图;
图 4示出了根据本发明实施例的另一直通风散热装置的结构图; 图 5示出了根据本发明实施例的又一直通风散热装置的结构图; 图 6示出了根据本发明实施例的双层孔板的剖面示意图;
图 7 示出了根据本发明实施例的直通风散热装置的控制方法的流程 图;
图 8示出了根据本发明实施例的风扇调速 deltT的温度控制曲线图; 图 9示出了根据本发明实施例的加热器启动控制曲线图;
图 10示出了根据本发明实施例的风门控制曲线图;
图 11示出了根据本发明实施例的透气膜压差检测曲线图。 具体实施方式
下面将参考附图并结合实施例, 来详细说明本发明。
图 3示出了根据本发明实施例的直通风散热装置的结构图, 包括: 机 拒 16; 设备插框 15 , 设置在机拒 16的中央区域; 第一进风口 3或 6和第 一出风口 10 , 均位于机拒 16的第一侧; 挡风板 14, 其设置在机拒 16的 第一侧与设备插框 15之间的间隙, 隔断第一进风口 3、 6与第一出风口 10 在该间隙处的连通; 第一风道 19, 其连接第一进风口 3、 6和第一出风口 10, 由位于机拒 16的另外三侧与设备插框 15之间的间隙形成。
该实施例优化了风道设计, 使用上、 下风道消除了相关技术图 1中的 回流区, 以实现阻力尽量小, 这样可让风扇的功率减少, 起到节能、 降噪 的作用。这使得系统在相同的散热量下,系统本身所需要的风量达到最小。
第一风道 19可以有多种实现方式。 在图中所示的实施例中, 第一进 风口具有两个开口 3和 6, 然而在本发明的其他实施例中, 开口可以是一 个或者多于两个。 第一出风口的开口数量同样不受限制。
另外, 设备插框 15 可以是多个, 相互之间也有间隙, 这些间隙可以 通风, 作为第一风道 19的分支, 用于空气对流环绕设备插框 15的效果。
另外, 第一进风口 3、 6处可以设置风扇 4、 5 , 以促进空气流动。 图 4示出了根据本发明实施例的另一直通风散热装置的结构图。 在该 实施例中相对于图 3 新增了第二风道 20, 具体来说, 包括: 第二进风口 21 , 位于设备插框 15靠近第一进风口 3、 6的位置; 第二出风口 22, 位于 设备插框 15靠近第一出风口 10的位置; 第二风道 20, 其连接第二进风口 21与第二出风口 22 , 穿过设备插框 15的内部。 由于增加了第二风道 20, 所以增强了散热效果。 第二进风口 21 可以与第一进风口为同一进风口, 第二出风口与第一出风口也可以为同一出风口; 第二风道 20与第一风道 可以相互连通, 相连通处可以在机拒的底部或顶部, 也可以在上下两个相 邻的设备插框之间。
可以在第一出风口 10、第二进风口 21和第二出风口 22中的至少一个 中设置风扇, 这有利于加速空气流动, 加强散热效果。
图 5示出了根据本发明实施例的又一直通风散热装置的结构图。
如图 5所示, 可在第二风道中设置风扇托盘 9 , 并设置风扇, 这可用 于加速第二风道 20、 21中的空气流动。
如图所示, 还可包括: 加热器 7、 8 , 其位于风扇 4、 5旁边, 这可用 于设备的低温启动。 进风口 3、 6可以为多个进风口, 各自具有风扇, 各 个风扇旁边设置有加热器, 这可以加速加热过程。
如图 5所示, 第一进风口 3、 6前侧可设置透气膜 1 , 用于阻挡灰尘。 进风口 3、 6可以靠近透气膜 1 的中部, 这样效果更好。 如图所示, 透气 膜 1可以位于直通风散热装置的进风口 3、 6所处的一侧的一边区域, 出 风口 10可以处于和这边区域并排的另一区域, 这样不影响出风。
如图 5所示, 还可以在透气膜 1之前设置双层孔板 2, 其包括一对相 互面向平行的错位开孔的板。 虽然透气膜自身具有防尘、 防水的能力, 但 为了提高设备的可靠性, 可以使外界空气穿过透气膜后经过一个错位开孔 的双层孔板 2, 其剖面示意图如图 6所示: 外界空气携带的灰尘、 水气等 大颗粒物体在双层孔板模块内开始沉淀, 增强了设备防护能力, 提高了散 热系统的可靠性。
第一进风口 3、 6、 第一出风口 10、 第二进风口 21和第二出风口 22 至少一个还可具有风门, 如图所示, 进风口 3、 6 和出风口 10、 开口 21 具有风门, 这可用于在直通风散热装置低温启动过程中自动启闭。 风门设 置有利于控制加热过程, 具体控制方法将在下文中描述。
户外设备的工作环境复杂, 高温可达到 45 ~ 55 °C ,设备内的器件需要 在正常工作温度内才能确保性能, 在图 5所示的实施例 艮好地解决了高温 散热问题: 外界空气由进风口处的离心风扇 4、 5抽入设备, 空气首先进 入透气膜, 透气膜具有防尘、 防水的作用, 为了提高防护的可靠性, 空气 通过透气膜后需要经过双层孔板 2 , 起到更有效的防水作用。 由带风门进 风口 3、 6进入设备的空气分成三部分进入设备插框 15 : —部分空气直接 从设备插框 15前面进入, 一部分空气由设备插框 15底部进入, 还有一部 分空气由设备插框的背部流过, 为了防止设备插框 15 内的空气产生回流 现象而导致局部散热效果急剧下降, 在插框中部增加风扇托盘 9来增强设 备的散热能力。 由设备插框出来的空气由出风口 10排出设备, 为了防止 由设备插框 15 出来热空气回流到设备插框 15 的进风口, 使用挡风板 14 进行隔离进、 出风口流道。
如图所示, 还可包括: 温度传感器 11、 12、 13 , 其位于以下至少一处 位置: 进风口 3、 6中、 出风口 10中和透气膜 1之前, 其可用于测量该位 置的温度。 可以使用这些位置的温度来控制风扇转速。
图 7 示出了根据本发明实施例的直通风散热装置的控制方法的流程 图, 包括以下步骤: 步骤 S10, 测量直通风散热装置的出风口中的出风温度和直通风散热 装置的进风口之外的环境温度;
步骤 S20, 计算出风温度与环境温度之间的温差; 以及
步骤 S30, 按照温差来控制直通风散热装置中用于形成散热气流的风 扇的转速。
通过分别在出风口中和进风口之外设置温度传感器来测量出风温度 和环境温度。 使用出风口中的出风温度 Textemal与进风口之外的环境温度 Tambient的温差 deltT作为风扇调速控制基准, 整个散热系统的风量由两个进 风口处的风扇调速控制, 不仅可以使设备在外界环境变化下, 系统时时提 供最小风量来确保满足散热要求, 而且可以延长风扇的使用寿命。 上述的 控制方法可以应用于各种直通风散热装置, 例如, 可以应用于图 1、 3、 4、 5所示的直通风散热装置。 下面将釆用图 5所示的直通风散热装置予以举 例说明, 但该实施例所提供的低温启动控制方法并不限定于图 5所示的直 通风散热装置。
图 8示出了根据本发明实施例的风扇调速 deltT的温度控制曲线图,其 中横坐标代表环境温度 Tambient , 纵坐标代表出风温度 Tintemal或两者温差 deltT, 其中: deltT = Tinternal - Tambient
釆用出风温度与环境温度的温差为基准点设定风扇的调速策略。
在上述的控制方法中, 调速策略包括: 当判断出风温度大于环境温度 时, 风扇增加预定的转速; 当判断出风温度小于环境温度时, 风扇减少预 定的转速; 不断调整, 直到出风温度等于环境温度。 在散热过程中, 风扇 的转速釆用出风温度 Tintemal与环境温度 Tambient的温差 deltT为基准点设定, 具体包括: 在随环境温度 Tambient变化过程中, deltT的变化曲线使用 PID控 制器进行控制, 这个控制器不断地调节风扇转速直到出风口温度 Tintemal达 到设定值 T, 这样使得精度有很大的提高。 一个 PID控制器有 10个控制点 In, 如图 8所示: 每个控制点 1下?10的风扇控制策略不同, 可以根据散热 需求提供最小的风量, 充分匹配了风扇的转速。
这样不仅可以大大增加风扇的使用寿命, 而且解决了通风量精确控制 的问题, 解决获取尽量小的通风满足设备散热需求并且可以降低进入机拒 的灰尘, 延长透气膜的使用寿命。
可以测量直通风散热装置的进风口中的进风温度; 根据进风温度与环 境温度的温差控制进风口和出风口的风门; 以及按照进风温度来控制直通 风散热装置中用于低温启动的加热丝的工作。 本发明实施例提供了一种低 温启动的控制方法, 下面予以详细描述。
当由温度传感器 11 测得的环境温度 Tambient大于设备设定的低温启动 温度点 T\ (例如, 10°C ) 时, 进风口 3、 进风口 6、 出风口 10三个风口的 风门均保持初始的开启状态,当由温度传感器 11测得的环境温度 Tambient小 于设备设定的低温启动温度点1\ ( 10°C ) 时, 进风口 3、 进风口 6、 出风 口 10三个风口的风门关闭。 风扇托盘开始工作, 机拒 16内空气由设备插 框 15的前面风口、 底部风口进入设备插框 15 , 并与内部的风扇托盘形成 闭合回路, 大大减少了冷启动的响应时间, 此外, 出风口 10 的风门关闭 导致出风口区域的空气产生回流, 因此出风口的温度传感器 13 测得的出 风口温度!^^^更加接近设备插框 15 的内部温度, 减小了与设备插框 15 内器件启动温度的温差, 这样也就加强了冷启动的可靠性。
显然, 釆用上述的方法, 当外界环境温度低于低温启动温度点 例 如达到 - 30 °C ~ - 40 °C , 甚至更低的温度时, 上述的方法通过低温启动加 热, 将空气加热到 5 °C ~ 10 °C才能保证机拒内部设备可靠工作。
图 9示出了根据本发明实施例的加热器启动控制曲线图。 低温启动过 程中, 为了减少加热器的消耗功率, 加热器启动控制釆用出风口温度传感 器上报温度 Tintemal作为监控点。 整个散热系统有两个加热器: Heat 1#7和 Heat 2 # , 其控制曲线如图所示: 当出风口温度 Tintemal达到 (例如, 5 °C ) 时, Heatl #自动启动, 如果出风口温度 Tinternal上升 HD (例如, 5 °C ) , 则 Heatl #自动关闭; 如果出风口温度 Tintemal仍继续下降, 直到 H2 ( -10°C ) , Heat2 #自动启动, Heat2 #启动后, 出风口温度上升 HD后, Heat2 #将自 动关闭。
在进风、 出风口处安置风门, 可以使设备在低温启动过程中, 自动启 闭, 形成内部的闭合循环来实现缩短设备启动时间。 风门的控制方式和风 扇调速的控制方式有点类似, 也是釆用 deltT控制方式, 但风门控制的基准 点是根据进风口中的进风温度 Tsupply与环境温度 Tambient的温差 deltTsupp 定的。
图 10示出了根据本发明实施例的风门控制曲线图。当环境温度 Tambient 达到 K1 (例如, 20°C ) 时, 风门通过旋转角度来控制进风温度 Tsupply与环 境温度 Tambient的温差 deltT保持 10°C温差; 当环境温度 Tambient达到 K2(例如, 40°C ) 时, 风门全部打开, 以保持温差 deltT为预定值, 例如 1 ~ 2°C , 即, 空气穿过透气膜后温差大概在 1 ~ 2°C之间。 当外界空气温度 Tambient发生突 然上升时, 出现设备进风口的温度 Tsupply <环境温度 Tambient的现象时, 立即 关闭风门。 比如从 40°C突然上升到 70°C , 风门会立即关闭, 这也就给设 备起到了高温保护作用了。 同时, 风门关闭后, 由于设备内风道是闭合风 道, 进风口的温度 Tsupply将继续上升, 由于要保持温差 deltT为 1 ~ 2°C , 所 以当进风口温度上升到 72 °C时, 风门将会打开。
本发明实施例还提供了一种更换透气膜的控制方法, 下面予以详细描 述。 如图 5所示, 直通风散热装置还可包括: 压力传感器 17、 18 , 其分别 位于透气膜 1之前和之后, 其用于测量该位置的压力。
图 11 示出了根据本发明实施例的透气膜压差检测曲线图。 透气膜从 全新时的初始阻力到使用 2个月后, 由于表面的积尘现象导致的透气膜前 后压差增加, 在图 11 中体现在压差曲线 (透气膜的压差曲线为通过零点 的斜线) 的角度偏移, 也就是说当所测的压差超过预设的终了压差 (透气 膜的终了压差是通过系统散热所需的最小风量决定的)时, 就认为透气膜 需要更换, 即透气膜终了压差与风扇曲线的交点为透气膜更换的告警点。 系统散热所需的最小风量 gvmm ( 3// 为:
= QFiIier/(Cp - pAt) = 334 QFiIier /At
不及时更换透气膜可能导致: 全新透气膜开始工作时, 前后压差变化 较大, 当运行一段时间后, 变化緩慢, 但当透气膜前后压差达到终了压差 时, 阻力变化将急剧上升, 因此当透气膜的前后压差达到终了压差时, 应 该及时更换, 否则系统风量的锐减将导致设备过热, 影响整机正常工作, 甚至烧坏器件及单板。
AP = K - QPilter ( K为阻力系数,由透气膜的材料、 尺寸以及空气 污染等级所决定, 由于透气膜随着使用时间的变化, 透气膜表面的污染程 度增加导致 K值会变大, 从而增加透气膜的压差。 )
本发明实施例提供了一种釆用直通风散热方式设备, 通过独特的风道 设计和温度控制方案,控制设备内的空气温度,既保证了设备的散热性能, 又可以使得设备具备防尘、 防水和加速低温启动响应时间, 设备的可靠性 高、 可维护性强。 由于不釆用常规的温控单元如热交换器和空调, 该方案 可以降低设备的体积和噪声, 在性能和成本上都具有优势, 符合节能设计 的理念。
对于釆用直通风散热系统的设备, 本发明实施例提供了一整套完备 的、 可运行性的温度、 流量控制系统, 不仅可以确保散热性能, 而且通过 环境温度的变化, 优化风扇的控制曲线, 精确控制通风量, 以达到调节风 扇转速获取尽量小的通风满足设备散热需求的目的。 本发明实施例提出的 技术方案更能有效地利用系统风量,使得在最小的系统风量下,满足散热, 提高了设备的能效比。 同时, 风道的优化及迷宫式设计可以使设备具备更 可靠的防尘、 防水性能。 使用温差控制风门来减少低温启动响应时间, 使 得设备的环境适应能力有很大的改善。
具体来说: 1、 以出风口空气温度与环境温度的温差 deltaT为控温基准点, 使用 PID控制器控制风扇转速, 实现了在满足设备散热要求的前提下, 实时将 系统所需的风量调到最低的目的, 从而达到了减小风扇的消耗功率, 提高 直通风散热系统的能效比, 并且延长了风扇、 透气膜的使用寿命;
2、 风道的优化, 减小了系统风道的阻力, 并实现了冷启动加热过程 中, 设备内部均匀加热, 以及出风口温度测点监控可靠性增强;
3、 通过风门的优化控制, 使用进风口空气温度与环境温度的温差 deltaT为控温基准点, 不仅加快了设备冷启动的响应时间, 而且还具有高 温突变保护功能;
4、 加热器通过出风口温度传感器上报温度的自动启、 停, 既可提高 设备的可靠性, 而且可以节约能耗;
5、 使用双层孔板增强了直通风散热系统的防尘、 防水能力, 有很好 的环境适应性;
6、 可以降低设备体积和噪声, 相对与空调和热交换器等温控设备具 有成本上的优势, 符合运营商低成本运作的需求;
7、 通过对透气膜前后压力的检测, 能够及时更换压力膜。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于 本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精 神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求 书
1.一种直通风散热装置, 其特征在于, 包括:
机拒 ( 16 ) ;
设备插框( 15) , 设置在所述机拒 ( 16) 的中央区域;
第一进风口 (3、 6) 和第一出风口 ( 10) , 其均位于所述机拒 (16) 的第一侧;
挡风板( 14) ,其设置在所述机拒( 16)的第一侧与所述设备插框( 15) 之间的间隙, 隔断所述第一进风口 (3、 6) 与所述第一出风口 (10)在该 间隙处的连通;
第一风道( 19) , 其连接所述第一进风口 (3、 6)和所述第一出风口
( 10) , 由位于所述机拒 ( 16) 的另外三侧与所述设备插框( 15)之间的 间隙形成。
2. 根据权利要求 1 所述的直通风散热装置, 其特征在于, 所述直通 风散热装置还包括第二风道(20) , 所述第二风道(20) 包括: 第二进风 口 (21 ) 和第二出风口 (22) , 其中, 所述第二进风口 (21 ) , 位于所述 设备插框( 15)靠近所述第一进风口(3、 6)的位置;所述第二出风口(22), 位于所述设备插框 ( 15) 靠近所述第一出风口 ( 10) 的位置。
3.根据权利要求 2所述的直通风散热装置, 其特征在于所述第一进风 口 (3、 6) 、 所述第一出风口 ( 10) 、 所述第二进风口 (21 )和所述第二 出风口 (22) 中的至少一个包括风扇。
4.根据权利要求 1所述的直通风散热装置, 其特征在于, 所述第一进 风口 (3、 6) 包括:
风扇 (4、 5) ;
加热器 (7、 8) , 其位于所述风扇 (4、 5) 旁边。
5.根据权利要求 4所述的直通风散热装置, 其特征在于, 所述第一进 风口 (3、 6) 包括多个开口, 各自具有风扇, 各个所述风扇旁边设置有所 述加热器。
6.根据权利要求 2所述的直通风散热装置, 其特征在于, 所述第一进 风口 (3、 6) 、 所述第一出风口 ( 10) 、 所述第二进风口 (21 ) 和所述第 二出风口 (22) 中的至少一个具有风门。
7.根据权利要求 2所述的直通风散热装置, 其特征在于, 所述第二风 it (20) 包括:
风扇托盘 (9) , 其中设置有风扇。
8.根据权利要求 1-7任一所述的直通风散热装置, 其特征在于, 还包 括透气膜 ( 1 ) , 位于所述第一进风口 (3、 6) 前侧。
9.根据权利要求 8所述的直通风散热装置, 其特征在于, 所述第一进 风口 (3、 6) 靠近所述透气膜 ( 1 ) 的中部。
10. 根据权利要求 8所述的直通风散热装置, 其特征在于, 还包括: 双层孔板(2) , 其设置于所述透气膜( 1 )之前, 其包括一对相互面 向平行的错位开孔的板。
11. 根据权利要求 8所述的直通风散热装置, 其特征在于, 还包括: 温度传感器 ( 11、 12、 13) , 其位于以下至少一处位置: 所述第一进 风口 (3、 6) 中、 所述第一出风口 ( 10) 中和所述透气膜 ( 1 )之前。
12. 根据权利要求 8所述的直通风散热装置, 其特征在于, 还包括: 压力传感器 ( 17、 18) , 其分别位于所述透气膜 (1 )之前和之后。
13. 一种直通风散热装置的控制方法, 其特征在于, 包括以下步骤: 测量所述直通风散热装置的出风口中的出风温度和所述直通风散热 装置的进风口之外的环境温度;
计算所述出风温度与所述环境温度之间的温差; 以及
按照所述温差来控制所述直通风散热装置中用于形成散热气流的风 扇的转速。
14. 根据权利要求 13所述的控制方法, 其特征在于, 通过分别在所 述出风口中和所述进风口之外设置温度传感器来测量所述出风温度和所 述环境温度。
15. 根据权利要求 13所述的控制方法, 其特征在于, 釆用所述出风 温度与所述环境温度的温差为基准点设定风扇的调速策略。
16. 根据权利要求 15所述的控制方法, 其特征在于, 所述调速策略 包括:
当判断所述出风温度大于所述环境温度时, 所述风扇增加预定的转 速; 当判断所述出风温度小于所述环境温度时,所述风扇减少预定的转速; 不断调整, 直到所述出风温度等于所述环境温度。
17. 一种直通风散热装置的控制方法, 其特征在于, 包括以下步骤: 测量所述直通风散热装置的进风口中的进风温度;
根据所述进风温度与环境温度的温差控制所述进风口和出风口的风 门; 以及
按照所述进风温度来控制所述直通风散热装置中用于低温启动的加 热丝的工作。
18. 根据权利要求 17所述的控制方法, 其特征在于, 通过分别在所 述出风口中和所述进风口之外设置温度传感器来测量所述出风温度和所 述环境温度, 通过在所述进风口中设置温度传感器来测量所述进风温度。
19. 根据权利要求 17所述的控制方法, 其特征在于, 根据所述进风 温度与环境温度的温差控制所述进风口和出风口的风门具体包括:
当所述环境温度低于预定值时, 将所述风门关闭;
当所述环境温度超过所述预定值上升继续时, 将所述风门逐渐打开, 保持所述温差为预设值;
当所述环境温度发生突然上升, 出现所述进风温度低于所述环境温度 的现象时, 关闭所述风门, 直到所述温差为所述预设值。
20. 一种直通风散热装置的控制方法, 所述直通风散热装置的进风 口之前具有透气膜, 其特征在于, 包括以下步骤:
测量所述透气膜的进风面的进风压力和所述透气膜的出风面的出风 压力;
计算所述进风压力与所述出风压力之间的压差; 以及
根据所述压差测算所述透气膜的使用状态以确定是否更换透气膜。
21. 根据权利要求 20所述的控制方法, 其特征在于, 通过在所述进 风面和所述出风面中设置压力传感器来测量所述进风压力和所述出风压 力。
22. 根据权利要求 20所述的控制方法, 其特征在于, 当所述压差大 于预定压差时, 确定所述透气膜的使用状态达到了必须更换的状态。
PCT/CN2008/071462 2007-07-04 2008-06-27 Dispositif de diffusion de chaleur à ventilation directe et procédé de commande WO2009003396A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710122744.0 2007-07-04
CNB2007101227440A CN100563415C (zh) 2007-07-04 2007-07-04 直通风散热装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2009003396A1 true WO2009003396A1 (fr) 2009-01-08

Family

ID=38899411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071462 WO2009003396A1 (fr) 2007-07-04 2008-06-27 Dispositif de diffusion de chaleur à ventilation directe et procédé de commande

Country Status (2)

Country Link
CN (1) CN100563415C (zh)
WO (1) WO2009003396A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102523707A (zh) * 2011-12-23 2012-06-27 北京航天测控技术有限公司 一种捷变频信号源设备
CN108451331A (zh) * 2018-01-31 2018-08-28 天津城建大学 自动保温隔热可通风围挡装置
CN111940914A (zh) * 2020-06-29 2020-11-17 大族激光科技产业集团股份有限公司 一种激光打标机
CN113821062A (zh) * 2021-06-25 2021-12-21 湘南学院 一种用于通讯网络工程的智能温控系统
CN113898542A (zh) * 2021-09-27 2022-01-07 国网浙江省电力有限公司磐安县供电公司 用于风电发电机的散热装置
CN117529067A (zh) * 2024-01-04 2024-02-06 苏州矽行半导体技术有限公司 一种晶圆检测用机柜系统

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100563415C (zh) * 2007-07-04 2009-11-25 华为技术有限公司 直通风散热装置及其控制方法
US20100326635A1 (en) * 2008-02-12 2010-12-30 Panasonic Corporation Heat exchanging device, and device adapted for housing heat generating element and using the heat exchanging device
CN101516166B (zh) 2008-02-22 2010-12-08 华为技术有限公司 一种横插框及通信机柜
CN102023683B (zh) * 2009-09-11 2013-08-28 鸿富锦精密工业(深圳)有限公司 服务器机柜
CN102264212B (zh) * 2010-05-24 2015-09-16 中兴通讯股份有限公司 一种应用于机柜的散热系统
CN102375486A (zh) * 2010-08-23 2012-03-14 鸿富锦精密工业(深圳)有限公司 数据中心
CN102204426B (zh) * 2011-05-26 2013-04-24 华为技术有限公司 直通风散热装置及通信设备
US9175872B2 (en) 2011-10-06 2015-11-03 Lennox Industries Inc. ERV global pressure demand control ventilation mode
CN102767530B (zh) * 2012-07-12 2015-04-15 杭州华三通信技术有限公司 一种分布式网络设备风扇调速方法及装置
CN103595481A (zh) * 2012-08-13 2014-02-19 成都思迈科技发展有限责任公司 高效散热光端机
JP5823444B2 (ja) * 2013-06-07 2015-11-25 東芝テック株式会社 電子機器
CN103280985A (zh) * 2013-06-09 2013-09-04 浙江海振电子科技有限公司 一种可调节风机风量的变频器
CN103458662B (zh) * 2013-08-30 2016-03-30 华为技术有限公司 散热器及具有该散热器的室外通信设备柜
FR3011161B1 (fr) * 2013-09-25 2017-06-23 Airbus Operations Sas Coffret electronique avec systeme de ventilation
CN105658026B (zh) * 2014-12-03 2018-11-13 华为终端(东莞)有限公司 一种电子终端
CN104978000A (zh) * 2015-07-01 2015-10-14 上海与德通讯技术有限公司 散热方法及散热系统
CN107635377B (zh) * 2016-07-18 2019-07-16 维谛技术有限公司 一种基站热管理系统及热管理方法
CN108597559B (zh) * 2017-12-29 2021-02-09 青岛海信医疗设备股份有限公司 用于医疗设备的散热方法及装置
CN110017914A (zh) * 2018-01-09 2019-07-16 北京康斯特仪表科技股份有限公司 导流散热干体温度校验仪
CN108712829B (zh) * 2018-05-24 2021-06-25 郑州云海信息技术有限公司 一种通用波峰焊载具盖板
DE102018113806A1 (de) * 2018-06-11 2019-12-12 Vertiv Integrated Systems Gmbh Geräteschrank und Verfahren zum Betreiben einer Kühleinrichtung
CN109302356B (zh) * 2018-12-11 2020-11-06 旌德县展嘉智能科技有限公司 一种单向风道智能散热型核心交换机
CN113038795B (zh) * 2021-03-09 2022-10-04 河南经贸职业学院 一种大数据服务器散热装置
CN113224658B (zh) * 2021-05-21 2022-06-17 浙江冠泽电气设备有限公司 一种户外智能防雨散热型开关柜的应用方法
CN115325621A (zh) * 2022-08-11 2022-11-11 珠海格力电器股份有限公司 电器盒及空调
CN115361850A (zh) * 2022-09-21 2022-11-18 上海汇珏网络通信设备股份有限公司 风光互补型5g一体化节能机柜
CN116261315B (zh) * 2023-05-12 2023-07-11 合肥创科电子工程科技有限责任公司 一种机柜温度调节控制系统
CN116841332B (zh) * 2023-06-06 2024-02-06 迪森(常州)能源装备有限公司 一种用于碳纤维制品成型的热压罐温度控制方法及其系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001245408A (ja) * 2000-02-29 2001-09-07 Mori Seiki Co Ltd 制御盤
US20060102322A1 (en) * 2004-11-14 2006-05-18 Liebert Corp. Integrated heat exchangers in a rack for verticle board style computer systems
JP2006319195A (ja) * 2005-05-13 2006-11-24 Kawamura Electric Inc キャビネットラック
CN1946279A (zh) * 2006-02-24 2007-04-11 华为技术有限公司 机柜温控装置、处理装置、系统及方法
CN101072491A (zh) * 2007-07-04 2007-11-14 华为技术有限公司 直通风散热装置及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001245408A (ja) * 2000-02-29 2001-09-07 Mori Seiki Co Ltd 制御盤
US20060102322A1 (en) * 2004-11-14 2006-05-18 Liebert Corp. Integrated heat exchangers in a rack for verticle board style computer systems
JP2006319195A (ja) * 2005-05-13 2006-11-24 Kawamura Electric Inc キャビネットラック
CN1946279A (zh) * 2006-02-24 2007-04-11 华为技术有限公司 机柜温控装置、处理装置、系统及方法
CN101072491A (zh) * 2007-07-04 2007-11-14 华为技术有限公司 直通风散热装置及其控制方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102523707A (zh) * 2011-12-23 2012-06-27 北京航天测控技术有限公司 一种捷变频信号源设备
CN102523707B (zh) * 2011-12-23 2015-04-01 北京航天测控技术有限公司 一种捷变频信号源设备
CN108451331A (zh) * 2018-01-31 2018-08-28 天津城建大学 自动保温隔热可通风围挡装置
CN108451331B (zh) * 2018-01-31 2024-02-27 天津城建大学 自动保温隔热可通风围挡装置
CN111940914A (zh) * 2020-06-29 2020-11-17 大族激光科技产业集团股份有限公司 一种激光打标机
CN113821062A (zh) * 2021-06-25 2021-12-21 湘南学院 一种用于通讯网络工程的智能温控系统
CN113898542A (zh) * 2021-09-27 2022-01-07 国网浙江省电力有限公司磐安县供电公司 用于风电发电机的散热装置
CN113898542B (zh) * 2021-09-27 2023-04-07 国网浙江省电力有限公司磐安县供电公司 用于风电发电机的散热装置
CN117529067A (zh) * 2024-01-04 2024-02-06 苏州矽行半导体技术有限公司 一种晶圆检测用机柜系统

Also Published As

Publication number Publication date
CN101072491A (zh) 2007-11-14
CN100563415C (zh) 2009-11-25

Similar Documents

Publication Publication Date Title
WO2009003396A1 (fr) Dispositif de diffusion de chaleur à ventilation directe et procédé de commande
WO2007095846A1 (fr) Dispositif de régulation de température, dispositif de gestion de température, et système et procédé associés
TWI425346B (zh) 貨櫃式資料中心之環境調節系統及調節方法
CN102105033B (zh) 货柜式数据中心的环境调节系统及调节方法
JP5524467B2 (ja) サーバ室用空調システム
CN202452633U (zh) 智能通风系统
JP2013096694A (ja) 省エネ空調システム及びその空調モード
WO2022156547A1 (zh) 一种冷却系统和数据中心
WO2021233468A1 (zh) 吸风式空调器的控制方法
JP5535872B2 (ja) データセンタ又は計算機システム
JP2010223486A (ja) 換気装置および換気システム
CN110307597A (zh) 一种分区控制的空调室内机、控制方法及空调机组
CN110220267A (zh) 空调机组、空调系统及空调机组的风机运行方法与装置
CN217685396U (zh) 空调室内机
CN108469858A (zh) 配电室开关柜温湿度控制系统及其运行方法
CN210959210U (zh) 一种集成热交换功能的空调机柜系统
CN108571792A (zh) 数据机房自然冷却系统及其控制方法
JP2009117631A (ja) 冷却装置
CN108565730A (zh) 一种变电站二次设备预制舱的智能通风降温除湿方法
CN102374614A (zh) 制冷设备的控制方法和装置、以及制冷系统
JP5526716B2 (ja) 空調システム
CN109757085A (zh) 渐缩渐扩式强迫风冷系统
CN213955500U (zh) 一种机房节能型智能控温装置
JP2002277002A (ja) 筐体冷却システム
CN208871763U (zh) 一种变电站二次设备预制舱及其智能通风降温除湿系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08757861

Country of ref document: EP

Kind code of ref document: A1